net/ice: cleanup RSS/FDIR profile on device init
[dpdk.git] / drivers / net / bnx2x / ecore_init_ops.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  */
13
14 #ifndef ECORE_INIT_OPS_H
15 #define ECORE_INIT_OPS_H
16
17 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t *zbuf, int len);
18 static void ecore_write_dmae_phys_len(struct bnx2x_softc *sc,
19                                       ecore_dma_addr_t phys_addr, uint32_t addr,
20                                       uint32_t len);
21
22 static void ecore_init_str_wr(struct bnx2x_softc *sc, uint32_t addr,
23                               const uint32_t *data, uint32_t len)
24 {
25         uint32_t i;
26
27         for (i = 0; i < len; i++)
28                 REG_WR(sc, addr + i*4, data[i]);
29 }
30
31 static void ecore_write_big_buf(struct bnx2x_softc *sc, uint32_t addr,
32                                 uint32_t len, uint8_t wb __rte_unused)
33 {
34         if (DMAE_READY(sc))
35                 ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
36
37         /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
38         else
39                 ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
40 }
41
42 static void ecore_init_fill(struct bnx2x_softc *sc, uint32_t addr, int fill,
43                             uint32_t len, uint8_t wb)
44 {
45         uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
46         uint32_t buf_len32 = buf_len/4;
47         uint32_t i;
48
49         ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
50
51         for (i = 0; i < len; i += buf_len32) {
52                 uint32_t cur_len = min(buf_len32, len - i);
53
54                 ecore_write_big_buf(sc, addr + i * 4, cur_len, wb);
55         }
56 }
57
58 static void ecore_write_big_buf_wb(struct bnx2x_softc *sc, uint32_t addr, uint32_t len)
59 {
60         if (DMAE_READY(sc))
61                 ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
62
63         /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
64         else
65                 ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
66 }
67
68 static void ecore_init_wr_64(struct bnx2x_softc *sc, uint32_t addr,
69                              const uint32_t *data, uint32_t len64)
70 {
71         uint32_t buf_len32 = FW_BUF_SIZE/4;
72         uint32_t len = len64*2;
73         uint64_t data64 = 0;
74         uint32_t i;
75
76         /* 64 bit value is in a blob: first low DWORD, then high DWORD */
77         data64 = HILO_U64((*(data + 1)), (*data));
78
79         len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
80         for (i = 0; i < len64; i++) {
81                 uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
82
83                 *pdata = data64;
84         }
85
86         for (i = 0; i < len; i += buf_len32) {
87                 uint32_t cur_len = min(buf_len32, len - i);
88
89                 ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
90         }
91 }
92
93 /*********************************************************
94    There are different blobs for each PRAM section.
95    In addition, each blob write operation is divided into a few operations
96    in order to decrease the amount of phys. contiguous buffer needed.
97    Thus, when we select a blob the address may be with some offset
98    from the beginning of PRAM section.
99    The same holds for the INT_TABLE sections.
100 **********************************************************/
101 #define IF_IS_INT_TABLE_ADDR(base, addr) \
102                         if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
103
104 #define IF_IS_PRAM_ADDR(base, addr) \
105                         if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
106
107 static const uint8_t *ecore_sel_blob(struct bnx2x_softc *sc, uint32_t addr,
108                                 const uint8_t *data)
109 {
110         IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
111                 data = INIT_TSEM_INT_TABLE_DATA(sc);
112         else
113                 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
114                         data = INIT_CSEM_INT_TABLE_DATA(sc);
115         else
116                 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
117                         data = INIT_USEM_INT_TABLE_DATA(sc);
118         else
119                 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
120                         data = INIT_XSEM_INT_TABLE_DATA(sc);
121         else
122                 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
123                         data = INIT_TSEM_PRAM_DATA(sc);
124         else
125                 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
126                         data = INIT_CSEM_PRAM_DATA(sc);
127         else
128                 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
129                         data = INIT_USEM_PRAM_DATA(sc);
130         else
131                 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
132                         data = INIT_XSEM_PRAM_DATA(sc);
133
134         return data;
135 }
136
137 static void ecore_init_wr_wb(struct bnx2x_softc *sc, uint32_t addr,
138                              const uint32_t *data, uint32_t len)
139 {
140         if (DMAE_READY(sc))
141                 VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
