net/mlx5: fix mismatch metadata flow with meter action
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_ops.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <cryptodev_pmd.h>
9 #include <rte_eventdev.h>
10 #include <rte_event_crypto_adapter.h>
11 #include <rte_errno.h>
12 #include <rte_malloc.h>
13 #include <rte_mempool.h>
14
15 #include "otx_cryptodev.h"
16 #include "otx_cryptodev_capabilities.h"
17 #include "otx_cryptodev_hw_access.h"
18 #include "otx_cryptodev_mbox.h"
19 #include "otx_cryptodev_ops.h"
20
21 #include "cpt_pmd_logs.h"
22 #include "cpt_pmd_ops_helper.h"
23 #include "cpt_ucode.h"
24 #include "cpt_ucode_asym.h"
25
26 #include "ssovf_worker.h"
27
28 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
29
30 /* Forward declarations */
31
32 static int
33 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
34
35 /* Alarm routines */
36
37 static void
38 otx_cpt_alarm_cb(void *arg)
39 {
40         struct cpt_vf *cptvf = arg;
41         otx_cpt_poll_misc(cptvf);
42         rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
43                           otx_cpt_alarm_cb, cptvf);
44 }
45
46 static int
47 otx_cpt_periodic_alarm_start(void *arg)
48 {
49         return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
50                                  otx_cpt_alarm_cb, arg);
51 }
52
53 static int
54 otx_cpt_periodic_alarm_stop(void *arg)
55 {
56         return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
57 }
58
59 /* PMD ops */
60
61 static int
62 otx_cpt_dev_config(struct rte_cryptodev *dev,
63                    struct rte_cryptodev_config *config __rte_unused)
64 {
65         int ret = 0;
66
67         CPT_PMD_INIT_FUNC_TRACE();
68
69         if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
70                 /* Initialize shared FPM table */
71                 ret = cpt_fpm_init(otx_fpm_iova);
72
73         return ret;
74 }
75
76 static int
77 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
78 {
79         void *cptvf = c_dev->data->dev_private;
80
81         CPT_PMD_INIT_FUNC_TRACE();
82
83         return otx_cpt_start_device(cptvf);
84 }
85
86 static void
87 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
88 {
89         void *cptvf = c_dev->data->dev_private;
90
91         CPT_PMD_INIT_FUNC_TRACE();
92
93         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
94                 cpt_fpm_clear();
95
96         otx_cpt_stop_device(cptvf);
97 }
98
99 static int
100 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
101 {
102         void *cptvf = c_dev->data->dev_private;
103         int i, ret;
104
105         CPT_PMD_INIT_FUNC_TRACE();
106
107         for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
108                 ret = otx_cpt_que_pair_release(c_dev, i);
109                 if (ret)
110                         return ret;
111         }
112
113         otx_cpt_periodic_alarm_stop(cptvf);
114         otx_cpt_deinit_device(cptvf);
115
116         return 0;
117 }
118
119 static void
120 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
121 {
122         CPT_PMD_INIT_FUNC_TRACE();
123         if (info != NULL) {
124                 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
125                 info->feature_flags = dev->feature_flags;
126                 info->capabilities = otx_get_capabilities(info->feature_flags);
127                 info->sym.max_nb_sessions = 0;
128                 info->driver_id = otx_cryptodev_driver_id;
129                 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
130                 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
131         }
132 }
133
134 static int
135 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
136                        uint16_t que_pair_id,
137                        const struct rte_cryptodev_qp_conf *qp_conf,
138                        int socket_id __rte_unused)
139 {
140         struct cpt_instance *instance = NULL;
141         struct rte_pci_device *pci_dev;
142         int ret = -1;
143
144         CPT_PMD_INIT_FUNC_TRACE();
145
146         if (dev->data->queue_pairs[que_pair_id] != NULL) {
147                 ret = otx_cpt_que_pair_release(dev, que_pair_id);
148                 if (ret)
149                         return ret;
150         }
151
152         if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
153                 CPT_LOG_INFO("Number of descriptors too big %d, using default "
154                              "queue length of %d", qp_conf->nb_descriptors,
155                              DEFAULT_CMD_QLEN);
156         }
157
158         pci_dev = RTE_DEV_TO_PCI(dev->device);
159
160         if (pci_dev->mem_resource[0].addr == NULL) {
161                 CPT_LOG_ERR("PCI mem address null");
162                 return -EIO;
163         }
164
165         ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
166         if (ret != 0 || instance == NULL) {
167                 CPT_LOG_ERR("Error getting instance handle from device %s : "
168                             "ret = %d", dev->data->name, ret);
169                 return ret;
170         }
171
172         instance->queue_id = que_pair_id;
173         instance->sess_mp = qp_conf->mp_session;
174         instance->sess_mp_priv = qp_conf->mp_session_private;
175         dev->data->queue_pairs[que_pair_id] = instance;
