1edc8dac43b95269edd0cf0696bb49baefc8aa17
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26
27 /*
28  * RX Ring handling
29  */
30
31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33         struct rte_mbuf *data;
34
35         data = rte_mbuf_raw_alloc(mb);
36
37         return data;
38 }
39
40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41                                      struct bnxt_rx_ring_info *rxr,
42                                      uint16_t raw_prod)
43 {
44         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
45         struct rx_prod_pkt_bd *rxbd;
46         struct rte_mbuf **rx_buf;
47         struct rte_mbuf *mbuf;
48
49         rxbd = &rxr->rx_desc_ring[prod];
50         rx_buf = &rxr->rx_buf_ring[prod];
51         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
52         if (!mbuf) {
53                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
54                 return -ENOMEM;
55         }
56
57         *rx_buf = mbuf;
58         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
59
60         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
61
62         return 0;
63 }
64
65 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
66                                      struct bnxt_rx_ring_info *rxr,
67                                      uint16_t raw_prod)
68 {
69         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
70         struct rx_prod_pkt_bd *rxbd;
71         struct rte_mbuf **rx_buf;
72         struct rte_mbuf *mbuf;
73
74         rxbd = &rxr->ag_desc_ring[prod];
75         rx_buf = &rxr->ag_buf_ring[prod];
76         if (rxbd == NULL) {
77                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
78                 return -EINVAL;
79         }
80
81         if (rx_buf == NULL) {
82                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
83                 return -EINVAL;
84         }
85
86         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
87         if (!mbuf) {
88                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
89                 return -ENOMEM;
90         }
91
92         *rx_buf = mbuf;
93         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
94
95         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
96
97         return 0;
98 }
99
100 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
101                                struct rte_mbuf *mbuf)
102 {
103         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
104         struct rte_mbuf **prod_rx_buf;
105         struct rx_prod_pkt_bd *prod_bd;
106
107         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
108         prod_rx_buf = &rxr->rx_buf_ring[prod];
109
110         RTE_ASSERT(*prod_rx_buf == NULL);
111         RTE_ASSERT(mbuf != NULL);
112
113         *prod_rx_buf = mbuf;
114
115         prod_bd = &rxr->rx_desc_ring[prod];
116
117         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
118
119         rxr->rx_raw_prod = raw_prod;
120 }
121
122 static inline
123 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
124                                      uint16_t cons)
125 {
126         struct rte_mbuf **cons_rx_buf;
127         struct rte_mbuf *mbuf;
128
129         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
130         RTE_ASSERT(*cons_rx_buf != NULL);
131         mbuf = *cons_rx_buf;
132         *cons_rx_buf = NULL;
133
134         return mbuf;
135 }
136
137 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
138                            struct rx_tpa_start_cmpl *tpa_start,
139                            struct rx_tpa_start_cmpl_hi *tpa_start1)
140 {
141         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
142         uint16_t agg_id;
143         uint16_t data_cons;
144         struct bnxt_tpa_info *tpa_info;
145         struct rte_mbuf *mbuf;
146
147         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
148
149         data_cons = tpa_start->opaque;
150         tpa_info = &rxr->tpa_info[agg_id];
151
152         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
153
154         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
155
156         tpa_info->agg_count = 0;
157         tpa_info->mbuf = mbuf;
158         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
159
160         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
161         mbuf->nb_segs = 1;
162         mbuf->next = NULL;
163         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
164         mbuf->data_len = mbuf->pkt_len;
165         mbuf->port = rxq->port_id;
166         mbuf->ol_flags = PKT_RX_LRO;
167         if (likely(tpa_start->flags_type &
168                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
169                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
170                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
171         } else {
172                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
173                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
174         }
175         if (tpa_start1->flags2 &
176             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
177                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
178                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
179         }
180         if (likely(tpa_start1->flags2 &
181                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
182                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
183
184         /* recycle next mbuf */
185         data_cons = RING_NEXT(data_cons);
186         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
187 }
188
189 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
190                 uint8_t agg_bufs, uint32_t raw_cp_cons)
191 {
192         uint16_t last_cp_cons;
193         struct rx_pkt_cmpl *agg_cmpl;
194
195         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
196         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
197         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
198         cpr->valid = FLIP_VALID(raw_cp_cons,
199                                 cpr->cp_ring_struct->ring_mask,