142
143         /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
144         else
145                 ecore_init_str_wr(sc, addr, data, len);
146 }
147
148
149 static void ecore_wr_64(struct bnx2x_softc *sc, uint32_t reg, uint32_t val_lo,
150                         uint32_t val_hi)
151 {
152         uint32_t wb_write[2];
153
154         wb_write[0] = val_lo;
155         wb_write[1] = val_hi;
156         REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
157 }
158
159 static void ecore_init_wr_zp(struct bnx2x_softc *sc, uint32_t addr, uint32_t len,
160                              uint32_t blob_off)
161 {
162         const uint8_t *data = NULL;
163         int rc;
164         uint32_t i;
165
166         data = ecore_sel_blob(sc, addr, data) + blob_off*4;
167
168         rc = ecore_gunzip(sc, data, len);
169         if (rc)
170                 return;
171
172         /* gunzip_outlen is in dwords */
173         len = GUNZIP_OUTLEN(sc);
174         for (i = 0; i < len; i++)
175                 ((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
176                                 ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
177
178         ecore_write_big_buf_wb(sc, addr, len);
179 }
180
181 static void ecore_init_block(struct bnx2x_softc *sc, uint32_t block, uint32_t stage)
182 {
183         uint16_t op_start =
184                 INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
185                                                      STAGE_START)];
186         uint16_t op_end =
187                 INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
188                                                      STAGE_END)];
189         const union init_op *op;
190         uint32_t op_idx, op_type, addr, len;
191         const uint32_t *data, *data_base;
192
193         /* If empty block */
194         if (op_start == op_end)
195                 return;
196
197         data_base = INIT_DATA(sc);
198
199         for (op_idx = op_start; op_idx < op_end; op_idx++) {
200
201                 op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
202                 /* Get generic data */
203                 op_type = op->raw.op;
204                 addr = op->raw.offset;
205                 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
206                  * OP_WR64 (we assume that op_arr_write and op_write have the
207                  * same structure).
208                  */
209                 len = op->arr_wr.data_len;
210                 data = data_base + op->arr_wr.data_off;
211
212                 switch (op_type) {
213                 case OP_RD:
214                         REG_RD(sc, addr);
215                         break;
216                 case OP_WR:
217                         REG_WR(sc, addr, op->write.val);
218                         break;
219                 case OP_SW:
220                         ecore_init_str_wr(sc, addr, data, len);
221                         break;
222                 case OP_WB:
223                         ecore_init_wr_wb(sc, addr, data, len);
224                         break;
225                 case OP_ZR:
226                         ecore_init_fill(sc, addr, 0, op->zero.len, 0);
227                         break;
228                 case OP_WB_ZR:
229                         ecore_init_fill(sc, addr, 0, op->zero.len, 1);
230                         break;
231                 case OP_ZP:
232                         ecore_init_wr_zp(sc, addr, len,
233                                          op->arr_wr.data_off);
234                         break;
235                 case OP_WR_64:
236                         ecore_init_wr_64(sc, addr, data, len);
237                         break;
238                 case OP_IF_MODE_AND:
239                         /* if any of the flags doesn't match, skip the
240                          * conditional block.
241                          */
242                         if ((INIT_MODE_FLAGS(sc) &
243                                 op->if_mode.mode_bit_map) !=
244                                 op->if_mode.mode_bit_map)
245                                 op_idx += op->if_mode.cmd_offset;
246                         break;
247                 case OP_IF_MODE_OR:
248                         /* if all the flags don't match, skip the conditional
249                          * block.
250                          */
251                         if ((INIT_MODE_FLAGS(sc) &
252                                 op->if_mode.mode_bit_map) == 0)
253                                 op_idx += op->if_mode.cmd_offset;
254                         break;
255                 default:
256                         /* Should never get here! */
257
258                         break;
259                 }
260         }
261 }
262
263
264 /****************************************************************************
265 * PXP Arbiter
266 ****************************************************************************/
267 /*
268  * This code configures the PCI read/write arbiter
269  * which implements a weighted round robin
270  * between the virtual queues in the chip.
271  *
272  * The values were derived for each PCI max payload and max request size.
273  * since max payload and max request size are only known at run time,
274  * this is done as a separate init stage.
