net/i40e: fix Rx packet statistics
[dpdk.git] / drivers / net / avp / avp_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2013-2017 Wind River Systems, Inc.
3  */
4
5 #include <stdint.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <unistd.h>
10
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_memcpy.h>
14 #include <rte_string_fns.h>
15 #include <rte_malloc.h>
16 #include <rte_atomic.h>
17 #include <rte_branch_prediction.h>
18 #include <rte_pci.h>
19 #include <rte_bus_pci.h>
20 #include <rte_ether.h>
21 #include <rte_common.h>
22 #include <rte_cycles.h>
23 #include <rte_spinlock.h>
24 #include <rte_byteorder.h>
25 #include <rte_dev.h>
26 #include <rte_memory.h>
27 #include <rte_eal.h>
28 #include <rte_io.h>
29
30 #include "rte_avp_common.h"
31 #include "rte_avp_fifo.h"
32
33 #include "avp_logs.h"
34
35 static int avp_dev_create(struct rte_pci_device *pci_dev,
36                           struct rte_eth_dev *eth_dev);
37
38 static int avp_dev_configure(struct rte_eth_dev *dev);
39 static int avp_dev_start(struct rte_eth_dev *dev);
40 static int avp_dev_stop(struct rte_eth_dev *dev);
41 static int avp_dev_close(struct rte_eth_dev *dev);
42 static int avp_dev_info_get(struct rte_eth_dev *dev,
43                             struct rte_eth_dev_info *dev_info);
44 static int avp_vlan_offload_set(struct rte_eth_dev *dev, int mask);
45 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete);
46 static int avp_dev_promiscuous_enable(struct rte_eth_dev *dev);
47 static int avp_dev_promiscuous_disable(struct rte_eth_dev *dev);
48
49 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev,
50                                   uint16_t rx_queue_id,
51                                   uint16_t nb_rx_desc,
52                                   unsigned int socket_id,
53                                   const struct rte_eth_rxconf *rx_conf,
54                                   struct rte_mempool *pool);
55
56 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev,
57                                   uint16_t tx_queue_id,
58                                   uint16_t nb_tx_desc,
59                                   unsigned int socket_id,
60                                   const struct rte_eth_txconf *tx_conf);
61
62 static uint16_t avp_recv_scattered_pkts(void *rx_queue,
63                                         struct rte_mbuf **rx_pkts,
64                                         uint16_t nb_pkts);
65
66 static uint16_t avp_recv_pkts(void *rx_queue,
67                               struct rte_mbuf **rx_pkts,
68                               uint16_t nb_pkts);
69
70 static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
71                                         struct rte_mbuf **tx_pkts,
72                                         uint16_t nb_pkts);
73
74 static uint16_t avp_xmit_pkts(void *tx_queue,
75                               struct rte_mbuf **tx_pkts,
76                               uint16_t nb_pkts);
77
78 static void avp_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
79 static void avp_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
80
81 static int avp_dev_stats_get(struct rte_eth_dev *dev,
82                               struct rte_eth_stats *stats);
83 static int avp_dev_stats_reset(struct rte_eth_dev *dev);
84
85
86 #define AVP_MAX_RX_BURST 64
87 #define AVP_MAX_TX_BURST 64
88 #define AVP_MAX_MAC_ADDRS 1
89 #define AVP_MIN_RX_BUFSIZE RTE_ETHER_MIN_LEN
90
91
92 /*
93  * Defines the number of microseconds to wait before checking the response
94  * queue for completion.
95  */
96 #define AVP_REQUEST_DELAY_USECS (5000)
97
98 /*
99  * Defines the number times to check the response queue for completion before
100  * declaring a timeout.
101  */
102 #define AVP_MAX_REQUEST_RETRY (100)
103
104 /* Defines the current PCI driver version number */
105 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION
106
107 /*
108  * The set of PCI devices this driver supports
109  */
110 static const struct rte_pci_id pci_id_avp_map[] = {
111         { .vendor_id = RTE_AVP_PCI_VENDOR_ID,
112           .device_id = RTE_AVP_PCI_DEVICE_ID,
113           .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID,
114           .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID,
115           .class_id = RTE_CLASS_ANY_ID,
116         },
117
118         { .vendor_id = 0, /* sentinel */
119         },
120 };
121
122 /*
123  * dev_ops for avp, bare necessities for basic operation
124  */
125 static const struct eth_dev_ops avp_eth_dev_ops = {
126         .dev_configure       = avp_dev_configure,
127         .dev_start           = avp_dev_start,
128         .dev_stop            = avp_dev_stop,
129         .dev_close           = avp_dev_close,
130         .dev_infos_get       = avp_dev_info_get,
131         .vlan_offload_set    = avp_vlan_offload_set,
132         .stats_get           = avp_dev_stats_get,
133         .stats_reset         = avp_dev_stats_reset,
134         .link_update         = avp_dev_link_update,
135         .promiscuous_enable  = avp_dev_promiscuous_enable,
136         .promiscuous_disable = avp_dev_promiscuous_disable,
137         .rx_queue_setup      = avp_dev_rx_queue_setup,
138         .rx_queue_release    = avp_dev_rx_queue_release,
139         .tx_queue_setup      = avp_dev_tx_queue_setup,
140         .tx_queue_release    = avp_dev_tx_queue_release,
141 };
142
143 /**@{ AVP device flags */
144 #define AVP_F_PROMISC (1 << 1)
145 #define AVP_F_CONFIGURED (1 << 2)
146 #define AVP_F_LINKUP (1 << 3)
147 #define AVP_F_DETACHED (1 << 4)
148 /**@} */
149
150 /* Ethernet device validation marker */
151 #define AVP_ETHDEV_MAGIC 0x92972862
152
153 /*
154  * Defines the AVP device attributes which are attached to an RTE ethernet
155  * device
156  */
157 struct avp_dev {
158         uint32_t magic; /**< Memory validation marker */
159         uint64_t device_id; /**< Unique system identifier */
160         struct rte_ether_addr ethaddr; /**< Host specified MAC address */
161         struct rte_eth_dev_data *dev_data;
162         /**< Back pointer to ethernet device data */
163         volatile uint32_t flags; /**< Device operational flags */
164         uint16_t port_id; /**< Ethernet port identifier */
165         struct rte_mempool *pool; /**< pkt mbuf mempool */
166         unsigned int guest_mbuf_size; /**< local pool mbuf size */
167         unsigned int host_mbuf_size; /**< host mbuf size */
168         unsigned int max_rx_pkt_len; /**< maximum receive unit */
169         uint32_t host_features; /**< Supported feature bitmap */
170         uint32_t features; /**< Enabled feature bitmap */
171         unsigned int num_tx_queues; /**< Negotiated number of transmit queues */
172         unsigned int max_tx_queues; /**< Maximum number of transmit queues */
173         unsigned int num_rx_queues; /**< Negotiated number of receive queues */
174         unsigned int max_rx_queues; /**< Maximum number of receive queues */
175
176         struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */
177         struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */
178         struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES];
179         /**< Allocated mbufs queue */
180         struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES];
181         /**< To be freed mbufs queue */
182
183         /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */
184         rte_spinlock_t lock;
185
186         /* For request & response */
187         struct rte_avp_fifo *req_q; /**< Request queue */
188         struct rte_avp_fifo *resp_q; /**< Response queue */
189         void *host_sync_addr; /**< (host) Req/Resp Mem address */
190         void *sync_addr; /**< Req/Resp Mem address */
191         void *host_mbuf_addr; /**< (host) MBUF pool start address */
192         void *mbuf_addr; /**< MBUF pool start address */
193 } __rte_cache_aligned;
194
195 /* RTE ethernet private data */
196 struct avp_adapter {
197         struct avp_dev avp;
198 } __rte_cache_aligned;
199
200
201 /* 32-bit MMIO register write */
202 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr))
203
204 /* 32-bit MMIO register read */
205 #define AVP_READ32(_addr) rte_read32_relaxed((_addr))
206
207 /* Macro to cast the ethernet device private data to a AVP object */
208 #define AVP_DEV_PRIVATE_TO_HW(adapter) \
209         (&((struct avp_adapter *)adapter)->avp)
210
211 /*
212  * Defines the structure of a AVP device queue for the purpose of handling the
213  * receive and transmit burst callback functions
214  */
215 struct avp_queue {
216         struct rte_eth_dev_data *dev_data;
217         /**< Backpointer to ethernet device data */
218         struct avp_dev *avp; /**< Backpointer to AVP device */
219         uint16_t queue_id;
220         /**< Queue identifier used for indexing current queue */
221         uint16_t queue_base;
222         /**< Base queue identifier for queue servicing */
223         uint16_t queue_limit;
224         /**< Maximum queue identifier for queue servicing */
225
226         uint64_t packets;
227         uint64_t bytes;
228         uint64_t errors;
229 };
230
231 /* send a request and wait for a response
232  *
233  * @warning must be called while holding the avp->lock spinlock.
