crypto/octeontx2: fix IPsec session member overlap
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_ops.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_eventdev.h>
10 #include <rte_event_crypto_adapter.h>
11 #include <rte_errno.h>
12 #include <rte_malloc.h>
13 #include <rte_mempool.h>
14
15 #include "otx_cryptodev.h"
16 #include "otx_cryptodev_capabilities.h"
17 #include "otx_cryptodev_hw_access.h"
18 #include "otx_cryptodev_mbox.h"
19 #include "otx_cryptodev_ops.h"
20
21 #include "cpt_pmd_logs.h"
22 #include "cpt_pmd_ops_helper.h"
23 #include "cpt_ucode.h"
24 #include "cpt_ucode_asym.h"
25
26 #include "ssovf_worker.h"
27
28 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
29
30 /* Forward declarations */
31
32 static int
33 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
34
35 /* Alarm routines */
36
37 static void
38 otx_cpt_alarm_cb(void *arg)
39 {
40         struct cpt_vf *cptvf = arg;
41         otx_cpt_poll_misc(cptvf);
42         rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
43                           otx_cpt_alarm_cb, cptvf);
44 }
45
46 static int
47 otx_cpt_periodic_alarm_start(void *arg)
48 {
49         return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
50                                  otx_cpt_alarm_cb, arg);
51 }
52
53 static int
54 otx_cpt_periodic_alarm_stop(void *arg)
55 {
56         return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
57 }
58
59 /* PMD ops */
60
61 static int
62 otx_cpt_dev_config(struct rte_cryptodev *dev,
63                    struct rte_cryptodev_config *config __rte_unused)
64 {
65         int ret = 0;
66
67         CPT_PMD_INIT_FUNC_TRACE();
68
69         if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
70                 /* Initialize shared FPM table */
71                 ret = cpt_fpm_init(otx_fpm_iova);
72
73         return ret;
74 }
75
76 static int
77 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
78 {
79         void *cptvf = c_dev->data->dev_private;
80
81         CPT_PMD_INIT_FUNC_TRACE();
82
83         return otx_cpt_start_device(cptvf);
84 }
85
86 static void
87 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
88 {
89         void *cptvf = c_dev->data->dev_private;
90
91         CPT_PMD_INIT_FUNC_TRACE();
92
93         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
94                 cpt_fpm_clear();
95
96         otx_cpt_stop_device(cptvf);
97 }
98
99 static int
100 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
101 {
102         void *cptvf = c_dev->data->dev_private;
103         int i, ret;
104
105         CPT_PMD_INIT_FUNC_TRACE();
106
107         for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
108                 ret = otx_cpt_que_pair_release(c_dev, i);
109                 if (ret)
110                         return ret;
111         }
112
113         otx_cpt_periodic_alarm_stop(cptvf);
114         otx_cpt_deinit_device(cptvf);
115
116         return 0;
117 }
118
119 static void
120 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
121 {
122         CPT_PMD_INIT_FUNC_TRACE();
123         if (info != NULL) {
124                 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
125                 info->feature_flags = dev->feature_flags;
126                 info->capabilities = otx_get_capabilities(info->feature_flags);
127                 info->sym.max_nb_sessions = 0;
128                 info->driver_id = otx_cryptodev_driver_id;
129                 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
130                 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
131         }
132 }
133
134 static int
135 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
136                        uint16_t que_pair_id,
137                        const struct rte_cryptodev_qp_conf *qp_conf,
138                        int socket_id __rte_unused)
139 {
140         struct cpt_instance *instance = NULL;
141         struct rte_pci_device *pci_dev;
142         int ret = -1;
143
144         CPT_PMD_INIT_FUNC_TRACE();
145
146         if (dev->data->queue_pairs[que_pair_id] != NULL) {
147                 ret = otx_cpt_que_pair_release(dev, que_pair_id);
148                 if (ret)
149                         return ret;
150         }
151
152         if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
153                 CPT_LOG_INFO("Number of descriptors too big %d, using default "
154                              "queue length of %d", qp_conf->nb_descriptors,
155                              DEFAULT_CMD_QLEN);
156         }
157
158         pci_dev = RTE_DEV_TO_PCI(dev->device);
159
160         if (pci_dev->mem_resource[0].addr == NULL) {
161                 CPT_LOG_ERR("PCI mem address null");
162                 return -EIO;
163         }
164
165         ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
166         if (ret != 0 || instance == NULL) {
167                 CPT_LOG_ERR("Error getting instance handle from device %s : "
168                             "ret = %d", dev->data->name, ret);
169                 return ret;
170         }
171
172         instance->queue_id = que_pair_id;
173         instance->sess_mp = qp_conf->mp_session;
174         instance->sess_mp_priv = qp_conf->mp_session_private;
175         dev->data->queue_pairs[que_pair_id] = instance;
176
177         return 0;
178 }
179
