net/avf: enable ops for RSS setting
[dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static void avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
68                                          struct ether_addr *mac_addr);
69
70 int avf_logtype_init;
71 int avf_logtype_driver;
72 static const struct rte_pci_id pci_id_avf_map[] = {
73         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
74         { .vendor_id = 0, /* sentinel */ },
75 };
76
77 static const struct eth_dev_ops avf_eth_dev_ops = {
78         .dev_configure              = avf_dev_configure,
79         .dev_start                  = avf_dev_start,
80         .dev_stop                   = avf_dev_stop,
81         .dev_close                  = avf_dev_close,
82         .dev_infos_get              = avf_dev_info_get,
83         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
84         .link_update                = avf_dev_link_update,
85         .stats_get                  = avf_dev_stats_get,
86         .promiscuous_enable         = avf_dev_promiscuous_enable,
87         .promiscuous_disable        = avf_dev_promiscuous_disable,
88         .allmulticast_enable        = avf_dev_allmulticast_enable,
89         .allmulticast_disable       = avf_dev_allmulticast_disable,
90         .mac_addr_add               = avf_dev_add_mac_addr,
91         .mac_addr_remove            = avf_dev_del_mac_addr,
92         .vlan_filter_set            = avf_dev_vlan_filter_set,
93         .vlan_offload_set           = avf_dev_vlan_offload_set,
94         .rx_queue_start             = avf_dev_rx_queue_start,
95         .rx_queue_stop              = avf_dev_rx_queue_stop,
96         .tx_queue_start             = avf_dev_tx_queue_start,
97         .tx_queue_stop              = avf_dev_tx_queue_stop,
98         .rx_queue_setup             = avf_dev_rx_queue_setup,
99         .rx_queue_release           = avf_dev_rx_queue_release,
100         .tx_queue_setup             = avf_dev_tx_queue_setup,
101         .tx_queue_release           = avf_dev_tx_queue_release,
102         .mac_addr_set               = avf_dev_set_default_mac_addr,
103         .reta_update                = avf_dev_rss_reta_update,
104         .reta_query                 = avf_dev_rss_reta_query,
105         .rss_hash_update            = avf_dev_rss_hash_update,
106         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
107 };
108
109 static int
110 avf_dev_configure(struct rte_eth_dev *dev)
111 {
112         struct avf_adapter *ad =
113                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
114         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
115         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
116
117         /* Vlan stripping setting */
118         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
119                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
120                         avf_enable_vlan_strip(ad);
121                 else
122                         avf_disable_vlan_strip(ad);
123         }
124         return 0;
125 }
126
127 static int
128 avf_init_rss(struct avf_adapter *adapter)
129 {
130         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
131         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
132         struct rte_eth_rss_conf *rss_conf;
133         uint8_t i, j, nb_q;
134         int ret;
135
136         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
137         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
138                        AVF_MAX_NUM_QUEUES);
139
140         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
141                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
142                 return -ENOTSUP;
143         }
144         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
145                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
146                 /* set all lut items to default queue */
147                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
148                         vf->rss_lut[i] = 0;
149                 ret = avf_configure_rss_lut(adapter);
150                 return ret;
151         }
152
153         /* In AVF, RSS enablement is set by PF driver. It is not supported
154          * to set based on rss_conf->rss_hf.
155          */
156
157         /* configure RSS key */
158         if (!rss_conf->rss_key) {
159                 /* Calculate the default hash key */
160                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
161                         vf->rss_key[i] = (uint8_t)rte_rand();
162         } else
163                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
164                            RTE_MIN(rss_conf->rss_key_len,
165                                    vf->vf_res->rss_key_size));
166
167         /* init RSS LUT table */
168         for (i = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
169                 if (j >= nb_q)
170                         j = 0;
171                 vf->rss_lut[i] = j;
172         }
173         /* send virtchnnl ops to configure rss*/
174         ret = avf_configure_rss_lut(adapter);
175         if (ret)
176                 return ret;
177         ret = avf_configure_rss_key(adapter);
178         if (ret)
179                 return ret;
180
181         return 0;
182 }
183
184 static int
185 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
186 {
187         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
188         struct rte_eth_dev_data *dev_data = dev->data;
189         uint16_t buf_size, max_pkt_len, len;
190
191         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
192
193         /* Calculate the maximum packet length allowed */
194         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
195         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
196
197         /* Check if the jumbo frame and maximum packet length are set
198          * correctly.
