1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2013-2017 Wind River Systems, Inc.
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_memcpy.h>
14 #include <rte_string_fns.h>
15 #include <rte_malloc.h>
16 #include <rte_atomic.h>
17 #include <rte_branch_prediction.h>
19 #include <rte_bus_pci.h>
20 #include <rte_ether.h>
21 #include <rte_common.h>
22 #include <rte_cycles.h>
23 #include <rte_spinlock.h>
24 #include <rte_byteorder.h>
26 #include <rte_memory.h>
30 #include "rte_avp_common.h"
31 #include "rte_avp_fifo.h"
35 int avp_logtype_driver;
37 static int avp_dev_create(struct rte_pci_device *pci_dev,
38 struct rte_eth_dev *eth_dev);
40 static int avp_dev_configure(struct rte_eth_dev *dev);
41 static int avp_dev_start(struct rte_eth_dev *dev);
42 static void avp_dev_stop(struct rte_eth_dev *dev);
43 static void avp_dev_close(struct rte_eth_dev *dev);
44 static int avp_dev_info_get(struct rte_eth_dev *dev,
45 struct rte_eth_dev_info *dev_info);
46 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask);
47 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete);
48 static int avp_dev_promiscuous_enable(struct rte_eth_dev *dev);
49 static int avp_dev_promiscuous_disable(struct rte_eth_dev *dev);
51 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev,
54 unsigned int socket_id,
55 const struct rte_eth_rxconf *rx_conf,
56 struct rte_mempool *pool);
58 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev,
61 unsigned int socket_id,
62 const struct rte_eth_txconf *tx_conf);
64 static uint16_t avp_recv_scattered_pkts(void *rx_queue,
65 struct rte_mbuf **rx_pkts,
68 static uint16_t avp_recv_pkts(void *rx_queue,
69 struct rte_mbuf **rx_pkts,
72 static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
73 struct rte_mbuf **tx_pkts,
76 static uint16_t avp_xmit_pkts(void *tx_queue,
77 struct rte_mbuf **tx_pkts,
80 static void avp_dev_rx_queue_release(void *rxq);
81 static void avp_dev_tx_queue_release(void *txq);
83 static int avp_dev_stats_get(struct rte_eth_dev *dev,
84 struct rte_eth_stats *stats);
85 static int avp_dev_stats_reset(struct rte_eth_dev *dev);
88 #define AVP_MAX_RX_BURST 64
89 #define AVP_MAX_TX_BURST 64
90 #define AVP_MAX_MAC_ADDRS 1
91 #define AVP_MIN_RX_BUFSIZE RTE_ETHER_MIN_LEN
95 * Defines the number of microseconds to wait before checking the response
96 * queue for completion.
98 #define AVP_REQUEST_DELAY_USECS (5000)
101 * Defines the number times to check the response queue for completion before
102 * declaring a timeout.
104 #define AVP_MAX_REQUEST_RETRY (100)
106 /* Defines the current PCI driver version number */
107 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION
110 * The set of PCI devices this driver supports
112 static const struct rte_pci_id pci_id_avp_map[] = {
113 { .vendor_id = RTE_AVP_PCI_VENDOR_ID,
114 .device_id = RTE_AVP_PCI_DEVICE_ID,
115 .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID,
116 .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID,
117 .class_id = RTE_CLASS_ANY_ID,
120 { .vendor_id = 0, /* sentinel */
125 * dev_ops for avp, bare necessities for basic operation
127 static const struct eth_dev_ops avp_eth_dev_ops = {
128 .dev_configure = avp_dev_configure,
129 .dev_start = avp_dev_start,
130 .dev_stop = avp_dev_stop,
131 .dev_close = avp_dev_close,
132 .dev_infos_get = avp_dev_info_get,
133 .vlan_offload_set = avp_vlan_offload_set,
134 .stats_get = avp_dev_stats_get,
135 .stats_reset = avp_dev_stats_reset,
136 .link_update = avp_dev_link_update,
137 .promiscuous_enable = avp_dev_promiscuous_enable,
138 .promiscuous_disable = avp_dev_promiscuous_disable,
139 .rx_queue_setup = avp_dev_rx_queue_setup,
140 .rx_queue_release = avp_dev_rx_queue_release,
141 .tx_queue_setup = avp_dev_tx_queue_setup,
142 .tx_queue_release = avp_dev_tx_queue_release,
145 /**@{ AVP device flags */
146 #define AVP_F_PROMISC (1 << 1)
147 #define AVP_F_CONFIGURED (1 << 2)
148 #define AVP_F_LINKUP (1 << 3)
149 #define AVP_F_DETACHED (1 << 4)
152 /* Ethernet device validation marker */
153 #define AVP_ETHDEV_MAGIC 0x92972862
156 * Defines the AVP device attributes which are attached to an RTE ethernet
160 uint32_t magic; /**< Memory validation marker */
161 uint64_t device_id; /**< Unique system identifier */
162 struct rte_ether_addr ethaddr; /**< Host specified MAC address */
163 struct rte_eth_dev_data *dev_data;
164 /**< Back pointer to ethernet device data */
165 volatile uint32_t flags; /**< Device operational flags */
166 uint16_t port_id; /**< Ethernet port identifier */
167 struct rte_mempool *pool; /**< pkt mbuf mempool */
168 unsigned int guest_mbuf_size; /**< local pool mbuf size */
169 unsigned int host_mbuf_size; /**< host mbuf size */
170 unsigned int max_rx_pkt_len; /**< maximum receive unit */
171 uint32_t host_features; /**< Supported feature bitmap */
172 uint32_t features; /**< Enabled feature bitmap */
173 unsigned int num_tx_queues; /**< Negotiated number of transmit queues */
174 unsigned int max_tx_queues; /**< Maximum number of transmit queues */
175 unsigned int num_rx_queues; /**< Negotiated number of receive queues */
176 unsigned int max_rx_queues; /**< Maximum number of receive queues */
178 struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */
179 struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */
180 struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES];
181 /**< Allocated mbufs queue */
182 struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES];
183 /**< To be freed mbufs queue */
185 /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */
188 /* For request & response */
189 struct rte_avp_fifo *req_q; /**< Request queue */
190 struct rte_avp_fifo *resp_q; /**< Response queue */
191 void *host_sync_addr; /**< (host) Req/Resp Mem address */
192 void *sync_addr; /**< Req/Resp Mem address */
193 void *host_mbuf_addr; /**< (host) MBUF pool start address */
194 void *mbuf_addr; /**< MBUF pool start address */
195 } __rte_cache_aligned;
197 /* RTE ethernet private data */
200 } __rte_cache_aligned;
203 /* 32-bit MMIO register write */
204 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr))
206 /* 32-bit MMIO register read */
207 #define AVP_READ32(_addr) rte_read32_relaxed((_addr))
209 /* Macro to cast the ethernet device private data to a AVP object */
210 #define AVP_DEV_PRIVATE_TO_HW(adapter) \
211 (&((struct avp_adapter *)adapter)->avp)
214 * Defines the structure of a AVP device queue for the purpose of handling the
215 * receive and transmit burst callback functions
218 struct rte_eth_dev_data *dev_data;
219 /**< Backpointer to ethernet device data */
220 struct avp_dev *avp; /**< Backpointer to AVP device */
222 /**< Queue identifier used for indexing current queue */
224 /**< Base queue identifier for queue servicing */
225 uint16_t queue_limit;
226 /**< Maximum queue identifier for queue servicing */
233 /* send a request and wait for a response
235 * @warning must be called while holding the avp->lock spinlock.
