ethdev: make default behavior CRC strip on Rx
[dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static int avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69                                          struct ether_addr *mac_addr);
70 static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
71                                         uint16_t queue_id);
72 static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
73                                          uint16_t queue_id);
74
75 int avf_logtype_init;
76 int avf_logtype_driver;
77
78 static const struct rte_pci_id pci_id_avf_map[] = {
79         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
80         { .vendor_id = 0, /* sentinel */ },
81 };
82
83 static const struct eth_dev_ops avf_eth_dev_ops = {
84         .dev_configure              = avf_dev_configure,
85         .dev_start                  = avf_dev_start,
86         .dev_stop                   = avf_dev_stop,
87         .dev_close                  = avf_dev_close,
88         .dev_infos_get              = avf_dev_info_get,
89         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
90         .link_update                = avf_dev_link_update,
91         .stats_get                  = avf_dev_stats_get,
92         .promiscuous_enable         = avf_dev_promiscuous_enable,
93         .promiscuous_disable        = avf_dev_promiscuous_disable,
94         .allmulticast_enable        = avf_dev_allmulticast_enable,
95         .allmulticast_disable       = avf_dev_allmulticast_disable,
96         .mac_addr_add               = avf_dev_add_mac_addr,
97         .mac_addr_remove            = avf_dev_del_mac_addr,
98         .vlan_filter_set            = avf_dev_vlan_filter_set,
99         .vlan_offload_set           = avf_dev_vlan_offload_set,
100         .rx_queue_start             = avf_dev_rx_queue_start,
101         .rx_queue_stop              = avf_dev_rx_queue_stop,
102         .tx_queue_start             = avf_dev_tx_queue_start,
103         .tx_queue_stop              = avf_dev_tx_queue_stop,
104         .rx_queue_setup             = avf_dev_rx_queue_setup,
105         .rx_queue_release           = avf_dev_rx_queue_release,
106         .tx_queue_setup             = avf_dev_tx_queue_setup,
107         .tx_queue_release           = avf_dev_tx_queue_release,
108         .mac_addr_set               = avf_dev_set_default_mac_addr,
109         .reta_update                = avf_dev_rss_reta_update,
110         .reta_query                 = avf_dev_rss_reta_query,
111         .rss_hash_update            = avf_dev_rss_hash_update,
112         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
113         .rxq_info_get               = avf_dev_rxq_info_get,
114         .txq_info_get               = avf_dev_txq_info_get,
115         .rx_queue_count             = avf_dev_rxq_count,
116         .rx_descriptor_status       = avf_dev_rx_desc_status,
117         .tx_descriptor_status       = avf_dev_tx_desc_status,
118         .mtu_set                    = avf_dev_mtu_set,
119         .rx_queue_intr_enable       = avf_dev_rx_queue_intr_enable,
120         .rx_queue_intr_disable      = avf_dev_rx_queue_intr_disable,
121 };
122
123 static int
124 avf_dev_configure(struct rte_eth_dev *dev)
125 {
126         struct avf_adapter *ad =
127                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
128         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
129         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
130
131         ad->rx_bulk_alloc_allowed = true;
132 #ifdef RTE_LIBRTE_AVF_INC_VECTOR
133         /* Initialize to TRUE. If any of Rx queues doesn't meet the
134          * vector Rx/Tx preconditions, it will be reset.
135          */
136         ad->rx_vec_allowed = true;
137         ad->tx_vec_allowed = true;
138 #else
139         ad->rx_vec_allowed = false;
140         ad->tx_vec_allowed = false;
141 #endif
142
143         /* Vlan stripping setting */
144         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
145                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
146                         avf_enable_vlan_strip(ad);
147                 else
148                         avf_disable_vlan_strip(ad);
149         }
150         return 0;
151 }
152
153 static int
154 avf_init_rss(struct avf_adapter *adapter)
155 {
156         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
157         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
158         struct rte_eth_rss_conf *rss_conf;
159         uint8_t i, j, nb_q;
160         int ret;
161
162         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
163         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
164                        AVF_MAX_NUM_QUEUES);
165
166         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
167                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
168                 return -ENOTSUP;
169         }
170         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
171                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
172                 /* set all lut items to default queue */
173                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
174                         vf->rss_lut[i] = 0;
175                 ret = avf_configure_rss_lut(adapter);
176                 return ret;
177         }
178
179         /* In AVF, RSS enablement is set by PF driver. It is not supported
180          * to set based on rss_conf->rss_hf.
181          */
182
183         /* configure RSS key */
184         if (!rss_conf->rss_key) {
185                 /* Calculate the default hash key */
186                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
187                         vf->rss_key[i] = (uint8_t)rte_rand();
188         } else
189                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
190                            RTE_MIN(rss_conf->rss_key_len,
191                                    vf->vf_res->rss_key_size));
192
193         /* init RSS LUT table */
194         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
195                 if (j >= nb_q)
196                         j = 0;
197                 vf->rss_lut[i] = j;
198         }
199         /* send virtchnnl ops to configure rss*/
200         ret = avf_configure_rss_lut(adapter);
201         if (ret)
202                 return ret;
203         ret = avf_configure_rss_key(adapter);
204         if (ret)
205                 return ret;
206
207         return 0;
208 }
209
210 static int
211 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
212 {
213         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
214         struct rte_eth_dev_data *dev_data = dev->data;
215         uint16_t buf_size, max_pkt_len, len;
216
217         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
218
219         /* Calculate the maximum packet length allowed */
220         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
221         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
222
223         /* Check if the jumbo frame and maximum packet length are set
224          * correctly.