199          */
200         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
201                 if (max_pkt_len <= ETHER_MAX_LEN ||
202                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
203                         PMD_DRV_LOG(ERR, "maximum packet length must be "
204                                     "larger than %u and smaller than %u, "
205                                     "as jumbo frame is enabled",
206                                     (uint32_t)ETHER_MAX_LEN,
207                                     (uint32_t)AVF_FRAME_SIZE_MAX);
208                         return -EINVAL;
209                 }
210         } else {
211                 if (max_pkt_len < ETHER_MIN_LEN ||
212                     max_pkt_len > ETHER_MAX_LEN) {
213                         PMD_DRV_LOG(ERR, "maximum packet length must be "
214                                     "larger than %u and smaller than %u, "
215                                     "as jumbo frame is disabled",
216                                     (uint32_t)ETHER_MIN_LEN,
217                                     (uint32_t)ETHER_MAX_LEN);
218                         return -EINVAL;
219                 }
220         }
221
222         rxq->max_pkt_len = max_pkt_len;
223         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
224             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
225                 dev_data->scattered_rx = 1;
226         }
227         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
228         AVF_WRITE_FLUSH(hw);
229
230         return 0;
231 }
232
233 static int
234 avf_init_queues(struct rte_eth_dev *dev)
235 {
236         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
237         struct avf_rx_queue **rxq =
238                 (struct avf_rx_queue **)dev->data->rx_queues;
239         struct avf_tx_queue **txq =
240                 (struct avf_tx_queue **)dev->data->tx_queues;
241         int i, ret = AVF_SUCCESS;
242
243         for (i = 0; i < dev->data->nb_rx_queues; i++) {
244                 if (!rxq[i] || !rxq[i]->q_set)
245                         continue;
246                 ret = avf_init_rxq(dev, rxq[i]);
247                 if (ret != AVF_SUCCESS)
248                         break;
249         }
250         /* set rx/tx function to vector/scatter/single-segment
251          * according to parameters
252          */
253         avf_set_rx_function(dev);
254         avf_set_tx_function(dev);
255
256         return ret;
257 }
258
259 static int
260 avf_start_queues(struct rte_eth_dev *dev)
261 {
262         struct avf_rx_queue *rxq;
263         struct avf_tx_queue *txq;
264         int i;
265
266         for (i = 0; i < dev->data->nb_tx_queues; i++) {
267                 txq = dev->data->tx_queues[i];
268                 if (txq->tx_deferred_start)
269                         continue;
270                 if (avf_dev_tx_queue_start(dev, i) != 0) {
271                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
272                         return -1;
273                 }
274         }
275
276         for (i = 0; i < dev->data->nb_rx_queues; i++) {
277                 rxq = dev->data->rx_queues[i];
278                 if (rxq->rx_deferred_start)
279                         continue;
280                 if (avf_dev_rx_queue_start(dev, i) != 0) {
281                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
282                         return -1;
283                 }
284         }
285
286         return 0;
287 }
288
289 static int
290 avf_dev_start(struct rte_eth_dev *dev)
291 {
292         struct avf_adapter *adapter =
293                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
294         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
295         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
296         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
297         struct rte_intr_handle *intr_handle = dev->intr_handle;
298         uint16_t interval;
299         int i;
300
301         PMD_INIT_FUNC_TRACE();
302
303         hw->adapter_stopped = 0;
304
305         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
306         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
307                                       dev->data->nb_tx_queues);
308
309         /* TODO: Rx interrupt */
310
311         if (avf_init_queues(dev) != 0) {
312                 PMD_DRV_LOG(ERR, "failed to do Queue init");
313                 return -1;
314         }
315
316         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
317                 if (avf_init_rss(adapter) != 0) {
318                         PMD_DRV_LOG(ERR, "configure rss failed");
319                         goto err_rss;
320                 }
321         }
322
323         if (avf_configure_queues(adapter) != 0) {
324                 PMD_DRV_LOG(ERR, "configure queues failed");
325                 goto err_queue;
326         }
327
328         /* Map interrupt for writeback */
329         vf->nb_msix = 1;
330         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
331                 /* If WB_ON_ITR supports, enable it */
332                 vf->msix_base = AVF_RX_VEC_START;
333                 AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
334                               AVFINT_DYN_CTLN1_ITR_INDX_MASK |
335                               AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
336         } else {
337                 /* If no WB_ON_ITR offload flags, need to set interrupt for
338                  * descriptor write back.
