net/bnxt: add 64B SRAM record management with RM
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2021 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13 #include <rte_alarm.h>
14
15 #include "bnxt.h"
16 #include "bnxt_reps.h"
17 #include "bnxt_ring.h"
18 #include "bnxt_rxr.h"
19 #include "bnxt_rxq.h"
20 #include "hsi_struct_def_dpdk.h"
21 #include "bnxt_hwrm.h"
22
23 #include <bnxt_tf_common.h>
24 #include <ulp_mark_mgr.h>
25
26 /*
27  * RX Ring handling
28  */
29
30 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
31 {
32         struct rte_mbuf *data;
33
34         data = rte_mbuf_raw_alloc(mb);
35
36         return data;
37 }
38
39 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
40                                      struct bnxt_rx_ring_info *rxr,
41                                      uint16_t raw_prod)
42 {
43         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
44         struct rx_prod_pkt_bd *rxbd;
45         struct rte_mbuf **rx_buf;
46         struct rte_mbuf *mbuf;
47
48         rxbd = &rxr->rx_desc_ring[prod];
49         rx_buf = &rxr->rx_buf_ring[prod];
50         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
51         if (!mbuf) {
52                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
53                 return -ENOMEM;
54         }
55
56         *rx_buf = mbuf;
57         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
58
59         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
60
61         return 0;
62 }
63
64 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
65                                      struct bnxt_rx_ring_info *rxr,
66                                      uint16_t raw_prod)
67 {
68         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
69         struct rx_prod_pkt_bd *rxbd;
70         struct rte_mbuf **rx_buf;
71         struct rte_mbuf *mbuf;
72
73         rxbd = &rxr->ag_desc_ring[prod];
74         rx_buf = &rxr->ag_buf_ring[prod];
75         if (rxbd == NULL) {
76                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
77                 return -EINVAL;
78         }
79
80         if (rx_buf == NULL) {
81                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
82                 return -EINVAL;
83         }
84
85         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
86         if (!mbuf) {
87                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
88                 return -ENOMEM;
89         }
90
91         *rx_buf = mbuf;
92         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
93
94         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
95
96         return 0;
97 }
98
99 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
100                                struct rte_mbuf *mbuf)
101 {
102         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
103         struct rte_mbuf **prod_rx_buf;
104         struct rx_prod_pkt_bd *prod_bd;
105
106         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
107         prod_rx_buf = &rxr->rx_buf_ring[prod];
108
109         RTE_ASSERT(*prod_rx_buf == NULL);
110         RTE_ASSERT(mbuf != NULL);
111
112         *prod_rx_buf = mbuf;
113
114         prod_bd = &rxr->rx_desc_ring[prod];
115
116         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
117
118         rxr->rx_raw_prod = raw_prod;
119 }
120
121 static inline
122 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
123                                      uint16_t cons)
124 {
125         struct rte_mbuf **cons_rx_buf;
126         struct rte_mbuf *mbuf;
127
128         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
129         RTE_ASSERT(*cons_rx_buf != NULL);
130         mbuf = *cons_rx_buf;
131         *cons_rx_buf = NULL;
132
133         return mbuf;
134 }
135
136 static void bnxt_rx_ring_reset(void *arg)
137 {
138         struct bnxt *bp = arg;
139         int i, rc = 0;
140         struct bnxt_rx_queue *rxq;
141
142
143         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
144                 struct bnxt_rx_ring_info *rxr;
145
146                 rxq = bp->rx_queues[i];
147                 if (!rxq || !rxq->in_reset)
148                         continue;
149
150                 rxr = rxq->rx_ring;
151                 /* Disable and flush TPA before resetting the RX ring */
152                 if (rxr->tpa_info)
153                         bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, false);
154                 rc = bnxt_hwrm_rx_ring_reset(bp, i);
155                 if (rc) {
156                         PMD_DRV_LOG(ERR, "Rx ring%d reset failed\n", i);
157                         continue;
158                 }
159
160                 bnxt_rx_queue_release_mbufs(rxq);
161                 rxr->rx_raw_prod = 0;
162                 rxr->ag_raw_prod = 0;
163                 rxr->rx_next_cons = 0;
164                 bnxt_init_one_rx_ring(rxq);
165                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
166                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
167                 if (rxr->tpa_info)
168                         bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, true);
169
170                 rxq->in_reset = 0;
171         }
172 }
173
174
175 static void bnxt_sched_ring_reset(struct bnxt_rx_queue *rxq)
176 {
177         rxq->in_reset = 1;
178         rte_eal_alarm_set(1, bnxt_rx_ring_reset, (void *)rxq->bp);
179 }
180
181 static void bnxt_tpa_get_metadata(struct bnxt *bp,
182                                   struct bnxt_tpa_info *tpa_info,
183                                   struct rx_tpa_start_cmpl *tpa_start,
184                                   struct rx_tpa_start_cmpl_hi *tpa_start1)
185 {
186         tpa_info->cfa_code_valid = 0;
187         tpa_info->vlan_valid = 0;
188         tpa_info->hash_valid = 0;
189         tpa_info->l4_csum_valid = 0;
190
191         if (likely(tpa_start->flags_type &
192                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
193                 tpa_info->hash_valid = 1;
194                 tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
195         }
196
197         if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
198                 struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
199                 struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
200                         (void *)tpa_start1;
201
202                 if (v2_tpa_start->agg_id &
203                     RX_TPA_START_V2_CMPL_METADATA1_VALID) {
204                         tpa_info->vlan_valid = 1;
205                         tpa_info->vlan =
