common/cpt: fix encryption offset
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_ops.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_errno.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12
13 #include "otx_cryptodev.h"
14 #include "otx_cryptodev_capabilities.h"
15 #include "otx_cryptodev_hw_access.h"
16 #include "otx_cryptodev_mbox.h"
17 #include "otx_cryptodev_ops.h"
18
19 #include "cpt_pmd_logs.h"
20 #include "cpt_pmd_ops_helper.h"
21 #include "cpt_ucode.h"
22 #include "cpt_ucode_asym.h"
23
24 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
25
26 /* Forward declarations */
27
28 static int
29 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
30
31 /* Alarm routines */
32
33 static void
34 otx_cpt_alarm_cb(void *arg)
35 {
36         struct cpt_vf *cptvf = arg;
37         otx_cpt_poll_misc(cptvf);
38         rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
39                           otx_cpt_alarm_cb, cptvf);
40 }
41
42 static int
43 otx_cpt_periodic_alarm_start(void *arg)
44 {
45         return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
46                                  otx_cpt_alarm_cb, arg);
47 }
48
49 static int
50 otx_cpt_periodic_alarm_stop(void *arg)
51 {
52         return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
53 }
54
55 /* PMD ops */
56
57 static int
58 otx_cpt_dev_config(struct rte_cryptodev *dev,
59                    struct rte_cryptodev_config *config __rte_unused)
60 {
61         int ret = 0;
62
63         CPT_PMD_INIT_FUNC_TRACE();
64
65         if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
66                 /* Initialize shared FPM table */
67                 ret = cpt_fpm_init(otx_fpm_iova);
68
69         return ret;
70 }
71
72 static int
73 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
74 {
75         void *cptvf = c_dev->data->dev_private;
76
77         CPT_PMD_INIT_FUNC_TRACE();
78
79         return otx_cpt_start_device(cptvf);
80 }
81
82 static void
83 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
84 {
85         void *cptvf = c_dev->data->dev_private;
86
87         CPT_PMD_INIT_FUNC_TRACE();
88
89         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
90                 cpt_fpm_clear();
91
92         otx_cpt_stop_device(cptvf);
93 }
94
95 static int
96 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
97 {
98         void *cptvf = c_dev->data->dev_private;
99         int i, ret;
100
101         CPT_PMD_INIT_FUNC_TRACE();
102
103         for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
104                 ret = otx_cpt_que_pair_release(c_dev, i);
105                 if (ret)
106                         return ret;
107         }
108
109         otx_cpt_periodic_alarm_stop(cptvf);
110         otx_cpt_deinit_device(cptvf);
111
112         return 0;
113 }
114
115 static void
116 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
117 {
118         CPT_PMD_INIT_FUNC_TRACE();
119         if (info != NULL) {
120                 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
121                 info->feature_flags = dev->feature_flags;
122                 info->capabilities = otx_get_capabilities(info->feature_flags);
123                 info->sym.max_nb_sessions = 0;
124                 info->driver_id = otx_cryptodev_driver_id;
125                 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
126                 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
127         }
128 }
129
130 static void
131 otx_cpt_stats_get(struct rte_cryptodev *dev __rte_unused,
132                   struct rte_cryptodev_stats *stats __rte_unused)
133 {
134         CPT_PMD_INIT_FUNC_TRACE();
135 }
136
137 static void
138 otx_cpt_stats_reset(struct rte_cryptodev *dev __rte_unused)
139 {
140         CPT_PMD_INIT_FUNC_TRACE();
141 }
142
143 static int
144 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
145                        uint16_t que_pair_id,
146                        const struct rte_cryptodev_qp_conf *qp_conf,
147                        int socket_id __rte_unused)
148 {
149         struct cpt_instance *instance = NULL;
150         struct rte_pci_device *pci_dev;
151         int ret = -1;
152
153         CPT_PMD_INIT_FUNC_TRACE();
154
155         if (dev->data->queue_pairs[que_pair_id] != NULL) {
156                 ret = otx_cpt_que_pair_release(dev, que_pair_id);
157                 if (ret)
158                         return ret;
159         }
160
161         if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
162                 CPT_LOG_INFO("Number of descriptors too big %d, using default "
163                              "queue length of %d", qp_conf->nb_descriptors,
164                              DEFAULT_CMD_QLEN);
165         }
166
167         pci_dev = RTE_DEV_TO_PCI(dev->device);
168
169         if (pci_dev->mem_resource[0].addr == NULL) {
170                 CPT_LOG_ERR("PCI mem address null");
171                 return -EIO;
172         }
173
174         ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
175         if (ret != 0 || instance == NULL) {
176                 CPT_LOG_ERR("Error getting instance handle from device %s : "
177                             "ret = %d", dev->data->name, ret);
178                 return ret;
179         }
180
181         instance->queue_id = que_pair_id;