238 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request)
240 unsigned int retry = AVP_MAX_REQUEST_RETRY;
241 void *resp_addr = NULL;
245 PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id);
247 request->result = -ENOTSUP;
249 /* Discard any stale responses before starting a new request */
250 while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1))
251 PMD_DRV_LOG(DEBUG, "Discarding stale response\n");
253 rte_memcpy(avp->sync_addr, request, sizeof(*request));
254 count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1);
256 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n",
263 /* wait for a response */
264 usleep(AVP_REQUEST_DELAY_USECS);
266 count = avp_fifo_count(avp->resp_q);
268 /* response received */
272 if ((count < 1) && (retry == 0)) {
273 PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n",
280 /* retrieve the response */
281 count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1);
282 if ((count != 1) || (resp_addr != avp->host_sync_addr)) {
283 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n",
284 count, resp_addr, avp->host_sync_addr);
289 /* copy to user buffer */
290 rte_memcpy(request, avp->sync_addr, sizeof(*request));
293 PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n",
294 request->result, request->req_id);
301 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state)
303 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
304 struct rte_avp_request request;
307 /* setup a link state change request */
308 memset(&request, 0, sizeof(request));
309 request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF;
310 request.if_up = state;
312 ret = avp_dev_process_request(avp, &request);
314 return ret == 0 ? request.result : ret;
318 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev,
319 struct rte_avp_device_config *config)
321 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
322 struct rte_avp_request request;
325 /* setup a configure request */
326 memset(&request, 0, sizeof(request));
327 request.req_id = RTE_AVP_REQ_CFG_DEVICE;
328 memcpy(&request.config, config, sizeof(request.config));
330 ret = avp_dev_process_request(avp, &request);
332 return ret == 0 ? request.result : ret;
336 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev)
338 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
339 struct rte_avp_request request;
342 /* setup a shutdown request */
343 memset(&request, 0, sizeof(request));
344 request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE;
346 ret = avp_dev_process_request(avp, &request);
348 return ret == 0 ? request.result : ret;
351 /* translate from host mbuf virtual address to guest virtual address */
353 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address)
355 return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address,
356 (uintptr_t)avp->host_mbuf_addr),
357 (uintptr_t)avp->mbuf_addr);
360 /* translate from host physical address to guest virtual address */
362 avp_dev_translate_address(struct rte_eth_dev *eth_dev,
363 rte_iova_t host_phys_addr)
365 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
366 struct rte_mem_resource *resource;
367 struct rte_avp_memmap_info *info;
368 struct rte_avp_memmap *map;
373 addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr;
374 resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR];
375 info = (struct rte_avp_memmap_info *)resource->addr;
378 for (i = 0; i < info->nb_maps; i++) {
379 /* search all segments looking for a matching address */
380 map = &info->maps[i];
382 if ((host_phys_addr >= map->phys_addr) &&
383 (host_phys_addr < (map->phys_addr + map->length))) {
384 /* address is within this segment */
385 offset += (host_phys_addr - map->phys_addr);
386 addr = RTE_PTR_ADD(addr, (uintptr_t)offset);
388 PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n",
389 host_phys_addr, addr);
393 offset += map->length;
399 /* verify that the incoming device version is compatible with our version */
401 avp_dev_version_check(uint32_t version)
403 uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION);
404 uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version);
406 if (device <= driver) {
407 /* the host driver version is less than or equal to ours */
414 /* verify that memory regions have expected version and validation markers */
416 avp_dev_check_regions(struct rte_eth_dev *eth_dev)
418 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
419 struct rte_avp_memmap_info *memmap;
420 struct rte_avp_device_info *info;
421 struct rte_mem_resource *resource;
424 /* Dump resource info for debug */
425 for (i = 0; i < PCI_MAX_RESOURCE; i++) {
426 resource = &pci_dev->mem_resource[i];
427 if ((resource->phys_addr == 0) || (resource->len == 0))
430 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n",
431 i, resource->phys_addr,
432 resource->len, resource->addr);
435 case RTE_AVP_PCI_MEMMAP_BAR:
436 memmap = (struct rte_avp_memmap_info *)resource->addr;
437 if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) ||
438 (memmap->version != RTE_AVP_MEMMAP_VERSION)) {
439 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n",
440 memmap->magic, memmap->version);
445 case RTE_AVP_PCI_DEVICE_BAR:
446 info = (struct rte_avp_device_info *)resource->addr;
447 if ((info->magic != RTE_AVP_DEVICE_MAGIC) ||
448 avp_dev_version_check(info->version)) {
449 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n",
450 info->magic, info->version,
451 AVP_DPDK_DRIVER_VERSION);
456 case RTE_AVP_PCI_MEMORY_BAR:
457 case RTE_AVP_PCI_MMIO_BAR:
458 if (resource->addr == NULL) {
459 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n",
465 case RTE_AVP_PCI_MSIX_BAR:
467 /* no validation required */
476 avp_dev_detach(struct rte_eth_dev *eth_dev)
478 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
481 PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n",
482 eth_dev->data->port_id, avp->device_id);
484 rte_spinlock_lock(&avp->lock);
486 if (avp->flags & AVP_F_DETACHED) {
487 PMD_DRV_LOG(NOTICE, "port %u already detached\n",
488 eth_dev->data->port_id);
493 /* shutdown the device first so the host stops sending us packets. */
494 ret = avp_dev_ctrl_shutdown(eth_dev);
496 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n",
498 avp->flags &= ~AVP_F_DETACHED;
502 avp->flags |= AVP_F_DETACHED;
505 /* wait for queues to acknowledge the presence of the detach flag */
511 rte_spinlock_unlock(&avp->lock);
516 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
518 struct avp_dev *avp =
519 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
520 struct avp_queue *rxq;
521 uint16_t queue_count;
524 rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id];
527 * Must map all AVP fifos as evenly as possible between the configured
528 * device queues. Each device queue will service a subset of the AVP
529 * fifos. If there is an odd number of device queues the first set of
530 * device queues will get the extra AVP fifos.
