net/avf: enable MAC VLAN and promisc ops
[dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static void avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
58                                          struct ether_addr *mac_addr);
59
60 int avf_logtype_init;
61 int avf_logtype_driver;
62 static const struct rte_pci_id pci_id_avf_map[] = {
63         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
64         { .vendor_id = 0, /* sentinel */ },
65 };
66
67 static const struct eth_dev_ops avf_eth_dev_ops = {
68         .dev_configure              = avf_dev_configure,
69         .dev_start                  = avf_dev_start,
70         .dev_stop                   = avf_dev_stop,
71         .dev_close                  = avf_dev_close,
72         .dev_infos_get              = avf_dev_info_get,
73         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
74         .link_update                = avf_dev_link_update,
75         .stats_get                  = avf_dev_stats_get,
76         .promiscuous_enable         = avf_dev_promiscuous_enable,
77         .promiscuous_disable        = avf_dev_promiscuous_disable,
78         .allmulticast_enable        = avf_dev_allmulticast_enable,
79         .allmulticast_disable       = avf_dev_allmulticast_disable,
80         .mac_addr_add               = avf_dev_add_mac_addr,
81         .mac_addr_remove            = avf_dev_del_mac_addr,
82         .vlan_filter_set            = avf_dev_vlan_filter_set,
83         .vlan_offload_set           = avf_dev_vlan_offload_set,
84         .rx_queue_start             = avf_dev_rx_queue_start,
85         .rx_queue_stop              = avf_dev_rx_queue_stop,
86         .tx_queue_start             = avf_dev_tx_queue_start,
87         .tx_queue_stop              = avf_dev_tx_queue_stop,
88         .rx_queue_setup             = avf_dev_rx_queue_setup,
89         .rx_queue_release           = avf_dev_rx_queue_release,
90         .tx_queue_setup             = avf_dev_tx_queue_setup,
91         .tx_queue_release           = avf_dev_tx_queue_release,
92         .mac_addr_set               = avf_dev_set_default_mac_addr,
93 };
94
95 static int
96 avf_dev_configure(struct rte_eth_dev *dev)
97 {
98         struct avf_adapter *ad =
99                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
100         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
101         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
102
103         /* Vlan stripping setting */
104         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
105                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
106                         avf_enable_vlan_strip(ad);
107                 else
108                         avf_disable_vlan_strip(ad);
109         }
110         return 0;
111 }
112
113 static int
114 avf_init_rss(struct avf_adapter *adapter)
115 {
116         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
117         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
118         struct rte_eth_rss_conf *rss_conf;
119         uint8_t i, j, nb_q;
120         int ret;
121
122         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
123         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
124                        AVF_MAX_NUM_QUEUES);
125
126         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
127                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
128                 return -ENOTSUP;
129         }
130         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
131                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
132                 /* set all lut items to default queue */
133                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
134                         vf->rss_lut[i] = 0;
135                 ret = avf_configure_rss_lut(adapter);
136                 return ret;
137         }
138
139         /* In AVF, RSS enablement is set by PF driver. It is not supported
140          * to set based on rss_conf->rss_hf.
141          */
142
143         /* configure RSS key */
144         if (!rss_conf->rss_key) {
145                 /* Calculate the default hash key */
146                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
147                         vf->rss_key[i] = (uint8_t)rte_rand();
148         } else
149                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
150                            RTE_MIN(rss_conf->rss_key_len,
151                                    vf->vf_res->rss_key_size));
152
153         /* init RSS LUT table */
154         for (i = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
155                 if (j >= nb_q)
156                         j = 0;
157                 vf->rss_lut[i] = j;
158         }
159         /* send virtchnnl ops to configure rss*/
160         ret = avf_configure_rss_lut(adapter);
161         if (ret)
162                 return ret;
163         ret = avf_configure_rss_key(adapter);
164         if (ret)
165                 return ret;
166
167         return 0;
168 }
169
170 static int
171 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
172 {
173         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
174         struct rte_eth_dev_data *dev_data = dev->data;
175         uint16_t buf_size, max_pkt_len, len;
176
177         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
178
179         /* Calculate the maximum packet length allowed */
180         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
181         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
182
183         /* Check if the jumbo frame and maximum packet length are set
184          * correctly.