176
177         return 0;
178 }
179
180 static int
181 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
182 {
183         struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
184         int ret;
185
186         CPT_PMD_INIT_FUNC_TRACE();
187
188         ret = otx_cpt_put_resource(instance);
189         if (ret != 0) {
190                 CPT_LOG_ERR("Error putting instance handle of device %s : "
191                             "ret = %d", dev->data->name, ret);
192                 return ret;
193         }
194
195         dev->data->queue_pairs[que_pair_id] = NULL;
196
197         return 0;
198 }
199
200 static unsigned int
201 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
202 {
203         return cpt_get_session_size();
204 }
205
206 static int
207 sym_xform_verify(struct rte_crypto_sym_xform *xform)
208 {
209         if (xform->next) {
210                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
211                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212                     xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
213                     (xform->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC ||
214                      xform->next->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC))
215                         return -ENOTSUP;
216
217                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
218                     xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
219                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
220                     (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_CBC ||
221                      xform->next->auth.algo != RTE_CRYPTO_AUTH_SHA1_HMAC))
222                         return -ENOTSUP;
223
224                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225                     xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
226                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
227                     xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
228                         return -ENOTSUP;
229
230                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
231                     xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
232                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
233                     xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
234                         return -ENOTSUP;
235
236         } else {
237                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
238                     xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
239                     xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
240                         return -ENOTSUP;
241         }
242         return 0;
243 }
244
245 static int
246 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
247                       struct rte_cryptodev_sym_session *sess,
248                       struct rte_mempool *pool)
249 {
250         struct rte_crypto_sym_xform *temp_xform = xform;
251         struct cpt_sess_misc *misc;
252         vq_cmd_word3_t vq_cmd_w3;
253         void *priv;
254         int ret;
255
256         ret = sym_xform_verify(xform);
257         if (unlikely(ret))
258                 return ret;
259
260         if (unlikely(rte_mempool_get(pool, &priv))) {
261                 CPT_LOG_ERR("Could not allocate session private data");
262                 return -ENOMEM;
263         }
264
265         memset(priv, 0, sizeof(struct cpt_sess_misc) +
266                         offsetof(struct cpt_ctx, mc_ctx));
267
268         misc = priv;
269
270         for ( ; xform != NULL; xform = xform->next) {
271                 switch (xform->type) {
272                 case RTE_CRYPTO_SYM_XFORM_AEAD:
273                         ret = fill_sess_aead(xform, misc);
274                         break;
275                 case RTE_CRYPTO_SYM_XFORM_CIPHER:
276                         ret = fill_sess_cipher(xform, misc);
277                         break;
278                 case RTE_CRYPTO_SYM_XFORM_AUTH:
279                         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
280                                 ret = fill_sess_gmac(xform, misc);
281                         else
282                                 ret = fill_sess_auth(xform, misc);
283                         break;
284                 default:
285                         ret = -1;
286                 }
287
288                 if (ret)
289                         goto priv_put;
290         }
291
292         if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) &&
293                         cpt_mac_len_verify(&temp_xform->auth)) {
294                 CPT_LOG_ERR("MAC length is not supported");
295                 struct cpt_ctx *ctx = SESS_PRIV(misc);
296                 if (ctx->auth_key != NULL) {
297                         rte_free(ctx->auth_key);
298                         ctx->auth_key = NULL;
299                 }
300                 ret = -ENOTSUP;
301                 goto priv_put;
302         }
303
304         set_sym_session_private_data(sess, driver_id, priv);
305
306         misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
307                              sizeof(struct cpt_sess_misc);