225          */
226         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
227                 if (max_pkt_len <= ETHER_MAX_LEN ||
228                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
229                         PMD_DRV_LOG(ERR, "maximum packet length must be "
230                                     "larger than %u and smaller than %u, "
231                                     "as jumbo frame is enabled",
232                                     (uint32_t)ETHER_MAX_LEN,
233                                     (uint32_t)AVF_FRAME_SIZE_MAX);
234                         return -EINVAL;
235                 }
236         } else {
237                 if (max_pkt_len < ETHER_MIN_LEN ||
238                     max_pkt_len > ETHER_MAX_LEN) {
239                         PMD_DRV_LOG(ERR, "maximum packet length must be "
240                                     "larger than %u and smaller than %u, "
241                                     "as jumbo frame is disabled",
242                                     (uint32_t)ETHER_MIN_LEN,
243                                     (uint32_t)ETHER_MAX_LEN);
244                         return -EINVAL;
245                 }
246         }
247
248         rxq->max_pkt_len = max_pkt_len;
249         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
250             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
251                 dev_data->scattered_rx = 1;
252         }
253         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
254         AVF_WRITE_FLUSH(hw);
255
256         return 0;
257 }
258
259 static int
260 avf_init_queues(struct rte_eth_dev *dev)
261 {
262         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
263         struct avf_rx_queue **rxq =
264                 (struct avf_rx_queue **)dev->data->rx_queues;
265         struct avf_tx_queue **txq =
266                 (struct avf_tx_queue **)dev->data->tx_queues;
267         int i, ret = AVF_SUCCESS;
268
269         for (i = 0; i < dev->data->nb_rx_queues; i++) {
270                 if (!rxq[i] || !rxq[i]->q_set)
271                         continue;
272                 ret = avf_init_rxq(dev, rxq[i]);
273                 if (ret != AVF_SUCCESS)
274                         break;
275         }
276         /* set rx/tx function to vector/scatter/single-segment
277          * according to parameters
278          */
279         avf_set_rx_function(dev);
280         avf_set_tx_function(dev);
281
282         return ret;
283 }
284
285 static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev,
286                                      struct rte_intr_handle *intr_handle)
287 {
288         struct avf_adapter *adapter =
289                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
290         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
291         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
292         uint16_t interval, i;
293         int vec;
294
295         if (rte_intr_cap_multiple(intr_handle) &&
296             dev->data->dev_conf.intr_conf.rxq) {
297                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
298                         return -1;
299         }
300
301         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
302                 intr_handle->intr_vec =
303                         rte_zmalloc("intr_vec",
304                                     dev->data->nb_rx_queues * sizeof(int), 0);
305                 if (!intr_handle->intr_vec) {
306                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
307                                     dev->data->nb_rx_queues);
308                         return -1;
309                 }
310         }
311
312         if (!dev->data->dev_conf.intr_conf.rxq ||
313             !rte_intr_dp_is_en(intr_handle)) {
314                 /* Rx interrupt disabled, Map interrupt only for writeback */
315                 vf->nb_msix = 1;
316                 if (vf->vf_res->vf_cap_flags &
317                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
318                         /* If WB_ON_ITR supports, enable it */
319                         vf->msix_base = AVF_RX_VEC_START;
320                         AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
321                                       AVFINT_DYN_CTLN1_ITR_INDX_MASK |
322                                       AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
323                 } else {
324                         /* If no WB_ON_ITR offload flags, need to set
325                          * interrupt for descriptor write back.