182         instance->sess_mp = qp_conf->mp_session;
183         instance->sess_mp_priv = qp_conf->mp_session_private;
184         dev->data->queue_pairs[que_pair_id] = instance;
185
186         return 0;
187 }
188
189 static int
190 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
191 {
192         struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
193         int ret;
194
195         CPT_PMD_INIT_FUNC_TRACE();
196
197         ret = otx_cpt_put_resource(instance);
198         if (ret != 0) {
199                 CPT_LOG_ERR("Error putting instance handle of device %s : "
200                             "ret = %d", dev->data->name, ret);
201                 return ret;
202         }
203
204         dev->data->queue_pairs[que_pair_id] = NULL;
205
206         return 0;
207 }
208
209 static unsigned int
210 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
211 {
212         return cpt_get_session_size();
213 }
214
215 static int
216 sym_xform_verify(struct rte_crypto_sym_xform *xform)
217 {
218         if (xform->next) {
219                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
220                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
221                     xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
222                         return -ENOTSUP;
223
224                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225                     xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
226                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
227                         return -ENOTSUP;
228
229                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
230                     xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
231                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
232                     xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
233                         return -ENOTSUP;
234
235                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
236                     xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
237                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
238                     xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
239                         return -ENOTSUP;
240
241         } else {
242                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
243                     xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
244                     xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
245                         return -ENOTSUP;
246         }
247         return 0;
248 }
249
250 static int
251 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
252                       struct rte_cryptodev_sym_session *sess,
253                       struct rte_mempool *pool)
254 {
255         struct cpt_sess_misc *misc;
256         void *priv;
257         int ret;
258
259         ret = sym_xform_verify(xform);
260         if (unlikely(ret))
261                 return ret;
262
263         if (unlikely(rte_mempool_get(pool, &priv))) {
264                 CPT_LOG_ERR("Could not allocate session private data");
265                 return -ENOMEM;
266         }
267
268         misc = priv;
269
270         for ( ; xform != NULL; xform = xform->next) {
271                 switch (xform->type) {
272                 case RTE_CRYPTO_SYM_XFORM_AEAD:
273                         ret = fill_sess_aead(xform, misc);
274                         break;
275                 case RTE_CRYPTO_SYM_XFORM_CIPHER:
276                         ret = fill_sess_cipher(xform, misc);
277                         break;
278                 case RTE_CRYPTO_SYM_XFORM_AUTH:
279                         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
280                                 ret = fill_sess_gmac(xform, misc);
281                         else
282                                 ret = fill_sess_auth(xform, misc);
283                         break;
284                 default:
285                         ret = -1;
286                 }
287
288                 if (ret)
289                         goto priv_put;
290         }
291
292         set_sym_session_private_data(sess, driver_id, priv);
293
294         misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
295                              sizeof(struct cpt_sess_misc);
296
297         return 0;
298
299 priv_put:
300         if (priv)
301                 rte_mempool_put(pool, priv);
302         return -ENOTSUP;
303 }
304
305 static void
306 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
307 {
308         void *priv = get_sym_session_private_data(sess, driver_id);
309         struct rte_mempool *pool;
310
311         if (priv == NULL)
312                 return;
313
314         memset(priv, 0, cpt_get_session_size());
315
316         pool = rte_mempool_from_obj(priv);
317
318         set_sym_session_private_data(sess, driver_id, NULL);
319
320         rte_mempool_put(pool, priv);
321 }
322
323 static int
324 otx_cpt_session_cfg(struct rte_cryptodev *dev,
325                     struct rte_crypto_sym_xform *xform,
326                     struct rte_cryptodev_sym_session *sess,
327                     struct rte_mempool *pool)
328 {
329         CPT_PMD_INIT_FUNC_TRACE();
330