234  */
235 static int
236 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request)
237 {
238         unsigned int retry = AVP_MAX_REQUEST_RETRY;
239         void *resp_addr = NULL;
240         unsigned int count;
241         int ret;
242
243         PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id);
244
245         request->result = -ENOTSUP;
246
247         /* Discard any stale responses before starting a new request */
248         while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1))
249                 PMD_DRV_LOG(DEBUG, "Discarding stale response\n");
250
251         rte_memcpy(avp->sync_addr, request, sizeof(*request));
252         count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1);
253         if (count < 1) {
254                 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n",
255                             request->req_id);
256                 ret = -EBUSY;
257                 goto done;
258         }
259
260         while (retry--) {
261                 /* wait for a response */
262                 usleep(AVP_REQUEST_DELAY_USECS);
263
264                 count = avp_fifo_count(avp->resp_q);
265                 if (count >= 1) {
266                         /* response received */
267                         break;
268                 }
269
270                 if (retry == 0) {
271                         PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n",
272                                     request->req_id);
273                         ret = -ETIME;
274                         goto done;
275                 }
276         }
277
278         /* retrieve the response */
279         count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1);
280         if ((count != 1) || (resp_addr != avp->host_sync_addr)) {
281                 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n",
282                             count, resp_addr, avp->host_sync_addr);
283                 ret = -ENODATA;
284                 goto done;
285         }
286
287         /* copy to user buffer */
288         rte_memcpy(request, avp->sync_addr, sizeof(*request));
289         ret = 0;
290
291         PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n",
292                     request->result, request->req_id);
293
294 done:
295         return ret;
296 }
297
298 static int
299 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state)
300 {
301         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
302         struct rte_avp_request request;
303         int ret;
304
305         /* setup a link state change request */
306         memset(&request, 0, sizeof(request));
307         request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF;
308         request.if_up = state;
309
310         ret = avp_dev_process_request(avp, &request);
311
312         return ret == 0 ? request.result : ret;
313 }
314
315 static int
316 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev,
317                         struct rte_avp_device_config *config)
318 {
319         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
320         struct rte_avp_request request;
321         int ret;
322
323         /* setup a configure request */
324         memset(&request, 0, sizeof(request));
325         request.req_id = RTE_AVP_REQ_CFG_DEVICE;
326         memcpy(&request.config, config, sizeof(request.config));
327
328         ret = avp_dev_process_request(avp, &request);
329
330         return ret == 0 ? request.result : ret;
331 }
332
333 static int
334 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev)
335 {
336         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
337         struct rte_avp_request request;
338         int ret;
339
340         /* setup a shutdown request */
341         memset(&request, 0, sizeof(request));
342         request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE;
343
344         ret = avp_dev_process_request(avp, &request);
345
346         return ret == 0 ? request.result : ret;
347 }
348
349 /* translate from host mbuf virtual address to guest virtual address */
350 static inline void *
351 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address)
352 {
353         return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address,
354                                        (uintptr_t)avp->host_mbuf_addr),
355                            (uintptr_t)avp->mbuf_addr);
356 }
357
358 /* translate from host physical address to guest virtual address */
359 static void *
360 avp_dev_translate_address(struct rte_eth_dev *eth_dev,
361                           rte_iova_t host_phys_addr)
362 {
363         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
364         struct rte_mem_resource *resource;
365         struct rte_avp_memmap_info *info;
366         struct rte_avp_memmap *map;
367         off_t offset;
368         void *addr;
369         unsigned int i;
370
371         addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr;
372         resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR];
373         info = (struct rte_avp_memmap_info *)resource->addr;
374
375         offset = 0;
376         for (i = 0; i < info->nb_maps; i++) {
377                 /* search all segments looking for a matching address */
378                 map = &info->maps[i];
379
380                 if ((host_phys_addr >= map->phys_addr) &&
381                         (host_phys_addr < (map->phys_addr + map->length))) {
382                         /* address is within this segment */
383                         offset += (host_phys_addr - map->phys_addr);
384                         addr = RTE_PTR_ADD(addr, (uintptr_t)offset);
385
386                         PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n",
387                                     host_phys_addr, addr);
388
389                         return addr;
390                 }
391                 offset += map->length;
392         }
393
394         return NULL;
395 }
396
397 /* verify that the incoming device version is compatible with our version */
398 static int
399 avp_dev_version_check(uint32_t version)
400 {
401         uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION);
402         uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version);
403
404         if (device <= driver) {
405                 /* the host driver version is less than or equal to ours */
406                 return 0;
407         }
408
409         return 1;
410 }
411
412 /* verify that memory regions have expected version and validation markers */
413 static int
414 avp_dev_check_regions(struct rte_eth_dev *eth_dev)
415 {
416         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
417         struct rte_avp_memmap_info *memmap;
418         struct rte_avp_device_info *info;
419         struct rte_mem_resource *resource;
420         unsigned int i;
421
422         /* Dump resource info for debug */
423         for (i = 0; i < PCI_MAX_RESOURCE; i++) {
424                 resource = &pci_dev->mem_resource[i];
425                 if ((resource->phys_addr == 0) || (resource->len == 0))
426                         continue;
427
428                 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n",
429                             i, resource->phys_addr,
430                             resource->len, resource->addr);
431
432                 switch (i) {
433                 case RTE_AVP_PCI_MEMMAP_BAR:
434                         memmap = (struct rte_avp_memmap_info *)resource->addr;
435                         if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) ||
436                             (memmap->version != RTE_AVP_MEMMAP_VERSION)) {
437                                 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n",
438                                             memmap->magic, memmap->version);
439                                 return -EINVAL;
440                         }
441                         break;
442
443                 case RTE_AVP_PCI_DEVICE_BAR:
444                         info = (struct rte_avp_device_info *)resource->addr;
445                         if ((info->magic != RTE_AVP_DEVICE_MAGIC) ||
446                             avp_dev_version_check(info->version)) {
447                                 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n",
448                                             info->magic, info->version,
449                                             AVP_DPDK_DRIVER_VERSION);
450                                 return -EINVAL;
451                         }
452                         break;
453
454                 case RTE_AVP_PCI_MEMORY_BAR:
455                 case RTE_AVP_PCI_MMIO_BAR:
456                         if (resource->addr == NULL) {
457                                 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n",
458                                             i);
459                                 return -EINVAL;
460                         }
461                         break;
462
463                 case RTE_AVP_PCI_MSIX_BAR:
464                 default:
465                         /* no validation required */
466                         break;
467                 }
468         }
469
470         return 0;
471 }
472
473 static int
474 avp_dev_detach(struct rte_eth_dev *eth_dev)
475 {
476         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
477         int ret;
478
479         PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n",
480                     eth_dev->data->port_id, avp->device_id);
481
482         rte_spinlock_lock(&avp->lock);
483
484         if (avp->flags & AVP_F_DETACHED) {
485                 PMD_DRV_LOG(NOTICE, "port %u already detached\n",
486                             eth_dev->data->port_id);
487                 ret = 0;
488                 goto unlock;
489         }
490
491         /* shutdown the device first so the host stops sending us packets. */
492         ret = avp_dev_ctrl_shutdown(eth_dev);
493         if (ret < 0) {
494                 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n",
495                             ret);
496                 avp->flags &= ~AVP_F_DETACHED;
497                 goto unlock;
498         }
499
500         avp->flags |= AVP_F_DETACHED;
501         rte_wmb();
502
503         /* wait for queues to acknowledge the presence of the detach flag */
504         rte_delay_ms(1);
505
506         ret = 0;
507
508 unlock:
509         rte_spinlock_unlock(&avp->lock);
510         return ret;
511 }
512
513 static void
514 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
515 {
516         struct avp_dev *avp =
517                 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
518         struct avp_queue *rxq;
519         uint16_t queue_count;
520         uint16_t remainder;
521
522         rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id];
523
524         /*
525          * Must map all AVP fifos as evenly as possible between the configured
526          * device queues.  Each device queue will service a subset of the AVP
527          * fifos. If there is an odd number of device queues the first set of
528          * device queues will get the extra AVP fifos.
529          */
530         queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues;
531         remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues;
532         if (rx_queue_id < remainder) {
533                 /* these queues must service one extra FIFO */
534                 rxq->queue_base = rx_queue_id * (queue_count + 1);
535                 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1;
536         } else {
537                 /* these queues service the regular number of FIFO */
538                 rxq->queue_base = ((remainder * (queue_count + 1)) +
539                                    ((rx_queue_id - remainder) * queue_count));
540                 rxq->queue_limit = rxq->queue_base + queue_count - 1;
541         }
542
543         PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n",
544                     rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit);
545
546         rxq->queue_id = rxq->queue_base;
547 }
548
549 static void
550 _avp_set_queue_counts(struct rte_eth_dev *eth_dev)
551 {
552         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
553         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
554         struct rte_avp_device_info *host_info;
555         void *addr;
556
557         addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
558         host_info = (struct rte_avp_device_info *)addr;
559
560         /*
561          * the transmit direction is not negotiated beyond respecting the max
562          * number of queues because the host can handle arbitrary guest tx
563          * queues (host rx queues).