532 queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues;
533 remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues;
534 if (rx_queue_id < remainder) {
535 /* these queues must service one extra FIFO */
536 rxq->queue_base = rx_queue_id * (queue_count + 1);
537 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1;
539 /* these queues service the regular number of FIFO */
540 rxq->queue_base = ((remainder * (queue_count + 1)) +
541 ((rx_queue_id - remainder) * queue_count));
542 rxq->queue_limit = rxq->queue_base + queue_count - 1;
545 PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n",
546 rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit);
548 rxq->queue_id = rxq->queue_base;
552 _avp_set_queue_counts(struct rte_eth_dev *eth_dev)
554 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
555 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
556 struct rte_avp_device_info *host_info;
559 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
560 host_info = (struct rte_avp_device_info *)addr;
563 * the transmit direction is not negotiated beyond respecting the max
564 * number of queues because the host can handle arbitrary guest tx
565 * queues (host rx queues).
567 avp->num_tx_queues = eth_dev->data->nb_tx_queues;
570 * the receive direction is more restrictive. The host requires a
571 * minimum number of guest rx queues (host tx queues) therefore
572 * negotiate a value that is at least as large as the host minimum
573 * requirement. If the host and guest values are not identical then a
574 * mapping will be established in the receive_queue_setup function.
576 avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues,
577 eth_dev->data->nb_rx_queues);
579 PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n",
580 avp->num_tx_queues, avp->num_rx_queues);
584 avp_dev_attach(struct rte_eth_dev *eth_dev)
586 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
587 struct rte_avp_device_config config;
591 PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n",
592 eth_dev->data->port_id, avp->device_id);
594 rte_spinlock_lock(&avp->lock);
596 if (!(avp->flags & AVP_F_DETACHED)) {
597 PMD_DRV_LOG(NOTICE, "port %u already attached\n",
598 eth_dev->data->port_id);
604 * make sure that the detached flag is set prior to reconfiguring the
607 avp->flags |= AVP_F_DETACHED;
611 * re-run the device create utility which will parse the new host info
612 * and setup the AVP device queue pointers.
614 ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev);
616 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n",
621 if (avp->flags & AVP_F_CONFIGURED) {
623 * Update the receive queue mapping to handle cases where the
624 * source and destination hosts have different queue
625 * requirements. As long as the DETACHED flag is asserted the
626 * queue table should not be referenced so it should be safe to
629 _avp_set_queue_counts(eth_dev);
630 for (i = 0; i < eth_dev->data->nb_rx_queues; i++)
631 _avp_set_rx_queue_mappings(eth_dev, i);
634 * Update the host with our config details so that it knows the
637 memset(&config, 0, sizeof(config));
638 config.device_id = avp->device_id;
639 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
640 config.driver_version = AVP_DPDK_DRIVER_VERSION;
641 config.features = avp->features;
642 config.num_tx_queues = avp->num_tx_queues;
643 config.num_rx_queues = avp->num_rx_queues;
644 config.if_up = !!(avp->flags & AVP_F_LINKUP);
646 ret = avp_dev_ctrl_set_config(eth_dev, &config);
648 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
655 avp->flags &= ~AVP_F_DETACHED;
660 rte_spinlock_unlock(&avp->lock);
665 avp_dev_interrupt_handler(void *data)
667 struct rte_eth_dev *eth_dev = data;
668 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
669 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
670 uint32_t status, value;
673 if (registers == NULL)
674 rte_panic("no mapped MMIO register space\n");
676 /* read the interrupt status register
677 * note: this register clears on read so all raised interrupts must be
678 * handled or remembered for later processing
681 RTE_PTR_ADD(registers,
682 RTE_AVP_INTERRUPT_STATUS_OFFSET));
684 if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) {
685 /* handle interrupt based on current status */
687 RTE_PTR_ADD(registers,
688 RTE_AVP_MIGRATION_STATUS_OFFSET));
690 case RTE_AVP_MIGRATION_DETACHED:
691 ret = avp_dev_detach(eth_dev);
693 case RTE_AVP_MIGRATION_ATTACHED:
694 ret = avp_dev_attach(eth_dev);
697 PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n",
702 /* acknowledge the request by writing out our current status */
703 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR);
705 RTE_PTR_ADD(registers,
706 RTE_AVP_MIGRATION_ACK_OFFSET));
708 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n");
711 if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK)
712 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n",
715 /* re-enable UIO interrupt handling */
716 ret = rte_intr_ack(&pci_dev->intr_handle);
718 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n",
725 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev)
727 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
728 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
731 if (registers == NULL)
734 /* enable UIO interrupt handling */
735 ret = rte_intr_enable(&pci_dev->intr_handle);
737 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n",
742 /* inform the device that all interrupts are enabled */
743 AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK,
744 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
750 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev)
752 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
753 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
756 if (registers == NULL)
759 /* inform the device that all interrupts are disabled */
760 AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK,
761 RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
763 /* enable UIO interrupt handling */
764 ret = rte_intr_disable(&pci_dev->intr_handle);
766 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n",
775 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev)
777 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
780 /* register a callback handler with UIO for interrupt notifications */
781 ret = rte_intr_callback_register(&pci_dev->intr_handle,
782 avp_dev_interrupt_handler,
785 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n",
790 /* enable interrupt processing */
791 return avp_dev_enable_interrupts(eth_dev);
795 avp_dev_migration_pending(struct rte_eth_dev *eth_dev)
797 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
798 void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
801 if (registers == NULL)
804 value = AVP_READ32(RTE_PTR_ADD(registers,
805 RTE_AVP_MIGRATION_STATUS_OFFSET));
806 if (value == RTE_AVP_MIGRATION_DETACHED) {
807 /* migration is in progress; ack it if we have not already */
809 RTE_PTR_ADD(registers,
810 RTE_AVP_MIGRATION_ACK_OFFSET));
817 * create a AVP device using the supplied device info by first translating it
818 * to guest address space(s).