180 static int
181 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
182 {
183         struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
184         int ret;
185
186         CPT_PMD_INIT_FUNC_TRACE();
187
188         ret = otx_cpt_put_resource(instance);
189         if (ret != 0) {
190                 CPT_LOG_ERR("Error putting instance handle of device %s : "
191                             "ret = %d", dev->data->name, ret);
192                 return ret;
193         }
194
195         dev->data->queue_pairs[que_pair_id] = NULL;
196
197         return 0;
198 }
199
200 static unsigned int
201 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
202 {
203         return cpt_get_session_size();
204 }
205
206 static int
207 sym_xform_verify(struct rte_crypto_sym_xform *xform)
208 {
209         if (xform->next) {
210                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
211                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212                     xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
213                     (xform->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC ||
214                      xform->next->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC))
215                         return -ENOTSUP;
216
217                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
218                     xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
219                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
220                     (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC ||
221                      xform->next->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC))
222                         return -ENOTSUP;
223
224                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225                     xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
226                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
227                     xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
228                         return -ENOTSUP;
229
230                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
231                     xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
232                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
233                     xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
234                         return -ENOTSUP;
235
236         } else {
237                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
238                     xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
239                     xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
240                         return -ENOTSUP;
241         }
242         return 0;
243 }
244
245 static int
246 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
247                       struct rte_cryptodev_sym_session *sess,
248                       struct rte_mempool *pool)
249 {
250         struct rte_crypto_sym_xform *temp_xform = xform;
251         struct cpt_sess_misc *misc;
252         vq_cmd_word3_t vq_cmd_w3;
253         void *priv;
254         int ret;
255
256         ret = sym_xform_verify(xform);
257         if (unlikely(ret))
258                 return ret;
259
260         if (unlikely(rte_mempool_get(pool, &priv))) {
261                 CPT_LOG_ERR("Could not allocate session private data");
262                 return -ENOMEM;
263         }
264
265         memset(priv, 0, sizeof(struct cpt_sess_misc) +
266                         offsetof(struct cpt_ctx, mc_ctx));
267
268         misc = priv;
269
270         for ( ; xform != NULL; xform = xform->next) {
271                 switch (xform->type) {
272                 case RTE_CRYPTO_SYM_XFORM_AEAD:
273                         ret = fill_sess_aead(xform, misc);
274                         break;
275                 case RTE_CRYPTO_SYM_XFORM_CIPHER:
276                         ret = fill_sess_cipher(xform, misc);
277                         break;
278                 case RTE_CRYPTO_SYM_XFORM_AUTH:
279                         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
280                                 ret = fill_sess_gmac(xform, misc);
281                         else
282                                 ret = fill_sess_auth(xform, misc);
283                         break;
284                 default:
285                         ret = -1;
286                 }
287
288                 if (ret)
289                         goto priv_put;
290         }
291
292         if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) &&
293                         cpt_mac_len_verify(&temp_xform->auth)) {
294                 CPT_LOG_ERR("MAC length is not supported");
295                 ret = -ENOTSUP;
296                 goto priv_put;
297         }
298
299         set_sym_session_private_data(sess, driver_id, priv);
300
301         misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
302                              sizeof(struct cpt_sess_misc);
303
304         vq_cmd_w3.u64 = 0;
305         vq_cmd_w3.s.grp = 0;
306         vq_cmd_w3.s.cptr = misc->ctx_dma_addr + offsetof(struct cpt_ctx,
307                                                          mc_ctx);
308
309         misc->cpt_inst_w7 = vq_cmd_w3.u64;
310
311         return 0;
312
