net/bnxt: fix group info usage
[dpdk.git] / drivers / net / bnxt / bnxt_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) Broadcom Limited.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Broadcom Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <inttypes.h>
35 #include <stdbool.h>
36
37 #include <rte_dev.h>
38 #include <rte_ethdev.h>
39 #include <rte_ethdev_pci.h>
40 #include <rte_malloc.h>
41 #include <rte_cycles.h>
42
43 #include "bnxt.h"
44 #include "bnxt_cpr.h"
45 #include "bnxt_filter.h"
46 #include "bnxt_hwrm.h"
47 #include "bnxt_irq.h"
48 #include "bnxt_ring.h"
49 #include "bnxt_rxq.h"
50 #include "bnxt_rxr.h"
51 #include "bnxt_stats.h"
52 #include "bnxt_txq.h"
53 #include "bnxt_txr.h"
54 #include "bnxt_vnic.h"
55 #include "hsi_struct_def_dpdk.h"
56 #include "bnxt_nvm_defs.h"
57
58 #define DRV_MODULE_NAME         "bnxt"
59 static const char bnxt_version[] =
60         "Broadcom Cumulus driver " DRV_MODULE_NAME "\n";
61
62 #define PCI_VENDOR_ID_BROADCOM 0x14E4
63
64 #define BROADCOM_DEV_ID_STRATUS_NIC_VF 0x1609
65 #define BROADCOM_DEV_ID_STRATUS_NIC 0x1614
66 #define BROADCOM_DEV_ID_57414_VF 0x16c1
67 #define BROADCOM_DEV_ID_57301 0x16c8
68 #define BROADCOM_DEV_ID_57302 0x16c9
69 #define BROADCOM_DEV_ID_57304_PF 0x16ca
70 #define BROADCOM_DEV_ID_57304_VF 0x16cb
71 #define BROADCOM_DEV_ID_57417_MF 0x16cc
72 #define BROADCOM_DEV_ID_NS2 0x16cd
73 #define BROADCOM_DEV_ID_57311 0x16ce
74 #define BROADCOM_DEV_ID_57312 0x16cf
75 #define BROADCOM_DEV_ID_57402 0x16d0
76 #define BROADCOM_DEV_ID_57404 0x16d1
77 #define BROADCOM_DEV_ID_57406_PF 0x16d2
78 #define BROADCOM_DEV_ID_57406_VF 0x16d3
79 #define BROADCOM_DEV_ID_57402_MF 0x16d4
80 #define BROADCOM_DEV_ID_57407_RJ45 0x16d5
81 #define BROADCOM_DEV_ID_57412 0x16d6
82 #define BROADCOM_DEV_ID_57414 0x16d7
83 #define BROADCOM_DEV_ID_57416_RJ45 0x16d8
84 #define BROADCOM_DEV_ID_57417_RJ45 0x16d9
85 #define BROADCOM_DEV_ID_5741X_VF 0x16dc
86 #define BROADCOM_DEV_ID_57412_MF 0x16de
87 #define BROADCOM_DEV_ID_57314 0x16df
88 #define BROADCOM_DEV_ID_57317_RJ45 0x16e0
89 #define BROADCOM_DEV_ID_5731X_VF 0x16e1
90 #define BROADCOM_DEV_ID_57417_SFP 0x16e2
91 #define BROADCOM_DEV_ID_57416_SFP 0x16e3
92 #define BROADCOM_DEV_ID_57317_SFP 0x16e4
93 #define BROADCOM_DEV_ID_57404_MF 0x16e7
94 #define BROADCOM_DEV_ID_57406_MF 0x16e8
95 #define BROADCOM_DEV_ID_57407_SFP 0x16e9
96 #define BROADCOM_DEV_ID_57407_MF 0x16ea
97 #define BROADCOM_DEV_ID_57414_MF 0x16ec
98 #define BROADCOM_DEV_ID_57416_MF 0x16ee
99
100 static const struct rte_pci_id bnxt_pci_id_map[] = {
101         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM,
102                          BROADCOM_DEV_ID_STRATUS_NIC_VF) },
103         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_STRATUS_NIC) },
104         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_VF) },
105         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57301) },
106         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57302) },
107         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_PF) },
108         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57304_VF) },
109         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_NS2) },
110         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402) },
111         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404) },
112         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_PF) },
113         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_VF) },
114         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57402_MF) },
115         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_RJ45) },
116         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57404_MF) },
117         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57406_MF) },
118         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_SFP) },
119         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57407_MF) },
120         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5741X_VF) },
121         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_5731X_VF) },
122         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57314) },
123         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_MF) },
124         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57311) },
125         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57312) },
126         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412) },
127         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414) },
128         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_RJ45) },
129         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_RJ45) },
130         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57412_MF) },
131         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_RJ45) },
132         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57417_SFP) },
133         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_SFP) },
134         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57317_SFP) },
135         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57414_MF) },
136         { RTE_PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, BROADCOM_DEV_ID_57416_MF) },
137         { .vendor_id = 0, /* sentinel */ },
138 };
139
140 #define BNXT_ETH_RSS_SUPPORT (  \
141         ETH_RSS_IPV4 |          \
142         ETH_RSS_NONFRAG_IPV4_TCP |      \
143         ETH_RSS_NONFRAG_IPV4_UDP |      \
144         ETH_RSS_IPV6 |          \
145         ETH_RSS_NONFRAG_IPV6_TCP |      \
146         ETH_RSS_NONFRAG_IPV6_UDP)
147
148 static int bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask);
149 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev);
150
151 /***********************/
152
153 /*
154  * High level utility functions
155  */
156
157 static void bnxt_free_mem(struct bnxt *bp)
158 {
159         bnxt_free_filter_mem(bp);
160         bnxt_free_vnic_attributes(bp);
161         bnxt_free_vnic_mem(bp);
162
163         bnxt_free_stats(bp);
164         bnxt_free_tx_rings(bp);
165         bnxt_free_rx_rings(bp);
166         bnxt_free_def_cp_ring(bp);
167 }
168
169 static int bnxt_alloc_mem(struct bnxt *bp)
170 {
171         int rc;
172
173         /* Default completion ring */
174         rc = bnxt_init_def_ring_struct(bp, SOCKET_ID_ANY);
175         if (rc)
176                 goto alloc_mem_err;
177
178         rc = bnxt_alloc_rings(bp, 0, NULL, NULL,
179                               bp->def_cp_ring, "def_cp");
180         if (rc)
181                 goto alloc_mem_err;
182
183         rc = bnxt_alloc_vnic_mem(bp);
184         if (rc)
185                 goto alloc_mem_err;
186
187         rc = bnxt_alloc_vnic_attributes(bp);
188         if (rc)
189                 goto alloc_mem_err;
190
191         rc = bnxt_alloc_filter_mem(bp);
192         if (rc)
193                 goto alloc_mem_err;
194
195         return 0;
196
197 alloc_mem_err:
198         bnxt_free_mem(bp);
199         return rc;
200 }
201
202 static int bnxt_init_chip(struct bnxt *bp)
203 {
204         unsigned int i, rss_idx, fw_idx;
205         struct rte_eth_link new;
206         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(bp->eth_dev);
207         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
208         uint32_t intr_vector = 0;
209         uint32_t queue_id, base = BNXT_MISC_VEC_ID;
210         uint32_t vec = BNXT_MISC_VEC_ID;
211         int rc;
212
213         /* disable uio/vfio intr/eventfd mapping */
214         rte_intr_disable(intr_handle);
215
216         if (bp->eth_dev->data->mtu > ETHER_MTU) {
217                 bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
218                 bp->flags |= BNXT_FLAG_JUMBO;
219         } else {
220                 bp->eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
221                 bp->flags &= ~BNXT_FLAG_JUMBO;
222         }
223
224         rc = bnxt_alloc_all_hwrm_stat_ctxs(bp);
225         if (rc) {
226                 RTE_LOG(ERR, PMD, "HWRM stat ctx alloc failure rc: %x\n", rc);
227                 goto err_out;
228         }
229
230         rc = bnxt_alloc_hwrm_rings(bp);
231         if (rc) {
232                 RTE_LOG(ERR, PMD, "HWRM ring alloc failure rc: %x\n", rc);
233                 goto err_out;
234         }
235
236         rc = bnxt_alloc_all_hwrm_ring_grps(bp);
237         if (rc) {
238                 RTE_LOG(ERR, PMD, "HWRM ring grp alloc failure: %x\n", rc);
239                 goto err_out;
240         }
241
242         rc = bnxt_mq_rx_configure(bp);
243         if (rc) {
244                 RTE_LOG(ERR, PMD, "MQ mode configure failure rc: %x\n", rc);
245                 goto err_out;
246         }
247
248         /* VNIC configuration */
249         for (i = 0; i < bp->nr_vnics; i++) {
250                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
251
252                 rc = bnxt_hwrm_vnic_alloc(bp, vnic);
253                 if (rc) {
254                         RTE_LOG(ERR, PMD, "HWRM vnic %d alloc failure rc: %x\n",
255                                 i, rc);
256                         goto err_out;
257                 }
258
259                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic);
260                 if (rc) {
261                         RTE_LOG(ERR, PMD,
262                                 "HWRM vnic %d ctx alloc failure rc: %x\n",
263                                 i, rc);
264                         goto err_out;
265                 }
266
267                 rc = bnxt_hwrm_vnic_cfg(bp, vnic);
268                 if (rc) {
269                         RTE_LOG(ERR, PMD, "HWRM vnic %d cfg failure rc: %x\n",
270                                 i, rc);
271                         goto err_out;
272                 }
273
274                 rc = bnxt_set_hwrm_vnic_filters(bp, vnic);
275                 if (rc) {
276                         RTE_LOG(ERR, PMD,
277                                 "HWRM vnic %d filter failure rc: %x\n",
278                                 i, rc);
279                         goto err_out;
280                 }
281                 if (vnic->rss_table && vnic->hash_type) {
282                         /*
283                          * Fill the RSS hash & redirection table with
284                          * ring group ids for all VNICs
285                          */
286                         for (rss_idx = 0, fw_idx = 0;
287                              rss_idx < HW_HASH_INDEX_SIZE;
288                              rss_idx++, fw_idx++) {
289                                 if (vnic->fw_grp_ids[fw_idx] ==
290                                     INVALID_HW_RING_ID)
291                                         fw_idx = 0;
292                                 vnic->rss_table[rss_idx] =
293                                                 vnic->fw_grp_ids[fw_idx];
294                         }
295                         rc = bnxt_hwrm_vnic_rss_cfg(bp, vnic);
296                         if (rc) {
297                                 RTE_LOG(ERR, PMD,
298                                         "HWRM vnic %d set RSS failure rc: %x\n",
299                                         i, rc);
300                                 goto err_out;
301                         }
302                 }
303
304                 bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
305
306                 if (bp->eth_dev->data->dev_conf.rxmode.enable_lro)
307                         bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 1);
308                 else
309                         bnxt_hwrm_vnic_tpa_cfg(bp, vnic, 0);
310         }
311         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, &bp->vnic_info[0], 0, NULL);
312         if (rc) {
313                 RTE_LOG(ERR, PMD,
314                         "HWRM cfa l2 rx mask failure rc: %x\n", rc);
315                 goto err_out;
316         }
317
318         /* check and configure queue intr-vector mapping */
319         if ((rte_intr_cap_multiple(intr_handle) ||
320              !RTE_ETH_DEV_SRIOV(bp->eth_dev).active) &&
321             bp->eth_dev->data->dev_conf.intr_conf.rxq != 0) {
322                 intr_vector = bp->eth_dev->data->nb_rx_queues;
323                 RTE_LOG(INFO, PMD, "%s(): intr_vector = %d\n", __func__,
324                         intr_vector);
325                 if (intr_vector > bp->rx_cp_nr_rings) {
326                         RTE_LOG(ERR, PMD, "At most %d intr queues supported",
327                                         bp->rx_cp_nr_rings);
328                         return -ENOTSUP;
329                 }
330                 if (rte_intr_efd_enable(intr_handle, intr_vector))
331                         return -1;
332         }
333
334         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
335                 intr_handle->intr_vec =
336                         rte_zmalloc("intr_vec",
337                                     bp->eth_dev->data->nb_rx_queues *
338                                     sizeof(int), 0);
339                 if (intr_handle->intr_vec == NULL) {
340                         RTE_LOG(ERR, PMD, "Failed to allocate %d rx_queues"
341                                 " intr_vec", bp->eth_dev->data->nb_rx_queues);
342                         return -ENOMEM;
343                 }
344                 RTE_LOG(DEBUG, PMD, "%s(): intr_handle->intr_vec = %p "
345                         "intr_handle->nb_efd = %d intr_handle->max_intr = %d\n",
346                          __func__, intr_handle->intr_vec, intr_handle->nb_efd,
347                         intr_handle->max_intr);
348         }
349
350         for (queue_id = 0; queue_id < bp->eth_dev->data->nb_rx_queues;
351              queue_id++) {
352                 intr_handle->intr_vec[queue_id] = vec;
353                 if (vec < base + intr_handle->nb_efd - 1)
354                         vec++;
355         }
356
357         /* enable uio/vfio intr/eventfd mapping */
358         rte_intr_enable(intr_handle);
359
360         rc = bnxt_get_hwrm_link_config(bp, &new);
361         if (rc) {
362                 RTE_LOG(ERR, PMD, "HWRM Get link config failure rc: %x\n", rc);
363                 goto err_out;
364         }
365
366         if (!bp->link_info.link_up) {
367                 rc = bnxt_set_hwrm_link_config(bp, true);
368                 if (rc) {
369                         RTE_LOG(ERR, PMD,
370                                 "HWRM link config failure rc: %x\n", rc);
371                         goto err_out;
372                 }
373         }
374         bnxt_print_link_info(bp->eth_dev);
375
376         return 0;
377
378 err_out:
379         bnxt_free_all_hwrm_resources(bp);
380
381         return rc;
382 }
383
384 static int bnxt_shutdown_nic(struct bnxt *bp)
385 {
386         bnxt_free_all_hwrm_resources(bp);
387         bnxt_free_all_filters(bp);
388         bnxt_free_all_vnics(bp);
389         return 0;
390 }
391
392 static int bnxt_init_nic(struct bnxt *bp)
393 {
394         int rc;
395
396         rc = bnxt_init_ring_grps(bp);
397         if (rc)
398                 return rc;
399
400         bnxt_init_vnics(bp);
401         bnxt_init_filters(bp);
402
403         rc = bnxt_init_chip(bp);
404         if (rc)
405                 return rc;
406
407         return 0;
408 }
409
410 /*
411  * Device configuration and status function
412  */
413
414 static void bnxt_dev_info_get_op(struct rte_eth_dev *eth_dev,
415                                   struct rte_eth_dev_info *dev_info)
416 {
417         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
418         uint16_t max_vnics, i, j, vpool, vrxq;
419         unsigned int max_rx_rings;
420
421         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
422
423         /* MAC Specifics */
424         dev_info->max_mac_addrs = bp->max_l2_ctx;
425         dev_info->max_hash_mac_addrs = 0;
426
427         /* PF/VF specifics */
428         if (BNXT_PF(bp))
429                 dev_info->max_vfs = bp->pdev->max_vfs;
430         max_rx_rings = RTE_MIN(bp->max_vnics, RTE_MIN(bp->max_l2_ctx,
431                                                 RTE_MIN(bp->max_rsscos_ctx,
432                                                 bp->max_stat_ctx)));
433         /* For the sake of symmetry, max_rx_queues = max_tx_queues */
434         dev_info->max_rx_queues = max_rx_rings;
435         dev_info->max_tx_queues = max_rx_rings;
436         dev_info->reta_size = bp->max_rsscos_ctx;
437         dev_info->hash_key_size = 40;
438         max_vnics = bp->max_vnics;
439
440         /* Fast path specifics */
441         dev_info->min_rx_bufsize = 1;
442         dev_info->max_rx_pktlen = BNXT_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN
443                                   + VLAN_TAG_SIZE;
444         dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
445                                         DEV_RX_OFFLOAD_IPV4_CKSUM |
446                                         DEV_RX_OFFLOAD_UDP_CKSUM |
447                                         DEV_RX_OFFLOAD_TCP_CKSUM |
448                                         DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
449         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
450                                         DEV_TX_OFFLOAD_IPV4_CKSUM |
451                                         DEV_TX_OFFLOAD_TCP_CKSUM |
452                                         DEV_TX_OFFLOAD_UDP_CKSUM |
453                                         DEV_TX_OFFLOAD_TCP_TSO |
454                                         DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
455                                         DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
456                                         DEV_TX_OFFLOAD_GRE_TNL_TSO |
457                                         DEV_TX_OFFLOAD_IPIP_TNL_TSO |
458                                         DEV_TX_OFFLOAD_GENEVE_TNL_TSO;
459
460         /* *INDENT-OFF* */
461         dev_info->default_rxconf = (struct rte_eth_rxconf) {
462                 .rx_thresh = {
463                         .pthresh = 8,
464                         .hthresh = 8,
465                         .wthresh = 0,
466                 },
467                 .rx_free_thresh = 32,
468                 .rx_drop_en = 0,
469         };
470
471         dev_info->default_txconf = (struct rte_eth_txconf) {
472                 .tx_thresh = {
473                         .pthresh = 32,
474                         .hthresh = 0,
475                         .wthresh = 0,
476                 },
477                 .tx_free_thresh = 32,
478                 .tx_rs_thresh = 32,
479                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
480                              ETH_TXQ_FLAGS_NOOFFLOADS,
481         };
482         eth_dev->data->dev_conf.intr_conf.lsc = 1;
483
484         eth_dev->data->dev_conf.intr_conf.rxq = 1;
485
486         /* *INDENT-ON* */
487
488         /*
489          * TODO: default_rxconf, default_txconf, rx_desc_lim, and tx_desc_lim
490          *       need further investigation.