821 avp_dev_create(struct rte_pci_device *pci_dev,
822 struct rte_eth_dev *eth_dev)
824 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
825 struct rte_avp_device_info *host_info;
826 struct rte_mem_resource *resource;
829 resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR];
830 if (resource->addr == NULL) {
831 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n",
832 RTE_AVP_PCI_DEVICE_BAR);
835 host_info = (struct rte_avp_device_info *)resource->addr;
837 if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) ||
838 avp_dev_version_check(host_info->version)) {
839 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n",
840 host_info->magic, host_info->version,
841 AVP_DPDK_DRIVER_VERSION);
845 PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n",
846 RTE_AVP_GET_RELEASE_VERSION(host_info->version),
847 RTE_AVP_GET_MAJOR_VERSION(host_info->version),
848 RTE_AVP_GET_MINOR_VERSION(host_info->version));
850 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n",
851 host_info->min_tx_queues, host_info->max_tx_queues);
852 PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n",
853 host_info->min_rx_queues, host_info->max_rx_queues);
854 PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n",
855 host_info->features);
857 if (avp->magic != AVP_ETHDEV_MAGIC) {
859 * First time initialization (i.e., not during a VM
862 memset(avp, 0, sizeof(*avp));
863 avp->magic = AVP_ETHDEV_MAGIC;
864 avp->dev_data = eth_dev->data;
865 avp->port_id = eth_dev->data->port_id;
866 avp->host_mbuf_size = host_info->mbuf_size;
867 avp->host_features = host_info->features;
868 rte_spinlock_init(&avp->lock);
869 memcpy(&avp->ethaddr.addr_bytes[0],
870 host_info->ethaddr, RTE_ETHER_ADDR_LEN);
871 /* adjust max values to not exceed our max */
873 RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES);
875 RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES);
877 /* Re-attaching during migration */
879 /* TODO... requires validation of host values */
880 if ((host_info->features & avp->features) != avp->features) {
881 PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n",
882 avp->features, host_info->features);
883 /* this should not be possible; continue for now */
887 /* the device id is allowed to change over migrations */
888 avp->device_id = host_info->device_id;
890 /* translate incoming host addresses to guest address space */
891 PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n",
893 PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n",
894 host_info->alloc_phys);
895 for (i = 0; i < avp->max_tx_queues; i++) {
896 avp->tx_q[i] = avp_dev_translate_address(eth_dev,
897 host_info->tx_phys + (i * host_info->tx_size));
899 avp->alloc_q[i] = avp_dev_translate_address(eth_dev,
900 host_info->alloc_phys + (i * host_info->alloc_size));
903 PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n",
905 PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n",
906 host_info->free_phys);
907 for (i = 0; i < avp->max_rx_queues; i++) {
908 avp->rx_q[i] = avp_dev_translate_address(eth_dev,
909 host_info->rx_phys + (i * host_info->rx_size));
910 avp->free_q[i] = avp_dev_translate_address(eth_dev,
911 host_info->free_phys + (i * host_info->free_size));
914 PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n",
915 host_info->req_phys);
916 PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n",
917 host_info->resp_phys);
918 PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n",
919 host_info->sync_phys);
920 PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n",
921 host_info->mbuf_phys);
922 avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys);
923 avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys);
925 avp_dev_translate_address(eth_dev, host_info->sync_phys);
927 avp_dev_translate_address(eth_dev, host_info->mbuf_phys);
930 * store the host mbuf virtual address so that we can calculate
931 * relative offsets for each mbuf as they are processed
933 avp->host_mbuf_addr = host_info->mbuf_va;
934 avp->host_sync_addr = host_info->sync_va;
937 * store the maximum packet length that is supported by the host.
939 avp->max_rx_pkt_len = host_info->max_rx_pkt_len;
940 PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n",
941 host_info->max_rx_pkt_len);
947 * This function is based on probe() function in avp_pci.c
948 * It returns 0 on success.
951 eth_avp_dev_init(struct rte_eth_dev *eth_dev)
953 struct avp_dev *avp =
954 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
955 struct rte_pci_device *pci_dev;
958 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
959 eth_dev->dev_ops = &avp_eth_dev_ops;
960 eth_dev->rx_pkt_burst = &avp_recv_pkts;
961 eth_dev->tx_pkt_burst = &avp_xmit_pkts;
962 /* Let rte_eth_dev_close() release the port resources */
963 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
965 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
967 * no setup required on secondary processes. All data is saved
968 * in dev_private by the primary process. All resource should
969 * be mapped to the same virtual address so all pointers should
972 if (eth_dev->data->scattered_rx) {
973 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
974 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
975 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
980 rte_eth_copy_pci_info(eth_dev, pci_dev);
982 /* Check current migration status */
983 if (avp_dev_migration_pending(eth_dev)) {
984 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n");
988 /* Check BAR resources */
989 ret = avp_dev_check_regions(eth_dev);
991 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n",
996 /* Enable interrupts */
997 ret = avp_dev_setup_interrupts(eth_dev);
999 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret);
1003 /* Handle each subtype */
1004 ret = avp_dev_create(pci_dev, eth_dev);
1006 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret);
1010 /* Allocate memory for storing MAC addresses */
1011 eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev",
1012 RTE_ETHER_ADDR_LEN, 0);
1013 if (eth_dev->data->mac_addrs == NULL) {
1014 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n",
1015 RTE_ETHER_ADDR_LEN);
1019 /* Get a mac from device config */
1020 rte_ether_addr_copy(&avp->ethaddr, ð_dev->data->mac_addrs[0]);
1026 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev)
1028 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1031 if (eth_dev->data == NULL)
1034 avp_dev_close(eth_dev);
1040 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1041 struct rte_pci_device *pci_dev)
1043 return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter),
1048 eth_avp_pci_remove(struct rte_pci_device *pci_dev)
1050 return rte_eth_dev_pci_generic_remove(pci_dev,
1051 eth_avp_dev_uninit);
1054 static struct rte_pci_driver rte_avp_pmd = {
1055 .id_table = pci_id_avp_map,
1056 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1057 .probe = eth_avp_pci_probe,
1058 .remove = eth_avp_pci_remove,
1062 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev,
1063 struct avp_dev *avp)
1065 unsigned int max_rx_pkt_len;
1067 max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1069 if ((max_rx_pkt_len > avp->guest_mbuf_size) ||
1070 (max_rx_pkt_len > avp->host_mbuf_size)) {
1072 * If the guest MTU is greater than either the host or guest
1073 * buffers then chained mbufs have to be enabled in the TX
1074 * direction. It is assumed that the application will not need
1075 * to send packets larger than their max_rx_pkt_len (MRU).