313 priv_put:
314         if (priv)
315                 rte_mempool_put(pool, priv);
316         return -ENOTSUP;
317 }
318
319 static void
320 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
321 {
322         void *priv = get_sym_session_private_data(sess, driver_id);
323         struct rte_mempool *pool;
324
325         if (priv == NULL)
326                 return;
327
328         memset(priv, 0, cpt_get_session_size());
329
330         pool = rte_mempool_from_obj(priv);
331
332         set_sym_session_private_data(sess, driver_id, NULL);
333
334         rte_mempool_put(pool, priv);
335 }
336
337 static int
338 otx_cpt_session_cfg(struct rte_cryptodev *dev,
339                     struct rte_crypto_sym_xform *xform,
340                     struct rte_cryptodev_sym_session *sess,
341                     struct rte_mempool *pool)
342 {
343         CPT_PMD_INIT_FUNC_TRACE();
344
345         return sym_session_configure(dev->driver_id, xform, sess, pool);
346 }
347
348
349 static void
350 otx_cpt_session_clear(struct rte_cryptodev *dev,
351                   struct rte_cryptodev_sym_session *sess)
352 {
353         CPT_PMD_INIT_FUNC_TRACE();
354
355         return sym_session_clear(dev->driver_id, sess);
356 }
357
358 static unsigned int
359 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
360 {
361         return sizeof(struct cpt_asym_sess_misc);
362 }
363
364 static int
365 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
366                          struct rte_crypto_asym_xform *xform __rte_unused,
367                          struct rte_cryptodev_asym_session *sess,
368                          struct rte_mempool *pool)
369 {
370         struct cpt_asym_sess_misc *priv;
371         int ret;
372
373         CPT_PMD_INIT_FUNC_TRACE();
374
375         if (rte_mempool_get(pool, (void **)&priv)) {
376                 CPT_LOG_ERR("Could not allocate session private data");
377                 return -ENOMEM;
378         }
379
380         memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
381
382         ret = cpt_fill_asym_session_parameters(priv, xform);
383         if (ret) {
384                 CPT_LOG_ERR("Could not configure session parameters");
385
386                 /* Return session to mempool */
387                 rte_mempool_put(pool, priv);
388                 return ret;
389         }
390
391         priv->cpt_inst_w7 = 0;
392
393         set_asym_session_private_data(sess, dev->driver_id, priv);
394         return 0;
395 }
396
397 static void
398 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
399                            struct rte_cryptodev_asym_session *sess)
400 {
401         struct cpt_asym_sess_misc *priv;
402         struct rte_mempool *sess_mp;
403
404         CPT_PMD_INIT_FUNC_TRACE();
405
406         priv = get_asym_session_private_data(sess, dev->driver_id);
407
408         if (priv == NULL)
409                 return;
410
411         /* Free resources allocated during session configure */
412         cpt_free_asym_session_parameters(priv);
413         memset(priv, 0, otx_cpt_asym_session_size_get(dev));
414         sess_mp = rte_mempool_from_obj(priv);
415         set_asym_session_private_data(sess, dev->driver_id, NULL);
416         rte_mempool_put(sess_mp, priv);
417 }
418
419 static __rte_always_inline void * __rte_hot
420 otx_cpt_request_enqueue(struct cpt_instance *instance,
421                         struct pending_queue *pqueue,
422                         void *req, uint64_t cpt_inst_w7)
423 {
424         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
425
426         if (unlikely(pqueue->pending_count >= DEFAULT_CMD_QLEN)) {
427                 rte_errno = EAGAIN;
428                 return NULL;
429         }
430
431         fill_cpt_inst(instance, req, cpt_inst_w7);
432
433         CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
434
435         /* Fill time_out cycles */
436         user_req->time_out = rte_get_timer_cycles() +
437                         DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
438         user_req->extra_time = 0;
439
440         /* Default mode of software queue */
441         mark_cpt_inst(instance);
442
443         CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
444                          "op: %p", user_req, user_req->op);
445         return req;
446 }
447
448 static __rte_always_inline void * __rte_hot
449 otx_cpt_enq_single_asym(struct cpt_instance *instance,
450                         struct rte_crypto_op *op,
451                         struct pending_queue *pqueue)
452 {
453         struct cpt_qp_meta_info *minfo = &instance->meta_info;
454         struct rte_crypto_asym_op *asym_op = op->asym;
455         struct asym_op_params params = {0};
456         struct cpt_asym_sess_misc *sess;
457         uintptr_t *cop;
458         void *mdata;
459         void *req;
460         int ret;
461
462         if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
463                 CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
464                 rte_errno = ENOMEM;
465                 return NULL;
466         }
467
468         sess = get_asym_session_private_data(asym_op->session,
469                                              otx_cryptodev_driver_id);
470
471         /* Store phys_addr of the mdata to meta_buf */