564          */
565         avp->num_tx_queues = eth_dev->data->nb_tx_queues;
566
567         /*
568          * the receive direction is more restrictive.  The host requires a
569          * minimum number of guest rx queues (host tx queues) therefore
570          * negotiate a value that is at least as large as the host minimum
571          * requirement.  If the host and guest values are not identical then a
572          * mapping will be established in the receive_queue_setup function.
573          */
574         avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues,
575                                      eth_dev->data->nb_rx_queues);
576
577         PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n",
578                     avp->num_tx_queues, avp->num_rx_queues);
579 }
580
581 static int
582 avp_dev_attach(struct rte_eth_dev *eth_dev)
583 {
584         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
585         struct rte_avp_device_config config;
586         unsigned int i;
587         int ret;
588
589         PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n",
590                     eth_dev->data->port_id, avp->device_id);
591
592         rte_spinlock_lock(&avp->lock);
593
594         if (!(avp->flags & AVP_F_DETACHED)) {
595                 PMD_DRV_LOG(NOTICE, "port %u already attached\n",
596                             eth_dev->data->port_id);
597                 ret = 0;
598                 goto unlock;
599         }
600
601         /*
602          * make sure that the detached flag is set prior to reconfiguring the
603          * queues.
604          */
605         avp->flags |= AVP_F_DETACHED;
606         rte_wmb();
607
608         /*
609          * re-run the device create utility which will parse the new host info
610          * and setup the AVP device queue pointers.
611          */
612         ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev);
613         if (ret < 0) {
614                 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n",
615                             ret);
616                 goto unlock;
617         }
618
619         if (avp->flags & AVP_F_CONFIGURED) {
620                 /*
621                  * Update the receive queue mapping to handle cases where the
622                  * source and destination hosts have different queue
623                  * requirements.  As long as the DETACHED flag is asserted the
624                  * queue table should not be referenced so it should be safe to
625                  * update it.
626                  */
627                 _avp_set_queue_counts(eth_dev);
628                 for (i = 0; i < eth_dev->data->nb_rx_queues; i++)
629                         _avp_set_rx_queue_mappings(eth_dev, i);
630
631                 /*
632                  * Update the host with our config details so that it knows the
633                  * device is active.
634                  */
635                 memset(&config, 0, sizeof(config));
636                 config.device_id = avp->device_id;
637                 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
638                 config.driver_version = AVP_DPDK_DRIVER_VERSION;
639                 config.features = avp->features;
640                 config.num_tx_queues = avp->num_tx_queues;
641                 config.num_rx_queues = avp->num_rx_queues;
642                 config.if_up = !!(avp->flags & AVP_F_LINKUP);
643
644                 ret = avp_dev_ctrl_set_config(eth_dev, &config);
645                 if (ret < 0) {
646                         PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
647                                     ret);
648                         goto unlock;
649                 }
650         }
651
652         rte_wmb();
653         avp->flags &= ~AVP_F_DETACHED;
654
655         ret = 0;
656
657 unlock:
658         rte_spinlock_unlock(&avp->lock);
659         return ret;
660 }
661
662 static void
663 avp_dev_interrupt_handler(void *data)
664 {
665         struct rte_eth_dev *eth_dev = data;
666         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
667         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
668         uint32_t status, value;
669         int ret;
670
671         if (registers == NULL)
672                 rte_panic("no mapped MMIO register space\n");
673
674         /* read the interrupt status register
675          * note: this register clears on read so all raised interrupts must be
676          *    handled or remembered for later processing
677          */
678         status = AVP_READ32(
679                 RTE_PTR_ADD(registers,
680                             RTE_AVP_INTERRUPT_STATUS_OFFSET));
681
682         if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) {
683                 /* handle interrupt based on current status */
684                 value = AVP_READ32(
685                         RTE_PTR_ADD(registers,
686                                     RTE_AVP_MIGRATION_STATUS_OFFSET));
687                 switch (value) {
688                 case RTE_AVP_MIGRATION_DETACHED:
689                         ret = avp_dev_detach(eth_dev);
690                         break;
691                 case RTE_AVP_MIGRATION_ATTACHED:
692                         ret = avp_dev_attach(eth_dev);
693                         break;
694                 default:
695                         PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n",
696                                     value);
697                         ret = -EINVAL;
698                 }
699
700                 /* acknowledge the request by writing out our current status */
701                 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR);
702                 AVP_WRITE32(value,
703                             RTE_PTR_ADD(registers,
704                                         RTE_AVP_MIGRATION_ACK_OFFSET));
705
706                 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n");
707         }
708
709         if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK)
710                 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n",
711                             status);
712
713         /* re-enable UIO interrupt handling */
714         ret = rte_intr_ack(&pci_dev->intr_handle);
715         if (ret < 0) {
716                 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n",
717                             ret);
718                 /* continue */
719         }
720 }
721
722 static int
723 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev)
724 {
725         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
726         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
727         int ret;
728
729         if (registers == NULL)
730                 return -EINVAL;
731
732         /* enable UIO interrupt handling */
733         ret = rte_intr_enable(&pci_dev->intr_handle);
734         if (ret < 0) {
735                 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n",
736                             ret);
737                 return ret;
738         }
739
740         /* inform the device that all interrupts are enabled */
741         AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK,
742                     RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
743
744         return 0;
745 }
746
747 static int
748 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev)
749 {
750         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
751         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
752         int ret;
753
754         if (registers == NULL)
755                 return 0;
756
757         /* inform the device that all interrupts are disabled */
758         AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK,
759                     RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
760
761         /* enable UIO interrupt handling */
762         ret = rte_intr_disable(&pci_dev->intr_handle);
763         if (ret < 0) {
764                 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n",
765                             ret);
766                 return ret;
767         }
768
769         return 0;
770 }
771
772 static int
773 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev)
774 {
775         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
776         int ret;
777
778         /* register a callback handler with UIO for interrupt notifications */
779         ret = rte_intr_callback_register(&pci_dev->intr_handle,
780                                          avp_dev_interrupt_handler,
781                                          (void *)eth_dev);
782         if (ret < 0) {
783                 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n",
784                             ret);
785                 return ret;
786         }
787
788         /* enable interrupt processing */
789         return avp_dev_enable_interrupts(eth_dev);
790 }
791
792 static int
793 avp_dev_migration_pending(struct rte_eth_dev *eth_dev)
794 {
795         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
796         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
797         uint32_t value;
798
799         if (registers == NULL)
800                 return 0;
801
802         value = AVP_READ32(RTE_PTR_ADD(registers,
803                                        RTE_AVP_MIGRATION_STATUS_OFFSET));
804         if (value == RTE_AVP_MIGRATION_DETACHED) {
805                 /* migration is in progress; ack it if we have not already */
806                 AVP_WRITE32(value,
807                             RTE_PTR_ADD(registers,
808                                         RTE_AVP_MIGRATION_ACK_OFFSET));
809                 return 1;
810         }
811         return 0;
812 }
813
814 /*
815  * create a AVP device using the supplied device info by first translating it
816  * to guest address space(s).