275  */
276
277 #define NUM_WR_Q                        13
278 #define NUM_RD_Q                        29
279 #define MAX_RD_ORD                      3
280 #define MAX_WR_ORD                      2
281
282 /* configuration for one arbiter queue */
283 struct arb_line {
284         int l;
285         int add;
286         int ubound;
287 };
288
289 /* derived configuration for each read queue for each max request size */
290 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
291 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
292         { {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
293         { {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
294         { {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
295         { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
296         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
297         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
298         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
299         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
300 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
301         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
302         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
303         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
304         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
305         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
306         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
307         { {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
308         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
309         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
310 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
311         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
312         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
313         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
314         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
315         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
316         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
317         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
318         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
319         { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
320 };
321
322 /* derived configuration for each write queue for each max request size */
323 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
324 /* 1 */ { {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
325         { {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
326         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
327         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
328         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
329         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
330         { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
331         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
332         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
333 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
334         { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
335         { {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
336         { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
337 };
338
339 /* register addresses for read queues */
340 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
341 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
342                 PXP2_REG_RQ_BW_RD_UBOUND0},
343         {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
344                 PXP2_REG_PSWRQ_BW_UB1},
345         {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
346                 PXP2_REG_PSWRQ_BW_UB2},
347         {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
348                 PXP2_REG_PSWRQ_BW_UB3},
349         {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
350                 PXP2_REG_RQ_BW_RD_UBOUND4},
351         {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
352                 PXP2_REG_RQ_BW_RD_UBOUND5},
353         {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
354                 PXP2_REG_PSWRQ_BW_UB6},
355         {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
356                 PXP2_REG_PSWRQ_BW_UB7},
357         {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
358                 PXP2_REG_PSWRQ_BW_UB8},
359 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
360                 PXP2_REG_PSWRQ_BW_UB9},
361         {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
362                 PXP2_REG_PSWRQ_BW_UB10},
363         {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
364                 PXP2_REG_PSWRQ_BW_UB11},
365         {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
366                 PXP2_REG_RQ_BW_RD_UBOUND12},
367         {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
368                 PXP2_REG_RQ_BW_RD_UBOUND13},
369         {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
370                 PXP2_REG_RQ_BW_RD_UBOUND14},
371         {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
372                 PXP2_REG_RQ_BW_RD_UBOUND15},
373         {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
374                 PXP2_REG_RQ_BW_RD_UBOUND16},
375         {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
376                 PXP2_REG_RQ_BW_RD_UBOUND17},
377         {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
378                 PXP2_REG_RQ_BW_RD_UBOUND18},
379 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
380                 PXP2_REG_RQ_BW_RD_UBOUND19},
381         {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
382                 PXP2_REG_RQ_BW_RD_UBOUND20},
383         {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
384                 PXP2_REG_RQ_BW_RD_UBOUND22},
385         {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
386                 PXP2_REG_RQ_BW_RD_UBOUND23},
387         {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
388                 PXP2_REG_RQ_BW_RD_UBOUND24},
389         {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
390                 PXP2_REG_RQ_BW_RD_UBOUND25},
391         {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
392                 PXP2_REG_RQ_BW_RD_UBOUND26},
393         {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
394                 PXP2_REG_RQ_BW_RD_UBOUND27},
395         {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
396                 PXP2_REG_PSWRQ_BW_UB28}
397 };
398
399 /* register addresses for write queues */
400 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
401 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
402                 PXP2_REG_PSWRQ_BW_UB1},
403         {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
404                 PXP2_REG_PSWRQ_BW_UB2},
405         {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
406                 PXP2_REG_PSWRQ_BW_UB3},
407         {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