472         params.meta_buf = rte_mempool_virt2iova(mdata);
473
474         cop = mdata;
475         cop[0] = (uintptr_t)mdata;
476         cop[1] = (uintptr_t)op;
477         cop[2] = cop[3] = 0ULL;
478
479         params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
480         params.req->op = cop;
481
482         /* Adjust meta_buf by crypto_op data  and request_info struct */
483         params.meta_buf += (4 * sizeof(uintptr_t)) +
484                            sizeof(struct cpt_request_info);
485
486         switch (sess->xfrm_type) {
487         case RTE_CRYPTO_ASYM_XFORM_MODEX:
488                 ret = cpt_modex_prep(&params, &sess->mod_ctx);
489                 if (unlikely(ret))
490                         goto req_fail;
491                 break;
492         case RTE_CRYPTO_ASYM_XFORM_RSA:
493                 ret = cpt_enqueue_rsa_op(op, &params, sess);
494                 if (unlikely(ret))
495                         goto req_fail;
496                 break;
497         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
498                 ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
499                 if (unlikely(ret))
500                         goto req_fail;
501                 break;
502         case RTE_CRYPTO_ASYM_XFORM_ECPM:
503                 ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
504                                     sess->ec_ctx.curveid);
505                 if (unlikely(ret))
506                         goto req_fail;
507                 break;
508
509         default:
510                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
511                 rte_errno = EINVAL;
512                 goto req_fail;
513         }
514
515         req = otx_cpt_request_enqueue(instance, pqueue, params.req,
516                                       sess->cpt_inst_w7);
517         if (unlikely(req == NULL)) {
518                 CPT_LOG_DP_ERR("Could not enqueue crypto req");
519                 goto req_fail;
520         }
521
522         return req;
523
524 req_fail:
525         free_op_meta(mdata, minfo->pool);
526
527         return NULL;
528 }
529
530 static __rte_always_inline void * __rte_hot
531 otx_cpt_enq_single_sym(struct cpt_instance *instance,
532                        struct rte_crypto_op *op,
533                        struct pending_queue *pqueue)
534 {
535         struct cpt_sess_misc *sess;
536         struct rte_crypto_sym_op *sym_op = op->sym;
537         struct cpt_request_info *prep_req;
538         void *mdata = NULL;
539         int ret = 0;
540         void *req;
541         uint64_t cpt_op;
542
543         sess = (struct cpt_sess_misc *)
544                         get_sym_session_private_data(sym_op->session,
545                                                      otx_cryptodev_driver_id);
546
547         cpt_op = sess->cpt_op;
548
549         if (likely(cpt_op & CPT_OP_CIPHER_MASK))
550                 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
551                                      (void **)&prep_req);
552         else
553                 ret = fill_digest_params(op, sess, &instance->meta_info,
554                                          &mdata, (void **)&prep_req);
555
556         if (unlikely(ret)) {
557                 CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "
558                                "ret 0x%x", op, (unsigned int)cpt_op, ret);
559                 return NULL;
560         }
561
562         /* Enqueue prepared instruction to h/w */
563         req = otx_cpt_request_enqueue(instance, pqueue, prep_req,
564                                       sess->cpt_inst_w7);
565         if (unlikely(req == NULL))
566                 /* Buffer allocated for request preparation need to be freed */
567                 free_op_meta(mdata, instance->meta_info.pool);
568
569         return req;
570 }
571
572 static __rte_always_inline void * __rte_hot
573 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
574                                 struct rte_crypto_op *op,
575                                 struct pending_queue *pend_q)
576 {
577         const int driver_id = otx_cryptodev_driver_id;
578         struct rte_crypto_sym_op *sym_op = op->sym;
579         struct rte_cryptodev_sym_session *sess;
580         void *req;
581         int ret;
582
583         /* Create temporary session */
584         sess = rte_cryptodev_sym_session_create(instance->sess_mp);
585         if (sess == NULL) {
586                 rte_errno = ENOMEM;
587                 return NULL;
588         }
589
590         ret = sym_session_configure(driver_id, sym_op->xform, sess,
591                                     instance->sess_mp_priv);
592         if (ret)
593                 goto sess_put;
594
595         sym_op->session = sess;
596
597         req = otx_cpt_enq_single_sym(instance, op, pend_q);
598
599         if (unlikely(req == NULL))
600                 goto priv_put;
601
602         return req;
603
604 priv_put:
605         sym_session_clear(driver_id, sess);
606 sess_put:
607         rte_mempool_put(instance->sess_mp, sess);
608         return NULL;
609 }
610
611 #define OP_TYPE_SYM             0
612 #define OP_TYPE_ASYM            1
613
614 static __rte_always_inline void *__rte_hot
615 otx_cpt_enq_single(struct cpt_instance *inst,
616                    struct rte_crypto_op *op,