326                          */
327                         vf->msix_base = AVF_MISC_VEC_ID;
328
329                         /* set ITR to max */
330                         interval = avf_calc_itr_interval(
331                                         AVF_QUEUE_ITR_INTERVAL_MAX);
332                         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
333                                       AVFINT_DYN_CTL01_INTENA_MASK |
334                                       (AVF_ITR_INDEX_DEFAULT <<
335                                        AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
336                                       (interval <<
337                                        AVFINT_DYN_CTL01_INTERVAL_SHIFT));
338                 }
339                 AVF_WRITE_FLUSH(hw);
340                 /* map all queues to the same interrupt */
341                 for (i = 0; i < dev->data->nb_rx_queues; i++)
342                         vf->rxq_map[vf->msix_base] |= 1 << i;
343         } else {
344                 if (!rte_intr_allow_others(intr_handle)) {
345                         vf->nb_msix = 1;
346                         vf->msix_base = AVF_MISC_VEC_ID;
347                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
348                                 vf->rxq_map[vf->msix_base] |= 1 << i;
349                                 intr_handle->intr_vec[i] = AVF_MISC_VEC_ID;
350                         }
351                         PMD_DRV_LOG(DEBUG,
352                                     "vector %u are mapping to all Rx queues",
353                                     vf->msix_base);
354                 } else {
355                         /* If Rx interrupt is reuquired, and we can use
356                          * multi interrupts, then the vec is from 1
357                          */
358                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
359                                               intr_handle->nb_efd);
360                         vf->msix_base = AVF_RX_VEC_START;
361                         vec = AVF_RX_VEC_START;
362                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
363                                 vf->rxq_map[vec] |= 1 << i;
364                                 intr_handle->intr_vec[i] = vec++;
365                                 if (vec >= vf->nb_msix)
366                                         vec = AVF_RX_VEC_START;
367                         }
368                         PMD_DRV_LOG(DEBUG,
369                                     "%u vectors are mapping to %u Rx queues",
370                                     vf->nb_msix, dev->data->nb_rx_queues);
371                 }
372         }
373
374         if (avf_config_irq_map(adapter)) {
375                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
376                 return -1;
377         }
378         return 0;
379 }
380
381 static int
382 avf_start_queues(struct rte_eth_dev *dev)
383 {
384         struct avf_rx_queue *rxq;
385         struct avf_tx_queue *txq;
386         int i;
387
388         for (i = 0; i < dev->data->nb_tx_queues; i++) {
389                 txq = dev->data->tx_queues[i];
390                 if (txq->tx_deferred_start)
391                         continue;
392                 if (avf_dev_tx_queue_start(dev, i) != 0) {
393                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
394                         return -1;
395                 }
396         }
397
398         for (i = 0; i < dev->data->nb_rx_queues; i++) {
399                 rxq = dev->data->rx_queues[i];
400                 if (rxq->rx_deferred_start)
401                         continue;
402                 if (avf_dev_rx_queue_start(dev, i) != 0) {
403                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
404                         return -1;
405                 }
406         }
407
408         return 0;
409 }
410
411 static int
412 avf_dev_start(struct rte_eth_dev *dev)
413 {
414         struct avf_adapter *adapter =
415                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
416         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
417         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
418         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
419         struct rte_intr_handle *intr_handle = dev->intr_handle;
420
421         PMD_INIT_FUNC_TRACE();
422
423         hw->adapter_stopped = 0;
424
425         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
426         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
427                                       dev->data->nb_tx_queues);
428
429         if (avf_init_queues(dev) != 0) {
430                 PMD_DRV_LOG(ERR, "failed to do Queue init");
431                 return -1;
432         }
433
434         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
435                 if (avf_init_rss(adapter) != 0) {
436                         PMD_DRV_LOG(ERR, "configure rss failed");
437                         goto err_rss;
438                 }
439         }
440
441         if (avf_configure_queues(adapter) != 0) {
442                 PMD_DRV_LOG(ERR, "configure queues failed");
443                 goto err_queue;
444         }
445
446         if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) {
447                 PMD_DRV_LOG(ERR, "configure irq failed");
448                 goto err_queue;
449         }
450         /* re-enable intr again, because efd assign may change */
451         if (dev->data->dev_conf.intr_conf.rxq != 0) {
452                 rte_intr_disable(intr_handle);
453                 rte_intr_enable(intr_handle);
454         }
455
456         /* Set all mac addrs */
457         avf_add_del_all_mac_addr(adapter, TRUE);
458
459         if (avf_start_queues(dev) != 0) {
460                 PMD_DRV_LOG(ERR, "enable queues failed");
461                 goto err_mac;
462         }
463
464         return 0;
465
466 err_mac:
467         avf_add_del_all_mac_addr(adapter, FALSE);
468 err_queue:
469 err_rss:
470         return -1;
471 }
472
473 static void
474 avf_dev_stop(struct rte_eth_dev *dev)
475 {
476         struct avf_adapter *adapter =
477                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
478         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
479         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
480         struct rte_intr_handle *intr_handle = dev->intr_handle;
481         int ret, i;
482
483         PMD_INIT_FUNC_TRACE();
484
485         if (hw->adapter_stopped == 1)
486                 return;
487
488         avf_stop_queues(dev);
489
490         /* Disable the interrupt for Rx */
491         rte_intr_efd_disable(intr_handle);
492         /* Rx interrupt vector mapping free */
493         if (intr_handle->intr_vec) {
494                 rte_free(intr_handle->intr_vec);
495                 intr_handle->intr_vec = NULL;
496         }
497
498         /* remove all mac addrs */
499         avf_add_del_all_mac_addr(adapter, FALSE);
500         hw->adapter_stopped = 1;
501 }
502
503 static void
504 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
505 {
506         struct avf_adapter *adapter =