491          */
492
493         /* VMDq resources */
494         vpool = 64; /* ETH_64_POOLS */
495         vrxq = 128; /* ETH_VMDQ_DCB_NUM_QUEUES */
496         for (i = 0; i < 4; vpool >>= 1, i++) {
497                 if (max_vnics > vpool) {
498                         for (j = 0; j < 5; vrxq >>= 1, j++) {
499                                 if (dev_info->max_rx_queues > vrxq) {
500                                         if (vpool > vrxq)
501                                                 vpool = vrxq;
502                                         goto found;
503                                 }
504                         }
505                         /* Not enough resources to support VMDq */
506                         break;
507                 }
508         }
509         /* Not enough resources to support VMDq */
510         vpool = 0;
511         vrxq = 0;
512 found:
513         dev_info->max_vmdq_pools = vpool;
514         dev_info->vmdq_queue_num = vrxq;
515
516         dev_info->vmdq_pool_base = 0;
517         dev_info->vmdq_queue_base = 0;
518 }
519
520 /* Configure the device based on the configuration provided */
521 static int bnxt_dev_configure_op(struct rte_eth_dev *eth_dev)
522 {
523         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
524
525         bp->rx_queues = (void *)eth_dev->data->rx_queues;
526         bp->tx_queues = (void *)eth_dev->data->tx_queues;
527
528         /* Inherit new configurations */
529         bp->rx_nr_rings = eth_dev->data->nb_rx_queues;
530         bp->tx_nr_rings = eth_dev->data->nb_tx_queues;
531         bp->rx_cp_nr_rings = bp->rx_nr_rings;
532         bp->tx_cp_nr_rings = bp->tx_nr_rings;
533
534         if (eth_dev->data->dev_conf.rxmode.jumbo_frame)
535                 eth_dev->data->mtu =
536                                 eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
537                                 ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE;
538         return 0;
539 }
540
541 static void bnxt_print_link_info(struct rte_eth_dev *eth_dev)
542 {
543         struct rte_eth_link *link = &eth_dev->data->dev_link;
544
545         if (link->link_status)
546                 RTE_LOG(INFO, PMD, "Port %d Link Up - speed %u Mbps - %s\n",
547                         eth_dev->data->port_id,
548                         (uint32_t)link->link_speed,
549                         (link->link_duplex == ETH_LINK_FULL_DUPLEX) ?
550                         ("full-duplex") : ("half-duplex\n"));
551         else
552                 RTE_LOG(INFO, PMD, "Port %d Link Down\n",
553                         eth_dev->data->port_id);
554 }
555
556 static int bnxt_dev_lsc_intr_setup(struct rte_eth_dev *eth_dev)
557 {
558         bnxt_print_link_info(eth_dev);
559         return 0;
560 }
561
562 static int bnxt_dev_start_op(struct rte_eth_dev *eth_dev)
563 {
564         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
565         int vlan_mask = 0;
566         int rc;
567
568         if (bp->rx_cp_nr_rings > RTE_ETHDEV_QUEUE_STAT_CNTRS) {
569                 RTE_LOG(ERR, PMD,
570                         "RxQ cnt %d > CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS %d\n",
571                         bp->rx_cp_nr_rings, RTE_ETHDEV_QUEUE_STAT_CNTRS);
572         }
573         bp->dev_stopped = 0;
574
575         rc = bnxt_init_nic(bp);
576         if (rc)
577                 goto error;
578
579         bnxt_link_update_op(eth_dev, 1);
580
581         if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter)
582                 vlan_mask |= ETH_VLAN_FILTER_MASK;
583         if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip)
584                 vlan_mask |= ETH_VLAN_STRIP_MASK;
585         rc = bnxt_vlan_offload_set_op(eth_dev, vlan_mask);
586         if (rc)
587                 goto error;
588
589         return 0;
590
591 error:
592         bnxt_shutdown_nic(bp);
593         bnxt_free_tx_mbufs(bp);
594         bnxt_free_rx_mbufs(bp);
595         return rc;
596 }
597
598 static int bnxt_dev_set_link_up_op(struct rte_eth_dev *eth_dev)
599 {
600         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
601         int rc = 0;
602
603         if (!bp->link_info.link_up)
604                 rc = bnxt_set_hwrm_link_config(bp, true);
605         if (!rc)
606                 eth_dev->data->dev_link.link_status = 1;
607
608         bnxt_print_link_info(eth_dev);
609         return 0;
610 }
611
612 static int bnxt_dev_set_link_down_op(struct rte_eth_dev *eth_dev)
613 {
614         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
615
616         eth_dev->data->dev_link.link_status = 0;
617         bnxt_set_hwrm_link_config(bp, false);
618         bp->link_info.link_up = 0;
619
620         return 0;
621 }
622
623 /* Unload the driver, release resources */
624 static void bnxt_dev_stop_op(struct rte_eth_dev *eth_dev)
625 {
626         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
627
628         if (bp->eth_dev->data->dev_started) {
629                 /* TBD: STOP HW queues DMA */
630                 eth_dev->data->dev_link.link_status = 0;
631         }
632         bnxt_set_hwrm_link_config(bp, false);
633         bnxt_hwrm_port_clr_stats(bp);
634         bnxt_shutdown_nic(bp);
635         bp->dev_stopped = 1;
636 }
637
638 static void bnxt_dev_close_op(struct rte_eth_dev *eth_dev)
639 {
640         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
641
642         if (bp->dev_stopped == 0)
643                 bnxt_dev_stop_op(eth_dev);
644
645         bnxt_free_tx_mbufs(bp);
646         bnxt_free_rx_mbufs(bp);
647         bnxt_free_mem(bp);
648         if (eth_dev->data->mac_addrs != NULL) {
649                 rte_free(eth_dev->data->mac_addrs);
650                 eth_dev->data->mac_addrs = NULL;
651         }
652         if (bp->grp_info != NULL) {
653                 rte_free(bp->grp_info);
654                 bp->grp_info = NULL;
655         }
656 }
657
658 static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
659                                     uint32_t index)
660 {
661         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
662         uint64_t pool_mask = eth_dev->data->mac_pool_sel[index];
663         struct bnxt_vnic_info *vnic;
664         struct bnxt_filter_info *filter, *temp_filter;
665         uint32_t pool = RTE_MIN(MAX_FF_POOLS, ETH_64_POOLS);
666         uint32_t i;
667
668         /*
669          * Loop through all VNICs from the specified filter flow pools to
670          * remove the corresponding MAC addr filter
671          */
672         for (i = 0; i < pool; i++) {
673                 if (!(pool_mask & (1ULL << i)))
674                         continue;
675
676                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
677                         filter = STAILQ_FIRST(&vnic->filter);
678                         while (filter) {
679                                 temp_filter = STAILQ_NEXT(filter, next);
680                                 if (filter->mac_index == index) {
681                                         STAILQ_REMOVE(&vnic->filter, filter,
682                                                       bnxt_filter_info, next);
683                                         bnxt_hwrm_clear_l2_filter(bp, filter);
684                                         filter->mac_index = INVALID_MAC_INDEX;
685                                         memset(&filter->l2_addr, 0,
686                                                ETHER_ADDR_LEN);
687                                         STAILQ_INSERT_TAIL(
688                                                         &bp->free_filter_list,
689                                                         filter, next);
690                                 }
691                                 filter = temp_filter;
692                         }
693                 }
694         }
695 }
696
697 static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
698                                 struct ether_addr *mac_addr,
699                                 uint32_t index, uint32_t pool)
700 {
701         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
702         struct bnxt_vnic_info *vnic = STAILQ_FIRST(&bp->ff_pool[pool]);
703         struct bnxt_filter_info *filter;
704
705         if (BNXT_VF(bp)) {
706                 RTE_LOG(ERR, PMD, "Cannot add MAC address to a VF interface\n");
707                 return -ENOTSUP;
708         }
709
710         if (!vnic) {
711                 RTE_LOG(ERR, PMD, "VNIC not found for pool %d!\n", pool);
712                 return -EINVAL;
713         }
714         /* Attach requested MAC address to the new l2_filter */
715         STAILQ_FOREACH(filter, &vnic->filter, next) {
716                 if (filter->mac_index == index) {
717                         RTE_LOG(ERR, PMD,
718                                 "MAC addr already existed for pool %d\n", pool);
719                         return -EINVAL;
720                 }
721         }
722         filter = bnxt_alloc_filter(bp);
723         if (!filter) {
724                 RTE_LOG(ERR, PMD, "L2 filter alloc failed\n");
725                 return -ENODEV;
726         }
727         STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
728         filter->mac_index = index;
729         memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN);
730         return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
731 }
732
733 int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
734 {
735         int rc = 0;
736         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
737         struct rte_eth_link new;
738         unsigned int cnt = BNXT_LINK_WAIT_CNT;
739
740         memset(&new, 0, sizeof(new));
741         do {
742                 /* Retrieve link info from hardware */
743                 rc = bnxt_get_hwrm_link_config(bp, &new);
744                 if (rc) {
745                         new.link_speed = ETH_LINK_SPEED_100M;
746                         new.link_duplex = ETH_LINK_FULL_DUPLEX;
747                         RTE_LOG(ERR, PMD,
748                                 "Failed to retrieve link rc = 0x%x!\n", rc);
749                         goto out;
750                 }
751                 rte_delay_ms(BNXT_LINK_WAIT_INTERVAL);
752
753                 if (!wait_to_complete)
754                         break;
755         } while (!new.link_status && cnt--);
756
757 out:
758         /* Timed out or success */
759         if (new.link_status != eth_dev->data->dev_link.link_status ||
760         new.link_speed != eth_dev->data->dev_link.link_speed) {
761                 memcpy(&eth_dev->data->dev_link, &new,
762                         sizeof(struct rte_eth_link));
763                 bnxt_print_link_info(eth_dev);
764         }
765
766         return rc;
767 }
768
769 static void bnxt_promiscuous_enable_op(struct rte_eth_dev *eth_dev)
770 {
771         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
772         struct bnxt_vnic_info *vnic;
773
774         if (bp->vnic_info == NULL)
775                 return;
776
777         vnic = &bp->vnic_info[0];
778
779         vnic->flags |= BNXT_VNIC_INFO_PROMISC;
780         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
781 }
782
783 static void bnxt_promiscuous_disable_op(struct rte_eth_dev *eth_dev)
784 {
785         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
786         struct bnxt_vnic_info *vnic;
787
788         if (bp->vnic_info == NULL)
789                 return;
790
791         vnic = &bp->vnic_info[0];
792
793         vnic->flags &= ~BNXT_VNIC_INFO_PROMISC;
794         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
795 }
796
797 static void bnxt_allmulticast_enable_op(struct rte_eth_dev *eth_dev)
798 {
799         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
800         struct bnxt_vnic_info *vnic;
801
802         if (bp->vnic_info == NULL)
803                 return;
804
805         vnic = &bp->vnic_info[0];
806
807         vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
808         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
809 }
810
811 static void bnxt_allmulticast_disable_op(struct rte_eth_dev *eth_dev)
812 {
813         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
814         struct bnxt_vnic_info *vnic;
815
816         if (bp->vnic_info == NULL)
817                 return;
818
819         vnic = &bp->vnic_info[0];
820
821         vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
822         bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
823 }
824
825 static int bnxt_reta_update_op(struct rte_eth_dev *eth_dev,
826                             struct rte_eth_rss_reta_entry64 *reta_conf,
827                             uint16_t reta_size)
828 {
829         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
830         struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
831         struct bnxt_vnic_info *vnic;
832         int i;
833
834         if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
835                 return -EINVAL;
836
837         if (reta_size != HW_HASH_INDEX_SIZE) {
838                 RTE_LOG(ERR, PMD, "The configured hash table lookup size "
839                         "(%d) must equal the size supported by the hardware "
840                         "(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
841                 return -EINVAL;
842         }
843         /* Update the RSS VNIC(s) */
844         for (i = 0; i < MAX_FF_POOLS; i++) {
845                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
846                         memcpy(vnic->rss_table, reta_conf, reta_size);
847
848                         bnxt_hwrm_vnic_rss_cfg(bp, vnic);
849                 }
850         }
851         return 0;
852 }
853
854 static int bnxt_reta_query_op(struct rte_eth_dev *eth_dev,
855                               struct rte_eth_rss_reta_entry64 *reta_conf,
856                               uint16_t reta_size)
857 {
858         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
859         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
860         struct rte_intr_handle *intr_handle
861                 = &bp->pdev->intr_handle;
862
863         /* Retrieve from the default VNIC */
864         if (!vnic)
865                 return -EINVAL;
866         if (!vnic->rss_table)
867                 return -EINVAL;
868
869         if (reta_size != HW_HASH_INDEX_SIZE) {
870                 RTE_LOG(ERR, PMD, "The configured hash table lookup size "
871                         "(%d) must equal the size supported by the hardware "
872                         "(%d)\n", reta_size, HW_HASH_INDEX_SIZE);
873                 return -EINVAL;
874         }
875         /* EW - need to revisit here copying from uint64_t to uint16_t */
876         memcpy(reta_conf, vnic->rss_table, reta_size);
877
878         if (rte_intr_allow_others(intr_handle)) {
879                 if (eth_dev->data->dev_conf.intr_conf.lsc != 0)
880                         bnxt_dev_lsc_intr_setup(eth_dev);
881         }
882
883         return 0;
884 }
885
886 static int bnxt_rss_hash_update_op(struct rte_eth_dev *eth_dev,
887                                    struct rte_eth_rss_conf *rss_conf)
888 {
889         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
890         struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
891         struct bnxt_vnic_info *vnic;
892         uint16_t hash_type = 0;
893         int i;
894
895         /*
896          * If RSS enablement were different than dev_configure,
897          * then return -EINVAL
898          */
899         if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
900                 if (!rss_conf->rss_hf)
901                         RTE_LOG(ERR, PMD, "Hash type NONE\n");
902         } else {
903                 if (rss_conf->rss_hf & BNXT_ETH_RSS_SUPPORT)
904                         return -EINVAL;
905         }
906
907         bp->flags |= BNXT_FLAG_UPDATE_HASH;
908         memcpy(&bp->rss_conf, rss_conf, sizeof(*rss_conf));
909
910         if (rss_conf->rss_hf & ETH_RSS_IPV4)
911                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
912         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
913                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
914         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
915                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
916         if (rss_conf->rss_hf & ETH_RSS_IPV6)
917                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
918         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
919                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
920         if (rss_conf->rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
921                 hash_type |= HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
922
923         /* Update the RSS VNIC(s) */
924         for (i = 0; i < MAX_FF_POOLS; i++) {
925                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
926                         vnic->hash_type = hash_type;
927
928                         /*
929                          * Use the supplied key if the key length is
930                          * acceptable and the rss_key is not NULL
931                          */
932                         if (rss_conf->rss_key &&
933                             rss_conf->rss_key_len <= HW_HASH_KEY_SIZE)
934                                 memcpy(vnic->rss_hash_key, rss_conf->rss_key,
935                                        rss_conf->rss_key_len);
936
937                         bnxt_hwrm_vnic_rss_cfg(bp, vnic);
938                 }
939         }
940         return 0;
941 }
942
943 static int bnxt_rss_hash_conf_get_op(struct rte_eth_dev *eth_dev,
944                                      struct rte_eth_rss_conf *rss_conf)
945 {
946         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
947         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
948         int len;
949         uint32_t hash_types;
950
951         /* RSS configuration is the same for all VNICs */
952         if (vnic && vnic->rss_hash_key) {
953                 if (rss_conf->rss_key) {
954                         len = rss_conf->rss_key_len <= HW_HASH_KEY_SIZE ?