185          */
186         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
187                 if (max_pkt_len <= ETHER_MAX_LEN ||
188                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
189                         PMD_DRV_LOG(ERR, "maximum packet length must be "
190                                     "larger than %u and smaller than %u, "
191                                     "as jumbo frame is enabled",
192                                     (uint32_t)ETHER_MAX_LEN,
193                                     (uint32_t)AVF_FRAME_SIZE_MAX);
194                         return -EINVAL;
195                 }
196         } else {
197                 if (max_pkt_len < ETHER_MIN_LEN ||
198                     max_pkt_len > ETHER_MAX_LEN) {
199                         PMD_DRV_LOG(ERR, "maximum packet length must be "
200                                     "larger than %u and smaller than %u, "
201                                     "as jumbo frame is disabled",
202                                     (uint32_t)ETHER_MIN_LEN,
203                                     (uint32_t)ETHER_MAX_LEN);
204                         return -EINVAL;
205                 }
206         }
207
208         rxq->max_pkt_len = max_pkt_len;
209         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
210             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
211                 dev_data->scattered_rx = 1;
212         }
213         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
214         AVF_WRITE_FLUSH(hw);
215
216         return 0;
217 }
218
219 static int
220 avf_init_queues(struct rte_eth_dev *dev)
221 {
222         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
223         struct avf_rx_queue **rxq =
224                 (struct avf_rx_queue **)dev->data->rx_queues;
225         struct avf_tx_queue **txq =
226                 (struct avf_tx_queue **)dev->data->tx_queues;
227         int i, ret = AVF_SUCCESS;
228
229         for (i = 0; i < dev->data->nb_rx_queues; i++) {
230                 if (!rxq[i] || !rxq[i]->q_set)
231                         continue;
232                 ret = avf_init_rxq(dev, rxq[i]);
233                 if (ret != AVF_SUCCESS)
234                         break;
235         }
236         /* set rx/tx function to vector/scatter/single-segment
237          * according to parameters
238          */
239         avf_set_rx_function(dev);
240         avf_set_tx_function(dev);
241
242         return ret;
243 }
244
245 static int
246 avf_start_queues(struct rte_eth_dev *dev)
247 {
248         struct avf_rx_queue *rxq;
249         struct avf_tx_queue *txq;
250         int i;
251
252         for (i = 0; i < dev->data->nb_tx_queues; i++) {
253                 txq = dev->data->tx_queues[i];
254                 if (txq->tx_deferred_start)
255                         continue;
256                 if (avf_dev_tx_queue_start(dev, i) != 0) {
257                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
258                         return -1;
259                 }
260         }
261
262         for (i = 0; i < dev->data->nb_rx_queues; i++) {
263                 rxq = dev->data->rx_queues[i];
264                 if (rxq->rx_deferred_start)
265                         continue;
266                 if (avf_dev_rx_queue_start(dev, i) != 0) {
267                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
268                         return -1;
269                 }
270         }
271
272         return 0;
273 }
274
275 static int
276 avf_dev_start(struct rte_eth_dev *dev)
277 {
278         struct avf_adapter *adapter =
279                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
280         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
281         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
282         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
283         struct rte_intr_handle *intr_handle = dev->intr_handle;
284         uint16_t interval;
285         int i;
286
287         PMD_INIT_FUNC_TRACE();
288
289         hw->adapter_stopped = 0;
290
291         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
292         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
293                                       dev->data->nb_tx_queues);
294
295         /* TODO: Rx interrupt */
296
297         if (avf_init_queues(dev) != 0) {
298                 PMD_DRV_LOG(ERR, "failed to do Queue init");
299                 return -1;
300         }
301
302         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
303                 if (avf_init_rss(adapter) != 0) {
304                         PMD_DRV_LOG(ERR, "configure rss failed");
305                         goto err_rss;
306                 }
307         }
308
309         if (avf_configure_queues(adapter) != 0) {
310                 PMD_DRV_LOG(ERR, "configure queues failed");
311                 goto err_queue;
312         }
313
314         /* Map interrupt for writeback */
315         vf->nb_msix = 1;
316         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
317                 /* If WB_ON_ITR supports, enable it */
318                 vf->msix_base = AVF_RX_VEC_START;
319                 AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
320                               AVFINT_DYN_CTLN1_ITR_INDX_MASK |
321                               AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
322         } else {
323                 /* If no WB_ON_ITR offload flags, need to set interrupt for
324                  * descriptor write back.