200                                 cpr->valid);
201         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
202 }
203
204 /* TPA consume agg buffer out of order, allocate connected data only */
205 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
206 {
207         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
208         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
209         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
210
211         /* TODO batch allocation for better performance */
212         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
213                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
214                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
215                                     raw_next);
216                         break;
217                 }
218                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
219                 rxr->ag_raw_prod = raw_next;
220                 raw_next = RING_NEXT(raw_next);
221                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
222         }
223
224         return 0;
225 }
226
227 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
228                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
229                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
230 {
231         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
232         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
233         int i;
234         uint16_t cp_cons, ag_cons;
235         struct rx_pkt_cmpl *rxcmp;
236         struct rte_mbuf *last = mbuf;
237         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
238
239         for (i = 0; i < agg_buf; i++) {
240                 struct rte_mbuf **ag_buf;
241                 struct rte_mbuf *ag_mbuf;
242
243                 if (is_p5_tpa) {
244                         rxcmp = (void *)&tpa_info->agg_arr[i];
245                 } else {
246                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
247                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
248                         rxcmp = (struct rx_pkt_cmpl *)
249                                         &cpr->cp_desc_ring[cp_cons];
250                 }
251
252 #ifdef BNXT_DEBUG
253                 bnxt_dump_cmpl(cp_cons, rxcmp);
254 #endif
255
256                 ag_cons = rxcmp->opaque;
257                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
258                 ag_buf = &rxr->ag_buf_ring[ag_cons];
259                 ag_mbuf = *ag_buf;
260                 RTE_ASSERT(ag_mbuf != NULL);
261
262                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
263
264                 mbuf->nb_segs++;
265                 mbuf->pkt_len += ag_mbuf->data_len;
266
267                 last->next = ag_mbuf;
268                 last = ag_mbuf;
269
270                 *ag_buf = NULL;
271
272                 /*
273                  * As aggregation buffer consumed out of order in TPA module,
274                  * use bitmap to track freed slots to be allocated and notified
275                  * to NIC
276                  */
277                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
278         }
279         bnxt_prod_ag_mbuf(rxq);
280         return 0;
281 }
282
283 static inline struct rte_mbuf *bnxt_tpa_end(
284                 struct bnxt_rx_queue *rxq,
285                 uint32_t *raw_cp_cons,
286                 struct rx_tpa_end_cmpl *tpa_end,
287                 struct rx_tpa_end_cmpl_hi *tpa_end1)
288 {
289         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
290         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
291         uint16_t agg_id;
292         struct rte_mbuf *mbuf;
293         uint8_t agg_bufs;
294         uint8_t payload_offset;
295         struct bnxt_tpa_info *tpa_info;
296
297         if (BNXT_CHIP_P5(rxq->bp)) {
298                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
299                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
300
301                 th_tpa_end = (void *)tpa_end;
302                 th_tpa_end1 = (void *)tpa_end1;
303                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
304                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
305                 payload_offset = th_tpa_end1->payload_offset;
306         } else {
307                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
308                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
309                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
310                         return NULL;
311                 payload_offset = tpa_end->payload_offset;
312         }
313
314         tpa_info = &rxr->tpa_info[agg_id];
315         mbuf = tpa_info->mbuf;
316         RTE_ASSERT(mbuf != NULL);
317
318         if (agg_bufs) {
319                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
320         }
321         mbuf->l4_len = payload_offset;
322
323         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
324         RTE_ASSERT(new_data != NULL);
325         if (!new_data) {
326                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
327                 return NULL;
328         }
329         tpa_info->mbuf = new_data;
330
331         return mbuf;
332 }
333
334 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
335
336 static void __rte_cold
337 bnxt_init_ptype_table(void)
338 {
339         uint32_t *pt = bnxt_ptype_table;
340         static bool initialized;
341         int ip6, tun, type;
342         uint32_t l3;
343         int i;
344
345         if (initialized)
346                 return;
347
348         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
349                 if (i & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN >> 2))
350                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
351                 else
352                         pt[i] = RTE_PTYPE_L2_ETHER;
353
354                 ip6 = i & (RX_PKT_CMPL_FLAGS2_IP_TYPE >> 7);
355                 tun = i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC >> 2);
356                 type = (i & 0x38) << 9;
357
358                 if (!tun && !ip6)