617                    struct pending_queue *pqueue,
618                    const uint8_t op_type)
619 {
620         /* Check for the type */
621
622         if (op_type == OP_TYPE_SYM) {
623                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
624                         return otx_cpt_enq_single_sym(inst, op, pqueue);
625                 else
626                         return otx_cpt_enq_single_sym_sessless(inst, op,
627                                                                pqueue);
628         }
629
630         if (op_type == OP_TYPE_ASYM) {
631                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
632                         return otx_cpt_enq_single_asym(inst, op, pqueue);
633         }
634
635         /* Should not reach here */
636         rte_errno = ENOTSUP;
637         return NULL;
638 }
639
640 static  __rte_always_inline uint16_t __rte_hot
641 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
642                     const uint8_t op_type)
643 {
644         struct cpt_instance *instance = (struct cpt_instance *)qptr;
645         uint16_t count;
646         void *req;
647         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
648         struct pending_queue *pqueue = &cptvf->pqueue;
649
650         count = DEFAULT_CMD_QLEN - pqueue->pending_count;
651         if (nb_ops > count)
652                 nb_ops = count;
653
654         count = 0;
655         while (likely(count < nb_ops)) {
656
657                 /* Enqueue single op */
658                 req = otx_cpt_enq_single(instance, ops[count], pqueue, op_type);
659
660                 if (unlikely(req == NULL))
661                         break;
662
663                 pqueue->req_queue[pqueue->enq_tail] = (uintptr_t)req;
664                 MOD_INC(pqueue->enq_tail, DEFAULT_CMD_QLEN);
665                 pqueue->pending_count += 1;
666                 count++;
667         }
668         otx_cpt_ring_dbell(instance, count);
669         return count;
670 }
671
672 static uint16_t
673 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
674 {
675         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
676 }
677
678 static uint16_t
679 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
680 {
681         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
682 }
683
684 static __rte_always_inline void
685 submit_request_to_sso(struct ssows *ws, uintptr_t req,
686                       struct rte_event *rsp_info)
687 {
688         uint64_t add_work;
689
690         add_work = rsp_info->flow_id | (RTE_EVENT_TYPE_CRYPTODEV << 28) |
691                    ((uint64_t)(rsp_info->sched_type) << 32);
692
693         if (!rsp_info->sched_type)
694                 ssows_head_wait(ws);
695
696         rte_atomic_thread_fence(__ATOMIC_RELEASE);
697         ssovf_store_pair(add_work, req, ws->grps[rsp_info->queue_id]);
698 }
699
700 static inline union rte_event_crypto_metadata *
701 get_event_crypto_mdata(struct rte_crypto_op *op)
702 {
703         union rte_event_crypto_metadata *ec_mdata;
704
705         if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
706                 ec_mdata = rte_cryptodev_sym_session_get_user_data(
707                                                            op->sym->session);
708         else if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS &&
709                  op->private_data_offset)
710                 ec_mdata = (union rte_event_crypto_metadata *)
711                         ((uint8_t *)op + op->private_data_offset);
712         else
713                 return NULL;
714
715         return ec_mdata;
716 }
717
718 uint16_t __rte_hot
719 otx_crypto_adapter_enqueue(void *port, struct rte_crypto_op *op)
720 {
721         union rte_event_crypto_metadata *ec_mdata;
722         struct cpt_instance *instance;
723         struct cpt_request_info *req;
724         struct rte_event *rsp_info;
725         uint8_t op_type, cdev_id;
726         uint16_t qp_id;
727
728         ec_mdata = get_event_crypto_mdata(op);
729         if (unlikely(ec_mdata == NULL)) {
730                 rte_errno = EINVAL;
731                 return 0;
732         }
733
734         cdev_id = ec_mdata->request_info.cdev_id;
735         qp_id = ec_mdata->request_info.queue_pair_id;
736         rsp_info = &ec_mdata->response_info;
737         instance = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id];
738
739         if (unlikely(!instance->ca_enabled)) {
740                 rte_errno = EINVAL;
741                 return 0;
742         }
743
744         op_type = op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
745                                                              OP_TYPE_ASYM;
746         req = otx_cpt_enq_single(instance, op,
747                                  &((struct cpt_vf *)instance)->pqueue, op_type);
748         if (unlikely(req == NULL))
749                 return 0;
750
751         otx_cpt_ring_dbell(instance, 1);
752         req->qp = instance;
753         submit_request_to_sso(port, (uintptr_t)req, rsp_info);
754
755         return 1;
756 }
757
758 static inline void
759 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
760                     struct rte_crypto_rsa_xform *rsa_ctx)
761
762 {
763         struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
764
765         switch (rsa->op_type) {