206                                 rte_le_to_cpu_16(v2_tpa_start1->metadata0);
207                 }
208
209                 if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
210                         tpa_info->l4_csum_valid = 1;
211
212                 return;
213         }
214
215         tpa_info->cfa_code_valid = 1;
216         tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
217         if (tpa_start1->flags2 &
218             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
219                 tpa_info->vlan_valid = 1;
220                 tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
221         }
222
223         if (likely(tpa_start1->flags2 &
224                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
225                 tpa_info->l4_csum_valid = 1;
226 }
227
228 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
229                            struct rx_tpa_start_cmpl *tpa_start,
230                            struct rx_tpa_start_cmpl_hi *tpa_start1)
231 {
232         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
233         uint16_t agg_id;
234         uint16_t data_cons;
235         struct bnxt_tpa_info *tpa_info;
236         struct rte_mbuf *mbuf;
237
238         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
239
240         data_cons = tpa_start->opaque;
241         tpa_info = &rxr->tpa_info[agg_id];
242         if (unlikely(data_cons != rxr->rx_next_cons)) {
243                 PMD_DRV_LOG(ERR, "TPA cons %x, expected cons %x\n",
244                             data_cons, rxr->rx_next_cons);
245                 bnxt_sched_ring_reset(rxq);
246                 return;
247         }
248
249         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
250
251         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
252
253         tpa_info->agg_count = 0;
254         tpa_info->mbuf = mbuf;
255         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
256
257         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
258         mbuf->nb_segs = 1;
259         mbuf->next = NULL;
260         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
261         mbuf->data_len = mbuf->pkt_len;
262         mbuf->port = rxq->port_id;
263         mbuf->ol_flags = PKT_RX_LRO;
264
265         bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
266
267         if (likely(tpa_info->hash_valid)) {
268                 mbuf->hash.rss = tpa_info->rss_hash;
269                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
270         } else if (tpa_info->cfa_code_valid) {
271                 mbuf->hash.fdir.id = tpa_info->cfa_code;
272                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
273         }
274
275         if (tpa_info->vlan_valid) {
276                 mbuf->vlan_tci = tpa_info->vlan;
277                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
278         }
279
280         if (likely(tpa_info->l4_csum_valid))
281                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
282
283         /* recycle next mbuf */
284         data_cons = RING_NEXT(data_cons);
285         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
286
287         rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct,
288                                      RING_NEXT(data_cons));
289 }
290
291 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
292                 uint8_t agg_bufs, uint32_t raw_cp_cons)
293 {
294         uint16_t last_cp_cons;
295         struct rx_pkt_cmpl *agg_cmpl;
296
297         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
298         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
299         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
300         cpr->valid = FLIP_VALID(raw_cp_cons,
301                                 cpr->cp_ring_struct->ring_mask,
302                                 cpr->valid);
303         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
304 }
305
306 /* TPA consume agg buffer out of order, allocate connected data only */
307 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
308 {
309         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
310         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
311         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
312
313         /* TODO batch allocation for better performance */
314         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
315                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
316                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
317                                     raw_next);
318                         break;
319                 }
320                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
321                 rxr->ag_raw_prod = raw_next;
322                 raw_next = RING_NEXT(raw_next);
323                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
324         }
325
326         return 0;
327 }
328
329 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
330                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
331                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
332 {
333         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
334         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
335         int i;
336         uint16_t cp_cons, ag_cons;
337         struct rx_pkt_cmpl *rxcmp;
338         struct rte_mbuf *last = mbuf;
339         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
340
341         for (i = 0; i < agg_buf; i++) {
342                 struct rte_mbuf **ag_buf;
343                 struct rte_mbuf *ag_mbuf;
344
345                 if (is_p5_tpa) {
346                         rxcmp = (void *)&tpa_info->agg_arr[i];
347                 } else {
348                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
349                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
350                         rxcmp = (struct rx_pkt_cmpl *)
351                                         &cpr->cp_desc_ring[cp_cons];
352                 }
353
354 #ifdef BNXT_DEBUG
355                 bnxt_dump_cmpl(cp_cons, rxcmp);
356 #endif
357
358                 ag_cons = rxcmp->opaque;
359                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
360                 ag_buf = &rxr->ag_buf_ring[ag_cons];
361                 ag_mbuf = *ag_buf;
362                 RTE_ASSERT(ag_mbuf != NULL);
363
364                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
365
366                 mbuf->nb_segs++;
367                 mbuf->pkt_len += ag_mbuf->data_len;
368
369                 last->next = ag_mbuf;
370                 last = ag_mbuf;