359                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
360                 else if (!tun && ip6)
361                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
362                 else if (tun && !ip6)
363                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
364                 else
365                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
366
367                 switch (type) {
368                 case RX_PKT_CMPL_FLAGS_ITYPE_ICMP:
369                         if (tun)
370                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
371                         else
372                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
373                         break;
374                 case RX_PKT_CMPL_FLAGS_ITYPE_TCP:
375                         if (tun)
376                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
377                         else
378                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
379                         break;
380                 case RX_PKT_CMPL_FLAGS_ITYPE_UDP:
381                         if (tun)
382                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
383                         else
384                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
385                         break;
386                 case RX_PKT_CMPL_FLAGS_ITYPE_IP:
387                         pt[i] |= l3;
388                         break;
389                 }
390         }
391         initialized = true;
392 }
393
394 static uint32_t
395 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
396 {
397         uint32_t flags_type, flags2;
398         uint8_t index;
399
400         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
401         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
402
403         /*
404          * Index format:
405          *     bit 0: RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC
406          *     bit 1: RX_CMPL_FLAGS2_IP_TYPE
407          *     bit 2: RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN
408          *     bits 3-6: RX_PKT_CMPL_FLAGS_ITYPE
409          */
410         index = ((flags_type & RX_PKT_CMPL_FLAGS_ITYPE_MASK) >> 9) |
411                 ((flags2 & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
412                            RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)) >> 2) |
413                 ((flags2 & RX_PKT_CMPL_FLAGS2_IP_TYPE) >> 7);
414
415         return bnxt_ptype_table[index];
416 }
417
418 static void __rte_cold
419 bnxt_init_ol_flags_tables(struct bnxt_rx_ring_info *rxr)
420 {
421         uint32_t *pt;
422         int i;
423
424         /* Initialize ol_flags table. */
425         pt = rxr->ol_flags_table;
426         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
427                 pt[i] = 0;
428                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
429                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
430
431                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
432                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
433
434                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
435                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
436
437                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
438                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
439         }
440
441         /* Initialize checksum error table. */
442         pt = rxr->ol_flags_err_table;
443         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
444                 pt[i] = 0;
445                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
446                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
447
448                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
449                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
450
451                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
452                         pt[i] |= PKT_RX_EIP_CKSUM_BAD;
453
454                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
455                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
456         }
457 }
458
459 static void
460 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
461                   struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
462 {
463         uint16_t flags_type, errors, flags;
464         uint64_t ol_flags;
465
466         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
467
468         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
469                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
470                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
471                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
472                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
473                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
474
475         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
476                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
477                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
478                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
479                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
480         errors = (errors >> 4) & flags;
481
482         ol_flags = rxr->ol_flags_table[flags & ~errors];
483
484         if (errors)
485                 ol_flags |= rxr->ol_flags_err_table[errors];
486
487         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
488                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
489                 ol_flags |= PKT_RX_RSS_HASH;
490         }
491
492         mbuf->ol_flags = ol_flags;
493 }
494
495 #ifdef RTE_LIBRTE_IEEE1588
496 static void
497 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
498 {
499         uint64_t systime_cycles = 0;
500
501         if (!BNXT_CHIP_P5(bp))
502                 return;
503
504         /* On Thor, Rx timestamps are provided directly in the
505          * Rx completion records to the driver. Only 32 bits of
506          * the timestamp is present in the completion. Driver needs