766         case RTE_CRYPTO_ASYM_OP_ENCRYPT:
767                 rsa->cipher.length = rsa_ctx->n.length;
768                 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
769                 break;
770         case RTE_CRYPTO_ASYM_OP_DECRYPT:
771                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
772                         rsa->message.length = rsa_ctx->n.length;
773                 else {
774                         /* Get length of decrypted output */
775                         rsa->message.length = rte_cpu_to_be_16
776                                         (*((uint16_t *)req->rptr));
777
778                         /* Offset data pointer by length fields */
779                         req->rptr += 2;
780                 }
781                 memcpy(rsa->message.data, req->rptr, rsa->message.length);
782                 break;
783         case RTE_CRYPTO_ASYM_OP_SIGN:
784                 rsa->sign.length = rsa_ctx->n.length;
785                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
786                 break;
787         case RTE_CRYPTO_ASYM_OP_VERIFY:
788                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
789                         rsa->sign.length = rsa_ctx->n.length;
790                 else {
791                         /* Get length of decrypted output */
792                         rsa->sign.length = rte_cpu_to_be_16
793                                         (*((uint16_t *)req->rptr));
794
795                         /* Offset data pointer by length fields */
796                         req->rptr += 2;
797                 }
798                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
799
800                 if (memcmp(rsa->sign.data, rsa->message.data,
801                            rsa->message.length)) {
802                         CPT_LOG_DP_ERR("RSA verification failed");
803                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
804                 }
805                 break;
806         default:
807                 CPT_LOG_DP_DEBUG("Invalid RSA operation type");
808                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
809                 break;
810         }
811 }
812
813 static __rte_always_inline void
814 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
815                             struct cpt_request_info *req,
816                             struct cpt_asym_ec_ctx *ec)
817
818 {
819         int prime_len = ec_grp[ec->curveid].prime.length;
820
821         if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
822                 return;
823
824         /* Separate out sign r and s components */
825         memcpy(ecdsa->r.data, req->rptr, prime_len);
826         memcpy(ecdsa->s.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
827                prime_len);
828         ecdsa->r.length = prime_len;
829         ecdsa->s.length = prime_len;
830 }
831
832 static __rte_always_inline void
833 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
834                              struct cpt_request_info *req,
835                              struct cpt_asym_ec_ctx *ec)
836 {
837         int prime_len = ec_grp[ec->curveid].prime.length;
838
839         memcpy(ecpm->r.x.data, req->rptr, prime_len);
840         memcpy(ecpm->r.y.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
841                prime_len);
842         ecpm->r.x.length = prime_len;
843         ecpm->r.y.length = prime_len;
844 }
845
846 static __rte_always_inline void __rte_hot
847 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
848                           struct cpt_request_info *req)
849 {
850         struct rte_crypto_asym_op *op = cop->asym;
851         struct cpt_asym_sess_misc *sess;
852
853         sess = get_asym_session_private_data(op->session,
854                                              otx_cryptodev_driver_id);
855
856         switch (sess->xfrm_type) {
857         case RTE_CRYPTO_ASYM_XFORM_RSA:
858                 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
859                 break;
860         case RTE_CRYPTO_ASYM_XFORM_MODEX:
861                 op->modex.result.length = sess->mod_ctx.modulus.length;
862                 memcpy(op->modex.result.data, req->rptr,
863                        op->modex.result.length);
864                 break;
865         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
866                 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
867                 break;
868         case RTE_CRYPTO_ASYM_XFORM_ECPM:
869                 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
870                 break;
871         default:
872                 CPT_LOG_DP_DEBUG("Invalid crypto xform type");
873                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
874                 break;
875         }
876 }
877
878 static __rte_always_inline void __rte_hot
879 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
880                              const uint8_t op_type)
881 {
882         /* H/w has returned success */
883         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
884
885         /* Perform further post processing */
886
887         if ((op_type == OP_TYPE_SYM) &&
888             (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