1080 if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) ||
1081 (avp->max_rx_pkt_len > avp->host_mbuf_size)) {
1083 * If the host MRU is greater than its own mbuf size or the
1084 * guest mbuf size then chained mbufs have to be enabled in the
1094 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
1095 uint16_t rx_queue_id,
1096 uint16_t nb_rx_desc,
1097 unsigned int socket_id,
1098 const struct rte_eth_rxconf *rx_conf,
1099 struct rte_mempool *pool)
1101 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1102 struct rte_pktmbuf_pool_private *mbp_priv;
1103 struct avp_queue *rxq;
1105 if (rx_queue_id >= eth_dev->data->nb_rx_queues) {
1106 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n",
1107 rx_queue_id, eth_dev->data->nb_rx_queues);
1111 /* Save mbuf pool pointer */
1114 /* Save the local mbuf size */
1115 mbp_priv = rte_mempool_get_priv(pool);
1116 avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size);
1117 avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM;
1119 if (avp_dev_enable_scattered(eth_dev, avp)) {
1120 if (!eth_dev->data->scattered_rx) {
1121 PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
1122 eth_dev->data->scattered_rx = 1;
1123 eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
1124 eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
1128 PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n",
1129 avp->max_rx_pkt_len,
1130 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len,
1131 avp->host_mbuf_size,
1132 avp->guest_mbuf_size);
1134 /* allocate a queue object */
1135 rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue),
1136 RTE_CACHE_LINE_SIZE, socket_id);
1138 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n");
1142 /* save back pointers to AVP and Ethernet devices */
1144 rxq->dev_data = eth_dev->data;
1145 eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq;
1147 /* setup the queue receive mapping for the current queue. */
1148 _avp_set_rx_queue_mappings(eth_dev, rx_queue_id);
1150 PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq);
1158 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
1159 uint16_t tx_queue_id,
1160 uint16_t nb_tx_desc,
1161 unsigned int socket_id,
1162 const struct rte_eth_txconf *tx_conf)
1164 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1165 struct avp_queue *txq;
1167 if (tx_queue_id >= eth_dev->data->nb_tx_queues) {
1168 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n",
1169 tx_queue_id, eth_dev->data->nb_tx_queues);
1173 /* allocate a queue object */
1174 txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue),
1175 RTE_CACHE_LINE_SIZE, socket_id);
1177 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n");
1181 /* only the configured set of transmit queues are used */
1182 txq->queue_id = tx_queue_id;
1183 txq->queue_base = tx_queue_id;
1184 txq->queue_limit = tx_queue_id;
1186 /* save back pointers to AVP and Ethernet devices */
1188 txq->dev_data = eth_dev->data;
1189 eth_dev->data->tx_queues[tx_queue_id] = (void *)txq;
1191 PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq);
1199 _avp_cmp_ether_addr(struct rte_ether_addr *a, struct rte_ether_addr *b)
1201 uint16_t *_a = (uint16_t *)&a->addr_bytes[0];
1202 uint16_t *_b = (uint16_t *)&b->addr_bytes[0];
1203 return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]);
1207 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m)
1209 struct rte_ether_hdr *eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1211 if (likely(_avp_cmp_ether_addr(&avp->ethaddr, ð->d_addr) == 0)) {
1212 /* allow all packets destined to our address */
1216 if (likely(rte_is_broadcast_ether_addr(ð->d_addr))) {
1217 /* allow all broadcast packets */
1221 if (likely(rte_is_multicast_ether_addr(ð->d_addr))) {
1222 /* allow all multicast packets */
1226 if (avp->flags & AVP_F_PROMISC) {
1227 /* allow all packets when in promiscuous mode */
1234 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1236 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf)
1238 struct rte_avp_desc *first_buf;
1239 struct rte_avp_desc *pkt_buf;
1240 unsigned int pkt_len;
1241 unsigned int nb_segs;
1245 first_buf = avp_dev_translate_buffer(avp, buf);
1249 nb_segs = first_buf->nb_segs;
1251 /* Adjust pointers for guest addressing */
1252 pkt_buf = avp_dev_translate_buffer(avp, buf);
1253 if (pkt_buf == NULL)
1254 rte_panic("bad buffer: segment %u has an invalid address %p\n",
1256 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1257 if (pkt_data == NULL)
1258 rte_panic("bad buffer: segment %u has a NULL data pointer\n",
1260 if (pkt_buf->data_len == 0)
1261 rte_panic("bad buffer: segment %u has 0 data length\n",
1263 pkt_len += pkt_buf->data_len;
1267 } while (nb_segs && (buf = pkt_buf->next) != NULL);
1270 rte_panic("bad buffer: expected %u segments found %u\n",
1271 first_buf->nb_segs, (first_buf->nb_segs - nb_segs));
1272 if (pkt_len != first_buf->pkt_len)
1273 rte_panic("bad buffer: expected length %u found %u\n",
1274 first_buf->pkt_len, pkt_len);
1277 #define avp_dev_buffer_sanity_check(a, b) \
1278 __avp_dev_buffer_sanity_check((a), (b))
1280 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */
1282 #define avp_dev_buffer_sanity_check(a, b) do {} while (0)
1287 * Copy a host buffer chain to a set of mbufs. This function assumes that
1288 * there exactly the required number of mbufs to copy all source bytes.
1290 static inline struct rte_mbuf *
1291 avp_dev_copy_from_buffers(struct avp_dev *avp,
1292 struct rte_avp_desc *buf,
1293 struct rte_mbuf **mbufs,
1296 struct rte_mbuf *m_previous = NULL;
1297 struct rte_avp_desc *pkt_buf;
1298 unsigned int total_length = 0;
1299 unsigned int copy_length;
1300 unsigned int src_offset;
1307 avp_dev_buffer_sanity_check(avp, buf);
1309 /* setup the first source buffer */
1310 pkt_buf = avp_dev_translate_buffer(avp, buf);
1311 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1312 total_length = pkt_buf->pkt_len;
1315 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1316 ol_flags = PKT_RX_VLAN;
1317 vlan_tci = pkt_buf->vlan_tci;
1323 for (i = 0; (i < count) && (buf != NULL); i++) {
1324 /* fill each destination buffer */
1327 if (m_previous != NULL)
1328 m_previous->next = m;
1334 * Copy as many source buffers as will fit in the
1335 * destination buffer.
1337 copy_length = RTE_MIN((avp->guest_mbuf_size -
1338 rte_pktmbuf_data_len(m)),
1339 (pkt_buf->data_len -
1341 rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1342 rte_pktmbuf_data_len(m)),
1343 RTE_PTR_ADD(pkt_data, src_offset),
1345 rte_pktmbuf_data_len(m) += copy_length;
1346 src_offset += copy_length;
1348 if (likely(src_offset == pkt_buf->data_len)) {
1349 /* need a new source buffer */
1350 buf = pkt_buf->next;
1352 pkt_buf = avp_dev_translate_buffer(
1354 pkt_data = avp_dev_translate_buffer(
1355 avp, pkt_buf->data);
1360 if (unlikely(rte_pktmbuf_data_len(m) ==
1361 avp->guest_mbuf_size)) {
