net/bnxt: consolidate template table processing
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26
27 /*
28  * RX Ring handling
29  */
30
31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33         struct rte_mbuf *data;
34
35         data = rte_mbuf_raw_alloc(mb);
36
37         return data;
38 }
39
40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41                                      struct bnxt_rx_ring_info *rxr,
42                                      uint16_t prod)
43 {
44         struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
45         struct rte_mbuf **rx_buf = &rxr->rx_buf_ring[prod];
46         struct rte_mbuf *mbuf;
47
48         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
49         if (!mbuf) {
50                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
51                 return -ENOMEM;
52         }
53
54         *rx_buf = mbuf;
55         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
56
57         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
58
59         return 0;
60 }
61
62 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
63                                      struct bnxt_rx_ring_info *rxr,
64                                      uint16_t prod)
65 {
66         struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
67         struct rte_mbuf **rx_buf = &rxr->ag_buf_ring[prod];
68         struct rte_mbuf *mbuf;
69
70         if (rxbd == NULL) {
71                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
72                 return -EINVAL;
73         }
74
75         if (rx_buf == NULL) {
76                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
77                 return -EINVAL;
78         }
79
80         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
81         if (!mbuf) {
82                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
83                 return -ENOMEM;
84         }
85
86         *rx_buf = mbuf;
87         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
88
89         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
90
91         return 0;
92 }
93
94 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
95                                struct rte_mbuf *mbuf)
96 {
97         uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
98         struct rte_mbuf **prod_rx_buf;
99         struct rx_prod_pkt_bd *prod_bd;
100
101         prod_rx_buf = &rxr->rx_buf_ring[prod];
102
103         RTE_ASSERT(*prod_rx_buf == NULL);
104         RTE_ASSERT(mbuf != NULL);
105
106         *prod_rx_buf = mbuf;
107
108         prod_bd = &rxr->rx_desc_ring[prod];
109
110         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
111
112         rxr->rx_prod = prod;
113 }
114
115 static inline
116 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
117                                      uint16_t cons)
118 {
119         struct rte_mbuf **cons_rx_buf;
120         struct rte_mbuf *mbuf;
121
122         cons_rx_buf = &rxr->rx_buf_ring[cons];
123         RTE_ASSERT(*cons_rx_buf != NULL);
124         mbuf = *cons_rx_buf;
125         *cons_rx_buf = NULL;
126
127         return mbuf;
128 }
129
130 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
131                            struct rx_tpa_start_cmpl *tpa_start,
132                            struct rx_tpa_start_cmpl_hi *tpa_start1)
133 {
134         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
135         uint16_t agg_id;
136         uint16_t data_cons;
137         struct bnxt_tpa_info *tpa_info;
138         struct rte_mbuf *mbuf;
139
140         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
141
142         data_cons = tpa_start->opaque;
143         tpa_info = &rxr->tpa_info[agg_id];
144
145         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
146
147         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
148
149         tpa_info->agg_count = 0;
150         tpa_info->mbuf = mbuf;
151         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
152
153         mbuf->nb_segs = 1;
154         mbuf->next = NULL;
155         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
156         mbuf->data_len = mbuf->pkt_len;
157         mbuf->port = rxq->port_id;
158         mbuf->ol_flags = PKT_RX_LRO;
159         if (likely(tpa_start->flags_type &
160                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
161                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
162                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
163         } else {
164                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
165                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
166         }
167         if (tpa_start1->flags2 &
168             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
169                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
170                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
171         }
172         if (likely(tpa_start1->flags2 &
173                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
174                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
175
176         /* recycle next mbuf */
177         data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
178         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
179 }
180
181 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
182                 uint8_t agg_bufs, uint32_t raw_cp_cons)
183 {
184         uint16_t last_cp_cons;
185         struct rx_pkt_cmpl *agg_cmpl;
186
187         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
188         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
189         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
190         cpr->valid = FLIP_VALID(raw_cp_cons,
191                                 cpr->cp_ring_struct->ring_mask,
192                                 cpr->valid);
193         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
194 }
195
196 /* TPA consume agg buffer out of order, allocate connected data only */
197 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
198 {
199         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