371
372                 *ag_buf = NULL;
373
374                 /*
375                  * As aggregation buffer consumed out of order in TPA module,
376                  * use bitmap to track freed slots to be allocated and notified
377                  * to NIC
378                  */
379                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
380         }
381         last->next = NULL;
382         bnxt_prod_ag_mbuf(rxq);
383         return 0;
384 }
385
386 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
387                            uint32_t *raw_cons, void *cmp)
388 {
389         struct rx_pkt_cmpl *rxcmp = cmp;
390         uint32_t tmp_raw_cons = *raw_cons;
391         uint8_t cmp_type, agg_bufs = 0;
392
393         cmp_type = CMP_TYPE(rxcmp);
394
395         if (cmp_type == CMPL_BASE_TYPE_RX_L2) {
396                 agg_bufs = BNXT_RX_L2_AGG_BUFS(rxcmp);
397         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
398                 struct rx_tpa_end_cmpl *tpa_end = cmp;
399
400                 if (BNXT_CHIP_P5(bp))
401                         return 0;
402
403                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
404         }
405
406         if (agg_bufs) {
407                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, tmp_raw_cons))
408                         return -EBUSY;
409         }
410         *raw_cons = tmp_raw_cons;
411         return 0;
412 }
413
414 static inline struct rte_mbuf *bnxt_tpa_end(
415                 struct bnxt_rx_queue *rxq,
416                 uint32_t *raw_cp_cons,
417                 struct rx_tpa_end_cmpl *tpa_end,
418                 struct rx_tpa_end_cmpl_hi *tpa_end1)
419 {
420         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
421         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
422         uint16_t agg_id;
423         struct rte_mbuf *mbuf;
424         uint8_t agg_bufs;
425         uint8_t payload_offset;
426         struct bnxt_tpa_info *tpa_info;
427
428         if (unlikely(rxq->in_reset)) {
429                 PMD_DRV_LOG(ERR, "rxq->in_reset: raw_cp_cons:%d\n",
430                             *raw_cp_cons);
431                 bnxt_discard_rx(rxq->bp, cpr, raw_cp_cons, tpa_end);
432                 return NULL;
433         }
434
435         if (BNXT_CHIP_P5(rxq->bp)) {
436                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
437                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
438
439                 th_tpa_end = (void *)tpa_end;
440                 th_tpa_end1 = (void *)tpa_end1;
441                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
442                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
443                 payload_offset = th_tpa_end1->payload_offset;
444         } else {
445                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
446                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
447                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
448                         return NULL;
449                 payload_offset = tpa_end->payload_offset;
450         }
451
452         tpa_info = &rxr->tpa_info[agg_id];
453         mbuf = tpa_info->mbuf;
454         RTE_ASSERT(mbuf != NULL);
455
456         if (agg_bufs) {
457                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
458         }
459         mbuf->l4_len = payload_offset;
460
461         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
462         RTE_ASSERT(new_data != NULL);
463         if (!new_data) {
464                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
465                 return NULL;
466         }
467         tpa_info->mbuf = new_data;
468
469         return mbuf;
470 }
471
472 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
473
474 static void __rte_cold
475 bnxt_init_ptype_table(void)
476 {
477         uint32_t *pt = bnxt_ptype_table;
478         static bool initialized;
479         int ip6, tun, type;
480         uint32_t l3;
481         int i;
482
483         if (initialized)
484                 return;
485
486         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
487                 if (i & BNXT_PTYPE_TBL_VLAN_MSK)
488                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
489                 else
490                         pt[i] = RTE_PTYPE_L2_ETHER;
491
492                 ip6 = !!(i & BNXT_PTYPE_TBL_IP_VER_MSK);
493                 tun = !!(i & BNXT_PTYPE_TBL_TUN_MSK);
494                 type = (i & BNXT_PTYPE_TBL_TYPE_MSK) >> BNXT_PTYPE_TBL_TYPE_SFT;
495
496                 if (!tun && !ip6)
497                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
498                 else if (!tun && ip6)
499                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
500                 else if (tun && !ip6)
501                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
502                 else
503                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
504
505                 switch (type) {
506                 case BNXT_PTYPE_TBL_TYPE_ICMP:
507                         if (tun)
508                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
509                         else
510                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
511                         break;
512                 case BNXT_PTYPE_TBL_TYPE_TCP:
513                         if (tun)
514                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
515                         else
516                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
517                         break;
518                 case BNXT_PTYPE_TBL_TYPE_UDP:
519                         if (tun)
520                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
521                         else
522                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
523                         break;
524                 case BNXT_PTYPE_TBL_TYPE_IP:
525                         pt[i] |= l3;
526                         break;
527                 }
528         }
529         initialized = true;
530 }
531
532 static uint32_t
533 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
534 {
535         uint32_t flags_type, flags2;
536         uint8_t index;
537
538         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
539         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
540
541         /* Validate ptype table indexing at build time. */
542         bnxt_check_ptype_constants();
543
544         /*
545          * Index format:
546          *     bit 0: Set if IP tunnel encapsulated packet.