507          * to read the current 48 bit free running timer using the
508          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
509          * from the HWRM response with the lower 32 bits in the
510          * Rx completion to produce the 48 bit timestamp for the Rx packet
511          */
512         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
513                                 &systime_cycles);
514         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
515         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
516 }
517 #endif
518
519 static uint32_t
520 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
521                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
522 {
523         uint32_t cfa_code;
524         uint32_t meta_fmt;
525         uint32_t meta;
526         bool gfid = false;
527         uint32_t mark_id;
528         uint32_t flags2;
529         uint32_t gfid_support = 0;
530         int rc;
531
532         if (BNXT_GFID_ENABLED(bp))
533                 gfid_support = 1;
534
535         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
536         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
537         meta = rte_le_to_cpu_32(rxcmp1->metadata);
538
539         /*
540          * The flags field holds extra bits of info from [6:4]
541          * which indicate if the flow is in TCAM or EM or EEM
542          */
543         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
544                 BNXT_CFA_META_FMT_SHFT;
545
546         switch (meta_fmt) {
547         case 0:
548                 if (gfid_support) {
549                         /* Not an LFID or GFID, a flush cmd. */
550                         goto skip_mark;
551                 } else {
552                         /* LFID mode, no vlan scenario */
553                         gfid = false;
554                 }
555                 break;
556         case 4:
557         case 5:
558                 /*
559                  * EM/TCAM case
560                  * Assume that EM doesn't support Mark due to GFID
561                  * collisions with EEM.  Simply return without setting the mark
562                  * in the mbuf.
563                  */
564                 if (BNXT_CFA_META_EM_TEST(meta)) {
565                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
566                         gfid = true;
567                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
568                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
569                 } else {
570                         /*
571                          * It is a TCAM entry, so it is an LFID.
572                          * The TCAM IDX and Mode can also be determined
573                          * by decoding the meta_data. We are not
574                          * using these for now.
575                          */
576                 }
577                 break;
578         case 6:
579         case 7:
580                 /* EEM Case, only using gfid in EEM for now. */
581                 gfid = true;
582
583                 /*
584                  * For EEM flows, The first part of cfa_code is 16 bits.
585                  * The second part is embedded in the
586                  * metadata field from bit 19 onwards. The driver needs to
587                  * ignore the first 19 bits of metadata and use the next 12
588                  * bits as higher 12 bits of cfa_code.
589                  */
590                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
591                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
592                 break;
593         default:
594                 /* For other values, the cfa_code is assumed to be an LFID. */
595                 break;
596         }
597
598         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
599                                   cfa_code, vfr_flag, &mark_id);
600         if (!rc) {
601                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
602                 if (vfr_flag && *vfr_flag)
603                         return mark_id;
604                 /* Got the mark, write it to the mbuf and return */
605                 mbuf->hash.fdir.hi = mark_id;
606                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
607                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
608                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
609                 return mark_id;
610         }
611
612 skip_mark:
613         mbuf->hash.fdir.hi = 0;
614         mbuf->hash.fdir.id = 0;
615
616         return 0;
617 }
618
619 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
620                            struct rx_pkt_cmpl_hi *rxcmp1,
621                            struct rte_mbuf *mbuf)
622 {
623         uint32_t cfa_code = 0;
624         uint8_t meta_fmt = 0;
625         uint16_t flags2 = 0;
626         uint32_t meta =  0;
627
628         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
629         if (!cfa_code)
630                 return;
631
632         if (cfa_code && !bp->mark_table[cfa_code].valid)
633                 return;
634
635         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
636         meta = rte_le_to_cpu_32(rxcmp1->metadata);
637         if (meta) {
638                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
639
640                 /* The flags field holds extra bits of info from [6:4]
641                  * which indicate if the flow is in TCAM or EM or EEM
642                  */
643                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
644                            BNXT_CFA_META_FMT_SHFT;
645
646                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
647                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
648                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
649                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
650                  */
651                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
652         }
653
654         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
655         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