200         uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
201
202         /* TODO batch allocation for better performance */
203         while (rte_bitmap_get(rxr->ag_bitmap, next)) {
204                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
205                         PMD_DRV_LOG(ERR,
206                                 "agg mbuf alloc failed: prod=0x%x\n", next);
207                         break;
208                 }
209                 rte_bitmap_clear(rxr->ag_bitmap, next);
210                 rxr->ag_prod = next;
211                 next = RING_NEXT(rxr->ag_ring_struct, next);
212         }
213
214         return 0;
215 }
216
217 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
218                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
219                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
220 {
221         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
222         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
223         int i;
224         uint16_t cp_cons, ag_cons;
225         struct rx_pkt_cmpl *rxcmp;
226         struct rte_mbuf *last = mbuf;
227         bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);
228
229         for (i = 0; i < agg_buf; i++) {
230                 struct rte_mbuf **ag_buf;
231                 struct rte_mbuf *ag_mbuf;
232
233                 if (is_thor_tpa) {
234                         rxcmp = (void *)&tpa_info->agg_arr[i];
235                 } else {
236                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
237                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
238                         rxcmp = (struct rx_pkt_cmpl *)
239                                         &cpr->cp_desc_ring[cp_cons];
240                 }
241
242 #ifdef BNXT_DEBUG
243                 bnxt_dump_cmpl(cp_cons, rxcmp);
244 #endif
245
246                 ag_cons = rxcmp->opaque;
247                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
248                 ag_buf = &rxr->ag_buf_ring[ag_cons];
249                 ag_mbuf = *ag_buf;
250                 RTE_ASSERT(ag_mbuf != NULL);
251
252                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
253
254                 mbuf->nb_segs++;
255                 mbuf->pkt_len += ag_mbuf->data_len;
256
257                 last->next = ag_mbuf;
258                 last = ag_mbuf;
259
260                 *ag_buf = NULL;
261
262                 /*
263                  * As aggregation buffer consumed out of order in TPA module,
264                  * use bitmap to track freed slots to be allocated and notified
265                  * to NIC
266                  */
267                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
268         }
269         bnxt_prod_ag_mbuf(rxq);
270         return 0;
271 }
272
273 static inline struct rte_mbuf *bnxt_tpa_end(
274                 struct bnxt_rx_queue *rxq,
275                 uint32_t *raw_cp_cons,
276                 struct rx_tpa_end_cmpl *tpa_end,
277                 struct rx_tpa_end_cmpl_hi *tpa_end1)
278 {
279         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
280         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
281         uint16_t agg_id;
282         struct rte_mbuf *mbuf;
283         uint8_t agg_bufs;
284         uint8_t payload_offset;
285         struct bnxt_tpa_info *tpa_info;
286
287         if (BNXT_CHIP_THOR(rxq->bp)) {
288                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
289                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
290
291                 th_tpa_end = (void *)tpa_end;
292                 th_tpa_end1 = (void *)tpa_end1;
293                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
294                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
295                 payload_offset = th_tpa_end1->payload_offset;
296         } else {
297                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
298                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
299                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
300                         return NULL;
301                 payload_offset = tpa_end->payload_offset;
302         }
303
304         tpa_info = &rxr->tpa_info[agg_id];
305         mbuf = tpa_info->mbuf;
306         RTE_ASSERT(mbuf != NULL);
307
308         rte_prefetch0(mbuf);
309         if (agg_bufs) {
310                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
311         }
312         mbuf->l4_len = payload_offset;
313
314         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
315         RTE_ASSERT(new_data != NULL);
316         if (!new_data) {
317                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
318                 return NULL;
319         }
320         tpa_info->mbuf = new_data;
321
322         return mbuf;
323 }
324
325 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
326
327 static void __rte_cold
328 bnxt_init_ptype_table(void)
329 {
330         uint32_t *pt = bnxt_ptype_table;
331         static bool initialized;
332         int ip6, tun, type;
333         uint32_t l3;
334         int i;
335
336         if (initialized)
337                 return;
338
339         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
340                 if (i & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN >> 2))
341                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
342                 else
343                         pt[i] = RTE_PTYPE_L2_ETHER;
344
345                 ip6 = i & (RX_PKT_CMPL_FLAGS2_IP_TYPE >> 7);
346                 tun = i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC >> 2);
347                 type = (i & 0x38) << 9;
348
349                 if (!tun && !ip6)
350                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
351                 else if (!tun && ip6)
352                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
353                 else if (tun && !ip6)
354                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
355                 else