339                  */
340                 vf->msix_base = AVF_MISC_VEC_ID;
341
342                 /* set ITR to max */
343                 interval = avf_calc_itr_interval(AVF_QUEUE_ITR_INTERVAL_MAX);
344                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
345                               AVFINT_DYN_CTL01_INTENA_MASK |
346                               (AVF_ITR_INDEX_DEFAULT <<
347                                AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
348                               (interval << AVFINT_DYN_CTL01_INTERVAL_SHIFT));
349         }
350         AVF_WRITE_FLUSH(hw);
351         /* map all queues to the same interrupt */
352         for (i = 0; i < dev->data->nb_rx_queues; i++)
353                 vf->rxq_map[0] |= 1 << i;
354         if (avf_config_irq_map(adapter)) {
355                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
356                 goto err_queue;
357         }
358
359         /* Set all mac addrs */
360         avf_add_del_all_mac_addr(adapter, TRUE);
361
362         if (avf_start_queues(dev) != 0) {
363                 PMD_DRV_LOG(ERR, "enable queues failed");
364                 goto err_mac;
365         }
366
367         /* TODO: enable interrupt for RX interrupt */
368         return 0;
369
370 err_mac:
371         avf_add_del_all_mac_addr(adapter, FALSE);
372 err_queue:
373 err_rss:
374         return -1;
375 }
376
377 static void
378 avf_dev_stop(struct rte_eth_dev *dev)
379 {
380         struct avf_adapter *adapter =
381                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
382         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev);
383         int ret, i;
384
385         PMD_INIT_FUNC_TRACE();
386
387         if (hw->adapter_stopped == 1)
388                 return;
389
390         avf_stop_queues(dev);
391
392         /*TODO: Disable the interrupt for Rx*/
393
394         /* TODO: Rx interrupt vector mapping free */
395
396         /* remove all mac addrs */
397         avf_add_del_all_mac_addr(adapter, FALSE);
398         hw->adapter_stopped = 1;
399 }
400
401 static void
402 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
403 {
404         struct avf_adapter *adapter =
405                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
406         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
407
408         memset(dev_info, 0, sizeof(*dev_info));
409         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
410         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
411         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
412         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
413         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
414         dev_info->hash_key_size = vf->vf_res->rss_key_size;
415         dev_info->reta_size = vf->vf_res->rss_lut_size;
416         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
417         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
418         dev_info->rx_offload_capa =
419                 DEV_RX_OFFLOAD_VLAN_STRIP |
420                 DEV_RX_OFFLOAD_IPV4_CKSUM |
421                 DEV_RX_OFFLOAD_UDP_CKSUM |
422                 DEV_RX_OFFLOAD_TCP_CKSUM;
423         dev_info->tx_offload_capa =
424                 DEV_TX_OFFLOAD_VLAN_INSERT |
425                 DEV_TX_OFFLOAD_IPV4_CKSUM |
426                 DEV_TX_OFFLOAD_UDP_CKSUM |
427                 DEV_TX_OFFLOAD_TCP_CKSUM |
428                 DEV_TX_OFFLOAD_SCTP_CKSUM |
429                 DEV_TX_OFFLOAD_TCP_TSO;
430
431         dev_info->default_rxconf = (struct rte_eth_rxconf) {
432                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
433                 .rx_drop_en = 0,
434         };
435
436         dev_info->default_txconf = (struct rte_eth_txconf) {
437                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
438                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
439                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
440                                 ETH_TXQ_FLAGS_NOOFFLOADS,
441         };
442
443         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
444                 .nb_max = AVF_MAX_RING_DESC,
445                 .nb_min = AVF_MIN_RING_DESC,
446                 .nb_align = AVF_ALIGN_RING_DESC,
447         };
448
449         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
450                 .nb_max = AVF_MAX_RING_DESC,
451                 .nb_min = AVF_MIN_RING_DESC,
452                 .nb_align = AVF_ALIGN_RING_DESC,
453         };
454 }
455
456 static const uint32_t *
457 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
458 {
459         static const uint32_t ptypes[] = {
460                 RTE_PTYPE_L2_ETHER,
461                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
462                 RTE_PTYPE_L4_FRAG,
463                 RTE_PTYPE_L4_ICMP,
464                 RTE_PTYPE_L4_NONFRAG,
465                 RTE_PTYPE_L4_SCTP,
466                 RTE_PTYPE_L4_TCP,
467                 RTE_PTYPE_L4_UDP,
468                 RTE_PTYPE_UNKNOWN
469         };
470         return ptypes;
471 }
472
473 int
474 avf_dev_link_update(struct rte_eth_dev *dev,
475                     __rte_unused int wait_to_complete)
476 {
477         struct rte_eth_link new_link;
478         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
479
480         /* Only read status info stored in VF, and the info is updated
481          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
482          */
483         switch (vf->link_speed) {