507                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
508         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
509
510         memset(dev_info, 0, sizeof(*dev_info));
511         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
512         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
513         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
514         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
515         dev_info->hash_key_size = vf->vf_res->rss_key_size;
516         dev_info->reta_size = vf->vf_res->rss_lut_size;
517         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
518         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
519         dev_info->rx_offload_capa =
520                 DEV_RX_OFFLOAD_VLAN_STRIP |
521                 DEV_RX_OFFLOAD_QINQ_STRIP |
522                 DEV_RX_OFFLOAD_IPV4_CKSUM |
523                 DEV_RX_OFFLOAD_UDP_CKSUM |
524                 DEV_RX_OFFLOAD_TCP_CKSUM |
525                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
526                 DEV_RX_OFFLOAD_KEEP_CRC |
527                 DEV_RX_OFFLOAD_SCATTER |
528                 DEV_RX_OFFLOAD_JUMBO_FRAME |
529                 DEV_RX_OFFLOAD_VLAN_FILTER;
530         dev_info->tx_offload_capa =
531                 DEV_TX_OFFLOAD_VLAN_INSERT |
532                 DEV_TX_OFFLOAD_QINQ_INSERT |
533                 DEV_TX_OFFLOAD_IPV4_CKSUM |
534                 DEV_TX_OFFLOAD_UDP_CKSUM |
535                 DEV_TX_OFFLOAD_TCP_CKSUM |
536                 DEV_TX_OFFLOAD_SCTP_CKSUM |
537                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
538                 DEV_TX_OFFLOAD_TCP_TSO |
539                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
540                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
541                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
542                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
543                 DEV_TX_OFFLOAD_MULTI_SEGS;
544
545         dev_info->default_rxconf = (struct rte_eth_rxconf) {
546                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
547                 .rx_drop_en = 0,
548                 .offloads = 0,
549         };
550
551         dev_info->default_txconf = (struct rte_eth_txconf) {
552                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
553                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
554                 .offloads = 0,
555         };
556
557         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
558                 .nb_max = AVF_MAX_RING_DESC,
559                 .nb_min = AVF_MIN_RING_DESC,
560                 .nb_align = AVF_ALIGN_RING_DESC,
561         };
562
563         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
564                 .nb_max = AVF_MAX_RING_DESC,
565                 .nb_min = AVF_MIN_RING_DESC,
566                 .nb_align = AVF_ALIGN_RING_DESC,
567         };
568 }
569
570 static const uint32_t *
571 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
572 {
573         static const uint32_t ptypes[] = {
574                 RTE_PTYPE_L2_ETHER,
575                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
576                 RTE_PTYPE_L4_FRAG,
577                 RTE_PTYPE_L4_ICMP,
578                 RTE_PTYPE_L4_NONFRAG,
579                 RTE_PTYPE_L4_SCTP,
580                 RTE_PTYPE_L4_TCP,
581                 RTE_PTYPE_L4_UDP,
582                 RTE_PTYPE_UNKNOWN
583         };
584         return ptypes;
585 }
586
587 int
588 avf_dev_link_update(struct rte_eth_dev *dev,
589                     __rte_unused int wait_to_complete)
590 {
591         struct rte_eth_link new_link;
592         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
593
594         /* Only read status info stored in VF, and the info is updated
595          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
596          */
597         switch (vf->link_speed) {
598         case VIRTCHNL_LINK_SPEED_100MB:
599                 new_link.link_speed = ETH_SPEED_NUM_100M;
600                 break;
601         case VIRTCHNL_LINK_SPEED_1GB:
602                 new_link.link_speed = ETH_SPEED_NUM_1G;
603                 break;
604         case VIRTCHNL_LINK_SPEED_10GB:
605                 new_link.link_speed = ETH_SPEED_NUM_10G;
606                 break;
607         case VIRTCHNL_LINK_SPEED_20GB:
608                 new_link.link_speed = ETH_SPEED_NUM_20G;
609                 break;
610         case VIRTCHNL_LINK_SPEED_25GB:
611                 new_link.link_speed = ETH_SPEED_NUM_25G;
612                 break;
613         case VIRTCHNL_LINK_SPEED_40GB:
614                 new_link.link_speed = ETH_SPEED_NUM_40G;
615                 break;
616         default:
617                 new_link.link_speed = ETH_SPEED_NUM_NONE;
618                 break;
619         }
620
621         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
622         new_link.link_status = vf->link_up ? ETH_LINK_UP :
623                                              ETH_LINK_DOWN;
624         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
625                                 ETH_LINK_SPEED_FIXED);
626
627         if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
628                                 *(uint64_t *)&dev->data->dev_link,
629                                 *(uint64_t *)&new_link) == 0)
630                 return -1;
631
632         return 0;
633 }
634
635 static void
636 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
637 {
638         struct avf_adapter *adapter =
639                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
640         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
641         int ret;
642
643         if (vf->promisc_unicast_enabled)
644                 return;
645
646         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
647         if (!ret)
648                 vf->promisc_unicast_enabled = TRUE;
649 }
650
651 static void
652 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
653 {
654         struct avf_adapter *adapter =
655                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
656         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
657         int ret;
658
659         if (!vf->promisc_unicast_enabled)
660                 return;
661
662         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
663         if (!ret)
664                 vf->promisc_unicast_enabled = FALSE;
665 }
666
667 static void
668 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
669 {
670         struct avf_adapter *adapter =
671                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
672         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
673         int ret;
674
675         if (vf->promisc_multicast_enabled)
676                 return;
677
678         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
679         if (!ret)
680                 vf->promisc_multicast_enabled = TRUE;
681 }
682
683 static void
684 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
685 {
686         struct avf_adapter *adapter =
687                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