817  */
818 static int
819 avp_dev_create(struct rte_pci_device *pci_dev,
820                struct rte_eth_dev *eth_dev)
821 {
822         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
823         struct rte_avp_device_info *host_info;
824         struct rte_mem_resource *resource;
825         unsigned int i;
826
827         resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR];
828         if (resource->addr == NULL) {
829                 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n",
830                             RTE_AVP_PCI_DEVICE_BAR);
831                 return -EFAULT;
832         }
833         host_info = (struct rte_avp_device_info *)resource->addr;
834
835         if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) ||
836                 avp_dev_version_check(host_info->version)) {
837                 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n",
838                             host_info->magic, host_info->version,
839                             AVP_DPDK_DRIVER_VERSION);
840                 return -EINVAL;
841         }
842
843         PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n",
844                     RTE_AVP_GET_RELEASE_VERSION(host_info->version),
845                     RTE_AVP_GET_MAJOR_VERSION(host_info->version),
846                     RTE_AVP_GET_MINOR_VERSION(host_info->version));
847
848         PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n",
849                     host_info->min_tx_queues, host_info->max_tx_queues);
850         PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n",
851                     host_info->min_rx_queues, host_info->max_rx_queues);
852         PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n",
853                     host_info->features);
854
855         if (avp->magic != AVP_ETHDEV_MAGIC) {
856                 /*
857                  * First time initialization (i.e., not during a VM
858                  * migration)
859                  */
860                 memset(avp, 0, sizeof(*avp));
861                 avp->magic = AVP_ETHDEV_MAGIC;
862                 avp->dev_data = eth_dev->data;
863                 avp->port_id = eth_dev->data->port_id;
864                 avp->host_mbuf_size = host_info->mbuf_size;
865                 avp->host_features = host_info->features;
866                 rte_spinlock_init(&avp->lock);
867                 memcpy(&avp->ethaddr.addr_bytes[0],
868                        host_info->ethaddr, RTE_ETHER_ADDR_LEN);
869                 /* adjust max values to not exceed our max */
870                 avp->max_tx_queues =
871                         RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES);
872                 avp->max_rx_queues =
873                         RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES);
874         } else {
875                 /* Re-attaching during migration */
876
877                 /* TODO... requires validation of host values */
878                 if ((host_info->features & avp->features) != avp->features) {
879                         PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n",
880                                     avp->features, host_info->features);
881                         /* this should not be possible; continue for now */
882                 }
883         }
884
885         /* the device id is allowed to change over migrations */
886         avp->device_id = host_info->device_id;
887
888         /* translate incoming host addresses to guest address space */
889         PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n",
890                     host_info->tx_phys);
891         PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n",
892                     host_info->alloc_phys);
893         for (i = 0; i < avp->max_tx_queues; i++) {
894                 avp->tx_q[i] = avp_dev_translate_address(eth_dev,
895                         host_info->tx_phys + (i * host_info->tx_size));
896
897                 avp->alloc_q[i] = avp_dev_translate_address(eth_dev,
898                         host_info->alloc_phys + (i * host_info->alloc_size));
899         }
900
901         PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n",
902                     host_info->rx_phys);
903         PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n",
904                     host_info->free_phys);
905         for (i = 0; i < avp->max_rx_queues; i++) {
906                 avp->rx_q[i] = avp_dev_translate_address(eth_dev,
907                         host_info->rx_phys + (i * host_info->rx_size));
908                 avp->free_q[i] = avp_dev_translate_address(eth_dev,
909                         host_info->free_phys + (i * host_info->free_size));
910         }
911
912         PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n",
913                     host_info->req_phys);
914         PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n",
915                     host_info->resp_phys);
916         PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n",
917                     host_info->sync_phys);
918         PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n",
919                     host_info->mbuf_phys);
920         avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys);
921         avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys);
922         avp->sync_addr =
923                 avp_dev_translate_address(eth_dev, host_info->sync_phys);
924         avp->mbuf_addr =
925                 avp_dev_translate_address(eth_dev, host_info->mbuf_phys);
926
927         /*
928          * store the host mbuf virtual address so that we can calculate
929          * relative offsets for each mbuf as they are processed
930          */
931         avp->host_mbuf_addr = host_info->mbuf_va;
932         avp->host_sync_addr = host_info->sync_va;
933
934         /*
935          * store the maximum packet length that is supported by the host.
936          */
937         avp->max_rx_pkt_len = host_info->max_rx_pkt_len;
938         PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n",
939                                 host_info->max_rx_pkt_len);
940
941         return 0;
942 }
943
944 /*
945  * This function is based on probe() function in avp_pci.c
946  * It returns 0 on success.
947  */
948 static int
949 eth_avp_dev_init(struct rte_eth_dev *eth_dev)
950 {
951         struct avp_dev *avp =
952                 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
953         struct rte_pci_device *pci_dev;
954         int ret;
955
956         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
957         eth_dev->dev_ops = &avp_eth_dev_ops;
958         eth_dev->rx_pkt_burst = &avp_recv_pkts;
959         eth_dev->tx_pkt_burst = &avp_xmit_pkts;
960
961         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
962                 /*
963                  * no setup required on secondary processes.  All data is saved
964                  * in dev_private by the primary process. All resource should
965                  * be mapped to the same virtual address so all pointers should
966                  * be valid.
967                  */
968                 if (eth_dev->data->scattered_rx) {
969                         PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
970                         eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
971                         eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
972                 }
973                 return 0;
974         }
975
976         rte_eth_copy_pci_info(eth_dev, pci_dev);
977         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
978
979         /* Check current migration status */
980         if (avp_dev_migration_pending(eth_dev)) {
981                 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n");
982                 return -EBUSY;
983         }
984
985         /* Check BAR resources */
986         ret = avp_dev_check_regions(eth_dev);
987         if (ret < 0) {
988                 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n",
989                             ret);
990                 return ret;
991         }
992
993         /* Enable interrupts */
994         ret = avp_dev_setup_interrupts(eth_dev);
995         if (ret < 0) {
996                 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret);
997                 return ret;
998         }
999
1000         /* Handle each subtype */
1001         ret = avp_dev_create(pci_dev, eth_dev);
1002         if (ret < 0) {
1003                 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret);
1004                 return ret;
1005         }
1006
1007         /* Allocate memory for storing MAC addresses */
1008         eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev",
1009                                         RTE_ETHER_ADDR_LEN, 0);
1010         if (eth_dev->data->mac_addrs == NULL) {
1011                 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n",
1012                             RTE_ETHER_ADDR_LEN);
1013                 return -ENOMEM;
1014         }
1015
1016         /* Get a mac from device config */
1017         rte_ether_addr_copy(&avp->ethaddr, &eth_dev->data->mac_addrs[0]);
1018
1019         return 0;
1020 }
1021
1022 static int
1023 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev)
1024 {
1025         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1026                 return -EPERM;
1027
1028         if (eth_dev->data == NULL)
1029                 return 0;
1030
1031         avp_dev_close(eth_dev);
1032
1033         return 0;
1034 }
1035
1036 static int
1037 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1038                   struct rte_pci_device *pci_dev)
1039 {
1040         return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct avp_adapter),
1041                         eth_avp_dev_init);
1042 }
1043
1044 static int
1045 eth_avp_pci_remove(struct rte_pci_device *pci_dev)
1046 {
1047         return rte_eth_dev_pci_generic_remove(pci_dev,
1048                                               eth_avp_dev_uninit);
1049 }
1050
1051 static struct rte_pci_driver rte_avp_pmd = {
1052         .id_table = pci_id_avp_map,
1053         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1054         .probe = eth_avp_pci_probe,
1055         .remove = eth_avp_pci_remove,
1056 };
1057
1058 static int
1059 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev,
1060                          struct avp_dev *avp)
1061 {
1062         unsigned int max_rx_pkt_len;
1063
1064         max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1065
1066         if ((max_rx_pkt_len > avp->guest_mbuf_size) ||
1067             (max_rx_pkt_len > avp->host_mbuf_size)) {
1068                 /*
1069                  * If the guest MTU is greater than either the host or guest
1070                  * buffers then chained mbufs have to be enabled in the TX
1071                  * direction.  It is assumed that the application will not need
1072                  * to send packets larger than their max_rx_pkt_len (MRU).
1073                  */
1074                 return 1;
1075         }
1076
1077         if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) ||
1078             (avp->max_rx_pkt_len > avp->host_mbuf_size)) {
1079                 /*
1080                  * If the host MRU is greater than its own mbuf size or the
1081                  * guest mbuf size then chained mbufs have to be enabled in the
1082                  * RX direction.