955                               rss_conf->rss_key_len : HW_HASH_KEY_SIZE;
956                         memcpy(rss_conf->rss_key, vnic->rss_hash_key, len);
957                 }
958
959                 hash_types = vnic->hash_type;
960                 rss_conf->rss_hf = 0;
961                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4) {
962                         rss_conf->rss_hf |= ETH_RSS_IPV4;
963                         hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV4;
964                 }
965                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4) {
966                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
967                         hash_types &=
968                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV4;
969                 }
970                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4) {
971                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
972                         hash_types &=
973                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV4;
974                 }
975                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6) {
976                         rss_conf->rss_hf |= ETH_RSS_IPV6;
977                         hash_types &= ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_IPV6;
978                 }
979                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6) {
980                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
981                         hash_types &=
982                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_TCP_IPV6;
983                 }
984                 if (hash_types & HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6) {
985                         rss_conf->rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
986                         hash_types &=
987                                 ~HWRM_VNIC_RSS_CFG_INPUT_HASH_TYPE_UDP_IPV6;
988                 }
989                 if (hash_types) {
990                         RTE_LOG(ERR, PMD,
991                                 "Unknwon RSS config from firmware (%08x), RSS disabled",
992                                 vnic->hash_type);
993                         return -ENOTSUP;
994                 }
995         } else {
996                 rss_conf->rss_hf = 0;
997         }
998         return 0;
999 }
1000
1001 static int bnxt_flow_ctrl_get_op(struct rte_eth_dev *dev,
1002                                struct rte_eth_fc_conf *fc_conf)
1003 {
1004         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1005         struct rte_eth_link link_info;
1006         int rc;
1007
1008         rc = bnxt_get_hwrm_link_config(bp, &link_info);
1009         if (rc)
1010                 return rc;
1011
1012         memset(fc_conf, 0, sizeof(*fc_conf));
1013         if (bp->link_info.auto_pause)
1014                 fc_conf->autoneg = 1;
1015         switch (bp->link_info.pause) {
1016         case 0:
1017                 fc_conf->mode = RTE_FC_NONE;
1018                 break;
1019         case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX:
1020                 fc_conf->mode = RTE_FC_TX_PAUSE;
1021                 break;
1022         case HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX:
1023                 fc_conf->mode = RTE_FC_RX_PAUSE;
1024                 break;
1025         case (HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_TX |
1026                         HWRM_PORT_PHY_QCFG_OUTPUT_PAUSE_RX):
1027                 fc_conf->mode = RTE_FC_FULL;
1028                 break;
1029         }
1030         return 0;
1031 }
1032
1033 static int bnxt_flow_ctrl_set_op(struct rte_eth_dev *dev,
1034                                struct rte_eth_fc_conf *fc_conf)
1035 {
1036         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1037
1038         if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1039                 RTE_LOG(ERR, PMD, "Flow Control Settings cannot be modified\n");
1040                 return -ENOTSUP;
1041         }
1042
1043         switch (fc_conf->mode) {
1044         case RTE_FC_NONE:
1045                 bp->link_info.auto_pause = 0;
1046                 bp->link_info.force_pause = 0;
1047                 break;
1048         case RTE_FC_RX_PAUSE:
1049                 if (fc_conf->autoneg) {
1050                         bp->link_info.auto_pause =
1051                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1052                         bp->link_info.force_pause = 0;
1053                 } else {
1054                         bp->link_info.auto_pause = 0;
1055                         bp->link_info.force_pause =
1056                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1057                 }
1058                 break;
1059         case RTE_FC_TX_PAUSE:
1060                 if (fc_conf->autoneg) {
1061                         bp->link_info.auto_pause =
1062                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX;
1063                         bp->link_info.force_pause = 0;
1064                 } else {
1065                         bp->link_info.auto_pause = 0;
1066                         bp->link_info.force_pause =
1067                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX;
1068                 }
1069                 break;
1070         case RTE_FC_FULL:
1071                 if (fc_conf->autoneg) {
1072                         bp->link_info.auto_pause =
1073                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_TX |
1074                                         HWRM_PORT_PHY_CFG_INPUT_AUTO_PAUSE_RX;
1075                         bp->link_info.force_pause = 0;
1076                 } else {
1077                         bp->link_info.auto_pause = 0;
1078                         bp->link_info.force_pause =
1079                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_TX |
1080                                         HWRM_PORT_PHY_CFG_INPUT_FORCE_PAUSE_RX;
1081                 }
1082                 break;
1083         }
1084         return bnxt_set_hwrm_link_config(bp, true);
1085 }
1086
1087 /* Add UDP tunneling port */
1088 static int
1089 bnxt_udp_tunnel_port_add_op(struct rte_eth_dev *eth_dev,
1090                          struct rte_eth_udp_tunnel *udp_tunnel)
1091 {
1092         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1093         uint16_t tunnel_type = 0;
1094         int rc = 0;
1095
1096         switch (udp_tunnel->prot_type) {
1097         case RTE_TUNNEL_TYPE_VXLAN:
1098                 if (bp->vxlan_port_cnt) {
1099                         RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1100                                 udp_tunnel->udp_port);
1101                         if (bp->vxlan_port != udp_tunnel->udp_port) {
1102                                 RTE_LOG(ERR, PMD, "Only one port allowed\n");
1103                                 return -ENOSPC;
1104                         }
1105                         bp->vxlan_port_cnt++;
1106                         return 0;
1107                 }
1108                 tunnel_type =
1109                         HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN;
1110                 bp->vxlan_port_cnt++;
1111                 break;
1112         case RTE_TUNNEL_TYPE_GENEVE:
1113                 if (bp->geneve_port_cnt) {
1114                         RTE_LOG(ERR, PMD, "Tunnel Port %d already programmed\n",
1115                                 udp_tunnel->udp_port);
1116                         if (bp->geneve_port != udp_tunnel->udp_port) {
1117                                 RTE_LOG(ERR, PMD, "Only one port allowed\n");
1118                                 return -ENOSPC;
1119                         }
1120                         bp->geneve_port_cnt++;
1121                         return 0;
1122                 }
1123                 tunnel_type =
1124                         HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE;
1125                 bp->geneve_port_cnt++;
1126                 break;
1127         default:
1128                 RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1129                 return -ENOTSUP;
1130         }
1131         rc = bnxt_hwrm_tunnel_dst_port_alloc(bp, udp_tunnel->udp_port,
1132                                              tunnel_type);
1133         return rc;
1134 }
1135
1136 static int
1137 bnxt_udp_tunnel_port_del_op(struct rte_eth_dev *eth_dev,
1138                          struct rte_eth_udp_tunnel *udp_tunnel)
1139 {
1140         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1141         uint16_t tunnel_type = 0;
1142         uint16_t port = 0;
1143         int rc = 0;
1144
1145         switch (udp_tunnel->prot_type) {
1146         case RTE_TUNNEL_TYPE_VXLAN:
1147                 if (!bp->vxlan_port_cnt) {
1148                         RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1149                         return -EINVAL;
1150                 }
1151                 if (bp->vxlan_port != udp_tunnel->udp_port) {
1152                         RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1153                                 udp_tunnel->udp_port, bp->vxlan_port);
1154                         return -EINVAL;
1155                 }
1156                 if (--bp->vxlan_port_cnt)
1157                         return 0;
1158
1159                 tunnel_type =
1160                         HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN;
1161                 port = bp->vxlan_fw_dst_port_id;
1162                 break;
1163         case RTE_TUNNEL_TYPE_GENEVE:
1164                 if (!bp->geneve_port_cnt) {
1165                         RTE_LOG(ERR, PMD, "No Tunnel port configured yet\n");
1166                         return -EINVAL;
1167                 }
1168                 if (bp->geneve_port != udp_tunnel->udp_port) {
1169                         RTE_LOG(ERR, PMD, "Req Port: %d. Configured port: %d\n",
1170                                 udp_tunnel->udp_port, bp->geneve_port);
1171                         return -EINVAL;
1172                 }
1173                 if (--bp->geneve_port_cnt)
1174                         return 0;
1175
1176                 tunnel_type =
1177                         HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE;
1178                 port = bp->geneve_fw_dst_port_id;
1179                 break;
1180         default:
1181                 RTE_LOG(ERR, PMD, "Tunnel type is not supported\n");
1182                 return -ENOTSUP;
1183         }
1184
1185         rc = bnxt_hwrm_tunnel_dst_port_free(bp, port, tunnel_type);
1186         if (!rc) {
1187                 if (tunnel_type ==
1188                     HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN)
1189                         bp->vxlan_port = 0;
1190                 if (tunnel_type ==
1191                     HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE)
1192                         bp->geneve_port = 0;
1193         }
1194         return rc;
1195 }
1196
1197 static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1198 {
1199         struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1200         struct bnxt_vnic_info *vnic;
1201         unsigned int i;
1202         int rc = 0;
1203         uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1204
1205         /* Cycle through all VNICs */
1206         for (i = 0; i < bp->nr_vnics; i++) {
1207                 /*
1208                  * For each VNIC and each associated filter(s)
1209                  * if VLAN exists && VLAN matches vlan_id
1210                  *      remove the MAC+VLAN filter
1211                  *      add a new MAC only filter
1212                  * else
1213                  *      VLAN filter doesn't exist, just skip and continue
1214                  */
1215                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1216                         filter = STAILQ_FIRST(&vnic->filter);
1217                         while (filter) {
1218                                 temp_filter = STAILQ_NEXT(filter, next);
1219
1220                                 if (filter->enables & chk &&
1221                                     filter->l2_ovlan == vlan_id) {
1222                                         /* Must delete the filter */
1223                                         STAILQ_REMOVE(&vnic->filter, filter,
1224                                                       bnxt_filter_info, next);
1225                                         bnxt_hwrm_clear_l2_filter(bp, filter);
1226                                         STAILQ_INSERT_TAIL(
1227                                                         &bp->free_filter_list,
1228                                                         filter, next);
1229
1230                                         /*
1231                                          * Need to examine to see if the MAC
1232                                          * filter already existed or not before
1233                                          * allocating a new one
1234                                          */
1235
1236                                         new_filter = bnxt_alloc_filter(bp);
1237                                         if (!new_filter) {
1238                                                 RTE_LOG(ERR, PMD,
1239                                                         "MAC/VLAN filter alloc failed\n");
1240                                                 rc = -ENOMEM;
1241                                                 goto exit;
1242                                         }
1243                                         STAILQ_INSERT_TAIL(&vnic->filter,
1244                                                            new_filter, next);
1245                                         /* Inherit MAC from previous filter */
1246                                         new_filter->mac_index =
1247                                                         filter->mac_index;
1248                                         memcpy(new_filter->l2_addr,
1249                                                filter->l2_addr, ETHER_ADDR_LEN);
1250                                         /* MAC only filter */
1251                                         rc = bnxt_hwrm_set_l2_filter(bp,
1252                                                         vnic->fw_vnic_id,
1253                                                         new_filter);
1254                                         if (rc)
1255                                                 goto exit;
1256                                         RTE_LOG(INFO, PMD,
1257                                                 "Del Vlan filter for %d\n",
1258                                                 vlan_id);
1259                                 }
1260                                 filter = temp_filter;
1261                         }
1262                 }
1263         }
1264 exit:
1265         return rc;
1266 }
1267
1268 static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
1269 {
1270         struct bnxt_filter_info *filter, *temp_filter, *new_filter;
1271         struct bnxt_vnic_info *vnic;
1272         unsigned int i;
1273         int rc = 0;
1274         uint32_t en = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN |
1275                 HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN_MASK;
1276         uint32_t chk = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN;
1277
1278         /* Cycle through all VNICs */
1279         for (i = 0; i < bp->nr_vnics; i++) {
1280                 /*
1281                  * For each VNIC and each associated filter(s)
1282                  * if VLAN exists:
1283                  *   if VLAN matches vlan_id
1284                  *      VLAN filter already exists, just skip and continue
1285                  *   else
1286                  *      add a new MAC+VLAN filter
1287                  * else
1288                  *   Remove the old MAC only filter
1289                  *    Add a new MAC+VLAN filter
1290                  */
1291                 STAILQ_FOREACH(vnic, &bp->ff_pool[i], next) {
1292                         filter = STAILQ_FIRST(&vnic->filter);
1293                         while (filter) {
1294                                 temp_filter = STAILQ_NEXT(filter, next);
1295
1296                                 if (filter->enables & chk) {
1297                                         if (filter->l2_ovlan == vlan_id)
1298                                                 goto cont;
1299                                 } else {
1300                                         /* Must delete the MAC filter */
1301                                         STAILQ_REMOVE(&vnic->filter, filter,
1302                                                       bnxt_filter_info, next);
1303                                         bnxt_hwrm_clear_l2_filter(bp, filter);
1304                                         filter->l2_ovlan = 0;
1305                                         STAILQ_INSERT_TAIL(
1306                                                         &bp->free_filter_list,
1307                                                         filter, next);
1308                                 }
1309                                 new_filter = bnxt_alloc_filter(bp);
1310                                 if (!new_filter) {
1311                                         RTE_LOG(ERR, PMD,
1312                                                 "MAC/VLAN filter alloc failed\n");
1313                                         rc = -ENOMEM;
1314                                         goto exit;
1315                                 }