889                 /* Check if auth verify need to be completed */
890                 if (unlikely(rsp[2]))
891                         compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
892                 return;
893         }
894
895         if ((op_type == OP_TYPE_ASYM) &&
896             (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
897                 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
898                 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
899         }
900
901         return;
902 }
903
904 static inline void
905 free_sym_session_data(const struct cpt_instance *instance,
906                       struct rte_crypto_op *cop)
907 {
908         void *sess_private_data_t = get_sym_session_private_data(
909                 cop->sym->session, otx_cryptodev_driver_id);
910         memset(sess_private_data_t, 0, cpt_get_session_size());
911         memset(cop->sym->session, 0,
912                rte_cryptodev_sym_get_existing_header_session_size(
913                        cop->sym->session));
914         rte_mempool_put(instance->sess_mp_priv, sess_private_data_t);
915         rte_mempool_put(instance->sess_mp, cop->sym->session);
916         cop->sym->session = NULL;
917 }
918
919 static __rte_always_inline struct rte_crypto_op *
920 otx_cpt_process_response(const struct cpt_instance *instance, uintptr_t *rsp,
921                          uint8_t cc, const uint8_t op_type)
922 {
923         struct rte_crypto_op *cop;
924         void *metabuf;
925
926         metabuf = (void *)rsp[0];
927         cop = (void *)rsp[1];
928
929         /* Check completion code */
930         if (likely(cc == 0)) {
931                 /* H/w success pkt. Post process */
932                 otx_cpt_dequeue_post_process(cop, rsp, op_type);
933         } else if (cc == ERR_GC_ICV_MISCOMPARE) {
934                 /* auth data mismatch */
935                 cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
936         } else {
937                 /* Error */
938                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
939         }
940
941         if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS))
942                 free_sym_session_data(instance, cop);
943         free_op_meta(metabuf, instance->meta_info.pool);
944
945         return cop;
946 }
947
948 static __rte_always_inline uint16_t __rte_hot
949 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
950                     const uint8_t op_type)
951 {
952         struct cpt_instance *instance = (struct cpt_instance *)qptr;
953         struct cpt_request_info *user_req;
954         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
955         uint8_t cc[nb_ops];
956         int i, count, pcount;
957         uint8_t ret;
958         int nb_completed;
959         struct pending_queue *pqueue = &cptvf->pqueue;
960
961         pcount = pqueue->pending_count;
962         count = (nb_ops > pcount) ? pcount : nb_ops;
963
964         for (i = 0; i < count; i++) {
965                 user_req = (struct cpt_request_info *)
966                                 pqueue->req_queue[pqueue->deq_head];
967
968                 if (likely((i+1) < count)) {
969                         rte_prefetch_non_temporal(
970                                 (void *)pqueue->req_queue[i+1]);
971                 }
972
973                 ret = check_nb_command_id(user_req, instance);
974
975                 if (unlikely(ret == ERR_REQ_PENDING)) {
976                         /* Stop checking for completions */
977                         break;
978                 }
979
980                 /* Return completion code and op handle */
981                 cc[i] = ret;
982                 ops[i] = user_req->op;
983
984                 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
985                                  user_req, user_req->op, ret);
986
987                 MOD_INC(pqueue->deq_head, DEFAULT_CMD_QLEN);
988                 pqueue->pending_count -= 1;
989         }
990
991         nb_completed = i;
992
993         for (i = 0; i < nb_completed; i++) {
994                 if (likely((i + 1) < nb_completed))
995                         rte_prefetch0(ops[i+1]);
996
997                 ops[i] = otx_cpt_process_response(instance, (void *)ops[i],
998                                                   cc[i], op_type);
999         }
1000
1001         return nb_completed;
1002 }
1003
1004 static uint16_t
1005 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
1006 {
1007         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
1008 }
1009
1010 static uint16_t
1011 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
1012 {
1013         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
1014 }
1015
1016 uintptr_t __rte_hot
1017 otx_crypto_adapter_dequeue(uintptr_t get_work1)
1018 {
1019         const struct cpt_instance *instance;
1020         struct cpt_request_info *req;
1021         struct rte_crypto_op *cop;
1022         uint8_t cc, op_type;
1023         uintptr_t *rsp;
1024
1025         req = (struct cpt_request_info *)get_work1;
1026         instance = req->qp;
1027         rsp = req->op;
1028         cop = (void *)rsp[1];
1029         op_type = cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
1030                                                               OP_TYPE_ASYM;