325                  */
326                 vf->msix_base = AVF_MISC_VEC_ID;
327
328                 /* set ITR to max */
329                 interval = avf_calc_itr_interval(AVF_QUEUE_ITR_INTERVAL_MAX);
330                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
331                               AVFINT_DYN_CTL01_INTENA_MASK |
332                               (AVF_ITR_INDEX_DEFAULT <<
333                                AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
334                               (interval << AVFINT_DYN_CTL01_INTERVAL_SHIFT));
335         }
336         AVF_WRITE_FLUSH(hw);
337         /* map all queues to the same interrupt */
338         for (i = 0; i < dev->data->nb_rx_queues; i++)
339                 vf->rxq_map[0] |= 1 << i;
340         if (avf_config_irq_map(adapter)) {
341                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
342                 goto err_queue;
343         }
344
345         /* Set all mac addrs */
346         avf_add_del_all_mac_addr(adapter, TRUE);
347
348         if (avf_start_queues(dev) != 0) {
349                 PMD_DRV_LOG(ERR, "enable queues failed");
350                 goto err_mac;
351         }
352
353         /* TODO: enable interrupt for RX interrupt */
354         return 0;
355
356 err_mac:
357         avf_add_del_all_mac_addr(adapter, FALSE);
358 err_queue:
359 err_rss:
360         return -1;
361 }
362
363 static void
364 avf_dev_stop(struct rte_eth_dev *dev)
365 {
366         struct avf_adapter *adapter =
367                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
368         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev);
369         int ret, i;
370
371         PMD_INIT_FUNC_TRACE();
372
373         if (hw->adapter_stopped == 1)
374                 return;
375
376         avf_stop_queues(dev);
377
378         /*TODO: Disable the interrupt for Rx*/
379
380         /* TODO: Rx interrupt vector mapping free */
381
382         /* remove all mac addrs */
383         avf_add_del_all_mac_addr(adapter, FALSE);
384         hw->adapter_stopped = 1;
385 }
386
387 static void
388 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
389 {
390         struct avf_adapter *adapter =
391                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
392         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
393
394         memset(dev_info, 0, sizeof(*dev_info));
395         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
396         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
397         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
398         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
399         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
400         dev_info->hash_key_size = vf->vf_res->rss_key_size;
401         dev_info->reta_size = vf->vf_res->rss_lut_size;
402         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
403         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
404         dev_info->rx_offload_capa =
405                 DEV_RX_OFFLOAD_VLAN_STRIP |
406                 DEV_RX_OFFLOAD_IPV4_CKSUM |
407                 DEV_RX_OFFLOAD_UDP_CKSUM |
408                 DEV_RX_OFFLOAD_TCP_CKSUM;
409         dev_info->tx_offload_capa =
410                 DEV_TX_OFFLOAD_VLAN_INSERT |
411                 DEV_TX_OFFLOAD_IPV4_CKSUM |
412                 DEV_TX_OFFLOAD_UDP_CKSUM |
413                 DEV_TX_OFFLOAD_TCP_CKSUM |
414                 DEV_TX_OFFLOAD_SCTP_CKSUM |
415                 DEV_TX_OFFLOAD_TCP_TSO;
416
417         dev_info->default_rxconf = (struct rte_eth_rxconf) {
418                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
419                 .rx_drop_en = 0,
420         };
421
422         dev_info->default_txconf = (struct rte_eth_txconf) {
423                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
424                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
425                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
426                                 ETH_TXQ_FLAGS_NOOFFLOADS,
427         };
428
429         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
430                 .nb_max = AVF_MAX_RING_DESC,
431                 .nb_min = AVF_MIN_RING_DESC,
432                 .nb_align = AVF_ALIGN_RING_DESC,
433         };
434
435         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
436                 .nb_max = AVF_MAX_RING_DESC,
437                 .nb_min = AVF_MIN_RING_DESC,
438                 .nb_align = AVF_ALIGN_RING_DESC,
439         };
440 }
441
442 static const uint32_t *
443 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
444 {
445         static const uint32_t ptypes[] = {
446                 RTE_PTYPE_L2_ETHER,
447                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
448                 RTE_PTYPE_L4_FRAG,
449                 RTE_PTYPE_L4_ICMP,
450                 RTE_PTYPE_L4_NONFRAG,
451                 RTE_PTYPE_L4_SCTP,
452                 RTE_PTYPE_L4_TCP,
453                 RTE_PTYPE_L4_UDP,
454                 RTE_PTYPE_UNKNOWN
455         };
456         return ptypes;
457 }
458
459 int
460 avf_dev_link_update(struct rte_eth_dev *dev,
461                     __rte_unused int wait_to_complete)
462 {
463         struct rte_eth_link new_link;
464         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
465
466         /* Only read status info stored in VF, and the info is updated
467          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
468          */