408                 PXP2_REG_PSWRQ_BW_UB6},
409         {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
410                 PXP2_REG_PSWRQ_BW_UB7},
411         {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
412                 PXP2_REG_PSWRQ_BW_UB8},
413         {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
414                 PXP2_REG_PSWRQ_BW_UB9},
415         {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
416                 PXP2_REG_PSWRQ_BW_UB10},
417         {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
418                 PXP2_REG_PSWRQ_BW_UB11},
419 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
420                 PXP2_REG_PSWRQ_BW_UB28},
421         {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
422                 PXP2_REG_RQ_BW_WR_UBOUND29},
423         {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
424                 PXP2_REG_RQ_BW_WR_UBOUND30}
425 };
426
427 static void ecore_init_pxp_arb(struct bnx2x_softc *sc, int r_order,
428                                int w_order)
429 {
430         uint32_t val, i;
431
432         if (r_order > MAX_RD_ORD) {
433                 ECORE_MSG(sc, "read order of %d  order adjusted to %d",
434                            r_order, MAX_RD_ORD);
435                 r_order = MAX_RD_ORD;
436         }
437         if (w_order > MAX_WR_ORD) {
438                 ECORE_MSG(sc, "write order of %d  order adjusted to %d",
439                            w_order, MAX_WR_ORD);
440                 w_order = MAX_WR_ORD;
441         }
442         if (CHIP_REV_IS_FPGA(sc)) {
443                 ECORE_MSG(sc, "write order adjusted to 1 for FPGA");
444                 w_order = 0;
445         }
446         ECORE_MSG(sc, "read order %d  write order %d", r_order, w_order);
447
448         for (i = 0; i < NUM_RD_Q-1; i++) {
449                 REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
450                 REG_WR(sc, read_arb_addr[i].add,
451                        read_arb_data[i][r_order].add);
452                 REG_WR(sc, read_arb_addr[i].ubound,
453                        read_arb_data[i][r_order].ubound);
454         }
455
456         for (i = 0; i < NUM_WR_Q-1; i++) {
457                 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
458                     (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
459
460                         REG_WR(sc, write_arb_addr[i].l,
461                                write_arb_data[i][w_order].l);
462
463                         REG_WR(sc, write_arb_addr[i].add,
464                                write_arb_data[i][w_order].add);
465
466                         REG_WR(sc, write_arb_addr[i].ubound,
467                                write_arb_data[i][w_order].ubound);
468                 } else {
469
470                         val = REG_RD(sc, write_arb_addr[i].l);
471                         REG_WR(sc, write_arb_addr[i].l,
472                                val | (write_arb_data[i][w_order].l << 10));
473
474                         val = REG_RD(sc, write_arb_addr[i].add);
475                         REG_WR(sc, write_arb_addr[i].add,
476                                val | (write_arb_data[i][w_order].add << 10));
477
478                         val = REG_RD(sc, write_arb_addr[i].ubound);
479                         REG_WR(sc, write_arb_addr[i].ubound,
480                                val | (write_arb_data[i][w_order].ubound << 7));
481                 }
482         }
483
484         val =  write_arb_data[NUM_WR_Q-1][w_order].add;
485         val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
486         val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
487         REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
488
489         val =  read_arb_data[NUM_RD_Q-1][r_order].add;
490         val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
491         val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
492         REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
493
494         REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
495         REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
496         REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
497         REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
498
499         if ((CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) && (r_order == MAX_RD_ORD))
500                 REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
501
502         if (CHIP_IS_E3(sc))
503                 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
504         else if (CHIP_IS_E2(sc))
505                 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
506         else
507                 REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
508
509         if (!CHIP_IS_E1(sc)) {
510                 /*    MPS      w_order     optimal TH      presently TH
511                  *    128         0             0               2
512                  *    256         1             1               3
513                  *    >=512       2             2               3
514                  */
515                 /* DMAE is special */
516                 if (!CHIP_IS_E1H(sc)) {
517                         /* E2 can use optimal TH */
518                         val = w_order;
519                         REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
520                 } else {
521                         val = ((w_order == 0) ? 2 : 3);
522                         REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
523                 }
524
525                 REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
526                 REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
527                 REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
528                 REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
529                 REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
530                 REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
531                 REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
532                 REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
533                 REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
534                 REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
535         }
536
537         /* Validate number of tags suppoted by device */
538 #define PCIE_REG_PCIER_TL_HDR_FC_ST             0x2980
539         val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
540         val &= 0xFF;
541         if (val <= 0x20)
542                 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
543 }
544
545 /****************************************************************************
546 * ILT management
547 ****************************************************************************/
548 /*
549  * This codes hides the low level HW interaction for ILT management and
550  * configuration. The API consists of a shadow ILT table which is set by the
551  * driver and a set of routines to use it to configure the HW.