1316                                 STAILQ_INSERT_TAIL(&vnic->filter, new_filter,
1317                                                    next);
1318                                 /* Inherit MAC from the previous filter */
1319                                 new_filter->mac_index = filter->mac_index;
1320                                 memcpy(new_filter->l2_addr, filter->l2_addr,
1321                                        ETHER_ADDR_LEN);
1322                                 /* MAC + VLAN ID filter */
1323                                 new_filter->l2_ovlan = vlan_id;
1324                                 new_filter->l2_ovlan_mask = 0xF000;
1325                                 new_filter->enables |= en;
1326                                 rc = bnxt_hwrm_set_l2_filter(bp,
1327                                                              vnic->fw_vnic_id,
1328                                                              new_filter);
1329                                 if (rc)
1330                                         goto exit;
1331                                 RTE_LOG(INFO, PMD,
1332                                         "Added Vlan filter for %d\n", vlan_id);
1333 cont:
1334                                 filter = temp_filter;
1335                         }
1336                 }
1337         }
1338 exit:
1339         return rc;
1340 }
1341
1342 static int bnxt_vlan_filter_set_op(struct rte_eth_dev *eth_dev,
1343                                    uint16_t vlan_id, int on)
1344 {
1345         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1346
1347         /* These operations apply to ALL existing MAC/VLAN filters */
1348         if (on)
1349                 return bnxt_add_vlan_filter(bp, vlan_id);
1350         else
1351                 return bnxt_del_vlan_filter(bp, vlan_id);
1352 }
1353
1354 static int
1355 bnxt_vlan_offload_set_op(struct rte_eth_dev *dev, int mask)
1356 {
1357         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1358         unsigned int i;
1359
1360         if (mask & ETH_VLAN_FILTER_MASK) {
1361                 if (!dev->data->dev_conf.rxmode.hw_vlan_filter) {
1362                         /* Remove any VLAN filters programmed */
1363                         for (i = 0; i < 4095; i++)
1364                                 bnxt_del_vlan_filter(bp, i);
1365                 }
1366                 RTE_LOG(INFO, PMD, "VLAN Filtering: %d\n",
1367                         dev->data->dev_conf.rxmode.hw_vlan_filter);
1368         }
1369
1370         if (mask & ETH_VLAN_STRIP_MASK) {
1371                 /* Enable or disable VLAN stripping */
1372                 for (i = 0; i < bp->nr_vnics; i++) {
1373                         struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1374                         if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1375                                 vnic->vlan_strip = true;
1376                         else
1377                                 vnic->vlan_strip = false;
1378                         bnxt_hwrm_vnic_cfg(bp, vnic);
1379                 }
1380                 RTE_LOG(INFO, PMD, "VLAN Strip Offload: %d\n",
1381                         dev->data->dev_conf.rxmode.hw_vlan_strip);
1382         }
1383
1384         if (mask & ETH_VLAN_EXTEND_MASK)
1385                 RTE_LOG(ERR, PMD, "Extend VLAN Not supported\n");
1386
1387         return 0;
1388 }
1389
1390 static void
1391 bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
1392 {
1393         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1394         /* Default Filter is tied to VNIC 0 */
1395         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
1396         struct bnxt_filter_info *filter;
1397         int rc;
1398
1399         if (BNXT_VF(bp))
1400                 return;
1401
1402         memcpy(bp->mac_addr, addr, sizeof(bp->mac_addr));
1403         memcpy(&dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
1404
1405         STAILQ_FOREACH(filter, &vnic->filter, next) {
1406                 /* Default Filter is at Index 0 */
1407                 if (filter->mac_index != 0)
1408                         continue;
1409                 rc = bnxt_hwrm_clear_l2_filter(bp, filter);
1410                 if (rc)
1411                         break;
1412                 memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN);
1413                 memset(filter->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
1414                 filter->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
1415                 filter->enables |=
1416                         HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
1417                         HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
1418                 rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
1419                 if (rc)
1420                         break;
1421                 filter->mac_index = 0;
1422                 RTE_LOG(DEBUG, PMD, "Set MAC addr\n");
1423         }
1424 }
1425
1426 static int
1427 bnxt_dev_set_mc_addr_list_op(struct rte_eth_dev *eth_dev,
1428                           struct ether_addr *mc_addr_set,
1429                           uint32_t nb_mc_addr)
1430 {
1431         struct bnxt *bp = (struct bnxt *)eth_dev->data->dev_private;
1432         char *mc_addr_list = (char *)mc_addr_set;
1433         struct bnxt_vnic_info *vnic;
1434         uint32_t off = 0, i = 0;
1435
1436         vnic = &bp->vnic_info[0];
1437
1438         if (nb_mc_addr > BNXT_MAX_MC_ADDRS) {
1439                 vnic->flags |= BNXT_VNIC_INFO_ALLMULTI;
1440                 goto allmulti;
1441         }
1442
1443         /* TODO Check for Duplicate mcast addresses */
1444         vnic->flags &= ~BNXT_VNIC_INFO_ALLMULTI;
1445         for (i = 0; i < nb_mc_addr; i++) {
1446                 memcpy(vnic->mc_list + off, &mc_addr_list[i], ETHER_ADDR_LEN);
1447                 off += ETHER_ADDR_LEN;
1448         }
1449
1450         vnic->mc_addr_cnt = i;
1451
1452 allmulti:
1453         return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
1454 }
1455
1456 static int
1457 bnxt_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
1458 {
1459         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1460         uint8_t fw_major = (bp->fw_ver >> 24) & 0xff;
1461         uint8_t fw_minor = (bp->fw_ver >> 16) & 0xff;
1462         uint8_t fw_updt = (bp->fw_ver >> 8) & 0xff;
1463         int ret;
1464
1465         ret = snprintf(fw_version, fw_size, "%d.%d.%d",
1466                         fw_major, fw_minor, fw_updt);
1467
1468         ret += 1; /* add the size of '\0' */
1469         if (fw_size < (uint32_t)ret)
1470                 return ret;
1471         else
1472                 return 0;
1473 }
1474
1475 static void
1476 bnxt_rxq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1477         struct rte_eth_rxq_info *qinfo)
1478 {
1479         struct bnxt_rx_queue *rxq;
1480
1481         rxq = dev->data->rx_queues[queue_id];
1482
1483         qinfo->mp = rxq->mb_pool;
1484         qinfo->scattered_rx = dev->data->scattered_rx;
1485         qinfo->nb_desc = rxq->nb_rx_desc;
1486
1487         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1488         qinfo->conf.rx_drop_en = 0;
1489         qinfo->conf.rx_deferred_start = 0;
1490 }
1491
1492 static void
1493 bnxt_txq_info_get_op(struct rte_eth_dev *dev, uint16_t queue_id,
1494         struct rte_eth_txq_info *qinfo)
1495 {
1496         struct bnxt_tx_queue *txq;
1497
1498         txq = dev->data->tx_queues[queue_id];
1499
1500         qinfo->nb_desc = txq->nb_tx_desc;
1501
1502         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1503         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1504         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1505
1506         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1507         qinfo->conf.tx_rs_thresh = 0;
1508         qinfo->conf.txq_flags = txq->txq_flags;
1509         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1510 }
1511
1512 static int bnxt_mtu_set_op(struct rte_eth_dev *eth_dev, uint16_t new_mtu)
1513 {
1514         struct bnxt *bp = eth_dev->data->dev_private;
1515         struct rte_eth_dev_info dev_info;
1516         uint32_t max_dev_mtu;
1517         uint32_t rc = 0;
1518         uint32_t i;
1519
1520         bnxt_dev_info_get_op(eth_dev, &dev_info);
1521         max_dev_mtu = dev_info.max_rx_pktlen -
1522                       ETHER_HDR_LEN - ETHER_CRC_LEN - VLAN_TAG_SIZE * 2;
1523
1524         if (new_mtu < ETHER_MIN_MTU || new_mtu > max_dev_mtu) {
1525                 RTE_LOG(ERR, PMD, "MTU requested must be within (%d, %d)\n",
1526                         ETHER_MIN_MTU, max_dev_mtu);
1527                 return -EINVAL;
1528         }
1529
1530
1531         if (new_mtu > ETHER_MTU) {
1532                 bp->flags |= BNXT_FLAG_JUMBO;
1533                 eth_dev->data->dev_conf.rxmode.jumbo_frame = 1;
1534         } else {
1535                 eth_dev->data->dev_conf.rxmode.jumbo_frame = 0;
1536                 bp->flags &= ~BNXT_FLAG_JUMBO;
1537         }
1538
1539         eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
1540                 new_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1541
1542         eth_dev->data->mtu = new_mtu;
1543         RTE_LOG(INFO, PMD, "New MTU is %d\n", eth_dev->data->mtu);
1544
1545         for (i = 0; i < bp->nr_vnics; i++) {
1546                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1547
1548                 vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN +
1549                                         ETHER_CRC_LEN + VLAN_TAG_SIZE * 2;
1550                 rc = bnxt_hwrm_vnic_cfg(bp, vnic);
1551                 if (rc)
1552                         break;
1553
1554                 rc = bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
1555                 if (rc)
1556                         return rc;
1557         }
1558
1559         return rc;
1560 }
1561
1562 static int
1563 bnxt_vlan_pvid_set_op(struct rte_eth_dev *dev, uint16_t pvid, int on)
1564 {
1565         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1566         uint16_t vlan = bp->vlan;
1567         int rc;
1568
1569         if (BNXT_NPAR_PF(bp) || BNXT_VF(bp)) {
1570                 RTE_LOG(ERR, PMD,
1571                         "PVID cannot be modified for this function\n");
1572                 return -ENOTSUP;
1573         }
1574         bp->vlan = on ? pvid : 0;
1575
1576         rc = bnxt_hwrm_set_default_vlan(bp, 0, 0);
1577         if (rc)
1578                 bp->vlan = vlan;
1579         return rc;
1580 }
1581
1582 static int
1583 bnxt_dev_led_on_op(struct rte_eth_dev *dev)
1584 {
1585         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1586
1587         return bnxt_hwrm_port_led_cfg(bp, true);
1588 }
1589
1590 static int
1591 bnxt_dev_led_off_op(struct rte_eth_dev *dev)
1592 {
1593         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1594
1595         return bnxt_hwrm_port_led_cfg(bp, false);
1596 }
1597
1598 static uint32_t
1599 bnxt_rx_queue_count_op(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1600 {
1601         uint32_t desc = 0, raw_cons = 0, cons;
1602         struct bnxt_cp_ring_info *cpr;
1603         struct bnxt_rx_queue *rxq;
1604         struct rx_pkt_cmpl *rxcmp;
1605         uint16_t cmp_type;
1606         uint8_t cmp = 1;
1607         bool valid;
1608
1609         rxq = dev->data->rx_queues[rx_queue_id];
1610         cpr = rxq->cp_ring;
1611         valid = cpr->valid;
1612
1613         while (raw_cons < rxq->nb_rx_desc) {
1614                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1615                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1616
1617                 if (!CMPL_VALID(rxcmp, valid))
1618                         goto nothing_to_do;
1619                 valid = FLIP_VALID(cons, cpr->cp_ring_struct->ring_mask, valid);
1620                 cmp_type = CMP_TYPE(rxcmp);
1621                 if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1622                         cmp = (rte_le_to_cpu_32(
1623                                         ((struct rx_tpa_end_cmpl *)
1624                                          (rxcmp))->agg_bufs_v1) &
1625                                RX_TPA_END_CMPL_AGG_BUFS_MASK) >>
1626                                 RX_TPA_END_CMPL_AGG_BUFS_SFT;
1627                         desc++;
1628                 } else if (cmp_type == 0x11) {
1629                         desc++;
1630                         cmp = (rxcmp->agg_bufs_v1 &
1631                                    RX_PKT_CMPL_AGG_BUFS_MASK) >>
1632                                 RX_PKT_CMPL_AGG_BUFS_SFT;
1633                 } else {
1634                         cmp = 1;
1635                 }
1636 nothing_to_do:
1637                 raw_cons += cmp ? cmp : 2;
1638         }
1639
1640         return desc;
1641 }
1642
1643 static int
1644 bnxt_rx_descriptor_status_op(void *rx_queue, uint16_t offset)
1645 {
1646         struct bnxt_rx_queue *rxq = (struct bnxt_rx_queue *)rx_queue;
1647         struct bnxt_rx_ring_info *rxr;
1648         struct bnxt_cp_ring_info *cpr;
1649         struct bnxt_sw_rx_bd *rx_buf;
1650         struct rx_pkt_cmpl *rxcmp;
1651         uint32_t cons, cp_cons;
1652
1653         if (!rxq)
1654                 return -EINVAL;
1655
1656         cpr = rxq->cp_ring;
1657         rxr = rxq->rx_ring;
1658
1659         if (offset >= rxq->nb_rx_desc)
1660                 return -EINVAL;
1661
1662         cons = RING_CMP(cpr->cp_ring_struct, offset);
1663         cp_cons = cpr->cp_raw_cons;
1664         rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1665
1666         if (cons > cp_cons) {
1667                 if (CMPL_VALID(rxcmp, cpr->valid))
1668                         return RTE_ETH_RX_DESC_DONE;
1669         } else {
1670                 if (CMPL_VALID(rxcmp, !cpr->valid))
1671                         return RTE_ETH_RX_DESC_DONE;
1672         }
1673         rx_buf = &rxr->rx_buf_ring[cons];
1674         if (rx_buf->mbuf == NULL)
1675                 return RTE_ETH_RX_DESC_UNAVAIL;
1676
1677
1678         return RTE_ETH_RX_DESC_AVAIL;
1679 }
1680
1681 static int
1682 bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
1683 {
1684         struct bnxt_tx_queue *txq = (struct bnxt_tx_queue *)tx_queue;
1685         struct bnxt_tx_ring_info *txr;
1686         struct bnxt_cp_ring_info *cpr;
1687         struct bnxt_sw_tx_bd *tx_buf;
1688         struct tx_pkt_cmpl *txcmp;
1689         uint32_t cons, cp_cons;
1690
1691         if (!txq)
1692                 return -EINVAL;
1693
1694         cpr = txq->cp_ring;
1695         txr = txq->tx_ring;
1696
1697         if (offset >= txq->nb_tx_desc)
1698                 return -EINVAL;
1699
1700         cons = RING_CMP(cpr->cp_ring_struct, offset);
1701         txcmp = (struct tx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1702         cp_cons = cpr->cp_raw_cons;
1703
1704         if (cons > cp_cons) {
1705                 if (CMPL_VALID(txcmp, cpr->valid))
1706                         return RTE_ETH_TX_DESC_UNAVAIL;
1707         } else {
1708                 if (CMPL_VALID(txcmp, !cpr->valid))
1709                         return RTE_ETH_TX_DESC_UNAVAIL;
1710         }
1711         tx_buf = &txr->tx_buf_ring[cons];
1712         if (tx_buf->mbuf == NULL)
1713                 return RTE_ETH_TX_DESC_DONE;
1714
1715         return RTE_ETH_TX_DESC_FULL;
1716 }
1717
1718 static struct bnxt_filter_info *
1719 bnxt_match_and_validate_ether_filter(struct bnxt *bp,
1720                                 struct rte_eth_ethertype_filter *efilter,
1721                                 struct bnxt_vnic_info *vnic0,
1722                                 struct bnxt_vnic_info *vnic,
1723                                 int *ret)
1724 {
1725         struct bnxt_filter_info *mfilter = NULL;
1726         int match = 0;
1727         *ret = 0;
1728
1729         if (efilter->ether_type != ETHER_TYPE_IPv4 &&
1730                 efilter->ether_type != ETHER_TYPE_IPv6) {
1731                 RTE_LOG(ERR, PMD, "unsupported ether_type(0x%04x) in"
1732                         " ethertype filter.", efilter->ether_type);
1733                 *ret = -EINVAL;
1734                 goto exit;
1735         }
1736         if (efilter->queue >= bp->rx_nr_rings) {
1737                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1738                 *ret = -EINVAL;
1739                 goto exit;
1740         }
1741
1742         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1743         vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1744         if (vnic == NULL) {
1745                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
1746                 *ret = -EINVAL;
1747                 goto exit;
1748         }
1749
1750         if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1751                 STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
1752                         if ((!memcmp(efilter->mac_addr.addr_bytes,
1753                                      mfilter->l2_addr, ETHER_ADDR_LEN) &&
1754                              mfilter->flags ==
1755                              HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
1756                              mfilter->ethertype == efilter->ether_type)) {
1757                                 match = 1;
1758                                 break;
1759                         }
1760                 }
1761         } else {
1762                 STAILQ_FOREACH(mfilter, &vnic->filter, next)
1763                         if ((!memcmp(efilter->mac_addr.addr_bytes,
1764                                      mfilter->l2_addr, ETHER_ADDR_LEN) &&