484         case VIRTCHNL_LINK_SPEED_100MB:
485                 new_link.link_speed = ETH_SPEED_NUM_100M;
486                 break;
487         case VIRTCHNL_LINK_SPEED_1GB:
488                 new_link.link_speed = ETH_SPEED_NUM_1G;
489                 break;
490         case VIRTCHNL_LINK_SPEED_10GB:
491                 new_link.link_speed = ETH_SPEED_NUM_10G;
492                 break;
493         case VIRTCHNL_LINK_SPEED_20GB:
494                 new_link.link_speed = ETH_SPEED_NUM_20G;
495                 break;
496         case VIRTCHNL_LINK_SPEED_25GB:
497                 new_link.link_speed = ETH_SPEED_NUM_25G;
498                 break;
499         case VIRTCHNL_LINK_SPEED_40GB:
500                 new_link.link_speed = ETH_SPEED_NUM_40G;
501                 break;
502         default:
503                 new_link.link_speed = ETH_SPEED_NUM_NONE;
504                 break;
505         }
506
507         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
508         new_link.link_status = vf->link_up ? ETH_LINK_UP :
509                                              ETH_LINK_DOWN;
510         new_link.link_autoneg = !!(dev->data->dev_conf.link_speeds &
511                                 ETH_LINK_SPEED_FIXED);
512
513         rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
514                             *(uint64_t *)&dev->data->dev_link,
515                             *(uint64_t *)&new_link);
516
517         return 0;
518 }
519
520 static void
521 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
522 {
523         struct avf_adapter *adapter =
524                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
525         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
526         int ret;
527
528         if (vf->promisc_unicast_enabled)
529                 return;
530
531         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
532         if (!ret)
533                 vf->promisc_unicast_enabled = TRUE;
534 }
535
536 static void
537 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
538 {
539         struct avf_adapter *adapter =
540                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
541         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
542         int ret;
543
544         if (!vf->promisc_unicast_enabled)
545                 return;
546
547         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
548         if (!ret)
549                 vf->promisc_unicast_enabled = FALSE;
550 }
551
552 static void
553 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
554 {
555         struct avf_adapter *adapter =
556                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
557         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
558         int ret;
559
560         if (vf->promisc_multicast_enabled)
561                 return;
562
563         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
564         if (!ret)
565                 vf->promisc_multicast_enabled = TRUE;
566 }
567
568 static void
569 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
570 {
571         struct avf_adapter *adapter =
572                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
573         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
574         int ret;
575
576         if (!vf->promisc_multicast_enabled)
577                 return;
578
579         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
580         if (!ret)
581                 vf->promisc_multicast_enabled = FALSE;
582 }
583
584 static int
585 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
586                      __rte_unused uint32_t index,
587                      __rte_unused uint32_t pool)
588 {
589         struct avf_adapter *adapter =
590                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
591         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
592         int err;
593
594         if (is_zero_ether_addr(addr)) {
595                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
596                 return -EINVAL;
597         }
598
599         err = avf_add_del_eth_addr(adapter, addr, TRUE);
600         if (err) {
601                 PMD_DRV_LOG(ERR, "fail to add MAC address");
602                 return -EIO;
603         }
604
605         vf->mac_num++;
606
607         return 0;
608 }
609
610 static void
611 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
612 {
613         struct avf_adapter *adapter =
614                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
615         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
616         struct ether_addr *addr;
617         int err;
618
619         addr = &dev->data->mac_addrs[index];
620
621         err = avf_add_del_eth_addr(adapter, addr, FALSE);
622         if (err)
623                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
624
625         vf->mac_num--;
626 }
627
628 static int
629 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
630 {
631         struct avf_adapter *adapter =
632                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
633         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
634         int err;
635
636         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
637                 return -ENOTSUP;
638
639         err = avf_add_del_vlan(adapter, vlan_id, on);
640         if (err)
641                 return -EIO;
642         return 0;
643 }
644
645 static int
646 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
647 {
648         struct avf_adapter *adapter =
649                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