308
309         vq_cmd_w3.u64 = 0;
310         vq_cmd_w3.s.grp = 0;
311         vq_cmd_w3.s.cptr = misc->ctx_dma_addr + offsetof(struct cpt_ctx,
312                                                          mc_ctx);
313
314         misc->cpt_inst_w7 = vq_cmd_w3.u64;
315
316         return 0;
317
318 priv_put:
319         if (priv)
320                 rte_mempool_put(pool, priv);
321         return -ENOTSUP;
322 }
323
324 static void
325 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
326 {
327         void *priv = get_sym_session_private_data(sess, driver_id);
328         struct cpt_sess_misc *misc;
329         struct rte_mempool *pool;
330         struct cpt_ctx *ctx;
331
332         if (priv == NULL)
333                 return;
334
335         misc = priv;
336         ctx = SESS_PRIV(misc);
337
338         if (ctx->auth_key != NULL)
339                 rte_free(ctx->auth_key);
340
341         memset(priv, 0, cpt_get_session_size());
342
343         pool = rte_mempool_from_obj(priv);
344
345         set_sym_session_private_data(sess, driver_id, NULL);
346
347         rte_mempool_put(pool, priv);
348 }
349
350 static int
351 otx_cpt_session_cfg(struct rte_cryptodev *dev,
352                     struct rte_crypto_sym_xform *xform,
353                     struct rte_cryptodev_sym_session *sess,
354                     struct rte_mempool *pool)
355 {
356         CPT_PMD_INIT_FUNC_TRACE();
357
358         return sym_session_configure(dev->driver_id, xform, sess, pool);
359 }
360
361
362 static void
363 otx_cpt_session_clear(struct rte_cryptodev *dev,
364                   struct rte_cryptodev_sym_session *sess)
365 {
366         CPT_PMD_INIT_FUNC_TRACE();
367
368         return sym_session_clear(dev->driver_id, sess);
369 }
370
371 static unsigned int
372 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
373 {
374         return sizeof(struct cpt_asym_sess_misc);
375 }
376
377 static int
378 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
379                          struct rte_crypto_asym_xform *xform __rte_unused,
380                          struct rte_cryptodev_asym_session *sess,
381                          struct rte_mempool *pool)
382 {
383         struct cpt_asym_sess_misc *priv;
384         int ret;
385
386         CPT_PMD_INIT_FUNC_TRACE();
387
388         if (rte_mempool_get(pool, (void **)&priv)) {
389                 CPT_LOG_ERR("Could not allocate session private data");
390                 return -ENOMEM;
391         }
392
393         memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
394
395         ret = cpt_fill_asym_session_parameters(priv, xform);
396         if (ret) {
397                 CPT_LOG_ERR("Could not configure session parameters");
398
399                 /* Return session to mempool */
400                 rte_mempool_put(pool, priv);
401                 return ret;
402         }
403
404         priv->cpt_inst_w7 = 0;
405
406         set_asym_session_private_data(sess, dev->driver_id, priv);
407         return 0;
408 }
409
410 static void
411 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
412                            struct rte_cryptodev_asym_session *sess)
413 {
414         struct cpt_asym_sess_misc *priv;
415         struct rte_mempool *sess_mp;
416
417         CPT_PMD_INIT_FUNC_TRACE();
418
419         priv = get_asym_session_private_data(sess, dev->driver_id);
420
421         if (priv == NULL)
422                 return;
423
424         /* Free resources allocated during session configure */
425         cpt_free_asym_session_parameters(priv);
426         memset(priv, 0, otx_cpt_asym_session_size_get(dev));
427         sess_mp = rte_mempool_from_obj(priv);
428         set_asym_session_private_data(sess, dev->driver_id, NULL);
429         rte_mempool_put(sess_mp, priv);
430 }
431
432 static __rte_always_inline void * __rte_hot
433 otx_cpt_request_enqueue(struct cpt_instance *instance,
434                         void *req, uint64_t cpt_inst_w7)
435 {
436         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
437
438         fill_cpt_inst(instance, req, cpt_inst_w7);
439
440         CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
441
442         /* Fill time_out cycles */
443         user_req->time_out = rte_get_timer_cycles() +
444                         DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
445         user_req->extra_time = 0;
446
447         /* Default mode of software queue */
448         mark_cpt_inst(instance);
449
450         CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
451                          "op: %p", user_req, user_req->op);
452         return req;
453 }
454
455 static __rte_always_inline void * __rte_hot
456 otx_cpt_enq_single_asym(struct cpt_instance *instance,
457                         struct rte_crypto_op *op)
458 {
459         struct cpt_qp_meta_info *minfo = &instance->meta_info;
460         struct rte_crypto_asym_op *asym_op = op->asym;
461         struct asym_op_params params = {0};
462         struct cpt_asym_sess_misc *sess;
463         uintptr_t *cop;
464         void *mdata;
465         void *req;
466         int ret;
467
468         if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
469                 CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
470                 rte_errno = ENOMEM;