356                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
357
358                 switch (type) {
359                 case RX_PKT_CMPL_FLAGS_ITYPE_ICMP:
360                         if (tun)
361                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
362                         else
363                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
364                         break;
365                 case RX_PKT_CMPL_FLAGS_ITYPE_TCP:
366                         if (tun)
367                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
368                         else
369                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
370                         break;
371                 case RX_PKT_CMPL_FLAGS_ITYPE_UDP:
372                         if (tun)
373                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
374                         else
375                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
376                         break;
377                 case RX_PKT_CMPL_FLAGS_ITYPE_IP:
378                         pt[i] |= l3;
379                         break;
380                 }
381         }
382         initialized = true;
383 }
384
385 static uint32_t
386 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
387 {
388         uint32_t flags_type, flags2;
389         uint8_t index;
390
391         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
392         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
393
394         /*
395          * Index format:
396          *     bit 0: RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC
397          *     bit 1: RX_CMPL_FLAGS2_IP_TYPE
398          *     bit 2: RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN
399          *     bits 3-6: RX_PKT_CMPL_FLAGS_ITYPE
400          */
401         index = ((flags_type & RX_PKT_CMPL_FLAGS_ITYPE_MASK) >> 9) |
402                 ((flags2 & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
403                            RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)) >> 2) |
404                 ((flags2 & RX_PKT_CMPL_FLAGS2_IP_TYPE) >> 7);
405
406         return bnxt_ptype_table[index];
407 }
408
409 uint32_t
410 bnxt_ol_flags_table[BNXT_OL_FLAGS_TBL_DIM] __rte_cache_aligned;
411
412 uint32_t
413 bnxt_ol_flags_err_table[BNXT_OL_FLAGS_ERR_TBL_DIM] __rte_cache_aligned;
414
415 static void __rte_cold
416 bnxt_init_ol_flags_tables(void)
417 {
418         static bool initialized;
419         uint32_t *pt;
420         int i;
421
422         if (initialized)
423                 return;
424
425         /* Initialize ol_flags table. */
426         pt = bnxt_ol_flags_table;
427         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
428                 pt[i] = 0;
429                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
430                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
431
432                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
433                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
434
435                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
436                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
437
438                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
439                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
440         }
441
442         /* Initialize checksum error table. */
443         pt = bnxt_ol_flags_err_table;
444         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
445                 pt[i] = 0;
446                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
447                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
448
449                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
450                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
451
452                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
453                         pt[i] |= PKT_RX_EIP_CKSUM_BAD;
454
455                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
456                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
457         }
458
459         initialized = true;
460 }
461
462 static void
463 bnxt_set_ol_flags(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1,
464                   struct rte_mbuf *mbuf)
465 {
466         uint16_t flags_type, errors, flags;
467         uint64_t ol_flags;
468
469         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
470
471         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
472                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
473                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
474                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
475                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
476                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
477
478         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
479                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
480                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
481                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
482                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
483         errors = (errors >> 4) & flags;
484
485         ol_flags = bnxt_ol_flags_table[flags & ~errors];
486
487         if (errors)
488                 ol_flags |= bnxt_ol_flags_err_table[errors];
489
490         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
491                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
492                 ol_flags |= PKT_RX_RSS_HASH;
493         }
494
495         mbuf->ol_flags = ol_flags;
496 }
497
498 #ifdef RTE_LIBRTE_IEEE1588
499 static void
500 bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
501 {
502         uint64_t systime_cycles = 0;
503
504         if (!BNXT_CHIP_THOR(bp))
505                 return;
506
507         /* On Thor, Rx timestamps are provided directly in the
508          * Rx completion records to the driver. Only 32 bits of
509          * the timestamp is present in the completion. Driver needs