1362 /* need a new destination mbuf */
1366 } while (buf != NULL);
1370 m->ol_flags = ol_flags;
1372 rte_pktmbuf_pkt_len(m) = total_length;
1373 m->vlan_tci = vlan_tci;
1375 __rte_mbuf_sanity_check(m, 1);
1381 avp_recv_scattered_pkts(void *rx_queue,
1382 struct rte_mbuf **rx_pkts,
1385 struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1386 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1387 struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS];
1388 struct avp_dev *avp = rxq->avp;
1389 struct rte_avp_desc *pkt_buf;
1390 struct rte_avp_fifo *free_q;
1391 struct rte_avp_fifo *rx_q;
1392 struct rte_avp_desc *buf;
1393 unsigned int count, avail, n;
1394 unsigned int guest_mbuf_size;
1396 unsigned int required;
1397 unsigned int buf_len;
1398 unsigned int port_id;
1401 if (unlikely(avp->flags & AVP_F_DETACHED)) {
1402 /* VM live migration in progress */
1406 guest_mbuf_size = avp->guest_mbuf_size;
1407 port_id = avp->port_id;
1408 rx_q = avp->rx_q[rxq->queue_id];
1409 free_q = avp->free_q[rxq->queue_id];
1411 /* setup next queue to service */
1412 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1413 (rxq->queue_id + 1) : rxq->queue_base;
1415 /* determine how many slots are available in the free queue */
1416 count = avp_fifo_free_count(free_q);
1418 /* determine how many packets are available in the rx queue */
1419 avail = avp_fifo_count(rx_q);
1421 /* determine how many packets can be received */
1422 count = RTE_MIN(count, avail);
1423 count = RTE_MIN(count, nb_pkts);
1424 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1426 if (unlikely(count == 0)) {
1427 /* no free buffers, or no buffers on the rx queue */
1431 /* retrieve pending packets */
1432 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1433 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1437 for (i = 0; i < n; i++) {
1438 /* prefetch next entry while processing current one */
1440 pkt_buf = avp_dev_translate_buffer(avp,
1442 rte_prefetch0(pkt_buf);
1446 /* Peek into the first buffer to determine the total length */
1447 pkt_buf = avp_dev_translate_buffer(avp, buf);
1448 buf_len = pkt_buf->pkt_len;
1450 /* Allocate enough mbufs to receive the entire packet */
1451 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size;
1452 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) {
1453 rxq->dev_data->rx_mbuf_alloc_failed++;
1457 /* Copy the data from the buffers to our mbufs */
1458 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required);
1463 if (_avp_mac_filter(avp, m) != 0) {
1464 /* silently discard packets not destined to our MAC */
1465 rte_pktmbuf_free(m);
1469 /* return new mbuf to caller */
1470 rx_pkts[count++] = m;
1471 rxq->bytes += buf_len;
1474 rxq->packets += count;
1476 /* return the buffers to the free queue */
1477 avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1484 avp_recv_pkts(void *rx_queue,
1485 struct rte_mbuf **rx_pkts,
1488 struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1489 struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1490 struct avp_dev *avp = rxq->avp;
1491 struct rte_avp_desc *pkt_buf;
1492 struct rte_avp_fifo *free_q;
1493 struct rte_avp_fifo *rx_q;
1494 unsigned int count, avail, n;
1495 unsigned int pkt_len;
1500 if (unlikely(avp->flags & AVP_F_DETACHED)) {
1501 /* VM live migration in progress */
1505 rx_q = avp->rx_q[rxq->queue_id];
1506 free_q = avp->free_q[rxq->queue_id];
1508 /* setup next queue to service */
1509 rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1510 (rxq->queue_id + 1) : rxq->queue_base;
1512 /* determine how many slots are available in the free queue */
1513 count = avp_fifo_free_count(free_q);
1515 /* determine how many packets are available in the rx queue */
1516 avail = avp_fifo_count(rx_q);
1518 /* determine how many packets can be received */
1519 count = RTE_MIN(count, avail);
1520 count = RTE_MIN(count, nb_pkts);
1521 count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1523 if (unlikely(count == 0)) {
1524 /* no free buffers, or no buffers on the rx queue */
1528 /* retrieve pending packets */
1529 n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1530 PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1534 for (i = 0; i < n; i++) {
1535 /* prefetch next entry while processing current one */
1537 pkt_buf = avp_dev_translate_buffer(avp,
1539 rte_prefetch0(pkt_buf);
1542 /* Adjust host pointers for guest addressing */
1543 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1544 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1545 pkt_len = pkt_buf->pkt_len;
1547 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1548 (pkt_buf->nb_segs > 1))) {
1550 * application should be using the scattered receive
1557 /* process each packet to be transmitted */
1558 m = rte_pktmbuf_alloc(avp->pool);
1559 if (unlikely(m == NULL)) {
1560 rxq->dev_data->rx_mbuf_alloc_failed++;
1564 /* copy data out of the host buffer to our buffer */
1565 m->data_off = RTE_PKTMBUF_HEADROOM;
1566 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len);
1568 /* initialize the local mbuf */
1569 rte_pktmbuf_data_len(m) = pkt_len;
1570 rte_pktmbuf_pkt_len(m) = pkt_len;
1571 m->port = avp->port_id;
1573 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1574 m->ol_flags = PKT_RX_VLAN;
1575 m->vlan_tci = pkt_buf->vlan_tci;
1578 if (_avp_mac_filter(avp, m) != 0) {
1579 /* silently discard packets not destined to our MAC */
1580 rte_pktmbuf_free(m);
1584 /* return new mbuf to caller */
1585 rx_pkts[count++] = m;
1586 rxq->bytes += pkt_len;
1589 rxq->packets += count;
1591 /* return the buffers to the free queue */
1592 avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1598 * Copy a chained mbuf to a set of host buffers. This function assumes that
1599 * there are sufficient destination buffers to contain the entire source
1602 static inline uint16_t
1603 avp_dev_copy_to_buffers(struct avp_dev *avp,
1604 struct rte_mbuf *mbuf,
1605 struct rte_avp_desc **buffers,
1608 struct rte_avp_desc *previous_buf = NULL;
1609 struct rte_avp_desc *first_buf = NULL;
1610 struct rte_avp_desc *pkt_buf;
1611 struct rte_avp_desc *buf;
1612 size_t total_length;
1619 __rte_mbuf_sanity_check(mbuf, 1);
1623 total_length = rte_pktmbuf_pkt_len(m);
1624 for (i = 0; (i < count) && (m != NULL); i++) {
1625 /* fill each destination buffer */
1628 if (i < count - 1) {
1629 /* prefetch next entry while processing this one */
1630 pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
1631 rte_prefetch0(pkt_buf);
1634 /* Adjust pointers for guest addressing */
1635 pkt_buf = avp_dev_translate_buffer(avp, buf);
1636 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1638 /* setup the buffer chain */
1639 if (previous_buf != NULL)
1640 previous_buf->next = buf;
1642 first_buf = pkt_buf;
1644 previous_buf = pkt_buf;
1648 * copy as many source mbuf segments as will fit in the
1649 * destination buffer.