471                 return NULL;
472         }
473
474         sess = get_asym_session_private_data(asym_op->session,
475                                              otx_cryptodev_driver_id);
476
477         /* Store phys_addr of the mdata to meta_buf */
478         params.meta_buf = rte_mempool_virt2iova(mdata);
479
480         cop = mdata;
481         cop[0] = (uintptr_t)mdata;
482         cop[1] = (uintptr_t)op;
483         cop[2] = cop[3] = 0ULL;
484
485         params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
486         params.req->op = cop;
487
488         /* Adjust meta_buf by crypto_op data  and request_info struct */
489         params.meta_buf += (4 * sizeof(uintptr_t)) +
490                            sizeof(struct cpt_request_info);
491
492         switch (sess->xfrm_type) {
493         case RTE_CRYPTO_ASYM_XFORM_MODEX:
494                 ret = cpt_modex_prep(&params, &sess->mod_ctx);
495                 if (unlikely(ret))
496                         goto req_fail;
497                 break;
498         case RTE_CRYPTO_ASYM_XFORM_RSA:
499                 ret = cpt_enqueue_rsa_op(op, &params, sess);
500                 if (unlikely(ret))
501                         goto req_fail;
502                 break;
503         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
504                 ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
505                 if (unlikely(ret))
506                         goto req_fail;
507                 break;
508         case RTE_CRYPTO_ASYM_XFORM_ECPM:
509                 ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
510                                     sess->ec_ctx.curveid);
511                 if (unlikely(ret))
512                         goto req_fail;
513                 break;
514
515         default:
516                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
517                 rte_errno = EINVAL;
518                 goto req_fail;
519         }
520
521         req = otx_cpt_request_enqueue(instance, params.req, sess->cpt_inst_w7);
522         if (unlikely(req == NULL)) {
523                 CPT_LOG_DP_ERR("Could not enqueue crypto req");
524                 goto req_fail;
525         }
526
527         return req;
528
529 req_fail:
530         free_op_meta(mdata, minfo->pool);
531
532         return NULL;
533 }
534
535 static __rte_always_inline void * __rte_hot
536 otx_cpt_enq_single_sym(struct cpt_instance *instance,
537                        struct rte_crypto_op *op)
538 {
539         struct cpt_sess_misc *sess;
540         struct rte_crypto_sym_op *sym_op = op->sym;
541         struct cpt_request_info *prep_req;
542         void *mdata = NULL;
543         int ret = 0;
544         void *req;
545         uint64_t cpt_op;
546
547         sess = (struct cpt_sess_misc *)
548                         get_sym_session_private_data(sym_op->session,
549                                                      otx_cryptodev_driver_id);
550
551         cpt_op = sess->cpt_op;
552
553         if (likely(cpt_op & CPT_OP_CIPHER_MASK))
554                 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
555                                      (void **)&prep_req);
556         else
557                 ret = fill_digest_params(op, sess, &instance->meta_info,
558                                          &mdata, (void **)&prep_req);
559
560         if (unlikely(ret)) {
561                 CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "
562                                "ret 0x%x", op, (unsigned int)cpt_op, ret);
563                 return NULL;
564         }
565
566         /* Enqueue prepared instruction to h/w */
567         req = otx_cpt_request_enqueue(instance, prep_req, sess->cpt_inst_w7);
568         if (unlikely(req == NULL))
569                 /* Buffer allocated for request preparation need to be freed */
570                 free_op_meta(mdata, instance->meta_info.pool);
571
572         return req;
573 }
574
575 static __rte_always_inline void * __rte_hot
576 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
577                                 struct rte_crypto_op *op)
578 {
579         const int driver_id = otx_cryptodev_driver_id;
580         struct rte_crypto_sym_op *sym_op = op->sym;
581         struct rte_cryptodev_sym_session *sess;
582         void *req;
583         int ret;
584
585         /* Create temporary session */
586         sess = rte_cryptodev_sym_session_create(instance->sess_mp);
587         if (sess == NULL) {
588                 rte_errno = ENOMEM;
589                 return NULL;
590         }
591
592         ret = sym_session_configure(driver_id, sym_op->xform, sess,
593                                     instance->sess_mp_priv);
594         if (ret)
595                 goto sess_put;
596
597         sym_op->session = sess;
598
599         /* Enqueue op with the tmp session set */
600         req = otx_cpt_enq_single_sym(instance, op);
601         if (unlikely(req == NULL))
602                 goto priv_put;
603
604         return req;
605
606 priv_put:
607         sym_session_clear(driver_id, sess);
608 sess_put:
609         rte_mempool_put(instance->sess_mp, sess);
610         return NULL;
611 }
612
613 #define OP_TYPE_SYM             0
614 #define OP_TYPE_ASYM            1
615
616 static __rte_always_inline void *__rte_hot