650         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
651         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
652         int err;
653
654         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
655                 return -ENOTSUP;
656
657         /* Vlan stripping setting */
658         if (mask & ETH_VLAN_STRIP_MASK) {
659                 /* Enable or disable VLAN stripping */
660                 if (dev_conf->rxmode.hw_vlan_strip)
661                         err = avf_enable_vlan_strip(adapter);
662                 else
663                         err = avf_disable_vlan_strip(adapter);
664         }
665
666         if (err)
667                 return -EIO;
668         return 0;
669 }
670
671 static int
672 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
673                         struct rte_eth_rss_reta_entry64 *reta_conf,
674                         uint16_t reta_size)
675 {
676         struct avf_adapter *adapter =
677                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
678         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
679         uint8_t *lut;
680         uint16_t i, idx, shift;
681         int ret;
682
683         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
684                 return -ENOTSUP;
685
686         if (reta_size != vf->vf_res->rss_lut_size) {
687                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
688                         "(%d) doesn't match the number of hardware can "
689                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
690                 return -EINVAL;
691         }
692
693         lut = rte_zmalloc("rss_lut", reta_size, 0);
694         if (!lut) {
695                 PMD_DRV_LOG(ERR, "No memory can be allocated");
696                 return -ENOMEM;
697         }
698         /* store the old lut table temporarily */
699         rte_memcpy(lut, vf->rss_lut, reta_size);
700
701         for (i = 0; i < reta_size; i++) {
702                 idx = i / RTE_RETA_GROUP_SIZE;
703                 shift = i % RTE_RETA_GROUP_SIZE;
704                 if (reta_conf[idx].mask & (1ULL << shift))
705                         lut[i] = reta_conf[idx].reta[shift];
706         }
707
708         rte_memcpy(vf->rss_lut, lut, reta_size);
709         /* send virtchnnl ops to configure rss*/
710         ret = avf_configure_rss_lut(adapter);
711         if (ret) /* revert back */
712                 rte_memcpy(vf->rss_lut, lut, reta_size);
713         rte_free(lut);
714
715         return ret;
716 }
717
718 static int
719 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
720                        struct rte_eth_rss_reta_entry64 *reta_conf,
721                        uint16_t reta_size)
722 {
723         struct avf_adapter *adapter =
724                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
725         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
726         uint16_t i, idx, shift;
727
728         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
729                 return -ENOTSUP;
730
731         if (reta_size != vf->vf_res->rss_lut_size) {
732                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
733                         "(%d) doesn't match the number of hardware can "
734                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
735                 return -EINVAL;
736         }
737
738         for (i = 0; i < reta_size; i++) {
739                 idx = i / RTE_RETA_GROUP_SIZE;
740                 shift = i % RTE_RETA_GROUP_SIZE;
741                 if (reta_conf[idx].mask & (1ULL << shift))
742                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
743         }
744
745         return 0;
746 }
747
748 static int
749 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
750                         struct rte_eth_rss_conf *rss_conf)
751 {
752         struct avf_adapter *adapter =
753                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
754         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
755
756         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
757                 return -ENOTSUP;
758
759         /* HENA setting, it is enabled by default, no change */
760         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
761                 PMD_DRV_LOG(DEBUG, "No key to be configured");
762                 return 0;
763         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
764                 PMD_DRV_LOG(ERR, "The size of hash key configured "
765                         "(%d) doesn't match the size of hardware can "
766                         "support (%d)", rss_conf->rss_key_len,
767                         vf->vf_res->rss_key_size);
768                 return -EINVAL;
769         }
770
771         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
772
773         return avf_configure_rss_key(adapter);
774 }
775
776 static int
777 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
778                           struct rte_eth_rss_conf *rss_conf)
779 {
780         struct avf_adapter *adapter =
781                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
782         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
783
784         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
785                 return -ENOTSUP;
786
787          /* Just set it to default value now. */
788         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
789
790         if (!rss_conf->rss_key)
791                 return 0;
792