510          * to read the current 48 bit free running timer using the
511          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
512          * from the HWRM response with the lower 32 bits in the
513          * Rx completion to produce the 48 bit timestamp for the Rx packet
514          */
515         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
516                                 &systime_cycles);
517         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
518         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
519 }
520 #endif
521
522 static uint32_t
523 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
524                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
525 {
526         uint32_t cfa_code;
527         uint32_t meta_fmt;
528         uint32_t meta;
529         bool gfid = false;
530         uint32_t mark_id;
531         uint32_t flags2;
532         uint32_t gfid_support = 0;
533         int rc;
534
535         if (BNXT_GFID_ENABLED(bp))
536                 gfid_support = 1;
537
538         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
539         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
540         meta = rte_le_to_cpu_32(rxcmp1->metadata);
541
542         /*
543          * The flags field holds extra bits of info from [6:4]
544          * which indicate if the flow is in TCAM or EM or EEM
545          */
546         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
547                 BNXT_CFA_META_FMT_SHFT;
548
549         switch (meta_fmt) {
550         case 0:
551                 if (gfid_support) {
552                         /* Not an LFID or GFID, a flush cmd. */
553                         goto skip_mark;
554                 } else {
555                         /* LFID mode, no vlan scenario */
556                         gfid = false;
557                 }
558                 break;
559         case 4:
560         case 5:
561                 /*
562                  * EM/TCAM case
563                  * Assume that EM doesn't support Mark due to GFID
564                  * collisions with EEM.  Simply return without setting the mark
565                  * in the mbuf.
566                  */
567                 if (BNXT_CFA_META_EM_TEST(meta)) {
568                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
569                         gfid = true;
570                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
571                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
572                 } else {
573                         /*
574                          * It is a TCAM entry, so it is an LFID.
575                          * The TCAM IDX and Mode can also be determined
576                          * by decoding the meta_data. We are not
577                          * using these for now.
578                          */
579                 }
580                 break;
581         case 6:
582         case 7:
583                 /* EEM Case, only using gfid in EEM for now. */
584                 gfid = true;
585
586                 /*
587                  * For EEM flows, The first part of cfa_code is 16 bits.
588                  * The second part is embedded in the
589                  * metadata field from bit 19 onwards. The driver needs to
590                  * ignore the first 19 bits of metadata and use the next 12
591                  * bits as higher 12 bits of cfa_code.
592                  */
593                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
594                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
595                 break;
596         default:
597                 /* For other values, the cfa_code is assumed to be an LFID. */
598                 break;
599         }
600
601         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
602                                   cfa_code, vfr_flag, &mark_id);
603         if (!rc) {
604                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
605                 if (vfr_flag && *vfr_flag)
606                         return mark_id;
607                 /* Got the mark, write it to the mbuf and return */
608                 mbuf->hash.fdir.hi = mark_id;
609                 mbuf->udata64 = (cfa_code & 0xffffffffull) << 32;
610                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
611                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
612                 return mark_id;
613         }
614
615 skip_mark:
616         mbuf->hash.fdir.hi = 0;
617         mbuf->hash.fdir.id = 0;
618
619         return 0;
620 }
621
622 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
623                            struct rx_pkt_cmpl_hi *rxcmp1,
624                            struct rte_mbuf *mbuf)
625 {
626         uint32_t cfa_code = 0;
627         uint8_t meta_fmt = 0;
628         uint16_t flags2 = 0;
629         uint32_t meta =  0;
630
631         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
632         if (!cfa_code)
633                 return;
634
635         if (cfa_code && !bp->mark_table[cfa_code].valid)
636                 return;
637
638         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
639         meta = rte_le_to_cpu_32(rxcmp1->metadata);
640         if (meta) {
641                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
642
643                 /* The flags field holds extra bits of info from [6:4]
644                  * which indicate if the flow is in TCAM or EM or EEM
645                  */
646                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
647                            BNXT_CFA_META_FMT_SHFT;
648
649                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
650                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
651                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
652                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
653                  */
654                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
655         }
656
657         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