552  *
553  */
554
555 /* ILT HW init operations */
556
557 /* ILT memory management operations */
558 #define ILT_MEMOP_ALLOC         0
559 #define ILT_MEMOP_FREE          1
560
561 /* the phys address is shifted right 12 bits and has an added
562  * 1=valid bit added to the 53rd bit
563  * then since this is a wide register(TM)
564  * we split it into two 32 bit writes
565  */
566 #define ILT_ADDR1(x)            ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
567 #define ILT_ADDR2(x)            ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
568 #define ILT_RANGE(f, l)         (((l) << 10) | f)
569
570 static int ecore_ilt_line_mem_op(struct bnx2x_softc *sc __rte_unused,
571                                  struct ilt_line *line, uint32_t size,
572                                  uint8_t memop)
573 {
574         if (memop == ILT_MEMOP_FREE) {
575                 ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
576                 return 0;
577         }
578         ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
579         if (!line->page)
580                 return -1;
581         line->size = size;
582         return 0;
583 }
584
585
586 static int ecore_ilt_client_mem_op(struct bnx2x_softc *sc, int cli_num,
587                                    uint8_t memop)
588 {
589         int i, rc;
590         struct ecore_ilt *ilt = SC_ILT(sc);
591         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
592
593         if (!ilt || !ilt->lines)
594                 return -1;
595
596         if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
597                 return 0;
598
599         for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
600                 rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
601                                            ilt_cli->page_size, memop);
602         }
603         return rc;
604 }
605
606 static int ecore_ilt_mem_op(struct bnx2x_softc *sc, uint8_t memop)
607 {
608         int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
609         if (!rc)
610                 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
611         if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
612                 rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
613
614         return rc;
615 }
616
617 static void ecore_ilt_line_wr(struct bnx2x_softc *sc, int abs_idx,
618                               ecore_dma_addr_t page_mapping)
619 {
620         uint32_t reg;
621
622         if (CHIP_IS_E1(sc))
623                 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx * 8;
624         else
625                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx * 8;
626
627         ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
628 }
629
630 static void ecore_ilt_line_init_op(struct bnx2x_softc *sc,
631                                    struct ecore_ilt *ilt, int idx, uint8_t initop)
632 {
633         ecore_dma_addr_t        null_mapping;
634         int abs_idx = ilt->start_line + idx;
635
636
637         switch (initop) {
638         case INITOP_INIT:
639                 /* set in the init-value array */
640         case INITOP_SET:
641                 ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
642                 break;
643         case INITOP_CLEAR:
644                 null_mapping = 0;
645                 ecore_ilt_line_wr(sc, abs_idx, null_mapping);
646                 break;
647         }
648 }
649
650 static void ecore_ilt_boundary_init_op(struct bnx2x_softc *sc,
651                                        struct ilt_client_info *ilt_cli,
652                                        uint32_t ilt_start,
653                                        uint8_t initop __rte_unused)
654 {
655         uint32_t start_reg = 0;
656         uint32_t end_reg = 0;
657
658         /* The boundary is either SET or INIT,
659            CLEAR => SET and for now SET ~~ INIT */
660
661         /* find the appropriate regs */
662         if (CHIP_IS_E1(sc)) {
663                 switch (ilt_cli->client_num) {
664                 case ILT_CLIENT_CDU:
665                         start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
666                         break;
667                 case ILT_CLIENT_QM:
668                         start_reg = PXP2_REG_PSWRQ_QM0_L2P;
669                         break;
670                 case ILT_CLIENT_SRC:
671                         start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
672                         break;
673                 case ILT_CLIENT_TM:
674                         start_reg = PXP2_REG_PSWRQ_TM0_L2P;
675                         break;
676                 }
677                 REG_WR(sc, start_reg + SC_FUNC(sc) * 4,
678                        ILT_RANGE((ilt_start + ilt_cli->start),
679                                  (ilt_start + ilt_cli->end)));
680         } else {
681                 switch (ilt_cli->client_num) {
682                 case ILT_CLIENT_CDU:
683                         start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
684                         end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
685                         break;
686                 case ILT_CLIENT_QM:
687                         start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
688                         end_reg = PXP2_REG_RQ_QM_LAST_ILT;
689                         break;
690                 case ILT_CLIENT_SRC:
691                         start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
692                         end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
693                         break;
694                 case ILT_CLIENT_TM:
695                         start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
696                         end_reg = PXP2_REG_RQ_TM_LAST_ILT;
697                         break;