1765                              mfilter->ethertype == efilter->ether_type &&
1766                              mfilter->flags ==
1767                              HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
1768                                 match = 1;
1769                                 break;
1770                         }
1771         }
1772
1773         if (match)
1774                 *ret = -EEXIST;
1775
1776 exit:
1777         return mfilter;
1778 }
1779
1780 static int
1781 bnxt_ethertype_filter(struct rte_eth_dev *dev,
1782                         enum rte_filter_op filter_op,
1783                         void *arg)
1784 {
1785         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
1786         struct rte_eth_ethertype_filter *efilter =
1787                         (struct rte_eth_ethertype_filter *)arg;
1788         struct bnxt_filter_info *bfilter, *filter1;
1789         struct bnxt_vnic_info *vnic, *vnic0;
1790         int ret;
1791
1792         if (filter_op == RTE_ETH_FILTER_NOP)
1793                 return 0;
1794
1795         if (arg == NULL) {
1796                 RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
1797                             filter_op);
1798                 return -EINVAL;
1799         }
1800
1801         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
1802         vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
1803
1804         switch (filter_op) {
1805         case RTE_ETH_FILTER_ADD:
1806                 bnxt_match_and_validate_ether_filter(bp, efilter,
1807                                                         vnic0, vnic, &ret);
1808                 if (ret < 0)
1809                         return ret;
1810
1811                 bfilter = bnxt_get_unused_filter(bp);
1812                 if (bfilter == NULL) {
1813                         RTE_LOG(ERR, PMD,
1814                                 "Not enough resources for a new filter.\n");
1815                         return -ENOMEM;
1816                 }
1817                 bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
1818                 memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
1819                        ETHER_ADDR_LEN);
1820                 memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
1821                        ETHER_ADDR_LEN);
1822                 bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
1823                 bfilter->ethertype = efilter->ether_type;
1824                 bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
1825
1826                 filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
1827                 if (filter1 == NULL) {
1828                         ret = -1;
1829                         goto cleanup;
1830                 }
1831                 bfilter->enables |=
1832                         HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
1833                 bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
1834
1835                 bfilter->dst_id = vnic->fw_vnic_id;
1836
1837                 if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
1838                         bfilter->flags =
1839                                 HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
1840                 }
1841
1842                 ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
1843                 if (ret)
1844                         goto cleanup;
1845                 STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
1846                 break;
1847         case RTE_ETH_FILTER_DELETE:
1848                 filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
1849                                                         vnic0, vnic, &ret);
1850                 if (ret == -EEXIST) {
1851                         ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
1852
1853                         STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
1854                                       next);
1855                         bnxt_free_filter(bp, filter1);
1856                 } else if (ret == 0) {
1857                         RTE_LOG(ERR, PMD, "No matching filter found\n");
1858                 }
1859                 break;
1860         default:
1861                 RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
1862                 ret = -EINVAL;
1863                 goto error;
1864         }
1865         return ret;
1866 cleanup:
1867         bnxt_free_filter(bp, bfilter);
1868 error:
1869         return ret;
1870 }
1871
1872 static inline int
1873 parse_ntuple_filter(struct bnxt *bp,
1874                     struct rte_eth_ntuple_filter *nfilter,
1875                     struct bnxt_filter_info *bfilter)
1876 {
1877         uint32_t en = 0;
1878
1879         if (nfilter->queue >= bp->rx_nr_rings) {
1880                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", nfilter->queue);
1881                 return -EINVAL;
1882         }
1883
1884         switch (nfilter->dst_port_mask) {
1885         case UINT16_MAX:
1886                 bfilter->dst_port_mask = -1;
1887                 bfilter->dst_port = nfilter->dst_port;
1888                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT |
1889                         NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
1890                 break;
1891         default:
1892                 RTE_LOG(ERR, PMD, "invalid dst_port mask.");
1893                 return -EINVAL;
1894         }
1895
1896         bfilter->ip_addr_type = NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
1897         en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1898
1899         switch (nfilter->proto_mask) {
1900         case UINT8_MAX:
1901                 if (nfilter->proto == 17) /* IPPROTO_UDP */
1902                         bfilter->ip_protocol = 17;
1903                 else if (nfilter->proto == 6) /* IPPROTO_TCP */
1904                         bfilter->ip_protocol = 6;
1905                 else
1906                         return -EINVAL;
1907                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
1908                 break;
1909         default:
1910                 RTE_LOG(ERR, PMD, "invalid protocol mask.");
1911                 return -EINVAL;
1912         }
1913
1914         switch (nfilter->dst_ip_mask) {
1915         case UINT32_MAX:
1916                 bfilter->dst_ipaddr_mask[0] = -1;
1917                 bfilter->dst_ipaddr[0] = nfilter->dst_ip;
1918                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR |
1919                         NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
1920                 break;
1921         default:
1922                 RTE_LOG(ERR, PMD, "invalid dst_ip mask.");
1923                 return -EINVAL;
1924         }
1925
1926         switch (nfilter->src_ip_mask) {
1927         case UINT32_MAX:
1928                 bfilter->src_ipaddr_mask[0] = -1;
1929                 bfilter->src_ipaddr[0] = nfilter->src_ip;
1930                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
1931                         NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
1932                 break;
1933         default:
1934                 RTE_LOG(ERR, PMD, "invalid src_ip mask.");
1935                 return -EINVAL;
1936         }
1937
1938         switch (nfilter->src_port_mask) {
1939         case UINT16_MAX:
1940                 bfilter->src_port_mask = -1;
1941                 bfilter->src_port = nfilter->src_port;
1942                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
1943                         NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
1944                 break;
1945         default:
1946                 RTE_LOG(ERR, PMD, "invalid src_port mask.");
1947                 return -EINVAL;
1948         }
1949
1950         //TODO Priority
1951         //nfilter->priority = (uint8_t)filter->priority;
1952
1953         bfilter->enables = en;
1954         return 0;
1955 }
1956
1957 static struct bnxt_filter_info*
1958 bnxt_match_ntuple_filter(struct bnxt *bp,
1959                          struct bnxt_filter_info *bfilter)
1960 {
1961         struct bnxt_filter_info *mfilter = NULL;
1962         int i;
1963
1964         for (i = bp->nr_vnics - 1; i >= 0; i--) {
1965                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
1966                 STAILQ_FOREACH(mfilter, &vnic->filter, next) {
1967                         if (bfilter->src_ipaddr[0] == mfilter->src_ipaddr[0] &&
1968                             bfilter->src_ipaddr_mask[0] ==
1969                             mfilter->src_ipaddr_mask[0] &&
1970                             bfilter->src_port == mfilter->src_port &&
1971                             bfilter->src_port_mask == mfilter->src_port_mask &&
1972                             bfilter->dst_ipaddr[0] == mfilter->dst_ipaddr[0] &&
1973                             bfilter->dst_ipaddr_mask[0] ==
1974                             mfilter->dst_ipaddr_mask[0] &&
1975                             bfilter->dst_port == mfilter->dst_port &&
1976                             bfilter->dst_port_mask == mfilter->dst_port_mask &&
1977                             bfilter->flags == mfilter->flags &&
1978                             bfilter->enables == mfilter->enables)
1979                                 return mfilter;
1980                 }
1981         }
1982         return NULL;
1983 }
1984
1985 static int
1986 bnxt_cfg_ntuple_filter(struct bnxt *bp,
1987                        struct rte_eth_ntuple_filter *nfilter,
1988                        enum rte_filter_op filter_op)
1989 {
1990         struct bnxt_filter_info *bfilter, *mfilter, *filter1;
1991         struct bnxt_vnic_info *vnic, *vnic0;
1992         int ret;
1993
1994         if (nfilter->flags != RTE_5TUPLE_FLAGS) {
1995                 RTE_LOG(ERR, PMD, "only 5tuple is supported.");
1996                 return -EINVAL;
1997         }
1998
1999         if (nfilter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG) {
2000                 RTE_LOG(ERR, PMD, "Ntuple filter: TCP flags not supported\n");
2001                 return -EINVAL;
2002         }
2003
2004         bfilter = bnxt_get_unused_filter(bp);
2005         if (bfilter == NULL) {
2006                 RTE_LOG(ERR, PMD,
2007                         "Not enough resources for a new filter.\n");
2008                 return -ENOMEM;
2009         }
2010         ret = parse_ntuple_filter(bp, nfilter, bfilter);
2011         if (ret < 0)
2012                 goto free_filter;
2013
2014         vnic = STAILQ_FIRST(&bp->ff_pool[nfilter->queue]);
2015         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2016         filter1 = STAILQ_FIRST(&vnic0->filter);
2017         if (filter1 == NULL) {
2018                 ret = -1;
2019                 goto free_filter;
2020         }
2021
2022         bfilter->dst_id = vnic->fw_vnic_id;
2023         bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2024         bfilter->enables |=
2025                 HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2026         bfilter->ethertype = 0x800;
2027         bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2028
2029         mfilter = bnxt_match_ntuple_filter(bp, bfilter);
2030
2031         if (mfilter != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2032                 RTE_LOG(ERR, PMD, "filter exists.");
2033                 ret = -EEXIST;
2034                 goto free_filter;
2035         }
2036         if (mfilter == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2037                 RTE_LOG(ERR, PMD, "filter doesn't exist.");
2038                 ret = -ENOENT;
2039                 goto free_filter;
2040         }
2041
2042         if (filter_op == RTE_ETH_FILTER_ADD) {
2043                 bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2044                 ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
2045                 if (ret)
2046                         goto free_filter;
2047                 STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
2048         } else {
2049                 if (mfilter == NULL) {
2050                         /* This should not happen. But for Coverity! */
2051                         ret = -ENOENT;
2052                         goto free_filter;
2053                 }
2054                 ret = bnxt_hwrm_clear_ntuple_filter(bp, mfilter);
2055
2056                 STAILQ_REMOVE(&vnic->filter, mfilter, bnxt_filter_info,
2057                               next);
2058                 bnxt_free_filter(bp, mfilter);
2059                 bfilter->fw_l2_filter_id = -1;
2060                 bnxt_free_filter(bp, bfilter);
2061         }
2062
2063         return 0;
2064 free_filter:
2065         bfilter->fw_l2_filter_id = -1;
2066         bnxt_free_filter(bp, bfilter);
2067         return ret;
2068 }
2069
2070 static int
2071 bnxt_ntuple_filter(struct rte_eth_dev *dev,
2072                         enum rte_filter_op filter_op,
2073                         void *arg)
2074 {
2075         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2076         int ret;
2077
2078         if (filter_op == RTE_ETH_FILTER_NOP)
2079                 return 0;
2080
2081         if (arg == NULL) {
2082                 RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
2083                             filter_op);
2084                 return -EINVAL;
2085         }
2086
2087         switch (filter_op) {
2088         case RTE_ETH_FILTER_ADD:
2089                 ret = bnxt_cfg_ntuple_filter(bp,
2090                         (struct rte_eth_ntuple_filter *)arg,
2091                         filter_op);
2092                 break;
2093         case RTE_ETH_FILTER_DELETE:
2094                 ret = bnxt_cfg_ntuple_filter(bp,
2095                         (struct rte_eth_ntuple_filter *)arg,
2096                         filter_op);
2097                 break;
2098         default:
2099                 RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
2100                 ret = -EINVAL;
2101                 break;
2102         }
2103         return ret;
2104 }
2105
2106 static int
2107 bnxt_parse_fdir_filter(struct bnxt *bp,
2108                        struct rte_eth_fdir_filter *fdir,
2109                        struct bnxt_filter_info *filter)
2110 {
2111         enum rte_fdir_mode fdir_mode =
2112                 bp->eth_dev->data->dev_conf.fdir_conf.mode;
2113         struct bnxt_vnic_info *vnic0, *vnic;
2114         struct bnxt_filter_info *filter1;
2115         uint32_t en = 0;
2116         int i;
2117
2118         if (fdir_mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2119                 return -EINVAL;
2120
2121         filter->l2_ovlan = fdir->input.flow_ext.vlan_tci;
2122         en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
2123
2124         switch (fdir->input.flow_type) {
2125         case RTE_ETH_FLOW_IPV4:
2126         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2127                 /* FALLTHROUGH */
2128                 filter->src_ipaddr[0] = fdir->input.flow.ip4_flow.src_ip;
2129                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2130                 filter->dst_ipaddr[0] = fdir->input.flow.ip4_flow.dst_ip;
2131                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2132                 filter->ip_protocol = fdir->input.flow.ip4_flow.proto;
2133                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2134                 filter->ip_addr_type =
2135                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2136                 filter->src_ipaddr_mask[0] = 0xffffffff;
2137                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2138                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2139                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2140                 filter->ethertype = 0x800;
2141                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2142                 break;
2143         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2144                 filter->src_port = fdir->input.flow.tcp4_flow.src_port;
2145                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2146                 filter->dst_port = fdir->input.flow.tcp4_flow.dst_port;
2147                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2148                 filter->dst_port_mask = 0xffff;
2149                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2150                 filter->src_port_mask = 0xffff;
2151                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2152                 filter->src_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.src_ip;
2153                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2154                 filter->dst_ipaddr[0] = fdir->input.flow.tcp4_flow.ip.dst_ip;
2155                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2156                 filter->ip_protocol = 6;
2157                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2158                 filter->ip_addr_type =
2159                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2160                 filter->src_ipaddr_mask[0] = 0xffffffff;
2161                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2162                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2163                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2164                 filter->ethertype = 0x800;
2165                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2166                 break;