1083                  */
1084                 return 1;
1085         }
1086
1087         return 0;
1088 }
1089
1090 static int
1091 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
1092                        uint16_t rx_queue_id,
1093                        uint16_t nb_rx_desc,
1094                        unsigned int socket_id,
1095                        const struct rte_eth_rxconf *rx_conf,
1096                        struct rte_mempool *pool)
1097 {
1098         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1099         struct rte_pktmbuf_pool_private *mbp_priv;
1100         struct avp_queue *rxq;
1101
1102         if (rx_queue_id >= eth_dev->data->nb_rx_queues) {
1103                 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n",
1104                             rx_queue_id, eth_dev->data->nb_rx_queues);
1105                 return -EINVAL;
1106         }
1107
1108         /* Save mbuf pool pointer */
1109         avp->pool = pool;
1110
1111         /* Save the local mbuf size */
1112         mbp_priv = rte_mempool_get_priv(pool);
1113         avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size);
1114         avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM;
1115
1116         if (avp_dev_enable_scattered(eth_dev, avp)) {
1117                 if (!eth_dev->data->scattered_rx) {
1118                         PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
1119                         eth_dev->data->scattered_rx = 1;
1120                         eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
1121                         eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
1122                 }
1123         }
1124
1125         PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n",
1126                     avp->max_rx_pkt_len,
1127                     eth_dev->data->dev_conf.rxmode.max_rx_pkt_len,
1128                     avp->host_mbuf_size,
1129                     avp->guest_mbuf_size);
1130
1131         /* allocate a queue object */
1132         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue),
1133                                  RTE_CACHE_LINE_SIZE, socket_id);
1134         if (rxq == NULL) {
1135                 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n");
1136                 return -ENOMEM;
1137         }
1138
1139         /* save back pointers to AVP and Ethernet devices */
1140         rxq->avp = avp;
1141         rxq->dev_data = eth_dev->data;
1142         eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq;
1143
1144         /* setup the queue receive mapping for the current queue. */
1145         _avp_set_rx_queue_mappings(eth_dev, rx_queue_id);
1146
1147         PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq);
1148
1149         (void)nb_rx_desc;
1150         (void)rx_conf;
1151         return 0;
1152 }
1153
1154 static int
1155 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
1156                        uint16_t tx_queue_id,
1157                        uint16_t nb_tx_desc,
1158                        unsigned int socket_id,
1159                        const struct rte_eth_txconf *tx_conf)
1160 {
1161         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1162         struct avp_queue *txq;
1163
1164         if (tx_queue_id >= eth_dev->data->nb_tx_queues) {
1165                 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n",
1166                             tx_queue_id, eth_dev->data->nb_tx_queues);
1167                 return -EINVAL;
1168         }
1169
1170         /* allocate a queue object */
1171         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue),
1172                                  RTE_CACHE_LINE_SIZE, socket_id);
1173         if (txq == NULL) {
1174                 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n");
1175                 return -ENOMEM;
1176         }
1177
1178         /* only the configured set of transmit queues are used */
1179         txq->queue_id = tx_queue_id;
1180         txq->queue_base = tx_queue_id;
1181         txq->queue_limit = tx_queue_id;
1182
1183         /* save back pointers to AVP and Ethernet devices */
1184         txq->avp = avp;
1185         txq->dev_data = eth_dev->data;
1186         eth_dev->data->tx_queues[tx_queue_id] = (void *)txq;
1187
1188         PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq);
1189
1190         (void)nb_tx_desc;
1191         (void)tx_conf;
1192         return 0;
1193 }
1194
1195 static inline int
1196 _avp_cmp_ether_addr(struct rte_ether_addr *a, struct rte_ether_addr *b)
1197 {
1198         uint16_t *_a = (uint16_t *)&a->addr_bytes[0];
1199         uint16_t *_b = (uint16_t *)&b->addr_bytes[0];
1200         return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]);
1201 }
1202
1203 static inline int
1204 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m)
1205 {
1206         struct rte_ether_hdr *eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1207
1208         if (likely(_avp_cmp_ether_addr(&avp->ethaddr, &eth->dst_addr) == 0)) {
1209                 /* allow all packets destined to our address */
1210                 return 0;
1211         }
1212
1213         if (likely(rte_is_broadcast_ether_addr(&eth->dst_addr))) {
1214                 /* allow all broadcast packets */
1215                 return 0;
1216         }
1217
1218         if (likely(rte_is_multicast_ether_addr(&eth->dst_addr))) {
1219                 /* allow all multicast packets */
1220                 return 0;
1221         }
1222
1223         if (avp->flags & AVP_F_PROMISC) {
1224                 /* allow all packets when in promiscuous mode */
1225                 return 0;
1226         }
1227
1228         return -1;
1229 }
1230
1231 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1232 static inline void
1233 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf)
1234 {
1235         struct rte_avp_desc *first_buf;
1236         struct rte_avp_desc *pkt_buf;
1237         unsigned int pkt_len;
1238         unsigned int nb_segs;
1239         void *pkt_data;
1240         unsigned int i;
1241
1242         first_buf = avp_dev_translate_buffer(avp, buf);
1243
1244         i = 0;
1245         pkt_len = 0;
1246         nb_segs = first_buf->nb_segs;
1247         do {
1248                 /* Adjust pointers for guest addressing */
1249                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1250                 if (pkt_buf == NULL)
1251                         rte_panic("bad buffer: segment %u has an invalid address %p\n",
1252                                   i, buf);
1253                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1254                 if (pkt_data == NULL)
1255                         rte_panic("bad buffer: segment %u has a NULL data pointer\n",
1256                                   i);
1257                 if (pkt_buf->data_len == 0)
1258                         rte_panic("bad buffer: segment %u has 0 data length\n",
1259                                   i);
1260                 pkt_len += pkt_buf->data_len;
1261                 nb_segs--;
1262                 i++;
1263
1264         } while (nb_segs && (buf = pkt_buf->next) != NULL);
1265
1266         if (nb_segs != 0)
1267                 rte_panic("bad buffer: expected %u segments found %u\n",
1268                           first_buf->nb_segs, (first_buf->nb_segs - nb_segs));
1269         if (pkt_len != first_buf->pkt_len)
1270                 rte_panic("bad buffer: expected length %u found %u\n",
1271                           first_buf->pkt_len, pkt_len);
1272 }
1273
1274 #define avp_dev_buffer_sanity_check(a, b) \
1275         __avp_dev_buffer_sanity_check((a), (b))
1276
1277 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */
1278
1279 #define avp_dev_buffer_sanity_check(a, b) do {} while (0)
1280
1281 #endif
1282
1283 /*
1284  * Copy a host buffer chain to a set of mbufs.  This function assumes that
1285  * there exactly the required number of mbufs to copy all source bytes.
1286  */
1287 static inline struct rte_mbuf *
1288 avp_dev_copy_from_buffers(struct avp_dev *avp,
1289                           struct rte_avp_desc *buf,
1290                           struct rte_mbuf **mbufs,
1291                           unsigned int count)
1292 {
1293         struct rte_mbuf *m_previous = NULL;
1294         struct rte_avp_desc *pkt_buf;
1295         unsigned int total_length = 0;
1296         unsigned int copy_length;
1297         unsigned int src_offset;
1298         struct rte_mbuf *m;
1299         uint16_t ol_flags;
1300         uint16_t vlan_tci;
1301         void *pkt_data;
1302         unsigned int i;
1303
1304         avp_dev_buffer_sanity_check(avp, buf);
1305
1306         /* setup the first source buffer */
1307         pkt_buf = avp_dev_translate_buffer(avp, buf);
1308         pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1309         total_length = pkt_buf->pkt_len;
1310         src_offset = 0;
1311
1312         if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1313                 ol_flags = PKT_RX_VLAN;
1314                 vlan_tci = pkt_buf->vlan_tci;
1315         } else {
1316                 ol_flags = 0;
1317                 vlan_tci = 0;
1318         }
1319
1320         for (i = 0; (i < count) && (buf != NULL); i++) {
1321                 /* fill each destination buffer */
1322                 m = mbufs[i];
1323
1324                 if (m_previous != NULL)
1325                         m_previous->next = m;
1326
1327                 m_previous = m;
1328
1329                 do {
1330                         /*
1331                          * Copy as many source buffers as will fit in the
1332                          * destination buffer.
1333                          */
1334                         copy_length = RTE_MIN((avp->guest_mbuf_size -
1335                                                rte_pktmbuf_data_len(m)),
1336                                               (pkt_buf->data_len -
1337                                                src_offset));
1338                         rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1339                                                rte_pktmbuf_data_len(m)),
1340                                    RTE_PTR_ADD(pkt_data, src_offset),
1341                                    copy_length);
1342                         rte_pktmbuf_data_len(m) += copy_length;
1343                         src_offset += copy_length;
1344
1345                         if (likely(src_offset == pkt_buf->data_len)) {
1346                                 /* need a new source buffer */
1347                                 buf = pkt_buf->next;
1348                                 if (buf != NULL) {
1349                                         pkt_buf = avp_dev_translate_buffer(
1350                                                 avp, buf);
1351                                         pkt_data = avp_dev_translate_buffer(
1352                                                 avp, pkt_buf->data);
1353                                         src_offset = 0;
1354                                 }
1355                         }
1356
1357                         if (unlikely(rte_pktmbuf_data_len(m) ==
1358                                      avp->guest_mbuf_size)) {
1359                                 /* need a new destination mbuf */