658         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
659 }
660
661 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
662                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
663 {
664         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
665         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
666         struct rx_pkt_cmpl *rxcmp;
667         struct rx_pkt_cmpl_hi *rxcmp1;
668         uint32_t tmp_raw_cons = *raw_cons;
669         uint16_t cons, prod, cp_cons =
670             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
671         struct rte_mbuf *mbuf;
672         int rc = 0;
673         uint8_t agg_buf = 0;
674         uint16_t cmp_type;
675         uint32_t vfr_flag = 0, mark_id = 0;
676         struct bnxt *bp = rxq->bp;
677
678         rxcmp = (struct rx_pkt_cmpl *)
679             &cpr->cp_desc_ring[cp_cons];
680
681         cmp_type = CMP_TYPE(rxcmp);
682
683         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
684                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
685                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
686                 struct bnxt_tpa_info *tpa_info;
687
688                 tpa_info = &rxr->tpa_info[agg_id];
689                 RTE_ASSERT(tpa_info->agg_count < 16);
690                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
691                 rc = -EINVAL; /* Continue w/o new mbuf */
692                 goto next_rx;
693         }
694
695         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
696         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
697         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
698
699         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
700                 return -EBUSY;
701
702         cpr->valid = FLIP_VALID(cp_cons,
703                                 cpr->cp_ring_struct->ring_mask,
704                                 cpr->valid);
705
706         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
707                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
708                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
709                 rc = -EINVAL; /* Continue w/o new mbuf */
710                 goto next_rx;
711         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
712                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
713                                    (struct rx_tpa_end_cmpl *)rxcmp,
714                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
715                 if (unlikely(!mbuf))
716                         return -EBUSY;
717                 *rx_pkt = mbuf;
718                 goto next_rx;
719         } else if (cmp_type != 0x11) {
720                 rc = -EINVAL;
721                 goto next_rx;
722         }
723
724         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
725                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
726         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
727                 return -EBUSY;
728
729         prod = rxr->rx_prod;
730
731         cons = rxcmp->opaque;
732         mbuf = bnxt_consume_rx_buf(rxr, cons);
733         if (mbuf == NULL)
734                 return -EBUSY;
735
736         rte_prefetch0(mbuf);
737
738         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
739         mbuf->nb_segs = 1;
740         mbuf->next = NULL;
741         mbuf->pkt_len = rxcmp->len;
742         mbuf->data_len = mbuf->pkt_len;
743         mbuf->port = rxq->port_id;
744
745         bnxt_set_ol_flags(rxcmp, rxcmp1, mbuf);
746
747 #ifdef RTE_LIBRTE_IEEE1588
748         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
749                       RX_PKT_CMPL_FLAGS_MASK) ==
750                       RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
751                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
752                 bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
753         }
754 #endif
755
756         if (BNXT_TRUFLOW_EN(bp))
757                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
758                                                     &vfr_flag);
759         else
760                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
761
762         if (agg_buf)
763                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
764
765         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
766
767 #ifdef BNXT_DEBUG
768         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
769                 /* Re-install the mbuf back to the rx ring */
770                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
771
772                 rc = -EIO;
773                 goto next_rx;
774         }
775 #endif
776         /*
777          * TODO: Redesign this....
778          * If the allocation fails, the packet does not get received.
779          * Simply returning this will result in slowly falling behind
780          * on the producer ring buffers.
781          * Instead, "filling up" the producer just before ringing the
782          * doorbell could be a better solution since it will let the
783          * producer ring starve until memory is available again pushing
784          * the drops into hardware and getting them out of the driver
785          * allowing recovery to a full producer ring.
786          *
787          * This could also help with cache usage by preventing per-packet
788          * calls in favour of a tight loop with the same function being called
789          * in it.
790          */
791         prod = RING_NEXT(rxr->rx_ring_struct, prod);
792         if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
793                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
794                 rc = -ENOMEM;
795                 goto rx;
796         }
797         rxr->rx_prod = prod;
798
799         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
800             vfr_flag) {
801                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
802                 /* Now return an error so that nb_rx_pkts is not
803                  * incremented.