656 }
657
658 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
659                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
660 {
661         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
662         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
663         struct rx_pkt_cmpl *rxcmp;
664         struct rx_pkt_cmpl_hi *rxcmp1;
665         uint32_t tmp_raw_cons = *raw_cons;
666         uint16_t cons, raw_prod, cp_cons =
667             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
668         struct rte_mbuf *mbuf;
669         int rc = 0;
670         uint8_t agg_buf = 0;
671         uint16_t cmp_type;
672         uint32_t vfr_flag = 0, mark_id = 0;
673         struct bnxt *bp = rxq->bp;
674
675         rxcmp = (struct rx_pkt_cmpl *)
676             &cpr->cp_desc_ring[cp_cons];
677
678         cmp_type = CMP_TYPE(rxcmp);
679
680         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
681                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
682                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
683                 struct bnxt_tpa_info *tpa_info;
684
685                 tpa_info = &rxr->tpa_info[agg_id];
686                 RTE_ASSERT(tpa_info->agg_count < 16);
687                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
688                 rc = -EINVAL; /* Continue w/o new mbuf */
689                 goto next_rx;
690         }
691
692         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
693         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
694         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
695
696         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
697                 return -EBUSY;
698
699         cpr->valid = FLIP_VALID(cp_cons,
700                                 cpr->cp_ring_struct->ring_mask,
701                                 cpr->valid);
702
703         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
704                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
705                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
706                 rc = -EINVAL; /* Continue w/o new mbuf */
707                 goto next_rx;
708         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
709                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
710                                    (struct rx_tpa_end_cmpl *)rxcmp,
711                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
712                 if (unlikely(!mbuf))
713                         return -EBUSY;
714                 *rx_pkt = mbuf;
715                 goto next_rx;
716         } else if (cmp_type != 0x11) {
717                 rc = -EINVAL;
718                 goto next_rx;
719         }
720
721         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
722                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
723         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
724                 return -EBUSY;
725
726         raw_prod = rxr->rx_raw_prod;
727
728         cons = rxcmp->opaque;
729         mbuf = bnxt_consume_rx_buf(rxr, cons);
730         if (mbuf == NULL)
731                 return -EBUSY;
732
733         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
734         mbuf->nb_segs = 1;
735         mbuf->next = NULL;
736         mbuf->pkt_len = rxcmp->len;
737         mbuf->data_len = mbuf->pkt_len;
738         mbuf->port = rxq->port_id;
739
740         bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
741
742 #ifdef RTE_LIBRTE_IEEE1588
743         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
744                       RX_PKT_CMPL_FLAGS_MASK) ==
745                       RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
746                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
747                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
748         }
749 #endif
750
751         if (BNXT_TRUFLOW_EN(bp))
752                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
753                                                     &vfr_flag);
754         else
755                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
756
757         if (agg_buf)
758                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
759
760         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
761
762 #ifdef BNXT_DEBUG
763         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
764                 /* Re-install the mbuf back to the rx ring */
765                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
766
767                 rc = -EIO;
768                 goto next_rx;
769         }
770 #endif
771         /*
772          * TODO: Redesign this....
773          * If the allocation fails, the packet does not get received.
774          * Simply returning this will result in slowly falling behind
775          * on the producer ring buffers.
776          * Instead, "filling up" the producer just before ringing the
777          * doorbell could be a better solution since it will let the
778          * producer ring starve until memory is available again pushing
779          * the drops into hardware and getting them out of the driver
780          * allowing recovery to a full producer ring.
781          *
782          * This could also help with cache usage by preventing per-packet
783          * calls in favour of a tight loop with the same function being called
784          * in it.
785          */
786         raw_prod = RING_NEXT(raw_prod);
787         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
788                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
789                             raw_prod);
790                 rc = -ENOMEM;
791                 goto rx;
792         }
793         rxr->rx_raw_prod = raw_prod;
794
795         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
796             vfr_flag) {
797                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
798                 /* Now return an error so that nb_rx_pkts is not
799                  * incremented.
800                  * This packet was meant to be given to the representor.