688         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
689         int ret;
690
691         if (!vf->promisc_multicast_enabled)
692                 return;
693
694         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
695         if (!ret)
696                 vf->promisc_multicast_enabled = FALSE;
697 }
698
699 static int
700 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
701                      __rte_unused uint32_t index,
702                      __rte_unused uint32_t pool)
703 {
704         struct avf_adapter *adapter =
705                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
706         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
707         int err;
708
709         if (is_zero_ether_addr(addr)) {
710                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
711                 return -EINVAL;
712         }
713
714         err = avf_add_del_eth_addr(adapter, addr, TRUE);
715         if (err) {
716                 PMD_DRV_LOG(ERR, "fail to add MAC address");
717                 return -EIO;
718         }
719
720         vf->mac_num++;
721
722         return 0;
723 }
724
725 static void
726 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
727 {
728         struct avf_adapter *adapter =
729                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
730         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
731         struct ether_addr *addr;
732         int err;
733
734         addr = &dev->data->mac_addrs[index];
735
736         err = avf_add_del_eth_addr(adapter, addr, FALSE);
737         if (err)
738                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
739
740         vf->mac_num--;
741 }
742
743 static int
744 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
745 {
746         struct avf_adapter *adapter =
747                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
748         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
749         int err;
750
751         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
752                 return -ENOTSUP;
753
754         err = avf_add_del_vlan(adapter, vlan_id, on);
755         if (err)
756                 return -EIO;
757         return 0;
758 }
759
760 static int
761 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
762 {
763         struct avf_adapter *adapter =
764                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
765         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
766         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
767         int err;
768
769         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
770                 return -ENOTSUP;
771
772         /* Vlan stripping setting */
773         if (mask & ETH_VLAN_STRIP_MASK) {
774                 /* Enable or disable VLAN stripping */
775                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
776                         err = avf_enable_vlan_strip(adapter);
777                 else
778                         err = avf_disable_vlan_strip(adapter);
779
780                 if (err)
781                         return -EIO;
782         }
783         return 0;
784 }
785
786 static int
787 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
788                         struct rte_eth_rss_reta_entry64 *reta_conf,
789                         uint16_t reta_size)
790 {
791         struct avf_adapter *adapter =
792                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
793         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
794         uint8_t *lut;
795         uint16_t i, idx, shift;
796         int ret;
797
798         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
799                 return -ENOTSUP;
800
801         if (reta_size != vf->vf_res->rss_lut_size) {
802                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
803                         "(%d) doesn't match the number of hardware can "
804                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
805                 return -EINVAL;
806         }
807
808         lut = rte_zmalloc("rss_lut", reta_size, 0);
809         if (!lut) {
810                 PMD_DRV_LOG(ERR, "No memory can be allocated");
811                 return -ENOMEM;
812         }
813         /* store the old lut table temporarily */
814         rte_memcpy(lut, vf->rss_lut, reta_size);
815
816         for (i = 0; i < reta_size; i++) {
817                 idx = i / RTE_RETA_GROUP_SIZE;
818                 shift = i % RTE_RETA_GROUP_SIZE;
819                 if (reta_conf[idx].mask & (1ULL << shift))
820                         lut[i] = reta_conf[idx].reta[shift];
821         }
822
823         rte_memcpy(vf->rss_lut, lut, reta_size);
824         /* send virtchnnl ops to configure rss*/
825         ret = avf_configure_rss_lut(adapter);
826         if (ret) /* revert back */
827                 rte_memcpy(vf->rss_lut, lut, reta_size);
828         rte_free(lut);
829
830         return ret;
831 }
832
833 static int
834 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
835                        struct rte_eth_rss_reta_entry64 *reta_conf,
836                        uint16_t reta_size)
837 {
838         struct avf_adapter *adapter =
839                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
840         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
841         uint16_t i, idx, shift;
842
843         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
844                 return -ENOTSUP;
845
846         if (reta_size != vf->vf_res->rss_lut_size) {
847                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
848                         "(%d) doesn't match the number of hardware can "
849                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
850                 return -EINVAL;
851         }
852
853         for (i = 0; i < reta_size; i++) {
854                 idx = i / RTE_RETA_GROUP_SIZE;
855                 shift = i % RTE_RETA_GROUP_SIZE;
856                 if (reta_conf[idx].mask & (1ULL << shift))
857                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
858         }
859
860         return 0;
861 }
862
863 static int
864 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
865                         struct rte_eth_rss_conf *rss_conf)
866 {
867         struct avf_adapter *adapter =
868                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
869         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
870
871         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
872                 return -ENOTSUP;
873
874         /* HENA setting, it is enabled by default, no change */
875         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
876                 PMD_DRV_LOG(DEBUG, "No key to be configured");
877                 return 0;
878         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
879                 PMD_DRV_LOG(ERR, "The size of hash key configured "
880                         "(%d) doesn't match the size of hardware can "
881                         "support (%d)", rss_conf->rss_key_len,
882                         vf->vf_res->rss_key_size);
883                 return -EINVAL;