331         return sym_session_configure(dev->driver_id, xform, sess, pool);
332 }
333
334
335 static void
336 otx_cpt_session_clear(struct rte_cryptodev *dev,
337                   struct rte_cryptodev_sym_session *sess)
338 {
339         CPT_PMD_INIT_FUNC_TRACE();
340
341         return sym_session_clear(dev->driver_id, sess);
342 }
343
344 static unsigned int
345 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
346 {
347         return sizeof(struct cpt_asym_sess_misc);
348 }
349
350 static int
351 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
352                          struct rte_crypto_asym_xform *xform __rte_unused,
353                          struct rte_cryptodev_asym_session *sess,
354                          struct rte_mempool *pool)
355 {
356         struct cpt_asym_sess_misc *priv;
357         int ret;
358
359         CPT_PMD_INIT_FUNC_TRACE();
360
361         if (rte_mempool_get(pool, (void **)&priv)) {
362                 CPT_LOG_ERR("Could not allocate session private data");
363                 return -ENOMEM;
364         }
365
366         memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
367
368         ret = cpt_fill_asym_session_parameters(priv, xform);
369         if (ret) {
370                 CPT_LOG_ERR("Could not configure session parameters");
371
372                 /* Return session to mempool */
373                 rte_mempool_put(pool, priv);
374                 return ret;
375         }
376
377         set_asym_session_private_data(sess, dev->driver_id, priv);
378         return 0;
379 }
380
381 static void
382 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
383                            struct rte_cryptodev_asym_session *sess)
384 {
385         struct cpt_asym_sess_misc *priv;
386         struct rte_mempool *sess_mp;
387
388         CPT_PMD_INIT_FUNC_TRACE();
389
390         priv = get_asym_session_private_data(sess, dev->driver_id);
391
392         if (priv == NULL)
393                 return;
394
395         /* Free resources allocated during session configure */
396         cpt_free_asym_session_parameters(priv);
397         memset(priv, 0, otx_cpt_asym_session_size_get(dev));
398         sess_mp = rte_mempool_from_obj(priv);
399         set_asym_session_private_data(sess, dev->driver_id, NULL);
400         rte_mempool_put(sess_mp, priv);
401 }
402
403 static __rte_always_inline int32_t __rte_hot
404 otx_cpt_request_enqueue(struct cpt_instance *instance,
405                         struct pending_queue *pqueue,
406                         void *req)
407 {
408         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
409
410         if (unlikely(pqueue->pending_count >= DEFAULT_CMD_QLEN))
411                 return -EAGAIN;
412
413         fill_cpt_inst(instance, req);
414
415         CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
416
417         /* Fill time_out cycles */
418         user_req->time_out = rte_get_timer_cycles() +
419                         DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
420         user_req->extra_time = 0;
421
422         /* Default mode of software queue */
423         mark_cpt_inst(instance);
424
425         pqueue->rid_queue[pqueue->enq_tail].rid = (uintptr_t)user_req;
426
427         /* We will use soft queue length here to limit requests */
428         MOD_INC(pqueue->enq_tail, DEFAULT_CMD_QLEN);
429         pqueue->pending_count += 1;
430
431         CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
432                          "op: %p", user_req, user_req->op);
433         return 0;
434 }
435
436 static __rte_always_inline int __rte_hot
437 otx_cpt_enq_single_asym(struct cpt_instance *instance,
438                         struct rte_crypto_op *op,
439                         struct pending_queue *pqueue)
440 {
441         struct cpt_qp_meta_info *minfo = &instance->meta_info;
442         struct rte_crypto_asym_op *asym_op = op->asym;
443         struct asym_op_params params = {0};
444         struct cpt_asym_sess_misc *sess;
445         uintptr_t *cop;
446         void *mdata;
447         int ret;
448
449         if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
450                 CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
451                 return -ENOMEM;
452         }
453
454         sess = get_asym_session_private_data(asym_op->session,
455                                              otx_cryptodev_driver_id);
456
457         /* Store phys_addr of the mdata to meta_buf */
458         params.meta_buf = rte_mempool_virt2iova(mdata);
459
460         cop = mdata;
461         cop[0] = (uintptr_t)mdata;
462         cop[1] = (uintptr_t)op;
463         cop[2] = cop[3] = 0ULL;
464
465         params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
466         params.req->op = cop;
467
468         /* Adjust meta_buf by crypto_op data  and request_info struct */
469         params.meta_buf += (4 * sizeof(uintptr_t)) +
470                            sizeof(struct cpt_request_info);
471
472         switch (sess->xfrm_type) {
473         case RTE_CRYPTO_ASYM_XFORM_MODEX:
474                 ret = cpt_modex_prep(&params, &sess->mod_ctx);
475                 if (unlikely(ret))
476                         goto req_fail;
477                 break;
478         case RTE_CRYPTO_ASYM_XFORM_RSA:
479                 ret = cpt_enqueue_rsa_op(op, &params, sess);
480                 if (unlikely(ret))
481                         goto req_fail;
482                 break;
483         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
484                 ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
485                 if (unlikely(ret))
486                         goto req_fail;
487                 break;
488         case RTE_CRYPTO_ASYM_XFORM_ECPM:
489                 ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
490                                     sess->ec_ctx.curveid);
491                 if (unlikely(ret))
492                         goto req_fail;
493                 break;
494
495         default:
496                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
497                 ret = -EINVAL;
498                 goto req_fail;
499         }
500
501         ret = otx_cpt_request_enqueue(instance, pqueue, params.req);
502
503         if (unlikely(ret)) {
504                 CPT_LOG_DP_ERR("Could not enqueue crypto req");
505                 goto req_fail;
506         }
507
508         return 0;
509
510 req_fail:
511         free_op_meta(mdata, minfo->pool);
512
513         return ret;
514 }
515
516 static __rte_always_inline int __rte_hot
517 otx_cpt_enq_single_sym(struct cpt_instance *instance,
518                        struct rte_crypto_op *op,
519                        struct pending_queue *pqueue)
520 {
521         struct cpt_sess_misc *sess;
522         struct rte_crypto_sym_op *sym_op = op->sym;
523         void *prep_req, *mdata = NULL;
524         int ret = 0;
525         uint64_t cpt_op;
526
527         sess = (struct cpt_sess_misc *)
528                         get_sym_session_private_data(sym_op->session,
529                                                      otx_cryptodev_driver_id);
530
531         cpt_op = sess->cpt_op;
532
533         if (likely(cpt_op & CPT_OP_CIPHER_MASK))
534                 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
535                                      &prep_req);
536         else
537                 ret = fill_digest_params(op, sess, &instance->meta_info,
538                                          &mdata, &prep_req);
539
540         if (unlikely(ret)) {
541                 CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "
542                                "ret 0x%x", op, (unsigned int)cpt_op, ret);
543                 return ret;
544         }
545
546         /* Enqueue prepared instruction to h/w */
547         ret = otx_cpt_request_enqueue(instance, pqueue, prep_req);
548
549         if (unlikely(ret)) {
550                 /* Buffer allocated for request preparation need to be freed */
551                 free_op_meta(mdata, instance->meta_info.pool);
552                 return ret;
553         }
554
555         return 0;
556 }
557
558 static __rte_always_inline int __rte_hot
559 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
560                                 struct rte_crypto_op *op,
561                                 struct pending_queue *pend_q)
562 {
563         const int driver_id = otx_cryptodev_driver_id;
564         struct rte_crypto_sym_op *sym_op = op->sym;
565         struct rte_cryptodev_sym_session *sess;
566         int ret;
567
568         /* Create temporary session */
569
570         if (rte_mempool_get(instance->sess_mp, (void **)&sess))
571                 return -ENOMEM;
572
573         ret = sym_session_configure(driver_id, sym_op->xform, sess,
574                                     instance->sess_mp_priv);
575         if (ret)
576                 goto sess_put;
577
578         sym_op->session = sess;
579
580         ret = otx_cpt_enq_single_sym(instance, op, pend_q);
581
582         if (unlikely(ret))
583                 goto priv_put;
584
585         return 0;
586
587 priv_put:
588         sym_session_clear(driver_id, sess);
589 sess_put:
590         rte_mempool_put(instance->sess_mp, sess);
591         return ret;
592 }
593
594 #define OP_TYPE_SYM             0
595 #define OP_TYPE_ASYM            1
596
597 static __rte_always_inline int __rte_hot
598 otx_cpt_enq_single(struct cpt_instance *inst,
599                    struct rte_crypto_op *op,
600                    struct pending_queue *pqueue,
601                    const uint8_t op_type)
602 {
603         /* Check for the type */
604
605         if (op_type == OP_TYPE_SYM) {
606                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
607                         return otx_cpt_enq_single_sym(inst, op, pqueue);
608                 else
609                         return otx_cpt_enq_single_sym_sessless(inst, op,
610                                                                pqueue);
611         }
612
613         if (op_type == OP_TYPE_ASYM) {
614                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
615                         return otx_cpt_enq_single_asym(inst, op, pqueue);
616         }
617
618         /* Should not reach here */
619         return -ENOTSUP;
620 }
621
622 static  __rte_always_inline uint16_t __rte_hot
623 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
624                     const uint8_t op_type)
625 {
626         struct cpt_instance *instance = (struct cpt_instance *)qptr;
627         uint16_t count;
628         int ret;