804                  * This packet was meant to be given to the representor.
805                  * So no need to account the packet and give it to
806                  * parent Rx burst function.
807                  */
808                 rc = -ENODEV;
809                 goto next_rx;
810         }
811         /*
812          * All MBUFs are allocated with the same size under DPDK,
813          * no optimization for rx_copy_thresh
814          */
815 rx:
816         *rx_pkt = mbuf;
817
818 next_rx:
819
820         *raw_cons = tmp_raw_cons;
821
822         return rc;
823 }
824
825 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
826                                uint16_t nb_pkts)
827 {
828         struct bnxt_rx_queue *rxq = rx_queue;
829         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
830         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
831         uint32_t raw_cons = cpr->cp_raw_cons;
832         uint32_t cons;
833         int nb_rx_pkts = 0;
834         int nb_rep_rx_pkts = 0;
835         struct rx_pkt_cmpl *rxcmp;
836         uint16_t prod = rxr->rx_prod;
837         uint16_t ag_prod = rxr->ag_prod;
838         int rc = 0;
839         bool evt = false;
840
841         if (unlikely(is_bnxt_in_error(rxq->bp)))
842                 return 0;
843
844         /* If Rx Q was stopped return */
845         if (unlikely(!rxq->rx_started ||
846                      !rte_spinlock_trylock(&rxq->lock)))
847                 return 0;
848
849 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
850         /*
851          * Replenish buffers if needed when a transition has been made from
852          * vector- to non-vector- receive processing.
853          */
854         while (unlikely(rxq->rxrearm_nb)) {
855                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
856                         rxr->rx_prod = rxq->rxrearm_start;
857                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
858                         rxq->rxrearm_start++;
859                         rxq->rxrearm_nb--;
860                 } else {
861                         /* Retry allocation on next call. */
862                         break;
863                 }
864         }
865 #endif
866
867         /* Handle RX burst request */
868         while (1) {
869                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
870                 rte_prefetch0(&cpr->cp_desc_ring[cons]);
871                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
872
873                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
874                         break;
875                 cpr->valid = FLIP_VALID(cons,
876                                         cpr->cp_ring_struct->ring_mask,
877                                         cpr->valid);
878
879                 /* TODO: Avoid magic numbers... */
880                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
881                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
882                         if (likely(!rc) || rc == -ENOMEM)
883                                 nb_rx_pkts++;
884                         if (rc == -EBUSY)       /* partial completion */
885                                 break;
886                         if (rc == -ENODEV)      /* completion for representor */
887                                 nb_rep_rx_pkts++;
888                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
889                         evt =
890                         bnxt_event_hwrm_resp_handler(rxq->bp,
891                                                      (struct cmpl_base *)rxcmp);
892                         /* If the async event is Fatal error, return */
893                         if (unlikely(is_bnxt_in_error(rxq->bp)))
894                                 goto done;
895                 }
896
897                 raw_cons = NEXT_RAW_CMP(raw_cons);
898                 if (nb_rx_pkts == nb_pkts || evt)
899                         break;
900                 /* Post some Rx buf early in case of larger burst processing */
901                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
902                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
903         }
904
905         cpr->cp_raw_cons = raw_cons;
906         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
907                 /*
908                  * For PMD, there is no need to keep on pushing to REARM
909                  * the doorbell if there are no new completions
910                  */
911                 goto done;
912         }
913
914         if (prod != rxr->rx_prod)
915                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
916
917         /* Ring the AGG ring DB */
918         if (ag_prod != rxr->ag_prod)
919                 bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
920
921         bnxt_db_cq(cpr);
922
923         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
924         if (rc == -ENOMEM) {
925                 int i = RING_NEXT(rxr->rx_ring_struct, prod);
926                 int cnt = nb_rx_pkts;
927
928                 for (; cnt;
929                         i = RING_NEXT(rxr->rx_ring_struct, i), cnt--) {
930                         struct rte_mbuf **rx_buf = &rxr->rx_buf_ring[i];
931
932                         /* Buffer already allocated for this index. */
933                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
934                                 continue;
935
936                         /* This slot is empty. Alloc buffer for Rx */
937                         if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
938                                 rxr->rx_prod = i;
939                                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
940                         } else {
941                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
942                                 break;
943                         }
944                 }
945         }
946
947 done:
948         rte_spinlock_unlock(&rxq->lock);
949
950         return nb_rx_pkts;
951 }
952
953 /*
954  * Dummy DPDK callback for RX.