884         }
885
886         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
887
888         return avf_configure_rss_key(adapter);
889 }
890
891 static int
892 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
893                           struct rte_eth_rss_conf *rss_conf)
894 {
895         struct avf_adapter *adapter =
896                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
897         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
898
899         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
900                 return -ENOTSUP;
901
902          /* Just set it to default value now. */
903         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
904
905         if (!rss_conf->rss_key)
906                 return 0;
907
908         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
909         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
910
911         return 0;
912 }
913
914 static int
915 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
916 {
917         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
918         uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
919         int ret = 0;
920
921         if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
922                 return -EINVAL;
923
924         /* mtu setting is forbidden if port is start */
925         if (dev->data->dev_started) {
926                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
927                 return -EBUSY;
928         }
929
930         if (frame_size > ETHER_MAX_LEN)
931                 dev->data->dev_conf.rxmode.offloads |=
932                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
933         else
934                 dev->data->dev_conf.rxmode.offloads &=
935                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
936
937         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
938
939         return ret;
940 }
941
942 static int
943 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
944                              struct ether_addr *mac_addr)
945 {
946         struct avf_adapter *adapter =
947                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
948         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
949         struct ether_addr *perm_addr, *old_addr;
950         int ret;
951
952         old_addr = (struct ether_addr *)hw->mac.addr;
953         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
954
955         if (is_same_ether_addr(mac_addr, old_addr))
956                 return 0;
957
958         /* If the MAC address is configured by host, skip the setting */
959         if (is_valid_assigned_ether_addr(perm_addr))
960                 return -EPERM;
961
962         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
963         if (ret)
964                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
965                             " %02X:%02X:%02X:%02X:%02X:%02X",
966                             old_addr->addr_bytes[0],
967                             old_addr->addr_bytes[1],
968                             old_addr->addr_bytes[2],
969                             old_addr->addr_bytes[3],
970                             old_addr->addr_bytes[4],
971                             old_addr->addr_bytes[5]);
972
973         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
974         if (ret)
975                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
976                             " %02X:%02X:%02X:%02X:%02X:%02X",
977                             mac_addr->addr_bytes[0],
978                             mac_addr->addr_bytes[1],
979                             mac_addr->addr_bytes[2],
980                             mac_addr->addr_bytes[3],
981                             mac_addr->addr_bytes[4],
982                             mac_addr->addr_bytes[5]);
983
984         if (ret)
985                 return -EIO;
986
987         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
988         return 0;
989 }
990
991 static int
992 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
993 {
994         struct avf_adapter *adapter =
995                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
996         struct virtchnl_eth_stats *pstats = NULL;
997         int ret;
998
999         ret = avf_query_stats(adapter, &pstats);
1000         if (ret == 0) {
1001                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1002                                                 pstats->rx_broadcast;
1003                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1004                                                 pstats->tx_unicast;
1005                 stats->imissed = pstats->rx_discards;
1006                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1007                 stats->ibytes = pstats->rx_bytes;
1008                 stats->obytes = pstats->tx_bytes;
1009         } else {
1010                 PMD_DRV_LOG(ERR, "Get statistics failed");
1011         }
1012         return -EIO;
1013 }
1014
1015 static int
1016 avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1017 {
1018         struct avf_adapter *adapter =
1019                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1020         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1021         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1022         uint16_t msix_intr;
1023
1024         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1025         if (msix_intr == AVF_MISC_VEC_ID) {
1026                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1027                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1028                               AVFINT_DYN_CTL01_INTENA_MASK |
1029                               AVFINT_DYN_CTL01_ITR_INDX_MASK);
1030         } else {
1031                 AVF_WRITE_REG(hw,
1032                               AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1033                               AVFINT_DYN_CTLN1_INTENA_MASK |
1034                               AVFINT_DYN_CTLN1_ITR_INDX_MASK);
1035         }
1036
1037         AVF_WRITE_FLUSH(hw);
1038
1039         rte_intr_enable(&pci_dev->intr_handle);
1040
1041         return 0;
1042 }
1043
1044 static int
1045 avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1046 {
1047         struct avf_adapter *adapter =
1048                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1049         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1050         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1051         uint16_t msix_intr;
1052
1053         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1054         if (msix_intr == AVF_MISC_VEC_ID) {
1055                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1056                 return -EIO;
1057         }
1058
1059         AVF_WRITE_REG(hw,
1060                       AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1061                       0);
1062
1063         AVF_WRITE_FLUSH(hw);
1064         return 0;
1065 }
1066
1067 static int
1068 avf_check_vf_reset_done(struct avf_hw *hw)
1069 {
1070         int i, reset;
1071
1072         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