469         switch (vf->link_speed) {
470         case VIRTCHNL_LINK_SPEED_100MB:
471                 new_link.link_speed = ETH_SPEED_NUM_100M;
472                 break;
473         case VIRTCHNL_LINK_SPEED_1GB:
474                 new_link.link_speed = ETH_SPEED_NUM_1G;
475                 break;
476         case VIRTCHNL_LINK_SPEED_10GB:
477                 new_link.link_speed = ETH_SPEED_NUM_10G;
478                 break;
479         case VIRTCHNL_LINK_SPEED_20GB:
480                 new_link.link_speed = ETH_SPEED_NUM_20G;
481                 break;
482         case VIRTCHNL_LINK_SPEED_25GB:
483                 new_link.link_speed = ETH_SPEED_NUM_25G;
484                 break;
485         case VIRTCHNL_LINK_SPEED_40GB:
486                 new_link.link_speed = ETH_SPEED_NUM_40G;
487                 break;
488         default:
489                 new_link.link_speed = ETH_SPEED_NUM_NONE;
490                 break;
491         }
492
493         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
494         new_link.link_status = vf->link_up ? ETH_LINK_UP :
495                                              ETH_LINK_DOWN;
496         new_link.link_autoneg = !!(dev->data->dev_conf.link_speeds &
497                                 ETH_LINK_SPEED_FIXED);
498
499         rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
500                             *(uint64_t *)&dev->data->dev_link,
501                             *(uint64_t *)&new_link);
502
503         return 0;
504 }
505
506 static void
507 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
508 {
509         struct avf_adapter *adapter =
510                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
511         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
512         int ret;
513
514         if (vf->promisc_unicast_enabled)
515                 return;
516
517         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
518         if (!ret)
519                 vf->promisc_unicast_enabled = TRUE;
520 }
521
522 static void
523 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
524 {
525         struct avf_adapter *adapter =
526                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
527         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
528         int ret;
529
530         if (!vf->promisc_unicast_enabled)
531                 return;
532
533         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
534         if (!ret)
535                 vf->promisc_unicast_enabled = FALSE;
536 }
537
538 static void
539 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
540 {
541         struct avf_adapter *adapter =
542                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
543         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
544         int ret;
545
546         if (vf->promisc_multicast_enabled)
547                 return;
548
549         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
550         if (!ret)
551                 vf->promisc_multicast_enabled = TRUE;
552 }
553
554 static void
555 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
556 {
557         struct avf_adapter *adapter =
558                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
559         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
560         int ret;
561
562         if (!vf->promisc_multicast_enabled)
563                 return;
564
565         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
566         if (!ret)
567                 vf->promisc_multicast_enabled = FALSE;
568 }
569
570 static int
571 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
572                      __rte_unused uint32_t index,
573                      __rte_unused uint32_t pool)
574 {
575         struct avf_adapter *adapter =
576                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
577         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
578         int err;
579
580         if (is_zero_ether_addr(addr)) {
581                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
582                 return -EINVAL;
583         }
584
585         err = avf_add_del_eth_addr(adapter, addr, TRUE);
586         if (err) {
587                 PMD_DRV_LOG(ERR, "fail to add MAC address");
588                 return -EIO;
589         }
590
591         vf->mac_num++;
592
593         return 0;
594 }
595
596 static void
597 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
598 {
599         struct avf_adapter *adapter =
600                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
601         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
602         struct ether_addr *addr;
603         int err;
604
605         addr = &dev->data->mac_addrs[index];
606
607         err = avf_add_del_eth_addr(adapter, addr, FALSE);
608         if (err)
609                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
610
611         vf->mac_num--;
612 }
613
614 static int
615 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
616 {
617         struct avf_adapter *adapter =
618                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
619         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
620         int err;
621
622         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
623                 return -ENOTSUP;
624
625         err = avf_add_del_vlan(adapter, vlan_id, on);
626         if (err)
627                 return -EIO;
628         return 0;
629 }
630
631 static int
632 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