793         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
794         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
795
796         return 0;
797 }
798
799 static void
800 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
801                              struct ether_addr *mac_addr)
802 {
803         struct avf_adapter *adapter =
804                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
805         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
806         struct ether_addr *perm_addr, *old_addr;
807         int ret;
808
809         old_addr = (struct ether_addr *)hw->mac.addr;
810         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
811
812         if (is_same_ether_addr(mac_addr, old_addr))
813                 return;
814
815         /* If the MAC address is configured by host, skip the setting */
816         if (is_valid_assigned_ether_addr(perm_addr))
817                 return;
818
819         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
820         if (ret)
821                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
822                             " %02X:%02X:%02X:%02X:%02X:%02X",
823                             old_addr->addr_bytes[0],
824                             old_addr->addr_bytes[1],
825                             old_addr->addr_bytes[2],
826                             old_addr->addr_bytes[3],
827                             old_addr->addr_bytes[4],
828                             old_addr->addr_bytes[5]);
829
830         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
831         if (ret)
832                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
833                             " %02X:%02X:%02X:%02X:%02X:%02X",
834                             mac_addr->addr_bytes[0],
835                             mac_addr->addr_bytes[1],
836                             mac_addr->addr_bytes[2],
837                             mac_addr->addr_bytes[3],
838                             mac_addr->addr_bytes[4],
839                             mac_addr->addr_bytes[5]);
840
841         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
842 }
843
844 static int
845 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
846 {
847         struct avf_adapter *adapter =
848                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
849         struct virtchnl_eth_stats *pstats = NULL;
850         int ret;
851
852         ret = avf_query_stats(adapter, &pstats);
853         if (ret == 0) {
854                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
855                                                 pstats->rx_broadcast;
856                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
857                                                 pstats->tx_unicast;
858                 stats->imissed = pstats->rx_discards;
859                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
860                 stats->ibytes = pstats->rx_bytes;
861                 stats->obytes = pstats->tx_bytes;
862         } else {
863                 PMD_DRV_LOG(ERR, "Get statistics failed");
864         }
865         return -EIO;
866 }
867
868 static int
869 avf_check_vf_reset_done(struct avf_hw *hw)
870 {
871         int i, reset;
872
873         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
874                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
875                         AVFGEN_RSTAT_VFR_STATE_MASK;
876                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
877                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
878                     reset == VIRTCHNL_VFR_COMPLETED)
879                         break;
880                 rte_delay_ms(20);
881         }
882
883         if (i >= AVF_RESET_WAIT_CNT)
884                 return -1;
885
886         return 0;
887 }
888
889 static int
890 avf_init_vf(struct rte_eth_dev *dev)
891 {
892         int i, err, bufsz;
893         struct avf_adapter *adapter =
894                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
895         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
896         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
897
898         err = avf_set_mac_type(hw);
899         if (err) {
900                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
901                 goto err;
902         }
903
904         err = avf_check_vf_reset_done(hw);
905         if (err) {
906                 PMD_INIT_LOG(ERR, "VF is still resetting");
907                 goto err;
908         }
909
910         avf_init_adminq_parameter(hw);
911         err = avf_init_adminq(hw);
912         if (err) {
913                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
914                 goto err;
915         }
916
917         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
918         if (!vf->aq_resp) {
919                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
920                 goto err_aq;
921         }
922         if (avf_check_api_version(adapter) != 0) {
923                 PMD_INIT_LOG(ERR, "check_api version failed");
924                 goto err_api;
925         }
926
927         bufsz = sizeof(struct virtchnl_vf_resource) +
928                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
929         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
930         if (!vf->vf_res) {
931                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
932                 goto err_api;
933         }
934         if (avf_get_vf_resource(adapter) != 0) {