629         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
630         struct pending_queue *pqueue = &cptvf->pqueue;
631
632         count = DEFAULT_CMD_QLEN - pqueue->pending_count;
633         if (nb_ops > count)
634                 nb_ops = count;
635
636         count = 0;
637         while (likely(count < nb_ops)) {
638
639                 /* Enqueue single op */
640                 ret = otx_cpt_enq_single(instance, ops[count], pqueue, op_type);
641
642                 if (unlikely(ret))
643                         break;
644                 count++;
645         }
646         otx_cpt_ring_dbell(instance, count);
647         return count;
648 }
649
650 static uint16_t
651 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
652 {
653         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
654 }
655
656 static uint16_t
657 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
658 {
659         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
660 }
661
662 static inline void
663 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
664                     struct rte_crypto_rsa_xform *rsa_ctx)
665
666 {
667         struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
668
669         switch (rsa->op_type) {
670         case RTE_CRYPTO_ASYM_OP_ENCRYPT:
671                 rsa->cipher.length = rsa_ctx->n.length;
672                 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
673                 break;
674         case RTE_CRYPTO_ASYM_OP_DECRYPT:
675                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
676                         rsa->message.length = rsa_ctx->n.length;
677                 else {
678                         /* Get length of decrypted output */
679                         rsa->message.length = rte_cpu_to_be_16
680                                         (*((uint16_t *)req->rptr));
681
682                         /* Offset data pointer by length fields */
683                         req->rptr += 2;
684                 }
685                 memcpy(rsa->message.data, req->rptr, rsa->message.length);
686                 break;
687         case RTE_CRYPTO_ASYM_OP_SIGN:
688                 rsa->sign.length = rsa_ctx->n.length;
689                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
690                 break;
691         case RTE_CRYPTO_ASYM_OP_VERIFY:
692                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
693                         rsa->sign.length = rsa_ctx->n.length;
694                 else {
695                         /* Get length of decrypted output */
696                         rsa->sign.length = rte_cpu_to_be_16
697                                         (*((uint16_t *)req->rptr));
698
699                         /* Offset data pointer by length fields */
700                         req->rptr += 2;
701                 }
702                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
703
704                 if (memcmp(rsa->sign.data, rsa->message.data,
705                            rsa->message.length)) {
706                         CPT_LOG_DP_ERR("RSA verification failed");
707                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
708                 }
709                 break;
710         default:
711                 CPT_LOG_DP_DEBUG("Invalid RSA operation type");
712                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
713                 break;
714         }
715 }
716
717 static __rte_always_inline void
718 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
719                             struct cpt_request_info *req,
720                             struct cpt_asym_ec_ctx *ec)
721
722 {
723         int prime_len = ec_grp[ec->curveid].prime.length;
724
725         if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
726                 return;
727
728         /* Separate out sign r and s components */
729         memcpy(ecdsa->r.data, req->rptr, prime_len);
730         memcpy(ecdsa->s.data, req->rptr + ROUNDUP8(prime_len), prime_len);
731         ecdsa->r.length = prime_len;
732         ecdsa->s.length = prime_len;
733 }
734
735 static __rte_always_inline void
736 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
737                              struct cpt_request_info *req,
738                              struct cpt_asym_ec_ctx *ec)
739 {
740         int prime_len = ec_grp[ec->curveid].prime.length;
741
742         memcpy(ecpm->r.x.data, req->rptr, prime_len);
743         memcpy(ecpm->r.y.data, req->rptr + ROUNDUP8(prime_len), prime_len);
744         ecpm->r.x.length = prime_len;
745         ecpm->r.y.length = prime_len;
746 }
747
748 static __rte_always_inline void __rte_hot
749 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
750                           struct cpt_request_info *req)
751 {
752         struct rte_crypto_asym_op *op = cop->asym;
753         struct cpt_asym_sess_misc *sess;
754
755         sess = get_asym_session_private_data(op->session,
756                                              otx_cryptodev_driver_id);
757
758         switch (sess->xfrm_type) {
759         case RTE_CRYPTO_ASYM_XFORM_RSA:
760                 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
761                 break;
762         case RTE_CRYPTO_ASYM_XFORM_MODEX:
763                 op->modex.result.length = sess->mod_ctx.modulus.length;
764                 memcpy(op->modex.result.data, req->rptr,
765                        op->modex.result.length);
766                 break;
767         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
768                 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
769                 break;
770         case RTE_CRYPTO_ASYM_XFORM_ECPM:
771                 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
772                 break;
773         default:
774                 CPT_LOG_DP_DEBUG("Invalid crypto xform type");
775                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
776                 break;
777         }
778 }
779
780 static __rte_always_inline void __rte_hot
781 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
782                              const uint8_t op_type)
783 {
784         /* H/w has returned success */
785         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
786
787         /* Perform further post processing */
788
789         if ((op_type == OP_TYPE_SYM) &&
790             (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
791                 /* Check if auth verify need to be completed */
792                 if (unlikely(rsp[2]))
793                         compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
794                 return;
795         }
796
797         if ((op_type == OP_TYPE_ASYM) &&
798             (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
799                 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
800                 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
801         }
802
803         return;
804 }
805
806 static __rte_always_inline uint16_t __rte_hot
807 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
808                     const uint8_t op_type)
809 {
810         struct cpt_instance *instance = (struct cpt_instance *)qptr;
811         struct cpt_request_info *user_req;
812         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
813         struct rid *rid_e;
814         uint8_t cc[nb_ops];
815         int i, count, pcount;
816         uint8_t ret;
817         int nb_completed;
818         struct pending_queue *pqueue = &cptvf->pqueue;
819         struct rte_crypto_op *cop;
820         void *metabuf;
821         uintptr_t *rsp;
822
823         pcount = pqueue->pending_count;
824         count = (nb_ops > pcount) ? pcount : nb_ops;
825
826         for (i = 0; i < count; i++) {
827                 rid_e = &pqueue->rid_queue[pqueue->deq_head];
828                 user_req = (struct cpt_request_info *)(rid_e->rid);
829
830                 if (likely((i+1) < count))
831                         rte_prefetch_non_temporal((void *)rid_e[1].rid);
832
833                 ret = check_nb_command_id(user_req, instance);
834
835                 if (unlikely(ret == ERR_REQ_PENDING)) {
836                         /* Stop checking for completions */
837                         break;
838                 }
839
840                 /* Return completion code and op handle */
841                 cc[i] = ret;
842                 ops[i] = user_req->op;
843
844                 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
845                                  user_req, user_req->op, ret);
846
847                 MOD_INC(pqueue->deq_head, DEFAULT_CMD_QLEN);
848                 pqueue->pending_count -= 1;
849         }
850
851         nb_completed = i;
852
853         for (i = 0; i < nb_completed; i++) {
854
855                 rsp = (void *)ops[i];
856
857                 if (likely((i + 1) < nb_completed))
858                         rte_prefetch0(ops[i+1]);
859
860                 metabuf = (void *)rsp[0];
861                 cop = (void *)rsp[1];
862
863                 ops[i] = cop;
864
865                 /* Check completion code */
866
867                 if (likely(cc[i] == 0)) {
868                         /* H/w success pkt. Post process */
869                         otx_cpt_dequeue_post_process(cop, rsp, op_type);
870                 } else if (cc[i] == ERR_GC_ICV_MISCOMPARE) {
871                         /* auth data mismatch */
872                         cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
873                 } else {
874                         /* Error */
875                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
876                 }
877
878                 if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) {
879                         void *sess_private_data_t =
880                                 get_sym_session_private_data(cop->sym->session,
881                                                 otx_cryptodev_driver_id);
882                         memset(sess_private_data_t, 0,
883                                         cpt_get_session_size());
884                         memset(cop->sym->session, 0,
885                         rte_cryptodev_sym_get_existing_header_session_size(
886                                         cop->sym->session));
887                         rte_mempool_put(instance->sess_mp_priv,
888                                         sess_private_data_t);
889                         rte_mempool_put(instance->sess_mp, cop->sym->session);
890                         cop->sym->session = NULL;