633 {
634         struct avf_adapter *adapter =
635                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
636         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
637         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
638         int err;
639
640         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
641                 return -ENOTSUP;
642
643         /* Vlan stripping setting */
644         if (mask & ETH_VLAN_STRIP_MASK) {
645                 /* Enable or disable VLAN stripping */
646                 if (dev_conf->rxmode.hw_vlan_strip)
647                         err = avf_enable_vlan_strip(adapter);
648                 else
649                         err = avf_disable_vlan_strip(adapter);
650         }
651
652         if (err)
653                 return -EIO;
654         return 0;
655 }
656
657 static void
658 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
659                              struct ether_addr *mac_addr)
660 {
661         struct avf_adapter *adapter =
662                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
663         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
664         struct ether_addr *perm_addr, *old_addr;
665         int ret;
666
667         old_addr = (struct ether_addr *)hw->mac.addr;
668         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
669
670         if (is_same_ether_addr(mac_addr, old_addr))
671                 return;
672
673         /* If the MAC address is configured by host, skip the setting */
674         if (is_valid_assigned_ether_addr(perm_addr))
675                 return;
676
677         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
678         if (ret)
679                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
680                             " %02X:%02X:%02X:%02X:%02X:%02X",
681                             old_addr->addr_bytes[0],
682                             old_addr->addr_bytes[1],
683                             old_addr->addr_bytes[2],
684                             old_addr->addr_bytes[3],
685                             old_addr->addr_bytes[4],
686                             old_addr->addr_bytes[5]);
687
688         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
689         if (ret)
690                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
691                             " %02X:%02X:%02X:%02X:%02X:%02X",
692                             mac_addr->addr_bytes[0],
693                             mac_addr->addr_bytes[1],
694                             mac_addr->addr_bytes[2],
695                             mac_addr->addr_bytes[3],
696                             mac_addr->addr_bytes[4],
697                             mac_addr->addr_bytes[5]);
698
699         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
700 }
701
702 static int
703 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
704 {
705         struct avf_adapter *adapter =
706                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
707         struct virtchnl_eth_stats *pstats = NULL;
708         int ret;
709
710         ret = avf_query_stats(adapter, &pstats);
711         if (ret == 0) {
712                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
713                                                 pstats->rx_broadcast;
714                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
715                                                 pstats->tx_unicast;
716                 stats->imissed = pstats->rx_discards;
717                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
718                 stats->ibytes = pstats->rx_bytes;
719                 stats->obytes = pstats->tx_bytes;
720         } else {
721                 PMD_DRV_LOG(ERR, "Get statistics failed");
722         }
723         return -EIO;
724 }
725
726 static int
727 avf_check_vf_reset_done(struct avf_hw *hw)
728 {
729         int i, reset;
730
731         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
732                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
733                         AVFGEN_RSTAT_VFR_STATE_MASK;
734                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
735                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
736                     reset == VIRTCHNL_VFR_COMPLETED)
737                         break;
738                 rte_delay_ms(20);
739         }
740
741         if (i >= AVF_RESET_WAIT_CNT)
742                 return -1;
743
744         return 0;
745 }
746
747 static int
748 avf_init_vf(struct rte_eth_dev *dev)
749 {
750         int i, err, bufsz;
751         struct avf_adapter *adapter =
752                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
753         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
754         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
755
756         err = avf_set_mac_type(hw);
757         if (err) {
758                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
759                 goto err;
760         }
761
762         err = avf_check_vf_reset_done(hw);
763         if (err) {
764                 PMD_INIT_LOG(ERR, "VF is still resetting");
765                 goto err;
766         }
767
768         avf_init_adminq_parameter(hw);
769         err = avf_init_adminq(hw);
770         if (err) {
771                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
772                 goto err;
773         }
774
775         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