955  *
956  * This function is used to temporarily replace the real callback during
957  * unsafe control operations on the queue, or in case of error.
958  */
959 uint16_t
960 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
961                      struct rte_mbuf **rx_pkts __rte_unused,
962                      uint16_t nb_pkts __rte_unused)
963 {
964         return 0;
965 }
966
967 void bnxt_free_rx_rings(struct bnxt *bp)
968 {
969         int i;
970         struct bnxt_rx_queue *rxq;
971
972         if (!bp->rx_queues)
973                 return;
974
975         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
976                 rxq = bp->rx_queues[i];
977                 if (!rxq)
978                         continue;
979
980                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
981                 rte_free(rxq->rx_ring->rx_ring_struct);
982
983                 /* Free the Aggregator ring */
984                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
985                 rte_free(rxq->rx_ring->ag_ring_struct);
986                 rxq->rx_ring->ag_ring_struct = NULL;
987
988                 rte_free(rxq->rx_ring);
989
990                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
991                 rte_free(rxq->cp_ring->cp_ring_struct);
992                 rte_free(rxq->cp_ring);
993
994                 rte_free(rxq);
995                 bp->rx_queues[i] = NULL;
996         }
997 }
998
999 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1000 {
1001         struct rte_eth_dev *eth_dev = rxq->bp->eth_dev;
1002         struct rte_eth_rxmode *rxmode;
1003         struct bnxt_cp_ring_info *cpr;
1004         struct bnxt_rx_ring_info *rxr;
1005         struct bnxt_ring *ring;
1006         bool use_agg_ring;
1007
1008         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1009
1010         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1011                                  sizeof(struct bnxt_rx_ring_info),
1012                                  RTE_CACHE_LINE_SIZE, socket_id);
1013         if (rxr == NULL)
1014                 return -ENOMEM;
1015         rxq->rx_ring = rxr;
1016
1017         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1018                                    sizeof(struct bnxt_ring),
1019                                    RTE_CACHE_LINE_SIZE, socket_id);
1020         if (ring == NULL)
1021                 return -ENOMEM;
1022         rxr->rx_ring_struct = ring;
1023         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1024         ring->ring_mask = ring->ring_size - 1;
1025         ring->bd = (void *)rxr->rx_desc_ring;
1026         ring->bd_dma = rxr->rx_desc_mapping;
1027
1028         /* Allocate extra rx ring entries for vector rx. */
1029         ring->vmem_size = sizeof(struct rte_mbuf *) *
1030                                 (ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
1031
1032         ring->vmem = (void **)&rxr->rx_buf_ring;
1033         ring->fw_ring_id = INVALID_HW_RING_ID;
1034
1035         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1036                                  sizeof(struct bnxt_cp_ring_info),
1037                                  RTE_CACHE_LINE_SIZE, socket_id);
1038         if (cpr == NULL)
1039                 return -ENOMEM;
1040         rxq->cp_ring = cpr;
1041
1042         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1043                                    sizeof(struct bnxt_ring),
1044                                    RTE_CACHE_LINE_SIZE, socket_id);
1045         if (ring == NULL)
1046                 return -ENOMEM;
1047         cpr->cp_ring_struct = ring;
1048
1049         rxmode = &eth_dev->data->dev_conf.rxmode;
1050         use_agg_ring = (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
1051                        (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) ||
1052                        (rxmode->max_rx_pkt_len >
1053                          (uint32_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1054                                     RTE_PKTMBUF_HEADROOM));
1055
1056         /* Allocate two completion slots per entry in desc ring. */
1057         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1058
1059         /* Allocate additional slots if aggregation ring is in use. */
1060         if (use_agg_ring)
1061                 ring->ring_size *= AGG_RING_SIZE_FACTOR;
1062
1063         ring->ring_size = rte_align32pow2(ring->ring_size);
1064         ring->ring_mask = ring->ring_size - 1;
1065         ring->bd = (void *)cpr->cp_desc_ring;
1066         ring->bd_dma = cpr->cp_desc_mapping;
1067         ring->vmem_size = 0;
1068         ring->vmem = NULL;
1069         ring->fw_ring_id = INVALID_HW_RING_ID;
1070