617 otx_cpt_enq_single(struct cpt_instance *inst,
618                    struct rte_crypto_op *op,
619                    const uint8_t op_type)
620 {
621         /* Check for the type */
622
623         if (op_type == OP_TYPE_SYM) {
624                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
625                         return otx_cpt_enq_single_sym(inst, op);
626                 else
627                         return otx_cpt_enq_single_sym_sessless(inst, op);
628         }
629
630         if (op_type == OP_TYPE_ASYM) {
631                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
632                         return otx_cpt_enq_single_asym(inst, op);
633         }
634
635         /* Should not reach here */
636         rte_errno = ENOTSUP;
637         return NULL;
638 }
639
640 static  __rte_always_inline uint16_t __rte_hot
641 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
642                     const uint8_t op_type)
643 {
644         struct cpt_instance *instance = (struct cpt_instance *)qptr;
645         uint16_t count, free_slots;
646         void *req;
647         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
648         struct pending_queue *pqueue = &cptvf->pqueue;
649
650         free_slots = pending_queue_free_slots(pqueue, DEFAULT_CMD_QLEN,
651                                 DEFAULT_CMD_QRSVD_SLOTS);
652         if (nb_ops > free_slots)
653                 nb_ops = free_slots;
654
655         count = 0;
656         while (likely(count < nb_ops)) {
657
658                 /* Enqueue single op */
659                 req = otx_cpt_enq_single(instance, ops[count], op_type);
660
661                 if (unlikely(req == NULL))
662                         break;
663
664                 pending_queue_push(pqueue, req, count, DEFAULT_CMD_QLEN);
665                 count++;
666         }
667
668         if (likely(count)) {
669                 pending_queue_commit(pqueue, count, DEFAULT_CMD_QLEN);
670                 otx_cpt_ring_dbell(instance, count);
671         }
672         return count;
673 }
674
675 static uint16_t
676 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
677 {
678         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
679 }
680
681 static uint16_t
682 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
683 {
684         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
685 }
686
687 static __rte_always_inline void
688 submit_request_to_sso(struct ssows *ws, uintptr_t req,
689                       struct rte_event *rsp_info)
690 {
691         uint64_t add_work;
692
693         add_work = rsp_info->flow_id | (RTE_EVENT_TYPE_CRYPTODEV << 28) |
694                    ((uint64_t)(rsp_info->sched_type) << 32);
695
696         if (!rsp_info->sched_type)
697                 ssows_head_wait(ws);
698
699         rte_atomic_thread_fence(__ATOMIC_RELEASE);
700         ssovf_store_pair(add_work, req, ws->grps[rsp_info->queue_id]);
701 }
702
703 static inline union rte_event_crypto_metadata *
704 get_event_crypto_mdata(struct rte_crypto_op *op)
705 {
706         union rte_event_crypto_metadata *ec_mdata;
707
708         if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
709                 ec_mdata = rte_cryptodev_sym_session_get_user_data(
710                                                            op->sym->session);
711         else if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS &&
712                  op->private_data_offset)
713                 ec_mdata = (union rte_event_crypto_metadata *)
714                         ((uint8_t *)op + op->private_data_offset);
715         else
716                 return NULL;
717
718         return ec_mdata;
719 }
720
721 uint16_t __rte_hot
722 otx_crypto_adapter_enqueue(void *port, struct rte_crypto_op *op)
723 {
724         union rte_event_crypto_metadata *ec_mdata;
725         struct cpt_instance *instance;
726         struct cpt_request_info *req;
727         struct rte_event *rsp_info;
728         uint8_t op_type, cdev_id;
729         uint16_t qp_id;
730
731         ec_mdata = get_event_crypto_mdata(op);
732         if (unlikely(ec_mdata == NULL)) {
733                 rte_errno = EINVAL;
734                 return 0;
735         }
736
737         cdev_id = ec_mdata->request_info.cdev_id;
738         qp_id = ec_mdata->request_info.queue_pair_id;
739         rsp_info = &ec_mdata->response_info;
740         instance = rte_cryptodevs[cdev_id].data->queue_pairs[qp_id];
741
742         if (unlikely(!instance->ca_enabled)) {
743                 rte_errno = EINVAL;
744                 return 0;
745         }
746
747         op_type = op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
748                                                              OP_TYPE_ASYM;
749         req = otx_cpt_enq_single(instance, op, op_type);
750         if (unlikely(req == NULL))
751                 return 0;
752
753         otx_cpt_ring_dbell(instance, 1);
754         req->qp = instance;
755         submit_request_to_sso(port, (uintptr_t)req, rsp_info);
756
757         return 1;
758 }
759
760 static inline void
761 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
762                     struct rte_crypto_rsa_xform *rsa_ctx)
763
764 {
765         struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
766