1031
1032         do {
1033                 cc = check_nb_command_id(
1034                         req, (struct cpt_instance *)(uintptr_t)instance);
1035         } while (cc == ERR_REQ_PENDING);
1036
1037         cop = otx_cpt_process_response(instance, (void *)req->op, cc, op_type);
1038
1039         return (uintptr_t)(cop);
1040 }
1041
1042 static struct rte_cryptodev_ops cptvf_ops = {
1043         /* Device related operations */
1044         .dev_configure = otx_cpt_dev_config,
1045         .dev_start = otx_cpt_dev_start,
1046         .dev_stop = otx_cpt_dev_stop,
1047         .dev_close = otx_cpt_dev_close,
1048         .dev_infos_get = otx_cpt_dev_info_get,
1049
1050         .stats_get = NULL,
1051         .stats_reset = NULL,
1052         .queue_pair_setup = otx_cpt_que_pair_setup,
1053         .queue_pair_release = otx_cpt_que_pair_release,
1054
1055         /* Crypto related operations */
1056         .sym_session_get_size = otx_cpt_get_session_size,
1057         .sym_session_configure = otx_cpt_session_cfg,
1058         .sym_session_clear = otx_cpt_session_clear,
1059
1060         .asym_session_get_size = otx_cpt_asym_session_size_get,
1061         .asym_session_configure = otx_cpt_asym_session_cfg,
1062         .asym_session_clear = otx_cpt_asym_session_clear,
1063 };
1064
1065 int
1066 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
1067 {
1068         struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
1069         struct cpt_vf *cptvf = NULL;
1070         void *reg_base;
1071         char dev_name[32];
1072         int ret;
1073
1074         if (pdev->mem_resource[0].phys_addr == 0ULL)
1075                 return -EIO;
1076
1077         /* for secondary processes, we don't initialise any further as primary
1078          * has already done this work.
1079          */
1080         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1081                 return 0;
1082
1083         cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
1084                         sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
1085                         rte_socket_id());
1086
1087         if (cptvf == NULL) {
1088                 CPT_LOG_ERR("Cannot allocate memory for device private data");
1089                 return -ENOMEM;
1090         }
1091
1092         snprintf(dev_name, 32, "%02x:%02x.%x",
1093                         pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
1094
1095         reg_base = pdev->mem_resource[0].addr;
1096         if (!reg_base) {
1097                 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
1098                 ret = -ENODEV;
1099                 goto fail;
1100         }
1101
1102         ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
1103         if (ret) {
1104                 CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
1105                 ret = -EIO;
1106                 goto fail;
1107         }
1108
1109         switch (cptvf->vftype) {
1110         case OTX_CPT_VF_TYPE_AE:
1111                 /* Set asymmetric cpt feature flags */
1112                 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
1113                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
1114                                 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
1115                 break;
1116         case OTX_CPT_VF_TYPE_SE:
1117                 /* Set symmetric cpt feature flags */
1118                 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
1119                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
1120                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
1121                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL |
1122                                 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
1123                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
1124                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
1125                                 RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
1126                                 RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
1127                 break;
1128         default:
1129                 /* Feature not supported. Abort */
1130                 CPT_LOG_ERR("VF type not supported by %s", dev_name);
1131                 ret = -EIO;
1132                 goto deinit_dev;
1133         }
1134
1135         /* Start off timer for mailbox interrupts */
1136         otx_cpt_periodic_alarm_start(cptvf);
1137
1138         c_dev->dev_ops = &cptvf_ops;
1139
1140         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
1141                 c_dev->enqueue_burst = otx_cpt_enqueue_sym;
1142                 c_dev->dequeue_burst = otx_cpt_dequeue_sym;
1143         } else {
1144                 c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1145                 c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1146         }
1147
1148         /* Save dev private data */
1149         c_dev->data->dev_private = cptvf;
1150
1151         return 0;
1152
1153 deinit_dev:
1154         otx_cpt_deinit_device(cptvf);
1155
1156 fail:
1157         if (cptvf) {
1158                 /* Free private data allocated */
1159                 rte_free(cptvf);
1160         }
1161
1162         return ret;
1163 }