2167         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2168                 filter->src_port = fdir->input.flow.udp4_flow.src_port;
2169                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2170                 filter->dst_port = fdir->input.flow.udp4_flow.dst_port;
2171                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2172                 filter->dst_port_mask = 0xffff;
2173                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2174                 filter->src_port_mask = 0xffff;
2175                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2176                 filter->src_ipaddr[0] = fdir->input.flow.udp4_flow.ip.src_ip;
2177                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2178                 filter->dst_ipaddr[0] = fdir->input.flow.udp4_flow.ip.dst_ip;
2179                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2180                 filter->ip_protocol = 17;
2181                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2182                 filter->ip_addr_type =
2183                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
2184                 filter->src_ipaddr_mask[0] = 0xffffffff;
2185                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2186                 filter->dst_ipaddr_mask[0] = 0xffffffff;
2187                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2188                 filter->ethertype = 0x800;
2189                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2190                 break;
2191         case RTE_ETH_FLOW_IPV6:
2192         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2193                 /* FALLTHROUGH */
2194                 filter->ip_addr_type =
2195                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2196                 filter->ip_protocol = fdir->input.flow.ipv6_flow.proto;
2197                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2198                 rte_memcpy(filter->src_ipaddr,
2199                            fdir->input.flow.ipv6_flow.src_ip, 16);
2200                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2201                 rte_memcpy(filter->dst_ipaddr,
2202                            fdir->input.flow.ipv6_flow.dst_ip, 16);
2203                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2204                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2205                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2206                 memset(filter->src_ipaddr_mask, 0xff, 16);
2207                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2208                 filter->ethertype = 0x86dd;
2209                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2210                 break;
2211         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2212                 filter->src_port = fdir->input.flow.tcp6_flow.src_port;
2213                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2214                 filter->dst_port = fdir->input.flow.tcp6_flow.dst_port;
2215                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2216                 filter->dst_port_mask = 0xffff;
2217                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2218                 filter->src_port_mask = 0xffff;
2219                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2220                 filter->ip_addr_type =
2221                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2222                 filter->ip_protocol = fdir->input.flow.tcp6_flow.ip.proto;
2223                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2224                 rte_memcpy(filter->src_ipaddr,
2225                            fdir->input.flow.tcp6_flow.ip.src_ip, 16);
2226                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2227                 rte_memcpy(filter->dst_ipaddr,
2228                            fdir->input.flow.tcp6_flow.ip.dst_ip, 16);
2229                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2230                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2231                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2232                 memset(filter->src_ipaddr_mask, 0xff, 16);
2233                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2234                 filter->ethertype = 0x86dd;
2235                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2236                 break;
2237         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2238                 filter->src_port = fdir->input.flow.udp6_flow.src_port;
2239                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT;
2240                 filter->dst_port = fdir->input.flow.udp6_flow.dst_port;
2241                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
2242                 filter->dst_port_mask = 0xffff;
2243                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
2244                 filter->src_port_mask = 0xffff;
2245                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
2246                 filter->ip_addr_type =
2247                         NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
2248                 filter->ip_protocol = fdir->input.flow.udp6_flow.ip.proto;
2249                 en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
2250                 rte_memcpy(filter->src_ipaddr,
2251                            fdir->input.flow.udp6_flow.ip.src_ip, 16);
2252                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR;
2253                 rte_memcpy(filter->dst_ipaddr,
2254                            fdir->input.flow.udp6_flow.ip.dst_ip, 16);
2255                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
2256                 memset(filter->dst_ipaddr_mask, 0xff, 16);
2257                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
2258                 memset(filter->src_ipaddr_mask, 0xff, 16);
2259                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
2260                 filter->ethertype = 0x86dd;
2261                 filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2262                 break;
2263         case RTE_ETH_FLOW_L2_PAYLOAD:
2264                 filter->ethertype = fdir->input.flow.l2_flow.ether_type;
2265                 en |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
2266                 break;
2267         case RTE_ETH_FLOW_VXLAN:
2268                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2269                         return -EINVAL;
2270                 filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2271                 filter->tunnel_type =
2272                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
2273                 en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2274                 break;
2275         case RTE_ETH_FLOW_NVGRE:
2276                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2277                         return -EINVAL;
2278                 filter->vni = fdir->input.flow.tunnel_flow.tunnel_id;
2279                 filter->tunnel_type =
2280                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
2281                 en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_TUNNEL_TYPE;
2282                 break;
2283         case RTE_ETH_FLOW_UNKNOWN:
2284         case RTE_ETH_FLOW_RAW:
2285         case RTE_ETH_FLOW_FRAG_IPV4:
2286         case RTE_ETH_FLOW_NONFRAG_IPV4_SCTP:
2287         case RTE_ETH_FLOW_FRAG_IPV6:
2288         case RTE_ETH_FLOW_NONFRAG_IPV6_SCTP:
2289         case RTE_ETH_FLOW_IPV6_EX:
2290         case RTE_ETH_FLOW_IPV6_TCP_EX:
2291         case RTE_ETH_FLOW_IPV6_UDP_EX:
2292         case RTE_ETH_FLOW_GENEVE:
2293                 /* FALLTHROUGH */
2294         default:
2295                 return -EINVAL;
2296         }
2297
2298         vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
2299         vnic = STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2300         if (vnic == NULL) {
2301                 RTE_LOG(ERR, PMD, "Invalid queue %d\n", fdir->action.rx_queue);
2302                 return -EINVAL;
2303         }
2304
2305
2306         if (fdir_mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2307                 rte_memcpy(filter->dst_macaddr,
2308                         fdir->input.flow.mac_vlan_flow.mac_addr.addr_bytes, 6);
2309                         en |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
2310         }
2311
2312         if (fdir->action.behavior == RTE_ETH_FDIR_REJECT) {
2313                 filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
2314                 filter1 = STAILQ_FIRST(&vnic0->filter);
2315                 //filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
2316         } else {
2317                 filter->dst_id = vnic->fw_vnic_id;
2318                 for (i = 0; i < ETHER_ADDR_LEN; i++)
2319                         if (filter->dst_macaddr[i] == 0x00)
2320                                 filter1 = STAILQ_FIRST(&vnic0->filter);
2321                         else
2322                                 filter1 = bnxt_get_l2_filter(bp, filter, vnic);
2323         }
2324
2325         if (filter1 == NULL)
2326                 return -EINVAL;
2327
2328         en |= HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
2329         filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
2330
2331         filter->enables = en;
2332
2333         return 0;
2334 }
2335
2336 static struct bnxt_filter_info *
2337 bnxt_match_fdir(struct bnxt *bp, struct bnxt_filter_info *nf)
2338 {
2339         struct bnxt_filter_info *mf = NULL;
2340         int i;
2341
2342         for (i = bp->nr_vnics - 1; i >= 0; i--) {
2343                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2344
2345                 STAILQ_FOREACH(mf, &vnic->filter, next) {
2346                         if (mf->filter_type == nf->filter_type &&
2347                             mf->flags == nf->flags &&
2348                             mf->src_port == nf->src_port &&
2349                             mf->src_port_mask == nf->src_port_mask &&
2350                             mf->dst_port == nf->dst_port &&
2351                             mf->dst_port_mask == nf->dst_port_mask &&
2352                             mf->ip_protocol == nf->ip_protocol &&
2353                             mf->ip_addr_type == nf->ip_addr_type &&
2354                             mf->ethertype == nf->ethertype &&
2355                             mf->vni == nf->vni &&
2356                             mf->tunnel_type == nf->tunnel_type &&
2357                             mf->l2_ovlan == nf->l2_ovlan &&
2358                             mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
2359                             mf->l2_ivlan == nf->l2_ivlan &&
2360                             mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
2361                             !memcmp(mf->l2_addr, nf->l2_addr, ETHER_ADDR_LEN) &&
2362                             !memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
2363                                     ETHER_ADDR_LEN) &&
2364                             !memcmp(mf->src_macaddr, nf->src_macaddr,
2365                                     ETHER_ADDR_LEN) &&
2366                             !memcmp(mf->dst_macaddr, nf->dst_macaddr,
2367                                     ETHER_ADDR_LEN) &&
2368                             !memcmp(mf->src_ipaddr, nf->src_ipaddr,
2369                                     sizeof(nf->src_ipaddr)) &&
2370                             !memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
2371                                     sizeof(nf->src_ipaddr_mask)) &&
2372                             !memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
2373                                     sizeof(nf->dst_ipaddr)) &&
2374                             !memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
2375                                     sizeof(nf->dst_ipaddr_mask)))
2376                                 return mf;
2377                 }
2378         }
2379         return NULL;
2380 }
2381
2382 static int
2383 bnxt_fdir_filter(struct rte_eth_dev *dev,
2384                  enum rte_filter_op filter_op,
2385                  void *arg)
2386 {
2387         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2388         struct rte_eth_fdir_filter *fdir  = (struct rte_eth_fdir_filter *)arg;
2389         struct bnxt_filter_info *filter, *match;
2390         struct bnxt_vnic_info *vnic;
2391         int ret = 0, i;
2392
2393         if (filter_op == RTE_ETH_FILTER_NOP)
2394                 return 0;
2395
2396         if (arg == NULL && filter_op != RTE_ETH_FILTER_FLUSH)
2397                 return -EINVAL;
2398
2399         switch (filter_op) {
2400         case RTE_ETH_FILTER_ADD:
2401         case RTE_ETH_FILTER_DELETE:
2402                 /* FALLTHROUGH */
2403                 filter = bnxt_get_unused_filter(bp);
2404                 if (filter == NULL) {
2405                         RTE_LOG(ERR, PMD,
2406                                 "Not enough resources for a new flow.\n");
2407                         return -ENOMEM;
2408                 }
2409
2410                 ret = bnxt_parse_fdir_filter(bp, fdir, filter);
2411                 if (ret != 0)
2412                         goto free_filter;
2413                 filter->filter_type = HWRM_CFA_NTUPLE_FILTER;
2414
2415                 match = bnxt_match_fdir(bp, filter);
2416                 if (match != NULL && filter_op == RTE_ETH_FILTER_ADD) {
2417                         RTE_LOG(ERR, PMD, "Flow already exists.\n");
2418                         ret = -EEXIST;
2419                         goto free_filter;
2420                 }
2421                 if (match == NULL && filter_op == RTE_ETH_FILTER_DELETE) {
2422                         RTE_LOG(ERR, PMD, "Flow does not exist.\n");
2423                         ret = -ENOENT;
2424                         goto free_filter;
2425                 }
2426
2427                 if (fdir->action.behavior == RTE_ETH_FDIR_REJECT)
2428                         vnic = STAILQ_FIRST(&bp->ff_pool[0]);
2429                 else
2430                         vnic =
2431                         STAILQ_FIRST(&bp->ff_pool[fdir->action.rx_queue]);
2432
2433                 if (filter_op == RTE_ETH_FILTER_ADD) {
2434                         ret = bnxt_hwrm_set_ntuple_filter(bp,
2435                                                           filter->dst_id,
2436                                                           filter);
2437                         if (ret)
2438                                 goto free_filter;
2439                         STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
2440                 } else {
2441                         ret = bnxt_hwrm_clear_ntuple_filter(bp, match);
2442                         STAILQ_REMOVE(&vnic->filter, match,
2443                                       bnxt_filter_info, next);
2444                         bnxt_free_filter(bp, match);
2445                         filter->fw_l2_filter_id = -1;
2446                         bnxt_free_filter(bp, filter);
2447                 }
2448                 break;
2449         case RTE_ETH_FILTER_FLUSH:
2450                 for (i = bp->nr_vnics - 1; i >= 0; i--) {
2451                         struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2452
2453                         STAILQ_FOREACH(filter, &vnic->filter, next) {
2454                                 if (filter->filter_type ==
2455                                     HWRM_CFA_NTUPLE_FILTER) {
2456                                         ret =
2457                                         bnxt_hwrm_clear_ntuple_filter(bp,
2458                                                                       filter);
2459                                         STAILQ_REMOVE(&vnic->filter, filter,
2460                                                       bnxt_filter_info, next);
2461                                 }
2462                         }
2463                 }
2464                 return ret;
2465         case RTE_ETH_FILTER_UPDATE:
2466         case RTE_ETH_FILTER_STATS:
2467         case RTE_ETH_FILTER_INFO:
2468                 /* FALLTHROUGH */
2469                 RTE_LOG(ERR, PMD, "operation %u not implemented", filter_op);
2470                 break;
2471         default:
2472                 RTE_LOG(ERR, PMD, "unknown operation %u", filter_op);
2473                 ret = -EINVAL;
2474                 break;
2475         }
2476         return ret;
2477
2478 free_filter:
2479         filter->fw_l2_filter_id = -1;
2480         bnxt_free_filter(bp, filter);
2481         return ret;
2482 }
2483
2484 static int
2485 bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
2486                     enum rte_filter_type filter_type,
2487                     enum rte_filter_op filter_op, void *arg)
2488 {
2489         int ret = 0;
2490
2491         switch (filter_type) {
2492         case RTE_ETH_FILTER_TUNNEL:
2493                 RTE_LOG(ERR, PMD,
2494                         "filter type: %d: To be implemented\n", filter_type);
2495                 break;
2496         case RTE_ETH_FILTER_FDIR:
2497                 ret = bnxt_fdir_filter(dev, filter_op, arg);
2498                 break;
2499         case RTE_ETH_FILTER_NTUPLE:
2500                 ret = bnxt_ntuple_filter(dev, filter_op, arg);
2501                 break;
2502         case RTE_ETH_FILTER_ETHERTYPE:
2503                 ret = bnxt_ethertype_filter(dev, filter_op, arg);
2504                 break;