935                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
936                 goto err_alloc;
937         }
938         /* Allocate memort for RSS info */
939         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
940                 vf->rss_key = rte_zmalloc("rss_key",
941                                           vf->vf_res->rss_key_size, 0);
942                 if (!vf->rss_key) {
943                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
944                         goto err_rss;
945                 }
946                 vf->rss_lut = rte_zmalloc("rss_lut",
947                                           vf->vf_res->rss_lut_size, 0);
948                 if (!vf->rss_lut) {
949                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
950                         goto err_rss;
951                 }
952         }
953         return 0;
954 err_rss:
955         rte_free(vf->rss_key);
956         rte_free(vf->rss_lut);
957 err_alloc:
958         rte_free(vf->vf_res);
959         vf->vsi_res = NULL;
960 err_api:
961         rte_free(vf->aq_resp);
962 err_aq:
963         avf_shutdown_adminq(hw);
964 err:
965         return -1;
966 }
967
968 /* Enable default admin queue interrupt setting */
969 static inline void
970 avf_enable_irq0(struct avf_hw *hw)
971 {
972         /* Enable admin queue interrupt trigger */
973         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
974
975         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
976                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
977
978         AVF_WRITE_FLUSH(hw);
979 }
980
981 static inline void
982 avf_disable_irq0(struct avf_hw *hw)
983 {
984         /* Disable all interrupt types */
985         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
986         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
987                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
988         AVF_WRITE_FLUSH(hw);
989 }
990
991 static void
992 avf_dev_interrupt_handler(void *param)
993 {
994         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
995         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
996
997         avf_disable_irq0(hw);
998
999         avf_handle_virtchnl_msg(dev);
1000
1001 done:
1002         avf_enable_irq0(hw);
1003 }
1004
1005 static int
1006 avf_dev_init(struct rte_eth_dev *eth_dev)
1007 {
1008         struct avf_adapter *adapter =
1009                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1010         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1011         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1012
1013         PMD_INIT_FUNC_TRACE();
1014
1015         /* assign ops func pointer */
1016         eth_dev->dev_ops = &avf_eth_dev_ops;
1017         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1018         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1019         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1020
1021         /* For secondary processes, we don't initialise any further as primary
1022          * has already done this work. Only check if we need a different RX
1023          * and TX function.
1024          */
1025         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1026                 avf_set_rx_function(eth_dev);
1027                 avf_set_tx_function(eth_dev);
1028                 return 0;
1029         }
1030         rte_eth_copy_pci_info(eth_dev, pci_dev);
1031
1032         hw->vendor_id = pci_dev->id.vendor_id;
1033         hw->device_id = pci_dev->id.device_id;
1034         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1035         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1036         hw->bus.bus_id = pci_dev->addr.bus;
1037         hw->bus.device = pci_dev->addr.devid;
1038         hw->bus.func = pci_dev->addr.function;
1039         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1040         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1041         adapter->eth_dev = eth_dev;
1042
1043         if (avf_init_vf(eth_dev) != 0) {
1044                 PMD_INIT_LOG(ERR, "Init vf failed");
1045                 return -1;
1046         }
1047
1048         /* copy mac addr */
1049         eth_dev->data->mac_addrs = rte_zmalloc(
1050                                         "avf_mac",
1051                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1052                                         0);
1053         if (!eth_dev->data->mac_addrs) {
1054                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1055                              " store MAC addresses",
1056                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1057                 return -ENOMEM;
1058         }
1059         /* If the MAC address is not configured by host,
1060          * generate a random one.
1061          */
1062         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1063                 eth_random_addr(hw->mac.addr);
1064         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1065                         &eth_dev->data->mac_addrs[0]);
1066
1067         /* register callback func to eal lib */
1068         rte_intr_callback_register(&pci_dev->intr_handle,
1069                                    avf_dev_interrupt_handler,
1070                                    (void *)eth_dev);
1071
1072         /* enable uio intr after callback register */
1073         rte_intr_enable(&pci_dev->intr_handle);
1074
1075         /* configure and enable device interrupt */
1076         avf_enable_irq0(hw);
1077
1078         return 0;
1079 }
1080
1081 static void