776         if (!vf->aq_resp) {
777                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
778                 goto err_aq;
779         }
780         if (avf_check_api_version(adapter) != 0) {
781                 PMD_INIT_LOG(ERR, "check_api version failed");
782                 goto err_api;
783         }
784
785         bufsz = sizeof(struct virtchnl_vf_resource) +
786                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
787         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
788         if (!vf->vf_res) {
789                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
790                 goto err_api;
791         }
792         if (avf_get_vf_resource(adapter) != 0) {
793                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
794                 goto err_alloc;
795         }
796         /* Allocate memort for RSS info */
797         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
798                 vf->rss_key = rte_zmalloc("rss_key",
799                                           vf->vf_res->rss_key_size, 0);
800                 if (!vf->rss_key) {
801                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
802                         goto err_rss;
803                 }
804                 vf->rss_lut = rte_zmalloc("rss_lut",
805                                           vf->vf_res->rss_lut_size, 0);
806                 if (!vf->rss_lut) {
807                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
808                         goto err_rss;
809                 }
810         }
811         return 0;
812 err_rss:
813         rte_free(vf->rss_key);
814         rte_free(vf->rss_lut);
815 err_alloc:
816         rte_free(vf->vf_res);
817         vf->vsi_res = NULL;
818 err_api:
819         rte_free(vf->aq_resp);
820 err_aq:
821         avf_shutdown_adminq(hw);
822 err:
823         return -1;
824 }
825
826 /* Enable default admin queue interrupt setting */
827 static inline void
828 avf_enable_irq0(struct avf_hw *hw)
829 {
830         /* Enable admin queue interrupt trigger */
831         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
832
833         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
834                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
835
836         AVF_WRITE_FLUSH(hw);
837 }
838
839 static inline void
840 avf_disable_irq0(struct avf_hw *hw)
841 {
842         /* Disable all interrupt types */
843         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
844         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
845                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
846         AVF_WRITE_FLUSH(hw);
847 }
848
849 static void
850 avf_dev_interrupt_handler(void *param)
851 {
852         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
853         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
854
855         avf_disable_irq0(hw);
856
857         avf_handle_virtchnl_msg(dev);
858
859 done:
860         avf_enable_irq0(hw);
861 }
862
863 static int
864 avf_dev_init(struct rte_eth_dev *eth_dev)
865 {
866         struct avf_adapter *adapter =
867                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
868         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
869         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
870
871         PMD_INIT_FUNC_TRACE();
872
873         /* assign ops func pointer */
874         eth_dev->dev_ops = &avf_eth_dev_ops;
875         eth_dev->rx_pkt_burst = &avf_recv_pkts;
876         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
877         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
878
879         /* For secondary processes, we don't initialise any further as primary
880          * has already done this work. Only check if we need a different RX
881          * and TX function.
882          */
883         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
884                 avf_set_rx_function(eth_dev);
885                 avf_set_tx_function(eth_dev);
886                 return 0;
887         }
888         rte_eth_copy_pci_info(eth_dev, pci_dev);
889
890         hw->vendor_id = pci_dev->id.vendor_id;
891         hw->device_id = pci_dev->id.device_id;
892         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
893         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
894         hw->bus.bus_id = pci_dev->addr.bus;
895         hw->bus.device = pci_dev->addr.devid;
896         hw->bus.func = pci_dev->addr.function;
897         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
898         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
899         adapter->eth_dev = eth_dev;
900
901         if (avf_init_vf(eth_dev) != 0) {
902                 PMD_INIT_LOG(ERR, "Init vf failed");
903                 return -1;
904         }
905
906         /* copy mac addr */
907         eth_dev->data->mac_addrs = rte_zmalloc(
908                                         "avf_mac",
909                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
910                                         0);
911         if (!eth_dev->data->mac_addrs) {
912                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
913                              " store MAC addresses",
914                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
915                 return -ENOMEM;
916         }
917         /* If the MAC address is not configured by host,
918          * generate a random one.