801                  * So no need to account the packet and give it to
802                  * parent Rx burst function.
803                  */
804                 rc = -ENODEV;
805                 goto next_rx;
806         }
807         /*
808          * All MBUFs are allocated with the same size under DPDK,
809          * no optimization for rx_copy_thresh
810          */
811 rx:
812         *rx_pkt = mbuf;
813
814 next_rx:
815
816         *raw_cons = tmp_raw_cons;
817
818         return rc;
819 }
820
821 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
822                                uint16_t nb_pkts)
823 {
824         struct bnxt_rx_queue *rxq = rx_queue;
825         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
826         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
827         uint16_t rx_raw_prod = rxr->rx_raw_prod;
828         uint16_t ag_raw_prod = rxr->ag_raw_prod;
829         uint32_t raw_cons = cpr->cp_raw_cons;
830         bool alloc_failed = false;
831         uint32_t cons;
832         int nb_rx_pkts = 0;
833         int nb_rep_rx_pkts = 0;
834         struct rx_pkt_cmpl *rxcmp;
835         int rc = 0;
836         bool evt = false;
837
838         if (unlikely(is_bnxt_in_error(rxq->bp)))
839                 return 0;
840
841         /* If Rx Q was stopped return */
842         if (unlikely(!rxq->rx_started))
843                 return 0;
844
845 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
846         /*
847          * Replenish buffers if needed when a transition has been made from
848          * vector- to non-vector- receive processing.
849          */
850         while (unlikely(rxq->rxrearm_nb)) {
851                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
852                         rxr->rx_raw_prod = rxq->rxrearm_start;
853                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
854                         rxq->rxrearm_start++;
855                         rxq->rxrearm_nb--;
856                 } else {
857                         /* Retry allocation on next call. */
858                         break;
859                 }
860         }
861 #endif
862
863         /* Handle RX burst request */
864         while (1) {
865                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
866                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
867
868                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
869                         break;
870                 cpr->valid = FLIP_VALID(cons,
871                                         cpr->cp_ring_struct->ring_mask,
872                                         cpr->valid);
873
874                 /* TODO: Avoid magic numbers... */
875                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
876                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
877                         if (!rc)
878                                 nb_rx_pkts++;
879                         else if (rc == -EBUSY)  /* partial completion */
880                                 break;
881                         else if (rc == -ENODEV) /* completion for representor */
882                                 nb_rep_rx_pkts++;
883                         else if (rc == -ENOMEM) {
884                                 nb_rx_pkts++;
885                                 alloc_failed = true;
886                         }
887                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
888                         evt =
889                         bnxt_event_hwrm_resp_handler(rxq->bp,
890                                                      (struct cmpl_base *)rxcmp);
891                         /* If the async event is Fatal error, return */
892                         if (unlikely(is_bnxt_in_error(rxq->bp)))
893                                 goto done;
894                 }
895
896                 raw_cons = NEXT_RAW_CMP(raw_cons);
897                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
898                         break;
899                 /* Post some Rx buf early in case of larger burst processing */
900                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
901                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
902         }
903
904         cpr->cp_raw_cons = raw_cons;
905         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
906                 /*
907                  * For PMD, there is no need to keep on pushing to REARM
908                  * the doorbell if there are no new completions
909                  */
910                 goto done;
911         }
912
913         /* Ring the completion queue doorbell. */
914         bnxt_db_cq(cpr);
915
916         /* Ring the receive descriptor doorbell. */
917         if (rx_raw_prod != rxr->rx_raw_prod)
918                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
919
920         /* Ring the AGG ring DB */
921         if (ag_raw_prod != rxr->ag_raw_prod)
922                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
923
924         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
925         if (alloc_failed) {
926                 uint16_t cnt;
927
928                 rx_raw_prod = RING_NEXT(rx_raw_prod);
929                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
930                         struct rte_mbuf **rx_buf;
931                         uint16_t ndx;
932
933                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
934                         rx_buf = &rxr->rx_buf_ring[ndx];
935
936                         /* Buffer already allocated for this index. */
937                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
938                                 continue;
939
940                         /* This slot is empty. Alloc buffer for Rx */
941                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
942                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
943                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
944                         } else {
945                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
946                                 break;
947                         }
948                 }
949         }
950
951 done:
952         return nb_rx_pkts;
953 }
954
955 /*
956  * Dummy DPDK callback for RX.