2505         case RTE_ETH_FILTER_GENERIC:
2506                 if (filter_op != RTE_ETH_FILTER_GET)
2507                         return -EINVAL;
2508                 *(const void **)arg = &bnxt_flow_ops;
2509                 break;
2510         default:
2511                 RTE_LOG(ERR, PMD,
2512                         "Filter type (%d) not supported", filter_type);
2513                 ret = -EINVAL;
2514                 break;
2515         }
2516         return ret;
2517 }
2518
2519 static const uint32_t *
2520 bnxt_dev_supported_ptypes_get_op(struct rte_eth_dev *dev)
2521 {
2522         static const uint32_t ptypes[] = {
2523                 RTE_PTYPE_L2_ETHER_VLAN,
2524                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2525                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2526                 RTE_PTYPE_L4_ICMP,
2527                 RTE_PTYPE_L4_TCP,
2528                 RTE_PTYPE_L4_UDP,
2529                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2530                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2531                 RTE_PTYPE_INNER_L4_ICMP,
2532                 RTE_PTYPE_INNER_L4_TCP,
2533                 RTE_PTYPE_INNER_L4_UDP,
2534                 RTE_PTYPE_UNKNOWN
2535         };
2536
2537         if (dev->rx_pkt_burst == bnxt_recv_pkts)
2538                 return ptypes;
2539         return NULL;
2540 }
2541
2542 static int bnxt_map_regs(struct bnxt *bp, uint32_t *reg_arr, int count,
2543                          int reg_win)
2544 {
2545         uint32_t reg_base = *reg_arr & 0xfffff000;
2546         uint32_t win_off;
2547         int i;
2548
2549         for (i = 0; i < count; i++) {
2550                 if ((reg_arr[i] & 0xfffff000) != reg_base)
2551                         return -ERANGE;
2552         }
2553         win_off = BNXT_GRCPF_REG_WINDOW_BASE_OUT + (reg_win - 1) * 4;
2554         rte_cpu_to_le_32(rte_write32(reg_base, (uint8_t *)bp->bar0 + win_off));
2555         return 0;
2556 }
2557
2558 static int bnxt_map_ptp_regs(struct bnxt *bp)
2559 {
2560         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2561         uint32_t *reg_arr;
2562         int rc, i;
2563
2564         reg_arr = ptp->rx_regs;
2565         rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_RX_REGS, 5);
2566         if (rc)
2567                 return rc;
2568
2569         reg_arr = ptp->tx_regs;
2570         rc = bnxt_map_regs(bp, reg_arr, BNXT_PTP_TX_REGS, 6);
2571         if (rc)
2572                 return rc;
2573
2574         for (i = 0; i < BNXT_PTP_RX_REGS; i++)
2575                 ptp->rx_mapped_regs[i] = 0x5000 + (ptp->rx_regs[i] & 0xfff);
2576
2577         for (i = 0; i < BNXT_PTP_TX_REGS; i++)
2578                 ptp->tx_mapped_regs[i] = 0x6000 + (ptp->tx_regs[i] & 0xfff);
2579
2580         return 0;
2581 }
2582
2583 static void bnxt_unmap_ptp_regs(struct bnxt *bp)
2584 {
2585         rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2586                          BNXT_GRCPF_REG_WINDOW_BASE_OUT + 16));
2587         rte_cpu_to_le_32(rte_write32(0, (uint8_t *)bp->bar0 +
2588                          BNXT_GRCPF_REG_WINDOW_BASE_OUT + 20));
2589 }
2590
2591 static uint64_t bnxt_cc_read(struct bnxt *bp)
2592 {
2593         uint64_t ns;
2594
2595         ns = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2596                               BNXT_GRCPF_REG_SYNC_TIME));
2597         ns |= (uint64_t)(rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2598                                           BNXT_GRCPF_REG_SYNC_TIME + 4))) << 32;
2599         return ns;
2600 }
2601
2602 static int bnxt_get_tx_ts(struct bnxt *bp, uint64_t *ts)
2603 {
2604         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2605         uint32_t fifo;
2606
2607         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2608                                 ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2609         if (fifo & BNXT_PTP_TX_FIFO_EMPTY)
2610                 return -EAGAIN;
2611
2612         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2613                                 ptp->tx_mapped_regs[BNXT_PTP_TX_FIFO]));
2614         *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2615                                 ptp->tx_mapped_regs[BNXT_PTP_TX_TS_L]));
2616         *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2617                                 ptp->tx_mapped_regs[BNXT_PTP_TX_TS_H])) << 32;
2618
2619         return 0;
2620 }
2621
2622 static int bnxt_get_rx_ts(struct bnxt *bp, uint64_t *ts)
2623 {
2624         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2625         struct bnxt_pf_info *pf = &bp->pf;
2626         uint16_t port_id;
2627         uint32_t fifo;
2628
2629         if (!ptp)
2630                 return -ENODEV;
2631
2632         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2633                                 ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2634         if (!(fifo & BNXT_PTP_RX_FIFO_PENDING))
2635                 return -EAGAIN;
2636
2637         port_id = pf->port_id;
2638         rte_cpu_to_le_32(rte_write32(1 << port_id, (uint8_t *)bp->bar0 +
2639                ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO_ADV]));
2640
2641         fifo = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2642                                    ptp->rx_mapped_regs[BNXT_PTP_RX_FIFO]));
2643         if (fifo & BNXT_PTP_RX_FIFO_PENDING) {
2644 /*              bnxt_clr_rx_ts(bp);       TBD  */
2645                 return -EBUSY;
2646         }
2647
2648         *ts = rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2649                                 ptp->rx_mapped_regs[BNXT_PTP_RX_TS_L]));
2650         *ts |= (uint64_t)rte_le_to_cpu_32(rte_read32((uint8_t *)bp->bar0 +
2651                                 ptp->rx_mapped_regs[BNXT_PTP_RX_TS_H])) << 32;
2652
2653         return 0;
2654 }
2655
2656 static int
2657 bnxt_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
2658 {
2659         uint64_t ns;
2660         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2661         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2662
2663         if (!ptp)
2664                 return 0;
2665
2666         ns = rte_timespec_to_ns(ts);
2667         /* Set the timecounters to a new value. */
2668         ptp->tc.nsec = ns;
2669
2670         return 0;
2671 }
2672
2673 static int
2674 bnxt_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
2675 {
2676         uint64_t ns, systime_cycles;
2677         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2678         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2679
2680         if (!ptp)
2681                 return 0;
2682
2683         systime_cycles = bnxt_cc_read(bp);
2684         ns = rte_timecounter_update(&ptp->tc, systime_cycles);
2685         *ts = rte_ns_to_timespec(ns);
2686
2687         return 0;
2688 }
2689 static int
2690 bnxt_timesync_enable(struct rte_eth_dev *dev)
2691 {
2692         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2693         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2694         uint32_t shift = 0;
2695
2696         if (!ptp)
2697                 return 0;
2698
2699         ptp->rx_filter = 1;
2700         ptp->tx_tstamp_en = 1;
2701         ptp->rxctl = BNXT_PTP_MSG_EVENTS;
2702
2703         if (!bnxt_hwrm_ptp_cfg(bp))
2704                 bnxt_map_ptp_regs(bp);
2705
2706         memset(&ptp->tc, 0, sizeof(struct rte_timecounter));
2707         memset(&ptp->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2708         memset(&ptp->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
2709
2710         ptp->tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2711         ptp->tc.cc_shift = shift;
2712         ptp->tc.nsec_mask = (1ULL << shift) - 1;
2713
2714         ptp->rx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2715         ptp->rx_tstamp_tc.cc_shift = shift;
2716         ptp->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2717
2718         ptp->tx_tstamp_tc.cc_mask = BNXT_CYCLECOUNTER_MASK;
2719         ptp->tx_tstamp_tc.cc_shift = shift;
2720         ptp->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
2721
2722         return 0;
2723 }
2724
2725 static int
2726 bnxt_timesync_disable(struct rte_eth_dev *dev)
2727 {
2728         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2729         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2730
2731         if (!ptp)
2732                 return 0;
2733
2734         ptp->rx_filter = 0;
2735         ptp->tx_tstamp_en = 0;
2736         ptp->rxctl = 0;
2737
2738         bnxt_hwrm_ptp_cfg(bp);
2739
2740         bnxt_unmap_ptp_regs(bp);
2741
2742         return 0;
2743 }
2744
2745 static int
2746 bnxt_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
2747                                  struct timespec *timestamp,
2748                                  uint32_t flags __rte_unused)
2749 {
2750         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2751         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2752         uint64_t rx_tstamp_cycles = 0;
2753         uint64_t ns;
2754
2755         if (!ptp)
2756                 return 0;
2757
2758         bnxt_get_rx_ts(bp, &rx_tstamp_cycles);
2759         ns = rte_timecounter_update(&ptp->rx_tstamp_tc, rx_tstamp_cycles);
2760         *timestamp = rte_ns_to_timespec(ns);
2761         return  0;
2762 }
2763
2764 static int
2765 bnxt_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
2766                                  struct timespec *timestamp)
2767 {
2768         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2769         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2770         uint64_t tx_tstamp_cycles = 0;
2771         uint64_t ns;
2772
2773         if (!ptp)
2774                 return 0;
2775
2776         bnxt_get_tx_ts(bp, &tx_tstamp_cycles);
2777         ns = rte_timecounter_update(&ptp->tx_tstamp_tc, tx_tstamp_cycles);
2778         *timestamp = rte_ns_to_timespec(ns);
2779
2780         return 0;
2781 }
2782
2783 static int
2784 bnxt_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
2785 {
2786         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2787         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
2788
2789         if (!ptp)
2790                 return 0;
2791
2792         ptp->tc.nsec += delta;
2793
2794         return 0;
2795 }
2796
2797 static int
2798 bnxt_get_eeprom_length_op(struct rte_eth_dev *dev)
2799 {
2800         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2801         int rc;
2802         uint32_t dir_entries;
2803         uint32_t entry_length;
2804
2805         RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x\n",
2806                 __func__, bp->pdev->addr.domain, bp->pdev->addr.bus,
2807                 bp->pdev->addr.devid, bp->pdev->addr.function);
2808
2809         rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
2810         if (rc != 0)
2811                 return rc;
2812
2813         return dir_entries * entry_length;
2814 }
2815
2816 static int
2817 bnxt_get_eeprom_op(struct rte_eth_dev *dev,
2818                 struct rte_dev_eeprom_info *in_eeprom)
2819 {
2820         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2821         uint32_t index;
2822         uint32_t offset;
2823
2824         RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2825                 "len = %d\n", __func__, bp->pdev->addr.domain,
2826                 bp->pdev->addr.bus, bp->pdev->addr.devid,
2827                 bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2828
2829         if (in_eeprom->offset == 0) /* special offset value to get directory */
2830                 return bnxt_get_nvram_directory(bp, in_eeprom->length,
2831                                                 in_eeprom->data);
2832
2833         index = in_eeprom->offset >> 24;
2834         offset = in_eeprom->offset & 0xffffff;
2835
2836         if (index != 0)
2837                 return bnxt_hwrm_get_nvram_item(bp, index - 1, offset,
2838                                            in_eeprom->length, in_eeprom->data);
2839
2840         return 0;
2841 }
2842
2843 static bool bnxt_dir_type_is_ape_bin_format(uint16_t dir_type)
2844 {
2845         switch (dir_type) {
2846         case BNX_DIR_TYPE_CHIMP_PATCH:
2847         case BNX_DIR_TYPE_BOOTCODE:
2848         case BNX_DIR_TYPE_BOOTCODE_2:
2849         case BNX_DIR_TYPE_APE_FW:
2850         case BNX_DIR_TYPE_APE_PATCH:
2851         case BNX_DIR_TYPE_KONG_FW:
2852         case BNX_DIR_TYPE_KONG_PATCH:
2853         case BNX_DIR_TYPE_BONO_FW:
2854         case BNX_DIR_TYPE_BONO_PATCH:
2855                 return true;
2856         }
2857
2858         return false;
2859 }
2860
2861 static bool bnxt_dir_type_is_other_exec_format(uint16_t dir_type)
2862 {
2863         switch (dir_type) {
2864         case BNX_DIR_TYPE_AVS:
2865         case BNX_DIR_TYPE_EXP_ROM_MBA:
2866         case BNX_DIR_TYPE_PCIE:
2867         case BNX_DIR_TYPE_TSCF_UCODE:
2868         case BNX_DIR_TYPE_EXT_PHY:
2869         case BNX_DIR_TYPE_CCM:
2870         case BNX_DIR_TYPE_ISCSI_BOOT:
2871         case BNX_DIR_TYPE_ISCSI_BOOT_IPV6:
2872         case BNX_DIR_TYPE_ISCSI_BOOT_IPV4N6:
2873                 return true;
2874         }
2875
2876         return false;
2877 }
2878
2879 static bool bnxt_dir_type_is_executable(uint16_t dir_type)
2880 {
2881         return bnxt_dir_type_is_ape_bin_format(dir_type) ||
2882                 bnxt_dir_type_is_other_exec_format(dir_type);
2883 }
2884
2885 static int
2886 bnxt_set_eeprom_op(struct rte_eth_dev *dev,
2887                 struct rte_dev_eeprom_info *in_eeprom)
2888 {
2889         struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
2890         uint8_t index, dir_op;
2891         uint16_t type, ext, ordinal, attr;
2892
2893         RTE_LOG(INFO, PMD, "%s(): %04x:%02x:%02x:%02x in_eeprom->offset = %d "
2894                 "len = %d\n", __func__, bp->pdev->addr.domain,
2895                 bp->pdev->addr.bus, bp->pdev->addr.devid,
2896                 bp->pdev->addr.function, in_eeprom->offset, in_eeprom->length);
2897
2898         if (!BNXT_PF(bp)) {
2899                 RTE_LOG(ERR, PMD, "NVM write not supported from a VF\n");
2900                 return -EINVAL;
2901         }
2902
2903         type = in_eeprom->magic >> 16;
2904
2905         if (type == 0xffff) { /* special value for directory operations */
2906                 index = in_eeprom->magic & 0xff;
2907                 dir_op = in_eeprom->magic >> 8;
2908                 if (index == 0)
2909                         return -EINVAL;
2910                 switch (dir_op) {
2911                 case 0x0e: /* erase */
2912                         if (in_eeprom->offset != ~in_eeprom->magic)
2913                                 return -EINVAL;
2914                         return bnxt_hwrm_erase_nvram_directory(bp, index - 1);
2915                 default:
2916                         return -EINVAL;
2917                 }
2918         }
2919
2920         /* Create or re-write an NVM item: */
2921         if (bnxt_dir_type_is_executable(type) == true)
2922                 return -EOPNOTSUPP;
2923         ext = in_eeprom->magic & 0xffff;
2924         ordinal = in_eeprom->offset >> 16;
2925         attr = in_eeprom->offset & 0xffff;
2926
2927         return bnxt_hwrm_flash_nvram(bp, type, ordinal, ext, attr,
2928                                      in_eeprom->data, in_eeprom->length);
2929         return 0;
2930 }
2931
2932 /*
2933  * Initialization
2934  */
2935
2936 static const struct eth_dev_ops bnxt_dev_ops = {
2937         .dev_infos_get = bnxt_dev_info_get_op,
2938         .dev_close = bnxt_dev_close_op,
2939         .dev_configure = bnxt_dev_configure_op,
2940         .dev_start = bnxt_dev_start_op,
2941         .dev_stop = bnxt_dev_stop_op,
2942         .dev_set_link_up = bnxt_dev_set_link_up_op,
2943         .dev_set_link_down = bnxt_dev_set_link_down_op,
2944         .stats_get = bnxt_stats_get_op,
2945         .stats_reset = bnxt_stats_reset_op,
2946         .rx_queue_setup = bnxt_rx_queue_setup_op,
2947         .rx_queue_release = bnxt_rx_queue_release_op,
2948         .tx_queue_setup = bnxt_tx_queue_setup_op,
2949         .tx_queue_release = bnxt_tx_queue_release_op,
2950         .rx_queue_intr_enable = bnxt_rx_queue_intr_enable_op,
2951         .rx_queue_intr_disable = bnxt_rx_queue_intr_disable_op,
2952         .reta_update = bnxt_reta_update_op,
2953         .reta_query = bnxt_reta_query_op,
2954         .rss_hash_update = bnxt_rss_hash_update_op,
2955         .rss_hash_conf_get = bnxt_rss_hash_conf_get_op,
2956         .link_update = bnxt_link_update_op,
2957         .promiscuous_enable = bnxt_promiscuous_enable_op,
2958         .promiscuous_disable = bnxt_promiscuous_disable_op,
2959         .allmulticast_enable = bnxt_allmulticast_enable_op,
2960         .allmulticast_disable = bnxt_allmulticast_disable_op,
2961         .mac_addr_add = bnxt_mac_addr_add_op,
2962         .mac_addr_remove = bnxt_mac_addr_remove_op,
2963         .flow_ctrl_get = bnxt_flow_ctrl_get_op,
2964         .flow_ctrl_set = bnxt_flow_ctrl_set_op,
2965         .udp_tunnel_port_add  = bnxt_udp_tunnel_port_add_op,
2966         .udp_tunnel_port_del  = bnxt_udp_tunnel_port_del_op,
2967         .vlan_filter_set = bnxt_vlan_filter_set_op,
2968         .vlan_offload_set = bnxt_vlan_offload_set_op,
2969         .vlan_pvid_set = bnxt_vlan_pvid_set_op,
2970         .mtu_set = bnxt_mtu_set_op,
2971         .mac_addr_set = bnxt_set_default_mac_addr_op,
2972         .xstats_get = bnxt_dev_xstats_get_op,
2973         .xstats_get_names = bnxt_dev_xstats_get_names_op,