1073                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
1074                         AVFGEN_RSTAT_VFR_STATE_MASK;
1075                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
1076                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1077                     reset == VIRTCHNL_VFR_COMPLETED)
1078                         break;
1079                 rte_delay_ms(20);
1080         }
1081
1082         if (i >= AVF_RESET_WAIT_CNT)
1083                 return -1;
1084
1085         return 0;
1086 }
1087
1088 static int
1089 avf_init_vf(struct rte_eth_dev *dev)
1090 {
1091         int i, err, bufsz;
1092         struct avf_adapter *adapter =
1093                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1094         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1095         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1096
1097         err = avf_set_mac_type(hw);
1098         if (err) {
1099                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1100                 goto err;
1101         }
1102
1103         err = avf_check_vf_reset_done(hw);
1104         if (err) {
1105                 PMD_INIT_LOG(ERR, "VF is still resetting");
1106                 goto err;
1107         }
1108
1109         avf_init_adminq_parameter(hw);
1110         err = avf_init_adminq(hw);
1111         if (err) {
1112                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1113                 goto err;
1114         }
1115
1116         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
1117         if (!vf->aq_resp) {
1118                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1119                 goto err_aq;
1120         }
1121         if (avf_check_api_version(adapter) != 0) {
1122                 PMD_INIT_LOG(ERR, "check_api version failed");
1123                 goto err_api;
1124         }
1125
1126         bufsz = sizeof(struct virtchnl_vf_resource) +
1127                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1128         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1129         if (!vf->vf_res) {
1130                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1131                 goto err_api;
1132         }
1133         if (avf_get_vf_resource(adapter) != 0) {
1134                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
1135                 goto err_alloc;
1136         }
1137         /* Allocate memort for RSS info */
1138         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1139                 vf->rss_key = rte_zmalloc("rss_key",
1140                                           vf->vf_res->rss_key_size, 0);
1141                 if (!vf->rss_key) {
1142                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1143                         goto err_rss;
1144                 }
1145                 vf->rss_lut = rte_zmalloc("rss_lut",
1146                                           vf->vf_res->rss_lut_size, 0);
1147                 if (!vf->rss_lut) {
1148                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1149                         goto err_rss;
1150                 }
1151         }
1152         return 0;
1153 err_rss:
1154         rte_free(vf->rss_key);
1155         rte_free(vf->rss_lut);
1156 err_alloc:
1157         rte_free(vf->vf_res);
1158         vf->vsi_res = NULL;
1159 err_api:
1160         rte_free(vf->aq_resp);
1161 err_aq:
1162         avf_shutdown_adminq(hw);
1163 err:
1164         return -1;
1165 }
1166
1167 /* Enable default admin queue interrupt setting */
1168 static inline void
1169 avf_enable_irq0(struct avf_hw *hw)
1170 {
1171         /* Enable admin queue interrupt trigger */
1172         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1173
1174         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1175                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
1176
1177         AVF_WRITE_FLUSH(hw);
1178 }
1179
1180 static inline void
1181 avf_disable_irq0(struct avf_hw *hw)
1182 {
1183         /* Disable all interrupt types */
1184         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1185         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1186                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
1187         AVF_WRITE_FLUSH(hw);
1188 }
1189
1190 static void
1191 avf_dev_interrupt_handler(void *param)
1192 {
1193         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1194         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1195
1196         avf_disable_irq0(hw);
1197
1198         avf_handle_virtchnl_msg(dev);
1199
1200 done:
1201         avf_enable_irq0(hw);
1202 }
1203
1204 static int
1205 avf_dev_init(struct rte_eth_dev *eth_dev)
1206 {
1207         struct avf_adapter *adapter =
1208                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1209         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1210         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1211
1212         PMD_INIT_FUNC_TRACE();
1213
1214         /* assign ops func pointer */
1215         eth_dev->dev_ops = &avf_eth_dev_ops;
1216         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1217         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1218         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1219
1220         /* For secondary processes, we don't initialise any further as primary
1221          * has already done this work. Only check if we need a different RX
1222          * and TX function.
1223          */
1224         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1225                 avf_set_rx_function(eth_dev);
1226                 avf_set_tx_function(eth_dev);
1227                 return 0;
1228         }
1229         rte_eth_copy_pci_info(eth_dev, pci_dev);
1230
1231         hw->vendor_id = pci_dev->id.vendor_id;
1232         hw->device_id = pci_dev->id.device_id;
1233         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1234         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1235         hw->bus.bus_id = pci_dev->addr.bus;
1236         hw->bus.device = pci_dev->addr.devid;
1237         hw->bus.func = pci_dev->addr.function;
1238         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1239         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1240         adapter->eth_dev = eth_dev;
1241
1242         if (avf_init_vf(eth_dev) != 0) {
1243                 PMD_INIT_LOG(ERR, "Init vf failed");
1244                 return -1;
1245         }
1246
1247         /* copy mac addr */
1248         eth_dev->data->mac_addrs = rte_zmalloc(
1249                                         "avf_mac",
1250                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1251                                         0);
1252         if (!eth_dev->data->mac_addrs) {
1253                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1254                              " store MAC addresses",
1255                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1256                 return -ENOMEM;
1257         }
1258         /* If the MAC address is not configured by host,
1259          * generate a random one.