1360                                 break;
1361                         }
1362
1363                 } while (buf != NULL);
1364         }
1365
1366         m = mbufs[0];
1367         m->ol_flags = ol_flags;
1368         m->nb_segs = count;
1369         rte_pktmbuf_pkt_len(m) = total_length;
1370         m->vlan_tci = vlan_tci;
1371
1372         __rte_mbuf_sanity_check(m, 1);
1373
1374         return m;
1375 }
1376
1377 static uint16_t
1378 avp_recv_scattered_pkts(void *rx_queue,
1379                         struct rte_mbuf **rx_pkts,
1380                         uint16_t nb_pkts)
1381 {
1382         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1383         struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1384         struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS];
1385         struct avp_dev *avp = rxq->avp;
1386         struct rte_avp_desc *pkt_buf;
1387         struct rte_avp_fifo *free_q;
1388         struct rte_avp_fifo *rx_q;
1389         struct rte_avp_desc *buf;
1390         unsigned int count, avail, n;
1391         unsigned int guest_mbuf_size;
1392         struct rte_mbuf *m;
1393         unsigned int required;
1394         unsigned int buf_len;
1395         unsigned int port_id;
1396         unsigned int i;
1397
1398         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1399                 /* VM live migration in progress */
1400                 return 0;
1401         }
1402
1403         guest_mbuf_size = avp->guest_mbuf_size;
1404         port_id = avp->port_id;
1405         rx_q = avp->rx_q[rxq->queue_id];
1406         free_q = avp->free_q[rxq->queue_id];
1407
1408         /* setup next queue to service */
1409         rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1410                 (rxq->queue_id + 1) : rxq->queue_base;
1411
1412         /* determine how many slots are available in the free queue */
1413         count = avp_fifo_free_count(free_q);
1414
1415         /* determine how many packets are available in the rx queue */
1416         avail = avp_fifo_count(rx_q);
1417
1418         /* determine how many packets can be received */
1419         count = RTE_MIN(count, avail);
1420         count = RTE_MIN(count, nb_pkts);
1421         count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1422
1423         if (unlikely(count == 0)) {
1424                 /* no free buffers, or no buffers on the rx queue */
1425                 return 0;
1426         }
1427
1428         /* retrieve pending packets */
1429         n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1430         PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1431                    count, rx_q);
1432
1433         count = 0;
1434         for (i = 0; i < n; i++) {
1435                 /* prefetch next entry while processing current one */
1436                 if (i + 1 < n) {
1437                         pkt_buf = avp_dev_translate_buffer(avp,
1438                                                            avp_bufs[i + 1]);
1439                         rte_prefetch0(pkt_buf);
1440                 }
1441                 buf = avp_bufs[i];
1442
1443                 /* Peek into the first buffer to determine the total length */
1444                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1445                 buf_len = pkt_buf->pkt_len;
1446
1447                 /* Allocate enough mbufs to receive the entire packet */
1448                 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size;
1449                 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) {
1450                         rxq->dev_data->rx_mbuf_alloc_failed++;
1451                         continue;
1452                 }
1453
1454                 /* Copy the data from the buffers to our mbufs */
1455                 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required);
1456
1457                 /* finalize mbuf */
1458                 m->port = port_id;
1459
1460                 if (_avp_mac_filter(avp, m) != 0) {
1461                         /* silently discard packets not destined to our MAC */
1462                         rte_pktmbuf_free(m);
1463                         continue;
1464                 }
1465
1466                 /* return new mbuf to caller */
1467                 rx_pkts[count++] = m;
1468                 rxq->bytes += buf_len;
1469         }
1470
1471         rxq->packets += count;
1472
1473         /* return the buffers to the free queue */
1474         avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1475
1476         return count;
1477 }
1478
1479
1480 static uint16_t
1481 avp_recv_pkts(void *rx_queue,
1482               struct rte_mbuf **rx_pkts,
1483               uint16_t nb_pkts)
1484 {
1485         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1486         struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1487         struct avp_dev *avp = rxq->avp;
1488         struct rte_avp_desc *pkt_buf;
1489         struct rte_avp_fifo *free_q;
1490         struct rte_avp_fifo *rx_q;
1491         unsigned int count, avail, n;
1492         unsigned int pkt_len;
1493         struct rte_mbuf *m;
1494         char *pkt_data;
1495         unsigned int i;
1496
1497         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1498                 /* VM live migration in progress */
1499                 return 0;
1500         }
1501
1502         rx_q = avp->rx_q[rxq->queue_id];
1503         free_q = avp->free_q[rxq->queue_id];
1504
1505         /* setup next queue to service */
1506         rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1507                 (rxq->queue_id + 1) : rxq->queue_base;
1508
1509         /* determine how many slots are available in the free queue */
1510         count = avp_fifo_free_count(free_q);
1511
1512         /* determine how many packets are available in the rx queue */
1513         avail = avp_fifo_count(rx_q);
1514
1515         /* determine how many packets can be received */
1516         count = RTE_MIN(count, avail);
1517         count = RTE_MIN(count, nb_pkts);
1518         count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1519
1520         if (unlikely(count == 0)) {
1521                 /* no free buffers, or no buffers on the rx queue */
1522                 return 0;
1523         }
1524
1525         /* retrieve pending packets */
1526         n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1527         PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1528                    count, rx_q);
1529
1530         count = 0;
1531         for (i = 0; i < n; i++) {
1532                 /* prefetch next entry while processing current one */
1533                 if (i < n - 1) {
1534                         pkt_buf = avp_dev_translate_buffer(avp,
1535                                                            avp_bufs[i + 1]);
1536                         rte_prefetch0(pkt_buf);
1537                 }
1538
1539                 /* Adjust host pointers for guest addressing */
1540                 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1541                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1542                 pkt_len = pkt_buf->pkt_len;
1543
1544                 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1545                              (pkt_buf->nb_segs > 1))) {
1546                         /*
1547                          * application should be using the scattered receive
1548                          * function
1549                          */
1550                         rxq->errors++;
1551                         continue;
1552                 }
1553
1554                 /* process each packet to be transmitted */
1555                 m = rte_pktmbuf_alloc(avp->pool);
1556                 if (unlikely(m == NULL)) {
1557                         rxq->dev_data->rx_mbuf_alloc_failed++;
1558                         continue;
1559                 }
1560
1561                 /* copy data out of the host buffer to our buffer */
1562                 m->data_off = RTE_PKTMBUF_HEADROOM;
1563                 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len);
1564
1565                 /* initialize the local mbuf */
1566                 rte_pktmbuf_data_len(m) = pkt_len;
1567                 rte_pktmbuf_pkt_len(m) = pkt_len;
1568                 m->port = avp->port_id;
1569
1570                 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1571                         m->ol_flags = PKT_RX_VLAN;
1572                         m->vlan_tci = pkt_buf->vlan_tci;
1573                 }
1574
1575                 if (_avp_mac_filter(avp, m) != 0) {
1576                         /* silently discard packets not destined to our MAC */
1577                         rte_pktmbuf_free(m);
1578                         continue;
1579                 }
1580
1581                 /* return new mbuf to caller */
1582                 rx_pkts[count++] = m;
1583                 rxq->bytes += pkt_len;
1584         }
1585
1586         rxq->packets += count;
1587
1588         /* return the buffers to the free queue */
1589         avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1590
1591         return count;
1592 }
1593
1594 /*
1595  * Copy a chained mbuf to a set of host buffers.  This function assumes that
1596  * there are sufficient destination buffers to contain the entire source
1597  * packet.
1598  */
1599 static inline uint16_t
1600 avp_dev_copy_to_buffers(struct avp_dev *avp,
1601                         struct rte_mbuf *mbuf,
1602                         struct rte_avp_desc **buffers,
1603                         unsigned int count)
1604 {
1605         struct rte_avp_desc *previous_buf = NULL;
1606         struct rte_avp_desc *first_buf = NULL;
1607         struct rte_avp_desc *pkt_buf;
1608         struct rte_avp_desc *buf;
1609         size_t total_length;
1610         struct rte_mbuf *m;
1611         size_t copy_length;
1612         size_t src_offset;
1613         char *pkt_data;
1614         unsigned int i;
1615
1616         __rte_mbuf_sanity_check(mbuf, 1);
1617
1618         m = mbuf;
1619         src_offset = 0;
1620         total_length = rte_pktmbuf_pkt_len(m);
1621         for (i = 0; (i < count) && (m != NULL); i++) {
1622                 /* fill each destination buffer */
1623                 buf = buffers[i];
1624
1625                 if (i < count - 1) {
1626                         /* prefetch next entry while processing this one */
1627                         pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
1628                         rte_prefetch0(pkt_buf);
1629                 }
1630
1631                 /* Adjust pointers for guest addressing */
1632                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1633                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1634
1635                 /* setup the buffer chain */
1636                 if (previous_buf != NULL)
1637                         previous_buf->next = buf;
1638                 else
1639                         first_buf = pkt_buf;
1640
1641                 previous_buf = pkt_buf;
1642
1643                 do {
1644                         /*
1645                          * copy as many source mbuf segments as will fit in the
1646                          * destination buffer.