1082 avf_dev_close(struct rte_eth_dev *dev)
1083 {
1084         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1085         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1086         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1087
1088         avf_dev_stop(dev);
1089         avf_shutdown_adminq(hw);
1090         /* disable uio intr before callback unregister */
1091         rte_intr_disable(intr_handle);
1092
1093         /* unregister callback func from eal lib */
1094         rte_intr_callback_unregister(intr_handle,
1095                                      avf_dev_interrupt_handler, dev);
1096         avf_disable_irq0(hw);
1097 }
1098
1099 static int
1100 avf_dev_uninit(struct rte_eth_dev *dev)
1101 {
1102         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1103         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1104
1105         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1106                 return -EPERM;
1107
1108         dev->dev_ops = NULL;
1109         dev->rx_pkt_burst = NULL;
1110         dev->tx_pkt_burst = NULL;
1111         if (hw->adapter_stopped == 0)
1112                 avf_dev_close(dev);
1113
1114         rte_free(vf->vf_res);
1115         vf->vsi_res = NULL;
1116         vf->vf_res = NULL;
1117
1118         rte_free(vf->aq_resp);
1119         vf->aq_resp = NULL;
1120
1121         rte_free(dev->data->mac_addrs);
1122         dev->data->mac_addrs = NULL;
1123
1124         if (vf->rss_lut) {
1125                 rte_free(vf->rss_lut);
1126                 vf->rss_lut = NULL;
1127         }
1128         if (vf->rss_key) {
1129                 rte_free(vf->rss_key);
1130                 vf->rss_key = NULL;
1131         }
1132
1133         return 0;
1134 }
1135
1136 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1137                              struct rte_pci_device *pci_dev)
1138 {
1139         return rte_eth_dev_pci_generic_probe(pci_dev,
1140                 sizeof(struct avf_adapter), avf_dev_init);
1141 }
1142
1143 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1144 {
1145         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1146 }
1147
1148 /* Adaptive virtual function driver struct */
1149 static struct rte_pci_driver rte_avf_pmd = {
1150         .id_table = pci_id_avf_map,
1151         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1152                      RTE_PCI_DRV_IOVA_AS_VA,
1153         .probe = eth_avf_pci_probe,
1154         .remove = eth_avf_pci_remove,
1155 };
1156
1157 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1158 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1159 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1160 RTE_INIT(avf_init_log);
1161 static void
1162 avf_init_log(void)
1163 {
1164         avf_logtype_init = rte_log_register("pmd.avf.init");
1165         if (avf_logtype_init >= 0)
1166                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1167         avf_logtype_driver = rte_log_register("pmd.avf.driver");
1168         if (avf_logtype_driver >= 0)
1169                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1170 }
1171
1172 /* memory func for base code */
1173 enum avf_status_code
1174 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1175                        struct avf_dma_mem *mem,
1176                        u64 size,
1177                        u32 alignment)
1178 {
1179         const struct rte_memzone *mz = NULL;
1180         char z_name[RTE_MEMZONE_NAMESIZE];
1181
1182         if (!mem)
1183                 return AVF_ERR_PARAM;
1184
1185         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1186         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
1187                                          alignment, RTE_PGSIZE_2M);
1188         if (!mz)
1189                 return AVF_ERR_NO_MEMORY;
1190
1191         mem->size = size;
1192         mem->va = mz->addr;
1193         mem->pa = mz->phys_addr;
1194         mem->zone = (const void *)mz;
1195         PMD_DRV_LOG(DEBUG,
1196                     "memzone %s allocated with physical address: %"PRIu64,
1197                     mz->name, mem->pa);
1198
1199         return AVF_SUCCESS;
1200 }
1201
1202 enum avf_status_code
1203 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1204                    struct avf_dma_mem *mem)
1205 {
1206         if (!mem)
1207                 return AVF_ERR_PARAM;
1208
1209         PMD_DRV_LOG(DEBUG,
1210                     "memzone %s to be freed with physical address: %"PRIu64,
1211                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1212         rte_memzone_free((const struct rte_memzone *)mem->zone);
1213         mem->zone = NULL;
1214         mem->va = NULL;
1215         mem->pa = (u64)0;
1216
1217         return AVF_SUCCESS;
1218 }
1219
1220 enum avf_status_code
1221 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1222                         struct avf_virt_mem *mem,
1223                         u32 size)
1224 {
1225         if (!mem)
1226                 return AVF_ERR_PARAM;
1227
1228         mem->size = size;
1229         mem->va = rte_zmalloc("avf", size, 0);
1230
1231         if (mem->va)
1232                 return AVF_SUCCESS;
1233         else
1234                 return AVF_ERR_NO_MEMORY;
1235 }
1236
1237 enum avf_status_code
1238 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1239                     struct avf_virt_mem *mem)
1240 {
1241         if (!mem)
1242                 return AVF_ERR_PARAM;
1243
1244         rte_free(mem->va);
1245         mem->va = NULL;
1246
1247         return AVF_SUCCESS;
1248 }