767         switch (rsa->op_type) {
768         case RTE_CRYPTO_ASYM_OP_ENCRYPT:
769                 rsa->cipher.length = rsa_ctx->n.length;
770                 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
771                 break;
772         case RTE_CRYPTO_ASYM_OP_DECRYPT:
773                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
774                         rsa->message.length = rsa_ctx->n.length;
775                 else {
776                         /* Get length of decrypted output */
777                         rsa->message.length = rte_cpu_to_be_16
778                                         (*((uint16_t *)req->rptr));
779
780                         /* Offset data pointer by length fields */
781                         req->rptr += 2;
782                 }
783                 memcpy(rsa->message.data, req->rptr, rsa->message.length);
784                 break;
785         case RTE_CRYPTO_ASYM_OP_SIGN:
786                 rsa->sign.length = rsa_ctx->n.length;
787                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
788                 break;
789         case RTE_CRYPTO_ASYM_OP_VERIFY:
790                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
791                         rsa->sign.length = rsa_ctx->n.length;
792                 else {
793                         /* Get length of decrypted output */
794                         rsa->sign.length = rte_cpu_to_be_16
795                                         (*((uint16_t *)req->rptr));
796
797                         /* Offset data pointer by length fields */
798                         req->rptr += 2;
799                 }
800                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
801
802                 if (memcmp(rsa->sign.data, rsa->message.data,
803                            rsa->message.length)) {
804                         CPT_LOG_DP_ERR("RSA verification failed");
805                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
806                 }
807                 break;
808         default:
809                 CPT_LOG_DP_DEBUG("Invalid RSA operation type");
810                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
811                 break;
812         }
813 }
814
815 static __rte_always_inline void
816 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
817                             struct cpt_request_info *req,
818                             struct cpt_asym_ec_ctx *ec)
819
820 {
821         int prime_len = ec_grp[ec->curveid].prime.length;
822
823         if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
824                 return;
825
826         /* Separate out sign r and s components */
827         memcpy(ecdsa->r.data, req->rptr, prime_len);
828         memcpy(ecdsa->s.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
829                prime_len);
830         ecdsa->r.length = prime_len;
831         ecdsa->s.length = prime_len;
832 }
833
834 static __rte_always_inline void
835 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
836                              struct cpt_request_info *req,
837                              struct cpt_asym_ec_ctx *ec)
838 {
839         int prime_len = ec_grp[ec->curveid].prime.length;
840
841         memcpy(ecpm->r.x.data, req->rptr, prime_len);
842         memcpy(ecpm->r.y.data, req->rptr + RTE_ALIGN_CEIL(prime_len, 8),
843                prime_len);
844         ecpm->r.x.length = prime_len;
845         ecpm->r.y.length = prime_len;
846 }
847
848 static __rte_always_inline void __rte_hot
849 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
850                           struct cpt_request_info *req)
851 {
852         struct rte_crypto_asym_op *op = cop->asym;
853         struct cpt_asym_sess_misc *sess;
854
855         sess = get_asym_session_private_data(op->session,
856                                              otx_cryptodev_driver_id);
857
858         switch (sess->xfrm_type) {
859         case RTE_CRYPTO_ASYM_XFORM_RSA:
860                 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
861                 break;
862         case RTE_CRYPTO_ASYM_XFORM_MODEX:
863                 op->modex.result.length = sess->mod_ctx.modulus.length;
864                 memcpy(op->modex.result.data, req->rptr,
865                        op->modex.result.length);
866                 break;
867         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
868                 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
869                 break;
870         case RTE_CRYPTO_ASYM_XFORM_ECPM:
871                 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
872                 break;
873         default:
874                 CPT_LOG_DP_DEBUG("Invalid crypto xform type");
875                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
876                 break;
877         }
878 }
879
880 static __rte_always_inline void __rte_hot
881 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
882                              const uint8_t op_type)
883 {
884         /* H/w has returned success */
885         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
886
887         /* Perform further post processing */
888
889         if ((op_type == OP_TYPE_SYM) &&
890             (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