1647                          */
1648                         copy_length = RTE_MIN((avp->host_mbuf_size -
1649                                                pkt_buf->data_len),
1650                                               (rte_pktmbuf_data_len(m) -
1651                                                src_offset));
1652                         rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
1653                                    RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1654                                                src_offset),
1655                                    copy_length);
1656                         pkt_buf->data_len += copy_length;
1657                         src_offset += copy_length;
1658
1659                         if (likely(src_offset == rte_pktmbuf_data_len(m))) {
1660                                 /* need a new source buffer */
1661                                 m = m->next;
1662                                 src_offset = 0;
1663                         }
1664
1665                         if (unlikely(pkt_buf->data_len ==
1666                                      avp->host_mbuf_size)) {
1667                                 /* need a new destination buffer */
1668                                 break;
1669                         }
1670
1671                 } while (m != NULL);
1672         }
1673
1674         first_buf->nb_segs = count;
1675         first_buf->pkt_len = total_length;
1676
1677         if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1678                 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1679                 first_buf->vlan_tci = mbuf->vlan_tci;
1680         }
1681
1682         avp_dev_buffer_sanity_check(avp, buffers[0]);
1683
1684         return total_length;
1685 }
1686
1687
1688 static uint16_t
1689 avp_xmit_scattered_pkts(void *tx_queue,
1690                         struct rte_mbuf **tx_pkts,
1691                         uint16_t nb_pkts)
1692 {
1693         struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
1694                                        RTE_AVP_MAX_MBUF_SEGMENTS)] = {};
1695         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1696         struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
1697         struct avp_dev *avp = txq->avp;
1698         struct rte_avp_fifo *alloc_q;
1699         struct rte_avp_fifo *tx_q;
1700         unsigned int count, avail, n;
1701         unsigned int orig_nb_pkts;
1702         struct rte_mbuf *m;
1703         unsigned int required;
1704         unsigned int segments;
1705         unsigned int tx_bytes;
1706         unsigned int i;
1707
1708         orig_nb_pkts = nb_pkts;
1709         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1710                 /* VM live migration in progress */
1711                 /* TODO ... buffer for X packets then drop? */
1712                 txq->errors += nb_pkts;
1713                 return 0;
1714         }
1715
1716         tx_q = avp->tx_q[txq->queue_id];
1717         alloc_q = avp->alloc_q[txq->queue_id];
1718
1719         /* limit the number of transmitted packets to the max burst size */
1720         if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1721                 nb_pkts = AVP_MAX_TX_BURST;
1722
1723         /* determine how many buffers are available to copy into */
1724         avail = avp_fifo_count(alloc_q);
1725         if (unlikely(avail > (AVP_MAX_TX_BURST *
1726                               RTE_AVP_MAX_MBUF_SEGMENTS)))
1727                 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;
1728
1729         /* determine how many slots are available in the transmit queue */
1730         count = avp_fifo_free_count(tx_q);
1731
1732         /* determine how many packets can be sent */
1733         nb_pkts = RTE_MIN(count, nb_pkts);
1734
1735         /* determine how many packets will fit in the available buffers */
1736         count = 0;
1737         segments = 0;
1738         for (i = 0; i < nb_pkts; i++) {
1739                 m = tx_pkts[i];
1740                 if (likely(i < (unsigned int)nb_pkts - 1)) {
1741                         /* prefetch next entry while processing this one */
1742                         rte_prefetch0(tx_pkts[i + 1]);
1743                 }
1744                 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1745                         avp->host_mbuf_size;
1746
1747                 if (unlikely((required == 0) ||
1748                              (required > RTE_AVP_MAX_MBUF_SEGMENTS)))
1749                         break;
1750                 else if (unlikely(required + segments > avail))
1751                         break;
1752                 segments += required;
1753                 count++;
1754         }
1755         nb_pkts = count;
1756
1757         if (unlikely(nb_pkts == 0)) {
1758                 /* no available buffers, or no space on the tx queue */
1759                 txq->errors += orig_nb_pkts;
1760                 return 0;
1761         }
1762
1763         PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1764                    nb_pkts, tx_q);
1765
1766         /* retrieve sufficient send buffers */
1767         n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
1768         if (unlikely(n != segments)) {
1769                 PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
1770                            "n=%u, segments=%u, orig=%u\n",
1771                            n, segments, orig_nb_pkts);
1772                 txq->errors += orig_nb_pkts;
1773                 return 0;
1774         }
1775
1776         tx_bytes = 0;
1777         count = 0;
1778         for (i = 0; i < nb_pkts; i++) {
1779                 /* process each packet to be transmitted */
1780                 m = tx_pkts[i];
1781
1782                 /* determine how many buffers are required for this packet */
1783                 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1784                         avp->host_mbuf_size;
1785
1786                 tx_bytes += avp_dev_copy_to_buffers(avp, m,
1787                                                     &avp_bufs[count], required);
1788                 tx_bufs[i] = avp_bufs[count];
1789                 count += required;
1790
1791                 /* free the original mbuf */
1792                 rte_pktmbuf_free(m);
1793         }
1794
1795         txq->packets += nb_pkts;
1796         txq->bytes += tx_bytes;
1797
1798 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1799         for (i = 0; i < nb_pkts; i++)
1800                 avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
1801 #endif
1802
1803         /* send the packets */
1804         n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
1805         if (unlikely(n != orig_nb_pkts))
1806                 txq->errors += (orig_nb_pkts - n);
1807
1808         return n;
1809 }
1810
1811
1812 static uint16_t
1813 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1814 {
1815         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1816         struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
1817         struct avp_dev *avp = txq->avp;
1818         struct rte_avp_desc *pkt_buf;
1819         struct rte_avp_fifo *alloc_q;
1820         struct rte_avp_fifo *tx_q;
1821         unsigned int count, avail, n;
1822         struct rte_mbuf *m;
1823         unsigned int pkt_len;
1824         unsigned int tx_bytes;
1825         char *pkt_data;
1826         unsigned int i;
1827
1828         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1829                 /* VM live migration in progress */
1830                 /* TODO ... buffer for X packets then drop?! */
1831                 txq->errors++;
1832                 return 0;
1833         }
1834
1835         tx_q = avp->tx_q[txq->queue_id];
1836         alloc_q = avp->alloc_q[txq->queue_id];
1837
1838         /* limit the number of transmitted packets to the max burst size */
1839         if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1840                 nb_pkts = AVP_MAX_TX_BURST;
1841
1842         /* determine how many buffers are available to copy into */
1843         avail = avp_fifo_count(alloc_q);
1844
1845         /* determine how many slots are available in the transmit queue */
1846         count = avp_fifo_free_count(tx_q);
1847
1848         /* determine how many packets can be sent */
1849         count = RTE_MIN(count, avail);
1850         count = RTE_MIN(count, nb_pkts);
1851
1852         if (unlikely(count == 0)) {
1853                 /* no available buffers, or no space on the tx queue */
1854                 txq->errors += nb_pkts;
1855                 return 0;
1856         }
1857
1858         PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1859                    count, tx_q);
1860
1861         /* retrieve sufficient send buffers */
1862         n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
1863         if (unlikely(n != count)) {
1864                 txq->errors++;
1865                 return 0;
1866         }
1867
1868         tx_bytes = 0;
1869         for (i = 0; i < count; i++) {
1870                 /* prefetch next entry while processing the current one */
1871                 if (i < count - 1) {
1872                         pkt_buf = avp_dev_translate_buffer(avp,
1873                                                            avp_bufs[i + 1]);
1874                         rte_prefetch0(pkt_buf);
1875                 }
1876
1877                 /* process each packet to be transmitted */
1878                 m = tx_pkts[i];
1879
1880                 /* Adjust pointers for guest addressing */
1881                 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1882                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1883                 pkt_len = rte_pktmbuf_pkt_len(m);
1884
1885                 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1886                                          (pkt_len > avp->host_mbuf_size))) {
1887                         /*
1888                          * application should be using the scattered transmit
1889                          * function; send it truncated to avoid the performance
1890                          * hit of having to manage returning the already
1891                          * allocated buffer to the free list.  This should not
1892                          * happen since the application should have set the
1893                          * max_rx_pkt_len based on its MTU and it should be
1894                          * policing its own packet sizes.
1895                          */
1896                         txq->errors++;
1897                         pkt_len = RTE_MIN(avp->guest_mbuf_size,
1898                                           avp->host_mbuf_size);
1899                 }
1900
1901                 /* copy data out of our mbuf and into the AVP buffer */
1902                 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
1903                 pkt_buf->pkt_len = pkt_len;
1904                 pkt_buf->data_len = pkt_len;
1905                 pkt_buf->nb_segs = 1;
1906                 pkt_buf->next = NULL;
1907
1908                 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1909                         pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1910                         pkt_buf->vlan_tci = m->vlan_tci;
1911                 }
1912
1913                 tx_bytes += pkt_len;
1914
1915                 /* free the original mbuf */
1916                 rte_pktmbuf_free(m);
1917         }
1918
1919         txq->packets += count;
1920         txq->bytes += tx_bytes;
1921
1922         /* send the packets */
1923         n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);
1924
1925         return n;
1926 }
1927
1928 static void
1929 avp_dev_rx_queue_release(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
1930 {
1931         if (eth_dev->data->rx_queues[rx_queue_id] != NULL) {
1932                 rte_free(eth_dev->data->rx_queues[rx_queue_id]);
1933                 eth_dev->data->rx_queues[rx_queue_id] = NULL;
1934         }
1935 }
1936
1937 static void
1938 avp_dev_rx_queue_release_all(struct rte_eth_dev *eth_dev)
1939 {
1940         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1941         struct rte_eth_dev_data *data = avp->dev_data;
1942         unsigned int i;
1943
1944         for (i = 0; i < avp->num_rx_queues; i++) {
1945                 if (data->rx_queues[i]) {