957  *
958  * This function is used to temporarily replace the real callback during
959  * unsafe control operations on the queue, or in case of error.
960  */
961 uint16_t
962 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
963                      struct rte_mbuf **rx_pkts __rte_unused,
964                      uint16_t nb_pkts __rte_unused)
965 {
966         return 0;
967 }
968
969 void bnxt_free_rx_rings(struct bnxt *bp)
970 {
971         int i;
972         struct bnxt_rx_queue *rxq;
973
974         if (!bp->rx_queues)
975                 return;
976
977         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
978                 rxq = bp->rx_queues[i];
979                 if (!rxq)
980                         continue;
981
982                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
983                 rte_free(rxq->rx_ring->rx_ring_struct);
984
985                 /* Free the Aggregator ring */
986                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
987                 rte_free(rxq->rx_ring->ag_ring_struct);
988                 rxq->rx_ring->ag_ring_struct = NULL;
989
990                 rte_free(rxq->rx_ring);
991
992                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
993                 rte_free(rxq->cp_ring->cp_ring_struct);
994                 rte_free(rxq->cp_ring);
995
996                 rte_free(rxq);
997                 bp->rx_queues[i] = NULL;
998         }
999 }
1000
1001 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1002 {
1003         struct rte_eth_dev *eth_dev = rxq->bp->eth_dev;
1004         struct rte_eth_rxmode *rxmode;
1005         struct bnxt_cp_ring_info *cpr;
1006         struct bnxt_rx_ring_info *rxr;
1007         struct bnxt_ring *ring;
1008         bool use_agg_ring;
1009
1010         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1011
1012         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1013                                  sizeof(struct bnxt_rx_ring_info),
1014                                  RTE_CACHE_LINE_SIZE, socket_id);
1015         if (rxr == NULL)
1016                 return -ENOMEM;
1017         rxq->rx_ring = rxr;
1018
1019         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1020                                    sizeof(struct bnxt_ring),
1021                                    RTE_CACHE_LINE_SIZE, socket_id);
1022         if (ring == NULL)
1023                 return -ENOMEM;
1024         rxr->rx_ring_struct = ring;
1025         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1026         ring->ring_mask = ring->ring_size - 1;
1027         ring->bd = (void *)rxr->rx_desc_ring;
1028         ring->bd_dma = rxr->rx_desc_mapping;
1029
1030         /* Allocate extra rx ring entries for vector rx. */
1031         ring->vmem_size = sizeof(struct rte_mbuf *) *
1032                                 (ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
1033
1034         ring->vmem = (void **)&rxr->rx_buf_ring;
1035         ring->fw_ring_id = INVALID_HW_RING_ID;
1036
1037         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1038                                  sizeof(struct bnxt_cp_ring_info),
1039                                  RTE_CACHE_LINE_SIZE, socket_id);
1040         if (cpr == NULL)
1041                 return -ENOMEM;
1042         rxq->cp_ring = cpr;
1043
1044         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1045                                    sizeof(struct bnxt_ring),
1046                                    RTE_CACHE_LINE_SIZE, socket_id);
1047         if (ring == NULL)
1048                 return -ENOMEM;
1049         cpr->cp_ring_struct = ring;
1050
1051         rxmode = &eth_dev->data->dev_conf.rxmode;
1052         use_agg_ring = (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
1053                        (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) ||
1054                        (rxmode->max_rx_pkt_len >
1055                          (uint32_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1056                                     RTE_PKTMBUF_HEADROOM));
1057
1058         /* Allocate two completion slots per entry in desc ring. */
1059         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1060
1061         /* Allocate additional slots if aggregation ring is in use. */
1062         if (use_agg_ring)
1063                 ring->ring_size *= AGG_RING_SIZE_FACTOR;
1064
1065         ring->ring_size = rte_align32pow2(ring->ring_size);
1066         ring->ring_mask = ring->ring_size - 1;
1067         ring->bd = (void *)cpr->cp_desc_ring;
1068         ring->bd_dma = cpr->cp_desc_mapping;
1069         ring->vmem_size = 0;
1070         ring->vmem = NULL;
1071         ring->fw_ring_id = INVALID_HW_RING_ID;
1072