891                 /* Check if auth verify need to be completed */
892                 if (unlikely(rsp[2]))
893                         compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
894                 return;
895         }
896
897         if ((op_type == OP_TYPE_ASYM) &&
898             (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
899                 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
900                 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
901         }
902
903         return;
904 }
905
906 static inline void
907 free_sym_session_data(const struct cpt_instance *instance,
908                       struct rte_crypto_op *cop)
909 {
910         void *sess_private_data_t = get_sym_session_private_data(
911                 cop->sym->session, otx_cryptodev_driver_id);
912         memset(sess_private_data_t, 0, cpt_get_session_size());
913         memset(cop->sym->session, 0,
914                rte_cryptodev_sym_get_existing_header_session_size(
915                        cop->sym->session));
916         rte_mempool_put(instance->sess_mp_priv, sess_private_data_t);
917         rte_mempool_put(instance->sess_mp, cop->sym->session);
918         cop->sym->session = NULL;
919 }
920
921 static __rte_always_inline struct rte_crypto_op *
922 otx_cpt_process_response(const struct cpt_instance *instance, uintptr_t *rsp,
923                          uint8_t cc, const uint8_t op_type)
924 {
925         struct rte_crypto_op *cop;
926         void *metabuf;
927
928         metabuf = (void *)rsp[0];
929         cop = (void *)rsp[1];
930
931         /* Check completion code */
932         if (likely(cc == 0)) {
933                 /* H/w success pkt. Post process */
934                 otx_cpt_dequeue_post_process(cop, rsp, op_type);
935         } else if (cc == ERR_GC_ICV_MISCOMPARE) {
936                 /* auth data mismatch */
937                 cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
938         } else {
939                 /* Error */
940                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
941         }
942
943         if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS))
944                 free_sym_session_data(instance, cop);
945         free_op_meta(metabuf, instance->meta_info.pool);
946
947         return cop;
948 }
949
950 static __rte_always_inline uint16_t __rte_hot
951 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
952                     const uint8_t op_type)
953 {
954         struct cpt_instance *instance = (struct cpt_instance *)qptr;
955         struct cpt_request_info *user_req;
956         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
957         uint8_t cc[nb_ops];
958         int i, count, pcount;
959         uint8_t ret;
960         int nb_completed;
961         struct pending_queue *pqueue = &cptvf->pqueue;
962
963         pcount = pending_queue_level(pqueue, DEFAULT_CMD_QLEN);
964
965         /* Ensure pcount isn't read before data lands */
966         rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
967
968         count = (nb_ops > pcount) ? pcount : nb_ops;
969
970         for (i = 0; i < count; i++) {
971                 pending_queue_peek(pqueue, (void **) &user_req,
972                         DEFAULT_CMD_QLEN, i + 1 < count);
973
974                 ret = check_nb_command_id(user_req, instance);
975
976                 if (unlikely(ret == ERR_REQ_PENDING)) {
977                         /* Stop checking for completions */
978                         break;
979                 }
980
981                 /* Return completion code and op handle */
982                 cc[i] = ret;
983                 ops[i] = user_req->op;
984
985                 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
986                                  user_req, user_req->op, ret);
987
988                 pending_queue_pop(pqueue, DEFAULT_CMD_QLEN);
989         }
990
991         nb_completed = i;
992
993         for (i = 0; i < nb_completed; i++) {
994                 if (likely((i + 1) < nb_completed))
995                         rte_prefetch0(ops[i+1]);
996
997                 ops[i] = otx_cpt_process_response(instance, (void *)ops[i],
998                                                   cc[i], op_type);
999         }
1000
1001         return nb_completed;
1002 }
1003
1004 static uint16_t
1005 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
1006 {
1007         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
1008 }
1009
1010 static uint16_t
1011 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
1012 {
1013         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
1014 }
1015
1016 uintptr_t __rte_hot
1017 otx_crypto_adapter_dequeue(uintptr_t get_work1)
1018 {
1019         const struct cpt_instance *instance;
1020         struct cpt_request_info *req;
1021         struct rte_crypto_op *cop;
1022         uint8_t cc, op_type;
1023         uintptr_t *rsp;
1024
1025         req = (struct cpt_request_info *)get_work1;
1026         instance = req->qp;
1027         rsp = req->op;
1028         cop = (void *)rsp[1];
1029         op_type = cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC ? OP_TYPE_SYM :
1030                                                               OP_TYPE_ASYM;
1031
1032         do {