1946                         rte_free(data->rx_queues[i]);
1947                         data->rx_queues[i] = NULL;
1948                 }
1949         }
1950 }
1951
1952 static void
1953 avp_dev_tx_queue_release(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
1954 {
1955         if (eth_dev->data->tx_queues[tx_queue_id] != NULL) {
1956                 rte_free(eth_dev->data->tx_queues[tx_queue_id]);
1957                 eth_dev->data->tx_queues[tx_queue_id] = NULL;
1958         }
1959 }
1960
1961 static void
1962 avp_dev_tx_queue_release_all(struct rte_eth_dev *eth_dev)
1963 {
1964         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1965         struct rte_eth_dev_data *data = avp->dev_data;
1966         unsigned int i;
1967
1968         for (i = 0; i < avp->num_tx_queues; i++) {
1969                 if (data->tx_queues[i]) {
1970                         rte_free(data->tx_queues[i]);
1971                         data->tx_queues[i] = NULL;
1972                 }
1973         }
1974 }
1975
1976 static int
1977 avp_dev_configure(struct rte_eth_dev *eth_dev)
1978 {
1979         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1980         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1981         struct rte_avp_device_info *host_info;
1982         struct rte_avp_device_config config;
1983         int mask = 0;
1984         void *addr;
1985         int ret;
1986
1987         rte_spinlock_lock(&avp->lock);
1988         if (avp->flags & AVP_F_DETACHED) {
1989                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
1990                 ret = -ENOTSUP;
1991                 goto unlock;
1992         }
1993
1994         addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
1995         host_info = (struct rte_avp_device_info *)addr;
1996
1997         /* Setup required number of queues */
1998         _avp_set_queue_counts(eth_dev);
1999
2000         mask = (ETH_VLAN_STRIP_MASK |
2001                 ETH_VLAN_FILTER_MASK |
2002                 ETH_VLAN_EXTEND_MASK);
2003         ret = avp_vlan_offload_set(eth_dev, mask);
2004         if (ret < 0) {
2005                 PMD_DRV_LOG(ERR, "VLAN offload set failed by host, ret=%d\n",
2006                             ret);
2007                 goto unlock;
2008         }
2009
2010         /* update device config */
2011         memset(&config, 0, sizeof(config));
2012         config.device_id = host_info->device_id;
2013         config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
2014         config.driver_version = AVP_DPDK_DRIVER_VERSION;
2015         config.features = avp->features;
2016         config.num_tx_queues = avp->num_tx_queues;
2017         config.num_rx_queues = avp->num_rx_queues;
2018
2019         ret = avp_dev_ctrl_set_config(eth_dev, &config);
2020         if (ret < 0) {
2021                 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
2022                             ret);
2023                 goto unlock;
2024         }
2025
2026         avp->flags |= AVP_F_CONFIGURED;
2027         ret = 0;
2028
2029 unlock:
2030         rte_spinlock_unlock(&avp->lock);
2031         return ret;
2032 }
2033
2034 static int
2035 avp_dev_start(struct rte_eth_dev *eth_dev)
2036 {
2037         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2038         int ret;
2039
2040         rte_spinlock_lock(&avp->lock);
2041         if (avp->flags & AVP_F_DETACHED) {
2042                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2043                 ret = -ENOTSUP;
2044                 goto unlock;
2045         }
2046
2047         /* update link state */
2048         ret = avp_dev_ctrl_set_link_state(eth_dev, 1);
2049         if (ret < 0) {
2050                 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2051                             ret);
2052                 goto unlock;
2053         }
2054
2055         /* remember current link state */
2056         avp->flags |= AVP_F_LINKUP;
2057
2058         ret = 0;
2059
2060 unlock:
2061         rte_spinlock_unlock(&avp->lock);
2062         return ret;
2063 }
2064
2065 static int
2066 avp_dev_stop(struct rte_eth_dev *eth_dev)
2067 {
2068         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2069         int ret;
2070
2071         rte_spinlock_lock(&avp->lock);
2072         if (avp->flags & AVP_F_DETACHED) {
2073                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2074                 ret = -ENOTSUP;
2075                 goto unlock;
2076         }
2077
2078         /* remember current link state */
2079         avp->flags &= ~AVP_F_LINKUP;
2080
2081         /* update link state */
2082         ret = avp_dev_ctrl_set_link_state(eth_dev, 0);
2083         if (ret < 0) {
2084                 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2085                             ret);
2086         }
2087
2088 unlock:
2089         rte_spinlock_unlock(&avp->lock);
2090         return ret;
2091 }
2092
2093 static int
2094 avp_dev_close(struct rte_eth_dev *eth_dev)
2095 {
2096         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2097         int ret;
2098
2099         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2100                 return 0;
2101
2102         rte_spinlock_lock(&avp->lock);
2103         if (avp->flags & AVP_F_DETACHED) {
2104                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2105                 goto unlock;
2106         }
2107
2108         /* remember current link state */
2109         avp->flags &= ~AVP_F_LINKUP;
2110         avp->flags &= ~AVP_F_CONFIGURED;
2111
2112         ret = avp_dev_disable_interrupts(eth_dev);
2113         if (ret < 0) {
2114                 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n");
2115                 /* continue */
2116         }
2117
2118         /* update device state */
2119         ret = avp_dev_ctrl_shutdown(eth_dev);
2120         if (ret < 0) {
2121                 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n",
2122                             ret);
2123                 /* continue */
2124         }
2125
2126         /* release dynamic storage for rx/tx queues */
2127         avp_dev_rx_queue_release_all(eth_dev);
2128         avp_dev_tx_queue_release_all(eth_dev);
2129
2130 unlock:
2131         rte_spinlock_unlock(&avp->lock);
2132         return 0;
2133 }
2134
2135 static int
2136 avp_dev_link_update(struct rte_eth_dev *eth_dev,
2137                                         __rte_unused int wait_to_complete)
2138 {
2139         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2140         struct rte_eth_link *link = &eth_dev->data->dev_link;
2141
2142         link->link_speed = ETH_SPEED_NUM_10G;
2143         link->link_duplex = ETH_LINK_FULL_DUPLEX;
2144         link->link_status = !!(avp->flags & AVP_F_LINKUP);
2145
2146         return -1;
2147 }
2148
2149 static int
2150 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
2151 {
2152         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2153
2154         rte_spinlock_lock(&avp->lock);
2155         if ((avp->flags & AVP_F_PROMISC) == 0) {
2156                 avp->flags |= AVP_F_PROMISC;
2157                 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n",
2158                             eth_dev->data->port_id);
2159         }
2160         rte_spinlock_unlock(&avp->lock);
2161
2162         return 0;
2163 }
2164
2165 static int
2166 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
2167 {
2168         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2169
2170         rte_spinlock_lock(&avp->lock);
2171         if ((avp->flags & AVP_F_PROMISC) != 0) {
2172                 avp->flags &= ~AVP_F_PROMISC;
2173                 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n",
2174                             eth_dev->data->port_id);
2175         }
2176         rte_spinlock_unlock(&avp->lock);
2177
2178         return 0;
2179 }
2180
2181 static int
2182 avp_dev_info_get(struct rte_eth_dev *eth_dev,
2183                  struct rte_eth_dev_info *dev_info)
2184 {
2185         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2186
2187         dev_info->max_rx_queues = avp->max_rx_queues;
2188         dev_info->max_tx_queues = avp->max_tx_queues;
2189         dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE;
2190         dev_info->max_rx_pktlen = avp->max_rx_pkt_len;
2191         dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS;
2192         if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2193                 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
2194                 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
2195         }
2196
2197         return 0;
2198 }
2199
2200 static int
2201 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
2202 {
2203         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2204         struct rte_eth_conf *dev_conf = &eth_dev->data->dev_conf;
2205         uint64_t offloads = dev_conf->rxmode.offloads;
2206
2207         if (mask & ETH_VLAN_STRIP_MASK) {
2208                 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2209                         if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2210                                 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD;
2211                         else
2212                                 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD;
2213                 } else {
2214                         PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n");
2215                 }
2216         }
2217
2218         if (mask & ETH_VLAN_FILTER_MASK) {
2219                 if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2220                         PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n");
2221         }
2222
2223         if (mask & ETH_VLAN_EXTEND_MASK) {
2224                 if (offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2225                         PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n");
2226         }
2227
2228         return 0;
2229 }
2230
2231 static int
2232 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats)
2233 {
2234         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2235         unsigned int i;
2236
2237         for (i = 0; i < avp->num_rx_queues; i++) {
2238                 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2239
2240                 if (rxq) {
2241                         stats->ipackets += rxq->packets;
2242                         stats->ibytes += rxq->bytes;
2243                         stats->ierrors += rxq->errors;
2244
2245                         stats->q_ipackets[i] += rxq->packets;
2246                         stats->q_ibytes[i] += rxq->bytes;
2247                         stats->q_errors[i] += rxq->errors;
2248                 }
2249         }
2250
2251         for (i = 0; i < avp->num_tx_queues; i++) {
2252                 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2253
2254                 if (txq) {
2255                         stats->opackets += txq->packets;
2256                         stats->obytes += txq->bytes;
2257                         stats->oerrors += txq->errors;
2258
2259                         stats->q_opackets[i] += txq->packets;
2260                         stats->q_obytes[i] += txq->bytes;
2261                 }
2262         }
2263
2264         return 0;
2265 }
2266
2267 static int
2268 avp_dev_stats_reset(struct rte_eth_dev *eth_dev)
2269 {
2270         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2271         unsigned int i;
2272
2273         for (i = 0; i < avp->num_rx_queues; i++) {
2274                 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2275
2276                 if (rxq) {
2277                         rxq->bytes = 0;
2278                         rxq->packets = 0;
2279                         rxq->errors = 0;
2280                 }
2281         }
2282
2283         for (i = 0; i < avp->num_tx_queues; i++) {
2284                 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2285
2286                 if (txq) {
2287                         txq->bytes = 0;
2288                         txq->packets = 0;
2289                         txq->errors = 0;
2290                 }
2291         }
2292
2293         return 0;
2294 }
2295
2296 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd);
2297 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map);
2298 RTE_LOG_REGISTER_SUFFIX(avp_logtype_driver, driver, NOTICE);