891                 }
892                 free_op_meta(metabuf, instance->meta_info.pool);
893         }
894
895         return nb_completed;
896 }
897
898 static uint16_t
899 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
900 {
901         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
902 }
903
904 static uint16_t
905 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
906 {
907         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
908 }
909
910 static struct rte_cryptodev_ops cptvf_ops = {
911         /* Device related operations */
912         .dev_configure = otx_cpt_dev_config,
913         .dev_start = otx_cpt_dev_start,
914         .dev_stop = otx_cpt_dev_stop,
915         .dev_close = otx_cpt_dev_close,
916         .dev_infos_get = otx_cpt_dev_info_get,
917
918         .stats_get = otx_cpt_stats_get,
919         .stats_reset = otx_cpt_stats_reset,
920         .queue_pair_setup = otx_cpt_que_pair_setup,
921         .queue_pair_release = otx_cpt_que_pair_release,
922
923         /* Crypto related operations */
924         .sym_session_get_size = otx_cpt_get_session_size,
925         .sym_session_configure = otx_cpt_session_cfg,
926         .sym_session_clear = otx_cpt_session_clear,
927
928         .asym_session_get_size = otx_cpt_asym_session_size_get,
929         .asym_session_configure = otx_cpt_asym_session_cfg,
930         .asym_session_clear = otx_cpt_asym_session_clear,
931 };
932
933 int
934 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
935 {
936         struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
937         struct cpt_vf *cptvf = NULL;
938         void *reg_base;
939         char dev_name[32];
940         int ret;
941
942         if (pdev->mem_resource[0].phys_addr == 0ULL)
943                 return -EIO;
944
945         /* for secondary processes, we don't initialise any further as primary
946          * has already done this work.
947          */
948         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
949                 return 0;
950
951         cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
952                         sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
953                         rte_socket_id());
954
955         if (cptvf == NULL) {
956                 CPT_LOG_ERR("Cannot allocate memory for device private data");
957                 return -ENOMEM;
958         }
959
960         snprintf(dev_name, 32, "%02x:%02x.%x",
961                         pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
962
963         reg_base = pdev->mem_resource[0].addr;
964         if (!reg_base) {
965                 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
966                 ret = -ENODEV;
967                 goto fail;
968         }
969
970         ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
971         if (ret) {
972                 CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
973                 ret = -EIO;
974                 goto fail;
975         }
976
977         switch (cptvf->vftype) {
978         case OTX_CPT_VF_TYPE_AE:
979                 /* Set asymmetric cpt feature flags */
980                 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
981                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
982                                 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
983                 break;
984         case OTX_CPT_VF_TYPE_SE:
985                 /* Set symmetric cpt feature flags */
986                 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
987                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
988                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
989                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL |
990                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
991                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
992                                 RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA |
993                                 RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
994                 break;
995         default:
996                 /* Feature not supported. Abort */
997                 CPT_LOG_ERR("VF type not supported by %s", dev_name);
998                 ret = -EIO;
999                 goto deinit_dev;
1000         }
1001
1002         /* Start off timer for mailbox interrupts */
1003         otx_cpt_periodic_alarm_start(cptvf);
1004
1005         c_dev->dev_ops = &cptvf_ops;
1006
1007         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
1008                 c_dev->enqueue_burst = otx_cpt_enqueue_sym;
1009                 c_dev->dequeue_burst = otx_cpt_dequeue_sym;
1010         } else {
1011                 c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1012                 c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1013         }
1014
1015         /* Save dev private data */
1016         c_dev->data->dev_private = cptvf;
1017
1018         return 0;
1019
1020 deinit_dev:
1021         otx_cpt_deinit_device(cptvf);
1022
1023 fail:
1024         if (cptvf) {
1025                 /* Free private data allocated */
1026                 rte_free(cptvf);
1027         }
1028
1029         return ret;
1030 }