1073         /* Allocate Aggregator rings */
1074         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1075                                    sizeof(struct bnxt_ring),
1076                                    RTE_CACHE_LINE_SIZE, socket_id);
1077         if (ring == NULL)
1078                 return -ENOMEM;
1079         rxr->ag_ring_struct = ring;
1080         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1081                                           AGG_RING_SIZE_FACTOR);
1082         ring->ring_mask = ring->ring_size - 1;
1083         ring->bd = (void *)rxr->ag_desc_ring;
1084         ring->bd_dma = rxr->ag_desc_mapping;
1085         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1086         ring->vmem = (void **)&rxr->ag_buf_ring;
1087         ring->fw_ring_id = INVALID_HW_RING_ID;
1088
1089         return 0;
1090 }
1091
1092 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1093                             uint16_t len)
1094 {
1095         uint32_t j;
1096         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1097
1098         if (!rx_bd_ring)
1099                 return;
1100         for (j = 0; j < ring->ring_size; j++) {
1101                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1102                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1103                 rx_bd_ring[j].opaque = j;
1104         }
1105 }
1106
1107 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1108 {
1109         struct bnxt_rx_ring_info *rxr;
1110         struct bnxt_ring *ring;
1111         uint32_t raw_prod, type;
1112         unsigned int i;
1113         uint16_t size;
1114
1115         /* Initialize packet type table. */
1116         bnxt_init_ptype_table();
1117
1118         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1119         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1120
1121         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1122
1123         rxr = rxq->rx_ring;
1124         ring = rxr->rx_ring_struct;
1125         bnxt_init_rxbds(ring, type, size);
1126
1127         /* Initialize offload flags parsing table. */
1128         bnxt_init_ol_flags_tables(rxr);
1129
1130         raw_prod = rxr->rx_raw_prod;
1131         for (i = 0; i < ring->ring_size; i++) {
1132                 if (unlikely(!rxr->rx_buf_ring[i])) {
1133                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1134                                 PMD_DRV_LOG(WARNING,
1135                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1136                                             rxq->queue_id, i, ring->ring_size);
1137                                 break;
1138                         }
1139                 }
1140                 rxr->rx_raw_prod = raw_prod;
1141                 raw_prod = RING_NEXT(raw_prod);
1142         }
1143
1144         /* Initialize dummy mbuf pointers for vector mode rx. */
1145         for (i = ring->ring_size;
1146              i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
1147                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1148         }
1149
1150         ring = rxr->ag_ring_struct;
1151         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1152         bnxt_init_rxbds(ring, type, size);
1153         raw_prod = rxr->ag_raw_prod;
1154
1155         for (i = 0; i < ring->ring_size; i++) {
1156                 if (unlikely(!rxr->ag_buf_ring[i])) {
1157                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1158                                 PMD_DRV_LOG(WARNING,
1159                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1160                                             rxq->queue_id, i, ring->ring_size);
1161                                 break;
1162                         }
1163                 }
1164                 rxr->ag_raw_prod = raw_prod;
1165                 raw_prod = RING_NEXT(raw_prod);
1166         }
1167         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1168
1169         if (rxr->tpa_info) {
1170                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1171
1172                 for (i = 0; i < max_aggs; i++) {
1173                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1174                                 rxr->tpa_info[i].mbuf =
1175                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1176                                 if (!rxr->tpa_info[i].mbuf) {
1177                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1178                                         return -ENOMEM;
1179                                 }
1180                         }
1181                 }
1182         }
1183         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1184
1185         return 0;
1186 }