1260          */
1261         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1262                 eth_random_addr(hw->mac.addr);
1263         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1264                         &eth_dev->data->mac_addrs[0]);
1265
1266         /* register callback func to eal lib */
1267         rte_intr_callback_register(&pci_dev->intr_handle,
1268                                    avf_dev_interrupt_handler,
1269                                    (void *)eth_dev);
1270
1271         /* enable uio intr after callback register */
1272         rte_intr_enable(&pci_dev->intr_handle);
1273
1274         /* configure and enable device interrupt */
1275         avf_enable_irq0(hw);
1276
1277         return 0;
1278 }
1279
1280 static void
1281 avf_dev_close(struct rte_eth_dev *dev)
1282 {
1283         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1284         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1285         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1286
1287         avf_dev_stop(dev);
1288         avf_shutdown_adminq(hw);
1289         /* disable uio intr before callback unregister */
1290         rte_intr_disable(intr_handle);
1291
1292         /* unregister callback func from eal lib */
1293         rte_intr_callback_unregister(intr_handle,
1294                                      avf_dev_interrupt_handler, dev);
1295         avf_disable_irq0(hw);
1296 }
1297
1298 static int
1299 avf_dev_uninit(struct rte_eth_dev *dev)
1300 {
1301         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1302         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1303
1304         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1305                 return -EPERM;
1306
1307         dev->dev_ops = NULL;
1308         dev->rx_pkt_burst = NULL;
1309         dev->tx_pkt_burst = NULL;
1310         if (hw->adapter_stopped == 0)
1311                 avf_dev_close(dev);
1312
1313         rte_free(vf->vf_res);
1314         vf->vsi_res = NULL;
1315         vf->vf_res = NULL;
1316
1317         rte_free(vf->aq_resp);
1318         vf->aq_resp = NULL;
1319
1320         rte_free(dev->data->mac_addrs);
1321         dev->data->mac_addrs = NULL;
1322
1323         if (vf->rss_lut) {
1324                 rte_free(vf->rss_lut);
1325                 vf->rss_lut = NULL;
1326         }
1327         if (vf->rss_key) {
1328                 rte_free(vf->rss_key);
1329                 vf->rss_key = NULL;
1330         }
1331
1332         return 0;
1333 }
1334
1335 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1336                              struct rte_pci_device *pci_dev)
1337 {
1338         return rte_eth_dev_pci_generic_probe(pci_dev,
1339                 sizeof(struct avf_adapter), avf_dev_init);
1340 }
1341
1342 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1343 {
1344         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1345 }
1346
1347 /* Adaptive virtual function driver struct */
1348 static struct rte_pci_driver rte_avf_pmd = {
1349         .id_table = pci_id_avf_map,
1350         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1351                      RTE_PCI_DRV_IOVA_AS_VA,
1352         .probe = eth_avf_pci_probe,
1353         .remove = eth_avf_pci_remove,
1354 };
1355
1356 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1357 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1358 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1359 RTE_INIT(avf_init_log)
1360 {
1361         avf_logtype_init = rte_log_register("pmd.net.avf.init");
1362         if (avf_logtype_init >= 0)
1363                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1364         avf_logtype_driver = rte_log_register("pmd.net.avf.driver");
1365         if (avf_logtype_driver >= 0)
1366                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1367 }
1368
1369 /* memory func for base code */
1370 enum avf_status_code
1371 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1372                        struct avf_dma_mem *mem,
1373                        u64 size,
1374                        u32 alignment)
1375 {
1376         const struct rte_memzone *mz = NULL;
1377         char z_name[RTE_MEMZONE_NAMESIZE];
1378
1379         if (!mem)
1380                 return AVF_ERR_PARAM;
1381
1382         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1383         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1384                         RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1385         if (!mz)
1386                 return AVF_ERR_NO_MEMORY;
1387
1388         mem->size = size;
1389         mem->va = mz->addr;
1390         mem->pa = mz->phys_addr;
1391         mem->zone = (const void *)mz;
1392         PMD_DRV_LOG(DEBUG,
1393                     "memzone %s allocated with physical address: %"PRIu64,
1394                     mz->name, mem->pa);
1395
1396         return AVF_SUCCESS;
1397 }
1398
1399 enum avf_status_code
1400 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1401                    struct avf_dma_mem *mem)
1402 {
1403         if (!mem)
1404                 return AVF_ERR_PARAM;
1405
1406         PMD_DRV_LOG(DEBUG,
1407                     "memzone %s to be freed with physical address: %"PRIu64,
1408                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1409         rte_memzone_free((const struct rte_memzone *)mem->zone);
1410         mem->zone = NULL;
1411         mem->va = NULL;
1412         mem->pa = (u64)0;
1413
1414         return AVF_SUCCESS;
1415 }
1416
1417 enum avf_status_code
1418 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1419                         struct avf_virt_mem *mem,
1420                         u32 size)
1421 {
1422         if (!mem)
1423                 return AVF_ERR_PARAM;
1424
1425         mem->size = size;
1426         mem->va = rte_zmalloc("avf", size, 0);
1427
1428         if (mem->va)
1429                 return AVF_SUCCESS;
1430         else
1431                 return AVF_ERR_NO_MEMORY;
1432 }
1433
1434 enum avf_status_code
1435 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1436                     struct avf_virt_mem *mem)
1437 {
1438         if (!mem)
1439                 return AVF_ERR_PARAM;
1440
1441         rte_free(mem->va);
1442         mem->va = NULL;
1443
1444         return AVF_SUCCESS;
1445 }