1033                 cc = check_nb_command_id(
1034                         req, (struct cpt_instance *)(uintptr_t)instance);
1035         } while (cc == ERR_REQ_PENDING);
1036
1037         cop = otx_cpt_process_response(instance, (void *)req->op, cc, op_type);
1038
1039         return (uintptr_t)(cop);
1040 }
1041
1042 static struct rte_cryptodev_ops cptvf_ops = {
1043         /* Device related operations */
1044         .dev_configure = otx_cpt_dev_config,
1045         .dev_start = otx_cpt_dev_start,
1046         .dev_stop = otx_cpt_dev_stop,
1047         .dev_close = otx_cpt_dev_close,
1048         .dev_infos_get = otx_cpt_dev_info_get,
1049
1050         .stats_get = NULL,
1051         .stats_reset = NULL,
1052         .queue_pair_setup = otx_cpt_que_pair_setup,
1053         .queue_pair_release = otx_cpt_que_pair_release,
1054
1055         /* Crypto related operations */
1056         .sym_session_get_size = otx_cpt_get_session_size,
1057         .sym_session_configure = otx_cpt_session_cfg,
1058         .sym_session_clear = otx_cpt_session_clear,
1059
1060         .asym_session_get_size = otx_cpt_asym_session_size_get,
1061         .asym_session_configure = otx_cpt_asym_session_cfg,
1062         .asym_session_clear = otx_cpt_asym_session_clear,
1063 };
1064
1065 int
1066 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
1067 {
1068         struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
1069         struct cpt_vf *cptvf = NULL;
1070         void *reg_base;
1071         char dev_name[32];
1072         int ret;
1073
1074         if (pdev->mem_resource[0].phys_addr == 0ULL)
1075                 return -EIO;
1076
1077         /* for secondary processes, we don't initialise any further as primary
1078          * has already done this work.
1079          */
1080         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1081                 return 0;
1082
1083         cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
1084                         sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
1085                         rte_socket_id());
1086
1087         if (cptvf == NULL) {
1088                 CPT_LOG_ERR("Cannot allocate memory for device private data");
1089                 return -ENOMEM;
1090         }
1091
1092         snprintf(dev_name, 32, "%02x:%02x.%x",
1093                         pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
1094
1095         reg_base = pdev->mem_resource[0].addr;
1096         if (!reg_base) {
1097                 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
1098                 ret = -ENODEV;
1099                 goto fail;
1100         }
1101
1102         ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
1103         if (ret) {
1104                 CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
1105                 ret = -EIO;
1106                 goto fail;
1107         }
1108
1109         switch (cptvf->vftype) {
1110         case OTX_CPT_VF_TYPE_AE:
1111                 /* Set asymmetric cpt feature flags */
1112                 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
1113                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
1114                                 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
1115                 break;
1116         case OTX_CPT_VF_TYPE_SE:
1117                 /* Set symmetric cpt feature flags */
1118                 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
1119                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
1120                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
1121                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL |
1122                                 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
1123                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
1124                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
1125                                 RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
1126                                 RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
1127                 break;
1128         default:
1129                 /* Feature not supported. Abort */
1130                 CPT_LOG_ERR("VF type not supported by %s", dev_name);
1131                 ret = -EIO;
1132                 goto deinit_dev;
1133         }
1134
1135         /* Start off timer for mailbox interrupts */
1136         otx_cpt_periodic_alarm_start(cptvf);
1137
1138         c_dev->dev_ops = &cptvf_ops;
1139
1140         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
1141                 c_dev->enqueue_burst = otx_cpt_enqueue_sym;
1142                 c_dev->dequeue_burst = otx_cpt_dequeue_sym;
1143         } else {
1144                 c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1145                 c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1146         }
1147
1148         /* Save dev private data */
1149         c_dev->data->dev_private = cptvf;
1150
1151         return 0;
1152
1153 deinit_dev:
1154         otx_cpt_deinit_device(cptvf);
1155
1156 fail:
1157         if (cptvf) {
1158                 /* Free private data allocated */
1159                 rte_free(cptvf);
1160         }
1161
1162         return ret;
1163 }