698                 }
699                 REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
700                 REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
701         }
702 }
703
704 static void ecore_ilt_client_init_op_ilt(struct bnx2x_softc *sc,
705                                          struct ecore_ilt *ilt,
706                                          struct ilt_client_info *ilt_cli,
707                                          uint8_t initop)
708 {
709         int i;
710
711         if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
712                 return;
713
714         for (i = ilt_cli->start; i <= ilt_cli->end; i++)
715                 ecore_ilt_line_init_op(sc, ilt, i, initop);
716
717         /* init/clear the ILT boundries */
718         ecore_ilt_boundary_init_op(sc, ilt_cli, ilt->start_line, initop);
719 }
720
721 static void ecore_ilt_client_init_op(struct bnx2x_softc *sc,
722                                      struct ilt_client_info *ilt_cli, uint8_t initop)
723 {
724         struct ecore_ilt *ilt = SC_ILT(sc);
725
726         ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
727 }
728
729 static void ecore_ilt_client_id_init_op(struct bnx2x_softc *sc,
730                                         int cli_num, uint8_t initop)
731 {
732         struct ecore_ilt *ilt = SC_ILT(sc);
733         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
734
735         ecore_ilt_client_init_op(sc, ilt_cli, initop);
736 }
737
738 static void ecore_ilt_init_op(struct bnx2x_softc *sc, uint8_t initop)
739 {
740         ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
741         ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
742         if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
743                 ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
744 }
745
746 static void ecore_ilt_init_client_psz(struct bnx2x_softc *sc, int cli_num,
747                                       uint32_t psz_reg, uint8_t initop)
748 {
749         struct ecore_ilt *ilt = SC_ILT(sc);
750         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
751
752         if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
753                 return;
754
755         switch (initop) {
756         case INITOP_INIT:
757                 /* set in the init-value array */
758         case INITOP_SET:
759                 REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
760                 break;
761         case INITOP_CLEAR:
762                 break;
763         }
764 }
765
766 /*
767  * called during init common stage, ilt clients should be initialized
768  * prioir to calling this function
769  */
770 static void ecore_ilt_init_page_size(struct bnx2x_softc *sc, uint8_t initop)
771 {
772         ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
773                                   PXP2_REG_RQ_CDU_P_SIZE, initop);
774         ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
775                                   PXP2_REG_RQ_QM_P_SIZE, initop);
776         ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
777                                   PXP2_REG_RQ_SRC_P_SIZE, initop);
778         ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
779                                   PXP2_REG_RQ_TM_P_SIZE, initop);
780 }
781
782 /****************************************************************************
783 * QM initializations
784 ****************************************************************************/
785 #define QM_QUEUES_PER_FUNC      16 /* E1 has 32, but only 16 are used */
786 #define QM_INIT_MIN_CID_COUNT   31
787 #define QM_INIT(cid_cnt)        (cid_cnt > QM_INIT_MIN_CID_COUNT)
788
789 /* called during init port stage */
790 static void ecore_qm_init_cid_count(struct bnx2x_softc *sc, int qm_cid_count,
791                                     uint8_t initop)
792 {
793         int port = SC_PORT(sc);
794
795         if (QM_INIT(qm_cid_count)) {
796                 switch (initop) {
797                 case INITOP_INIT:
798                         /* set in the init-value array */
799                 case INITOP_SET:
800                         REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
801                                qm_cid_count/16 - 1);
802                         break;
803                 case INITOP_CLEAR:
804                         break;
805                 }
806         }
807 }
808
809 static void ecore_qm_set_ptr_table(struct bnx2x_softc *sc, int qm_cid_count,
810                                    uint32_t base_reg, uint32_t reg)
811 {
812         int i;
813         uint32_t wb_data[2] = {0, 0};
814         for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
815                 REG_WR(sc, base_reg + i*4,
816                        qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
817                 ecore_init_wr_wb(sc, reg + i*8,
818                                  wb_data, 2);
819         }
820 }
821
822 /* called during init common stage */
823 static void ecore_qm_init_ptr_table(struct bnx2x_softc *sc, int qm_cid_count,
824                                     uint8_t initop)
825 {
826         if (!QM_INIT(qm_cid_count))
827                 return;
828
829         switch (initop) {
830         case INITOP_INIT:
831                 /* set in the init-value array */
832         case INITOP_SET:
833                 ecore_qm_set_ptr_table(sc, qm_cid_count,
834                                        QM_REG_BASEADDR, QM_REG_PTRTBL);
835                 if (CHIP_IS_E1H(sc))
836                         ecore_qm_set_ptr_table(sc, qm_cid_count,
837                                                QM_REG_BASEADDR_EXT_A,
838                                                QM_REG_PTRTBL_EXT_A);
839                 break;
840         case INITOP_CLEAR:
841                 break;
842         }
843 }
844
845 #endif /* ECORE_INIT_OPS_H */