1071         /* Allocate Aggregator rings */
1072         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1073                                    sizeof(struct bnxt_ring),
1074                                    RTE_CACHE_LINE_SIZE, socket_id);
1075         if (ring == NULL)
1076                 return -ENOMEM;
1077         rxr->ag_ring_struct = ring;
1078         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1079                                           AGG_RING_SIZE_FACTOR);
1080         ring->ring_mask = ring->ring_size - 1;
1081         ring->bd = (void *)rxr->ag_desc_ring;
1082         ring->bd_dma = rxr->ag_desc_mapping;
1083         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1084         ring->vmem = (void **)&rxr->ag_buf_ring;
1085         ring->fw_ring_id = INVALID_HW_RING_ID;
1086
1087         return 0;
1088 }
1089
1090 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1091                             uint16_t len)
1092 {
1093         uint32_t j;
1094         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1095
1096         if (!rx_bd_ring)
1097                 return;
1098         for (j = 0; j < ring->ring_size; j++) {
1099                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1100                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1101                 rx_bd_ring[j].opaque = j;
1102         }
1103 }
1104
1105 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1106 {
1107         struct bnxt_rx_ring_info *rxr;
1108         struct bnxt_ring *ring;
1109         uint32_t prod, type;
1110         unsigned int i;
1111         uint16_t size;
1112
1113         /* Initialize packet type table. */
1114         bnxt_init_ptype_table();
1115
1116         /* Initialize offload flags parsing table. */
1117         bnxt_init_ol_flags_tables();
1118
1119         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1120         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1121
1122         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
1123
1124         rxr = rxq->rx_ring;
1125         ring = rxr->rx_ring_struct;
1126         bnxt_init_rxbds(ring, type, size);
1127
1128         prod = rxr->rx_prod;
1129         for (i = 0; i < ring->ring_size; i++) {
1130                 if (unlikely(!rxr->rx_buf_ring[i])) {
1131                         if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
1132                                 PMD_DRV_LOG(WARNING,
1133                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1134                                             rxq->queue_id, i, ring->ring_size);
1135                                 break;
1136                         }
1137                 }
1138                 rxr->rx_prod = prod;
1139                 prod = RING_NEXT(rxr->rx_ring_struct, prod);
1140         }
1141
1142         /* Initialize dummy mbuf pointers for vector mode rx. */
1143         for (i = ring->ring_size;
1144              i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
1145                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1146         }
1147
1148         ring = rxr->ag_ring_struct;
1149         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1150         bnxt_init_rxbds(ring, type, size);
1151         prod = rxr->ag_prod;
1152
1153         for (i = 0; i < ring->ring_size; i++) {
1154                 if (unlikely(!rxr->ag_buf_ring[i])) {
1155                         if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
1156                                 PMD_DRV_LOG(WARNING,
1157                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1158                                             rxq->queue_id, i, ring->ring_size);
1159                                 break;
1160                         }
1161                 }
1162                 rxr->ag_prod = prod;
1163                 prod = RING_NEXT(rxr->ag_ring_struct, prod);
1164         }
1165         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1166
1167         if (rxr->tpa_info) {
1168                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1169
1170                 for (i = 0; i < max_aggs; i++) {
1171                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1172                                 rxr->tpa_info[i].mbuf =
1173                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1174                                 if (!rxr->tpa_info[i].mbuf) {
1175                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1176                                         return -ENOMEM;
1177                                 }
1178                         }
1179                 }
1180         }
1181         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1182
1183         return 0;
1184 }