1651 copy_length = RTE_MIN((avp->host_mbuf_size -
1653 (rte_pktmbuf_data_len(m) -
1655 rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
1656 RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1659 pkt_buf->data_len += copy_length;
1660 src_offset += copy_length;
1662 if (likely(src_offset == rte_pktmbuf_data_len(m))) {
1663 /* need a new source buffer */
1668 if (unlikely(pkt_buf->data_len ==
1669 avp->host_mbuf_size)) {
1670 /* need a new destination buffer */
1674 } while (m != NULL);
1677 first_buf->nb_segs = count;
1678 first_buf->pkt_len = total_length;
1680 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1681 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1682 first_buf->vlan_tci = mbuf->vlan_tci;
1685 avp_dev_buffer_sanity_check(avp, buffers[0]);
1687 return total_length;
1692 avp_xmit_scattered_pkts(void *tx_queue,
1693 struct rte_mbuf **tx_pkts,
1696 struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
1697 RTE_AVP_MAX_MBUF_SEGMENTS)] = {};
1698 struct avp_queue *txq = (struct avp_queue *)tx_queue;
1699 struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
1700 struct avp_dev *avp = txq->avp;
1701 struct rte_avp_fifo *alloc_q;
1702 struct rte_avp_fifo *tx_q;
1703 unsigned int count, avail, n;
1704 unsigned int orig_nb_pkts;
1706 unsigned int required;
1707 unsigned int segments;
1708 unsigned int tx_bytes;
1711 orig_nb_pkts = nb_pkts;
1712 if (unlikely(avp->flags & AVP_F_DETACHED)) {
1713 /* VM live migration in progress */
1714 /* TODO ... buffer for X packets then drop? */
1715 txq->errors += nb_pkts;
1719 tx_q = avp->tx_q[txq->queue_id];
1720 alloc_q = avp->alloc_q[txq->queue_id];
1722 /* limit the number of transmitted packets to the max burst size */
1723 if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1724 nb_pkts = AVP_MAX_TX_BURST;
1726 /* determine how many buffers are available to copy into */
1727 avail = avp_fifo_count(alloc_q);
1728 if (unlikely(avail > (AVP_MAX_TX_BURST *
1729 RTE_AVP_MAX_MBUF_SEGMENTS)))
1730 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;
1732 /* determine how many slots are available in the transmit queue */
1733 count = avp_fifo_free_count(tx_q);
1735 /* determine how many packets can be sent */
1736 nb_pkts = RTE_MIN(count, nb_pkts);
1738 /* determine how many packets will fit in the available buffers */
1741 for (i = 0; i < nb_pkts; i++) {
1743 if (likely(i < (unsigned int)nb_pkts - 1)) {
1744 /* prefetch next entry while processing this one */
1745 rte_prefetch0(tx_pkts[i + 1]);
1747 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1748 avp->host_mbuf_size;
1750 if (unlikely((required == 0) ||
1751 (required > RTE_AVP_MAX_MBUF_SEGMENTS)))
1753 else if (unlikely(required + segments > avail))
1755 segments += required;
1760 if (unlikely(nb_pkts == 0)) {
1761 /* no available buffers, or no space on the tx queue */
1762 txq->errors += orig_nb_pkts;
1766 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1769 /* retrieve sufficient send buffers */
1770 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
1771 if (unlikely(n != segments)) {
1772 PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
1773 "n=%u, segments=%u, orig=%u\n",
1774 n, segments, orig_nb_pkts);
1775 txq->errors += orig_nb_pkts;
1781 for (i = 0; i < nb_pkts; i++) {
1782 /* process each packet to be transmitted */
1785 /* determine how many buffers are required for this packet */
1786 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1787 avp->host_mbuf_size;
1789 tx_bytes += avp_dev_copy_to_buffers(avp, m,
1790 &avp_bufs[count], required);
1791 tx_bufs[i] = avp_bufs[count];
1794 /* free the original mbuf */
1795 rte_pktmbuf_free(m);
1798 txq->packets += nb_pkts;
1799 txq->bytes += tx_bytes;
1801 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1802 for (i = 0; i < nb_pkts; i++)
1803 avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
1806 /* send the packets */
1807 n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
1808 if (unlikely(n != orig_nb_pkts))
1809 txq->errors += (orig_nb_pkts - n);
1816 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1818 struct avp_queue *txq = (struct avp_queue *)tx_queue;
1819 struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
1820 struct avp_dev *avp = txq->avp;
1821 struct rte_avp_desc *pkt_buf;
1822 struct rte_avp_fifo *alloc_q;
1823 struct rte_avp_fifo *tx_q;
1824 unsigned int count, avail, n;
1826 unsigned int pkt_len;
1827 unsigned int tx_bytes;
1831 if (unlikely(avp->flags & AVP_F_DETACHED)) {
1832 /* VM live migration in progress */
1833 /* TODO ... buffer for X packets then drop?! */
1838 tx_q = avp->tx_q[txq->queue_id];
1839 alloc_q = avp->alloc_q[txq->queue_id];
1841 /* limit the number of transmitted packets to the max burst size */
1842 if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1843 nb_pkts = AVP_MAX_TX_BURST;
1845 /* determine how many buffers are available to copy into */
1846 avail = avp_fifo_count(alloc_q);
1848 /* determine how many slots are available in the transmit queue */
1849 count = avp_fifo_free_count(tx_q);
1851 /* determine how many packets can be sent */
1852 count = RTE_MIN(count, avail);
1853 count = RTE_MIN(count, nb_pkts);
1855 if (unlikely(count == 0)) {
1856 /* no available buffers, or no space on the tx queue */
1857 txq->errors += nb_pkts;
1861 PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1864 /* retrieve sufficient send buffers */
1865 n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
1866 if (unlikely(n != count)) {
1872 for (i = 0; i < count; i++) {
1873 /* prefetch next entry while processing the current one */
1874 if (i < count - 1) {
1875 pkt_buf = avp_dev_translate_buffer(avp,
1877 rte_prefetch0(pkt_buf);
1880 /* process each packet to be transmitted */
1883 /* Adjust pointers for guest addressing */
1884 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1885 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1886 pkt_len = rte_pktmbuf_pkt_len(m);
1888 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1889 (pkt_len > avp->host_mbuf_size))) {
1891 * application should be using the scattered transmit
1892 * function; send it truncated to avoid the performance
1893 * hit of having to manage returning the already
1894 * allocated buffer to the free list. This should not
1895 * happen since the application should have set the
1896 * max_rx_pkt_len based on its MTU and it should be
1897 * policing its own packet sizes.