2974         .xstats_reset = bnxt_dev_xstats_reset_op,
2975         .fw_version_get = bnxt_fw_version_get,
2976         .set_mc_addr_list = bnxt_dev_set_mc_addr_list_op,
2977         .rxq_info_get = bnxt_rxq_info_get_op,
2978         .txq_info_get = bnxt_txq_info_get_op,
2979         .dev_led_on = bnxt_dev_led_on_op,
2980         .dev_led_off = bnxt_dev_led_off_op,
2981         .xstats_get_by_id = bnxt_dev_xstats_get_by_id_op,
2982         .xstats_get_names_by_id = bnxt_dev_xstats_get_names_by_id_op,
2983         .rx_queue_count = bnxt_rx_queue_count_op,
2984         .rx_descriptor_status = bnxt_rx_descriptor_status_op,
2985         .tx_descriptor_status = bnxt_tx_descriptor_status_op,
2986         .filter_ctrl = bnxt_filter_ctrl_op,
2987         .dev_supported_ptypes_get = bnxt_dev_supported_ptypes_get_op,
2988         .get_eeprom_length    = bnxt_get_eeprom_length_op,
2989         .get_eeprom           = bnxt_get_eeprom_op,
2990         .set_eeprom           = bnxt_set_eeprom_op,
2991         .timesync_enable      = bnxt_timesync_enable,
2992         .timesync_disable     = bnxt_timesync_disable,
2993         .timesync_read_time   = bnxt_timesync_read_time,
2994         .timesync_write_time   = bnxt_timesync_write_time,
2995         .timesync_adjust_time = bnxt_timesync_adjust_time,
2996         .timesync_read_rx_timestamp = bnxt_timesync_read_rx_timestamp,
2997         .timesync_read_tx_timestamp = bnxt_timesync_read_tx_timestamp,
2998 };
2999
3000 static bool bnxt_vf_pciid(uint16_t id)
3001 {
3002         if (id == BROADCOM_DEV_ID_57304_VF ||
3003             id == BROADCOM_DEV_ID_57406_VF ||
3004             id == BROADCOM_DEV_ID_5731X_VF ||
3005             id == BROADCOM_DEV_ID_5741X_VF ||
3006             id == BROADCOM_DEV_ID_57414_VF ||
3007             id == BROADCOM_DEV_ID_STRATUS_NIC_VF)
3008                 return true;
3009         return false;
3010 }
3011
3012 static int bnxt_init_board(struct rte_eth_dev *eth_dev)
3013 {
3014         struct bnxt *bp = eth_dev->data->dev_private;
3015         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3016         int rc;
3017
3018         /* enable device (incl. PCI PM wakeup), and bus-mastering */
3019         if (!pci_dev->mem_resource[0].addr) {
3020                 RTE_LOG(ERR, PMD,
3021                         "Cannot find PCI device base address, aborting\n");
3022                 rc = -ENODEV;
3023                 goto init_err_disable;
3024         }
3025
3026         bp->eth_dev = eth_dev;
3027         bp->pdev = pci_dev;
3028
3029         bp->bar0 = (void *)pci_dev->mem_resource[0].addr;
3030         if (!bp->bar0) {
3031                 RTE_LOG(ERR, PMD, "Cannot map device registers, aborting\n");
3032                 rc = -ENOMEM;
3033                 goto init_err_release;
3034         }
3035         return 0;
3036
3037 init_err_release:
3038         if (bp->bar0)
3039                 bp->bar0 = NULL;
3040
3041 init_err_disable:
3042
3043         return rc;
3044 }
3045
3046 static int bnxt_dev_uninit(struct rte_eth_dev *eth_dev);
3047
3048 #define ALLOW_FUNC(x)   \
3049         { \
3050                 typeof(x) arg = (x); \
3051                 bp->pf.vf_req_fwd[((arg) >> 5)] &= \
3052                 ~rte_cpu_to_le_32(1 << ((arg) & 0x1f)); \
3053         }
3054 static int
3055 bnxt_dev_init(struct rte_eth_dev *eth_dev)
3056 {
3057         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3058         char mz_name[RTE_MEMZONE_NAMESIZE];
3059         const struct rte_memzone *mz = NULL;
3060         static int version_printed;
3061         uint32_t total_alloc_len;
3062         rte_iova_t mz_phys_addr;
3063         struct bnxt *bp;
3064         int rc;
3065
3066         if (version_printed++ == 0)
3067                 RTE_LOG(INFO, PMD, "%s\n", bnxt_version);
3068
3069         rte_eth_copy_pci_info(eth_dev, pci_dev);
3070
3071         bp = eth_dev->data->dev_private;
3072
3073         rte_atomic64_init(&bp->rx_mbuf_alloc_fail);
3074         bp->dev_stopped = 1;
3075
3076         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3077                 goto skip_init;
3078
3079         if (bnxt_vf_pciid(pci_dev->id.device_id))
3080                 bp->flags |= BNXT_FLAG_VF;
3081
3082         rc = bnxt_init_board(eth_dev);
3083         if (rc) {
3084                 RTE_LOG(ERR, PMD,
3085                         "Board initialization failed rc: %x\n", rc);
3086                 goto error;
3087         }
3088 skip_init:
3089         eth_dev->dev_ops = &bnxt_dev_ops;
3090         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3091                 return 0;
3092         eth_dev->rx_pkt_burst = &bnxt_recv_pkts;
3093         eth_dev->tx_pkt_burst = &bnxt_xmit_pkts;
3094
3095         if (BNXT_PF(bp) && pci_dev->id.device_id != BROADCOM_DEV_ID_NS2) {
3096                 snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3097                          "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3098                          pci_dev->addr.bus, pci_dev->addr.devid,
3099                          pci_dev->addr.function, "rx_port_stats");
3100                 mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3101                 mz = rte_memzone_lookup(mz_name);
3102                 total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3103                                 sizeof(struct rx_port_stats) + 512);
3104                 if (!mz) {
3105                         mz = rte_memzone_reserve(mz_name, total_alloc_len,
3106                                                  SOCKET_ID_ANY,
3107                                                  RTE_MEMZONE_2MB |
3108                                                  RTE_MEMZONE_SIZE_HINT_ONLY);
3109                         if (mz == NULL)
3110                                 return -ENOMEM;
3111                 }
3112                 memset(mz->addr, 0, mz->len);
3113                 mz_phys_addr = mz->iova;
3114                 if ((unsigned long)mz->addr == mz_phys_addr) {
3115                         RTE_LOG(WARNING, PMD,
3116                                 "Memzone physical address same as virtual.\n");
3117                         RTE_LOG(WARNING, PMD,
3118                                 "Using rte_mem_virt2iova()\n");
3119                         mz_phys_addr = rte_mem_virt2iova(mz->addr);
3120                         if (mz_phys_addr == 0) {
3121                                 RTE_LOG(ERR, PMD,
3122                                 "unable to map address to physical memory\n");
3123                                 return -ENOMEM;
3124                         }
3125                 }
3126
3127                 bp->rx_mem_zone = (const void *)mz;
3128                 bp->hw_rx_port_stats = mz->addr;
3129                 bp->hw_rx_port_stats_map = mz_phys_addr;
3130
3131                 snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
3132                          "bnxt_%04x:%02x:%02x:%02x-%s", pci_dev->addr.domain,
3133                          pci_dev->addr.bus, pci_dev->addr.devid,
3134                          pci_dev->addr.function, "tx_port_stats");
3135                 mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
3136                 mz = rte_memzone_lookup(mz_name);
3137                 total_alloc_len = RTE_CACHE_LINE_ROUNDUP(
3138                                 sizeof(struct tx_port_stats) + 512);
3139                 if (!mz) {
3140                         mz = rte_memzone_reserve(mz_name, total_alloc_len,
3141                                                  SOCKET_ID_ANY,
3142                                                  RTE_MEMZONE_2MB |
3143                                                  RTE_MEMZONE_SIZE_HINT_ONLY);
3144                         if (mz == NULL)
3145                                 return -ENOMEM;
3146                 }
3147                 memset(mz->addr, 0, mz->len);
3148                 mz_phys_addr = mz->iova;
3149                 if ((unsigned long)mz->addr == mz_phys_addr) {
3150                         RTE_LOG(WARNING, PMD,
3151                                 "Memzone physical address same as virtual.\n");
3152                         RTE_LOG(WARNING, PMD,
3153                                 "Using rte_mem_virt2iova()\n");
3154                         mz_phys_addr = rte_mem_virt2iova(mz->addr);
3155                         if (mz_phys_addr == 0) {
3156                                 RTE_LOG(ERR, PMD,
3157                                 "unable to map address to physical memory\n");
3158                                 return -ENOMEM;
3159                         }
3160                 }
3161
3162                 bp->tx_mem_zone = (const void *)mz;
3163                 bp->hw_tx_port_stats = mz->addr;
3164                 bp->hw_tx_port_stats_map = mz_phys_addr;
3165
3166                 bp->flags |= BNXT_FLAG_PORT_STATS;
3167         }
3168
3169         rc = bnxt_alloc_hwrm_resources(bp);
3170         if (rc) {
3171                 RTE_LOG(ERR, PMD,
3172                         "hwrm resource allocation failure rc: %x\n", rc);
3173                 goto error_free;
3174         }
3175         rc = bnxt_hwrm_ver_get(bp);
3176         if (rc)
3177                 goto error_free;
3178         rc = bnxt_hwrm_queue_qportcfg(bp);
3179         if (rc) {
3180                 RTE_LOG(ERR, PMD, "hwrm queue qportcfg failed\n");
3181                 goto error_free;
3182         }
3183
3184         rc = bnxt_hwrm_func_qcfg(bp);
3185         if (rc) {
3186                 RTE_LOG(ERR, PMD, "hwrm func qcfg failed\n");
3187                 goto error_free;
3188         }
3189
3190         /* Get the MAX capabilities for this function */
3191         rc = bnxt_hwrm_func_qcaps(bp);
3192         if (rc) {
3193                 RTE_LOG(ERR, PMD, "hwrm query capability failure rc: %x\n", rc);
3194                 goto error_free;
3195         }
3196         if (bp->max_tx_rings == 0) {
3197                 RTE_LOG(ERR, PMD, "No TX rings available!\n");
3198                 rc = -EBUSY;
3199                 goto error_free;
3200         }
3201         eth_dev->data->mac_addrs = rte_zmalloc("bnxt_mac_addr_tbl",
3202                                         ETHER_ADDR_LEN * bp->max_l2_ctx, 0);
3203         if (eth_dev->data->mac_addrs == NULL) {
3204                 RTE_LOG(ERR, PMD,
3205                         "Failed to alloc %u bytes needed to store MAC addr tbl",
3206                         ETHER_ADDR_LEN * bp->max_l2_ctx);
3207                 rc = -ENOMEM;
3208                 goto error_free;
3209         }
3210         /* Copy the permanent MAC from the qcap response address now. */
3211         memcpy(bp->mac_addr, bp->dflt_mac_addr, sizeof(bp->mac_addr));
3212         memcpy(&eth_dev->data->mac_addrs[0], bp->mac_addr, ETHER_ADDR_LEN);
3213
3214         if (bp->max_ring_grps < bp->rx_cp_nr_rings) {
3215                 /* 1 ring is for default completion ring */
3216                 RTE_LOG(ERR, PMD, "Insufficient resource: Ring Group\n");
3217                 rc = -ENOSPC;
3218                 goto error_free;
3219         }
3220
3221         bp->grp_info = rte_zmalloc("bnxt_grp_info",
3222                                 sizeof(*bp->grp_info) * bp->max_ring_grps, 0);
3223         if (!bp->grp_info) {
3224                 RTE_LOG(ERR, PMD,
3225                         "Failed to alloc %zu bytes to store group info table\n",
3226                         sizeof(*bp->grp_info) * bp->max_ring_grps);
3227                 rc = -ENOMEM;
3228                 goto error_free;
3229         }
3230
3231         /* Forward all requests if firmware is new enough */
3232         if (((bp->fw_ver >= ((20 << 24) | (6 << 16) | (100 << 8))) &&
3233             (bp->fw_ver < ((20 << 24) | (7 << 16)))) ||
3234             ((bp->fw_ver >= ((20 << 24) | (8 << 16))))) {
3235                 memset(bp->pf.vf_req_fwd, 0xff, sizeof(bp->pf.vf_req_fwd));
3236         } else {
3237                 RTE_LOG(WARNING, PMD,
3238                         "Firmware too old for VF mailbox functionality\n");
3239                 memset(bp->pf.vf_req_fwd, 0, sizeof(bp->pf.vf_req_fwd));
3240         }
3241
3242         /*
3243          * The following are used for driver cleanup.  If we disallow these,
3244          * VF drivers can't clean up cleanly.
3245          */
3246         ALLOW_FUNC(HWRM_FUNC_DRV_UNRGTR);
3247         ALLOW_FUNC(HWRM_VNIC_FREE);
3248         ALLOW_FUNC(HWRM_RING_FREE);
3249         ALLOW_FUNC(HWRM_RING_GRP_FREE);
3250         ALLOW_FUNC(HWRM_VNIC_RSS_COS_LB_CTX_FREE);
3251         ALLOW_FUNC(HWRM_CFA_L2_FILTER_FREE);
3252         ALLOW_FUNC(HWRM_STAT_CTX_FREE);
3253         ALLOW_FUNC(HWRM_PORT_PHY_QCFG);
3254         ALLOW_FUNC(HWRM_VNIC_TPA_CFG);
3255         rc = bnxt_hwrm_func_driver_register(bp);
3256         if (rc) {
3257                 RTE_LOG(ERR, PMD,
3258                         "Failed to register driver");
3259                 rc = -EBUSY;
3260                 goto error_free;
3261         }
3262
3263         RTE_LOG(INFO, PMD,
3264                 DRV_MODULE_NAME " found at mem %" PRIx64 ", node addr %pM\n",
3265                 pci_dev->mem_resource[0].phys_addr,
3266                 pci_dev->mem_resource[0].addr);
3267
3268         rc = bnxt_hwrm_func_reset(bp);
3269         if (rc) {
3270                 RTE_LOG(ERR, PMD, "hwrm chip reset failure rc: %x\n", rc);
3271                 rc = -1;
3272                 goto error_free;
3273         }
3274
3275         if (BNXT_PF(bp)) {
3276                 //if (bp->pf.active_vfs) {
3277                         // TODO: Deallocate VF resources?
3278                 //}
3279                 if (bp->pdev->max_vfs) {
3280                         rc = bnxt_hwrm_allocate_vfs(bp, bp->pdev->max_vfs);
3281                         if (rc) {
3282                                 RTE_LOG(ERR, PMD, "Failed to allocate VFs\n");
3283                                 goto error_free;
3284                         }
3285                 } else {
3286                         rc = bnxt_hwrm_allocate_pf_only(bp);
3287                         if (rc) {
3288                                 RTE_LOG(ERR, PMD,
3289                                         "Failed to allocate PF resources\n");
3290                                 goto error_free;
3291                         }
3292                 }
3293         }
3294
3295         bnxt_hwrm_port_led_qcaps(bp);
3296
3297         rc = bnxt_setup_int(bp);
3298         if (rc)
3299                 goto error_free;
3300
3301         rc = bnxt_alloc_mem(bp);
3302         if (rc)
3303                 goto error_free_int;
3304
3305         rc = bnxt_request_int(bp);
3306         if (rc)
3307                 goto error_free_int;
3308
3309         rc = bnxt_alloc_def_cp_ring(bp);
3310         if (rc)
3311                 goto error_free_int;
3312
3313         bnxt_enable_int(bp);
3314
3315         return 0;
3316
3317 error_free_int:
3318         bnxt_disable_int(bp);
3319         bnxt_free_def_cp_ring(bp);
3320         bnxt_hwrm_func_buf_unrgtr(bp);
3321         bnxt_free_int(bp);
3322         bnxt_free_mem(bp);
3323 error_free:
3324         bnxt_dev_uninit(eth_dev);
3325 error:
3326         return rc;
3327 }
3328
3329 static int
3330 bnxt_dev_uninit(struct rte_eth_dev *eth_dev) {
3331         struct bnxt *bp = eth_dev->data->dev_private;
3332         int rc;
3333
3334         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3335                 return -EPERM;
3336
3337         bnxt_disable_int(bp);
3338         bnxt_free_int(bp);
3339         bnxt_free_mem(bp);
3340         if (eth_dev->data->mac_addrs != NULL) {
3341                 rte_free(eth_dev->data->mac_addrs);
3342                 eth_dev->data->mac_addrs = NULL;
3343         }
3344         if (bp->grp_info != NULL) {
3345                 rte_free(bp->grp_info);
3346                 bp->grp_info = NULL;
3347         }
3348         rc = bnxt_hwrm_func_driver_unregister(bp, 0);
3349         bnxt_free_hwrm_resources(bp);
3350         rte_memzone_free((const struct rte_memzone *)bp->tx_mem_zone);
3351         rte_memzone_free((const struct rte_memzone *)bp->rx_mem_zone);
3352         if (bp->dev_stopped == 0)
3353                 bnxt_dev_close_op(eth_dev);
3354         if (bp->pf.vf_info)
3355                 rte_free(bp->pf.vf_info);
3356         eth_dev->dev_ops = NULL;
3357         eth_dev->rx_pkt_burst = NULL;
3358         eth_dev->tx_pkt_burst = NULL;
3359
3360         return rc;
3361 }
3362
3363 static int bnxt_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3364         struct rte_pci_device *pci_dev)
3365 {
3366         return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct bnxt),
3367                 bnxt_dev_init);
3368 }
3369
3370 static int bnxt_pci_remove(struct rte_pci_device *pci_dev)
3371 {
3372         return rte_eth_dev_pci_generic_remove(pci_dev, bnxt_dev_uninit);
3373 }
3374
3375 static struct rte_pci_driver bnxt_rte_pmd = {
3376         .id_table = bnxt_pci_id_map,
3377         .drv_flags = RTE_PCI_DRV_NEED_MAPPING |
3378                 RTE_PCI_DRV_INTR_LSC,
3379         .probe = bnxt_pci_probe,
3380         .remove = bnxt_pci_remove,
3381 };
3382
3383 static bool
3384 is_device_supported(struct rte_eth_dev *dev, struct rte_pci_driver *drv)
3385 {
3386         if (strcmp(dev->device->driver->name, drv->driver.name))
3387                 return false;
3388
3389         return true;
3390 }
3391
3392 bool is_bnxt_supported(struct rte_eth_dev *dev)
3393 {
3394         return is_device_supported(dev, &bnxt_rte_pmd);
3395 }
3396
3397 RTE_PMD_REGISTER_PCI(net_bnxt, bnxt_rte_pmd);
3398 RTE_PMD_REGISTER_PCI_TABLE(net_bnxt, bnxt_pci_id_map);
3399 RTE_PMD_REGISTER_KMOD_DEP(net_bnxt, "* igb_uio | uio_pci_generic | vfio-pci");