919          */
920         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
921                 eth_random_addr(hw->mac.addr);
922         ether_addr_copy((struct ether_addr *)hw->mac.addr,
923                         &eth_dev->data->mac_addrs[0]);
924
925         /* register callback func to eal lib */
926         rte_intr_callback_register(&pci_dev->intr_handle,
927                                    avf_dev_interrupt_handler,
928                                    (void *)eth_dev);
929
930         /* enable uio intr after callback register */
931         rte_intr_enable(&pci_dev->intr_handle);
932
933         /* configure and enable device interrupt */
934         avf_enable_irq0(hw);
935
936         return 0;
937 }
938
939 static void
940 avf_dev_close(struct rte_eth_dev *dev)
941 {
942         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
943         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
944         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
945
946         avf_dev_stop(dev);
947         avf_shutdown_adminq(hw);
948         /* disable uio intr before callback unregister */
949         rte_intr_disable(intr_handle);
950
951         /* unregister callback func from eal lib */
952         rte_intr_callback_unregister(intr_handle,
953                                      avf_dev_interrupt_handler, dev);
954         avf_disable_irq0(hw);
955 }
956
957 static int
958 avf_dev_uninit(struct rte_eth_dev *dev)
959 {
960         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
961         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
962
963         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
964                 return -EPERM;
965
966         dev->dev_ops = NULL;
967         dev->rx_pkt_burst = NULL;
968         dev->tx_pkt_burst = NULL;
969         if (hw->adapter_stopped == 0)
970                 avf_dev_close(dev);
971
972         rte_free(vf->vf_res);
973         vf->vsi_res = NULL;
974         vf->vf_res = NULL;
975
976         rte_free(vf->aq_resp);
977         vf->aq_resp = NULL;
978
979         rte_free(dev->data->mac_addrs);
980         dev->data->mac_addrs = NULL;
981
982         if (vf->rss_lut) {
983                 rte_free(vf->rss_lut);
984                 vf->rss_lut = NULL;
985         }
986         if (vf->rss_key) {
987                 rte_free(vf->rss_key);
988                 vf->rss_key = NULL;
989         }
990
991         return 0;
992 }
993
994 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
995                              struct rte_pci_device *pci_dev)
996 {
997         return rte_eth_dev_pci_generic_probe(pci_dev,
998                 sizeof(struct avf_adapter), avf_dev_init);
999 }
1000
1001 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1002 {
1003         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1004 }
1005
1006 /* Adaptive virtual function driver struct */
1007 static struct rte_pci_driver rte_avf_pmd = {
1008         .id_table = pci_id_avf_map,
1009         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1010                      RTE_PCI_DRV_IOVA_AS_VA,
1011         .probe = eth_avf_pci_probe,
1012         .remove = eth_avf_pci_remove,
1013 };
1014
1015 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1016 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1017 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1018 RTE_INIT(avf_init_log);
1019 static void
1020 avf_init_log(void)
1021 {
1022         avf_logtype_init = rte_log_register("pmd.avf.init");
1023         if (avf_logtype_init >= 0)
1024                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1025         avf_logtype_driver = rte_log_register("pmd.avf.driver");
1026         if (avf_logtype_driver >= 0)
1027                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1028 }
1029
1030 /* memory func for base code */
1031 enum avf_status_code
1032 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1033                        struct avf_dma_mem *mem,
1034                        u64 size,
1035                        u32 alignment)
1036 {
1037         const struct rte_memzone *mz = NULL;
1038         char z_name[RTE_MEMZONE_NAMESIZE];
1039
1040         if (!mem)
1041                 return AVF_ERR_PARAM;
1042
1043         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1044         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
1045                                          alignment, RTE_PGSIZE_2M);
1046         if (!mz)
1047                 return AVF_ERR_NO_MEMORY;
1048
1049         mem->size = size;
1050         mem->va = mz->addr;
1051         mem->pa = mz->phys_addr;
1052         mem->zone = (const void *)mz;
1053         PMD_DRV_LOG(DEBUG,
1054                     "memzone %s allocated with physical address: %"PRIu64,
1055                     mz->name, mem->pa);
1056
1057         return AVF_SUCCESS;
1058 }
1059
1060 enum avf_status_code
1061 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1062                    struct avf_dma_mem *mem)
1063 {
1064         if (!mem)
1065                 return AVF_ERR_PARAM;
1066
1067         PMD_DRV_LOG(DEBUG,
1068                     "memzone %s to be freed with physical address: %"PRIu64,
1069                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1070         rte_memzone_free((const struct rte_memzone *)mem->zone);
1071         mem->zone = NULL;
1072         mem->va = NULL;
1073         mem->pa = (u64)0;
1074
1075         return AVF_SUCCESS;
1076 }
1077
1078 enum avf_status_code
1079 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1080                         struct avf_virt_mem *mem,
1081                         u32 size)
1082 {
1083         if (!mem)
1084                 return AVF_ERR_PARAM;
1085
1086         mem->size = size;
1087         mem->va = rte_zmalloc("avf", size, 0);
1088
1089         if (mem->va)
1090                 return AVF_SUCCESS;
1091         else
1092                 return AVF_ERR_NO_MEMORY;
1093 }
1094
1095 enum avf_status_code
1096 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1097                     struct avf_virt_mem *mem)
1098 {
1099         if (!mem)
1100                 return AVF_ERR_PARAM;
1101
1102         rte_free(mem->va);
1103         mem->va = NULL;
1104
1105         return AVF_SUCCESS;
1106 }