1900 pkt_len = RTE_MIN(avp->guest_mbuf_size,
1901 avp->host_mbuf_size);
1904 /* copy data out of our mbuf and into the AVP buffer */
1905 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
1906 pkt_buf->pkt_len = pkt_len;
1907 pkt_buf->data_len = pkt_len;
1908 pkt_buf->nb_segs = 1;
1909 pkt_buf->next = NULL;
1911 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1912 pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1913 pkt_buf->vlan_tci = m->vlan_tci;
1916 tx_bytes += pkt_len;
1918 /* free the original mbuf */
1919 rte_pktmbuf_free(m);
1922 txq->packets += count;
1923 txq->bytes += tx_bytes;
1925 /* send the packets */
1926 n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);
1932 avp_dev_rx_queue_release(void *rx_queue)
1934 struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1935 struct avp_dev *avp = rxq->avp;
1936 struct rte_eth_dev_data *data = avp->dev_data;
1939 for (i = 0; i < avp->num_rx_queues; i++) {
1940 if (data->rx_queues[i] == rxq) {
1941 rte_free(data->rx_queues[i]);
1942 data->rx_queues[i] = NULL;
1948 avp_dev_rx_queue_release_all(struct rte_eth_dev *eth_dev)
1950 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1951 struct rte_eth_dev_data *data = avp->dev_data;
1954 for (i = 0; i < avp->num_rx_queues; i++) {
1955 if (data->rx_queues[i]) {
1956 rte_free(data->rx_queues[i]);
1957 data->rx_queues[i] = NULL;
1963 avp_dev_tx_queue_release(void *tx_queue)
1965 struct avp_queue *txq = (struct avp_queue *)tx_queue;
1966 struct avp_dev *avp = txq->avp;
1967 struct rte_eth_dev_data *data = avp->dev_data;
1970 for (i = 0; i < avp->num_tx_queues; i++) {
1971 if (data->tx_queues[i] == txq) {
1972 rte_free(data->tx_queues[i]);
1973 data->tx_queues[i] = NULL;
1979 avp_dev_tx_queue_release_all(struct rte_eth_dev *eth_dev)
1981 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1982 struct rte_eth_dev_data *data = avp->dev_data;
1985 for (i = 0; i < avp->num_tx_queues; i++) {
1986 if (data->tx_queues[i]) {
1987 rte_free(data->tx_queues[i]);
1988 data->tx_queues[i] = NULL;
1994 avp_dev_configure(struct rte_eth_dev *eth_dev)
1996 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1997 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1998 struct rte_avp_device_info *host_info;
1999 struct rte_avp_device_config config;
2004 rte_spinlock_lock(&avp->lock);
2005 if (avp->flags & AVP_F_DETACHED) {
2006 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2011 addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
2012 host_info = (struct rte_avp_device_info *)addr;
2014 /* Setup required number of queues */
2015 _avp_set_queue_counts(eth_dev);
2017 mask = (ETH_VLAN_STRIP_MASK |
2018 ETH_VLAN_FILTER_MASK |
2019 ETH_VLAN_EXTEND_MASK);
2020 ret = avp_vlan_offload_set(eth_dev, mask);
2022 PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n",
2027 /* update device config */
2028 memset(&config, 0, sizeof(config));
2029 config.device_id = host_info->device_id;
2030 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
2031 config.driver_version = AVP_DPDK_DRIVER_VERSION;
2032 config.features = avp->features;
2033 config.num_tx_queues = avp->num_tx_queues;
2034 config.num_rx_queues = avp->num_rx_queues;
2036 ret = avp_dev_ctrl_set_config(eth_dev, &config);
2038 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
2043 avp->flags |= AVP_F_CONFIGURED;
2047 rte_spinlock_unlock(&avp->lock);
2052 avp_dev_start(struct rte_eth_dev *eth_dev)
2054 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2057 rte_spinlock_lock(&avp->lock);
2058 if (avp->flags & AVP_F_DETACHED) {
2059 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2064 /* update link state */
2065 ret = avp_dev_ctrl_set_link_state(eth_dev, 1);
2067 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2072 /* remember current link state */
2073 avp->flags |= AVP_F_LINKUP;
2078 rte_spinlock_unlock(&avp->lock);
2083 avp_dev_stop(struct rte_eth_dev *eth_dev)
2085 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2088 rte_spinlock_lock(&avp->lock);
2089 if (avp->flags & AVP_F_DETACHED) {
2090 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2094 /* remember current link state */
2095 avp->flags &= ~AVP_F_LINKUP;
2097 /* update link state */
2098 ret = avp_dev_ctrl_set_link_state(eth_dev, 0);
2100 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2105 rte_spinlock_unlock(&avp->lock);
2109 avp_dev_close(struct rte_eth_dev *eth_dev)
2111 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2114 rte_spinlock_lock(&avp->lock);
2115 if (avp->flags & AVP_F_DETACHED) {
2116 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2120 /* remember current link state */
2121 avp->flags &= ~AVP_F_LINKUP;
2122 avp->flags &= ~AVP_F_CONFIGURED;
2124 ret = avp_dev_disable_interrupts(eth_dev);
2126 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n");
2130 /* update device state */
2131 ret = avp_dev_ctrl_shutdown(eth_dev);
2133 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n",
2138 /* release dynamic storage for rx/tx queues */
2139 avp_dev_rx_queue_release_all(eth_dev);
2140 avp_dev_tx_queue_release_all(eth_dev);
2143 rte_spinlock_unlock(&avp->lock);
2147 avp_dev_link_update(struct rte_eth_dev *eth_dev,
2148 __rte_unused int wait_to_complete)
2150 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2151 struct rte_eth_link *link = ð_dev->data->dev_link;
2153 link->link_speed = ETH_SPEED_NUM_10G;
2154 link->link_duplex = ETH_LINK_FULL_DUPLEX;
2155 link->link_status = !!(avp->flags & AVP_F_LINKUP);
2161 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
2163 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2165 rte_spinlock_lock(&avp->lock);
2166 if ((avp->flags & AVP_F_PROMISC) == 0) {
2167 avp->flags |= AVP_F_PROMISC;
2168 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n",
2169 eth_dev->data->port_id);
2171 rte_spinlock_unlock(&avp->lock);
2177 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
2179 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2181 rte_spinlock_lock(&avp->lock);
2182 if ((avp->flags & AVP_F_PROMISC) != 0) {
2183 avp->flags &= ~AVP_F_PROMISC;
2184 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n",
2185 eth_dev->data->port_id);
2187 rte_spinlock_unlock(&avp->lock);
2193 avp_dev_info_get(struct rte_eth_dev *eth_dev,
2194 struct rte_eth_dev_info *dev_info)
2196 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2198 dev_info->max_rx_queues = avp->max_rx_queues;
2199 dev_info->max_tx_queues = avp->max_tx_queues;
2200 dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE;
2201 dev_info->max_rx_pktlen = avp->max_rx_pkt_len;
2202 dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS;
2203 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2204 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
2205 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
2212 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
2214 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2215 struct rte_eth_conf *dev_conf = ð_dev->data->dev_conf;
2216 uint64_t offloads = dev_conf->rxmode.offloads;
2218 if (mask & ETH_VLAN_STRIP_MASK) {
2219 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2220 if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2221 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD;
2223 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD;
2225 PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n");
2229 if (mask & ETH_VLAN_FILTER_MASK) {
2230 if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2231 PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n");
2234 if (mask & ETH_VLAN_EXTEND_MASK) {
2235 if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2236 PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n");
2243 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats)
2245 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2248 for (i = 0; i < avp->num_rx_queues; i++) {
2249 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2252 stats->ipackets += rxq->packets;
2253 stats->ibytes += rxq->bytes;
2254 stats->ierrors += rxq->errors;
2256 stats->q_ipackets[i] += rxq->packets;
2257 stats->q_ibytes[i] += rxq->bytes;
2258 stats->q_errors[i] += rxq->errors;
2262 for (i = 0; i < avp->num_tx_queues; i++) {
2263 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2266 stats->opackets += txq->packets;
2267 stats->obytes += txq->bytes;
2268 stats->oerrors += txq->errors;
2270 stats->q_opackets[i] += txq->packets;
2271 stats->q_obytes[i] += txq->bytes;
2279 avp_dev_stats_reset(struct rte_eth_dev *eth_dev)
2281 struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2284 for (i = 0; i < avp->num_rx_queues; i++) {
2285 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2294 for (i = 0; i < avp->num_tx_queues; i++) {
2295 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2307 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd);
2308 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map);
2310 RTE_INIT(avp_init_log)
2312 avp_logtype_driver = rte_log_register("pmd.net.avp.driver");
2313 if (avp_logtype_driver >= 0)
2314 rte_log_set_level(avp_logtype_driver, RTE_LOG_NOTICE);