547          *     bit 1: Set if IPv6 packet, clear if IPv4.
548          *     bit 2: Set if VLAN tag present.
549          *     bits 3-6: Four-bit hardware packet type field.
550          */
551         index = BNXT_CMPL_ITYPE_TO_IDX(flags_type) |
552                 BNXT_CMPL_VLAN_TUN_TO_IDX(flags2) |
553                 BNXT_CMPL_IP_VER_TO_IDX(flags2);
554
555         return bnxt_ptype_table[index];
556 }
557
558 static void __rte_cold
559 bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
560 {
561         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
562         struct rte_eth_conf *dev_conf;
563         bool outer_cksum_enabled;
564         uint64_t offloads;
565         uint32_t *pt;
566         int i;
567
568         dev_conf = &rxq->bp->eth_dev->data->dev_conf;
569         offloads = dev_conf->rxmode.offloads;
570
571         outer_cksum_enabled = !!(offloads & (DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
572                                              DEV_RX_OFFLOAD_OUTER_UDP_CKSUM));
573
574         /* Initialize ol_flags table. */
575         pt = rxr->ol_flags_table;
576         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
577                 pt[i] = 0;
578
579                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
580                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
581
582                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
583                         /* Tunnel case. */
584                         if (outer_cksum_enabled) {
585                                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
586                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
587
588                                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
589                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
590
591                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
592                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
593                         } else {
594                                 if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
595                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
596
597                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
598                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
599                         }
600                 } else {
601                         /* Non-tunnel case. */
602                         if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
603                                 pt[i] |= PKT_RX_IP_CKSUM_GOOD;
604
605                         if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
606                                 pt[i] |= PKT_RX_L4_CKSUM_GOOD;
607                 }
608         }
609
610         /* Initialize checksum error table. */
611         pt = rxr->ol_flags_err_table;
612         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
613                 pt[i] = 0;
614
615                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
616                         /* Tunnel case. */
617                         if (outer_cksum_enabled) {
618                                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
619                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
620
621                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
622                                         pt[i] |= PKT_RX_OUTER_IP_CKSUM_BAD;
623
624                                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
625                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
626
627                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
628                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
629                         } else {
630                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
631                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
632
633                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
634                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
635                         }
636                 } else {
637                         /* Non-tunnel case. */
638                         if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
639                                 pt[i] |= PKT_RX_IP_CKSUM_BAD;
640
641                         if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
642                                 pt[i] |= PKT_RX_L4_CKSUM_BAD;
643                 }
644         }
645 }
646
647 static void
648 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
649                   struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
650 {
651         uint16_t flags_type, errors, flags;
652         uint64_t ol_flags;
653
654         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
655
656         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
657                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
658                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
659                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
660                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
661                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
662
663         flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
664         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
665                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
666                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
667                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
668                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
669         errors = (errors >> 4) & flags;
670
671         ol_flags = rxr->ol_flags_table[flags & ~errors];
672
673         if (unlikely(errors)) {
674                 errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
675                 ol_flags |= rxr->ol_flags_err_table[errors];
676         }
677
678         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
679                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
680                 ol_flags |= PKT_RX_RSS_HASH;
681         }
682
683 #ifdef RTE_LIBRTE_IEEE1588
684         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
685                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
686                 ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
687 #endif
688
689         mbuf->ol_flags = ol_flags;
690 }
691
692 #ifdef RTE_LIBRTE_IEEE1588
693 static void
694 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
695 {
696         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
697         uint64_t last_hwrm_time;
698         uint64_t pkt_time = 0;
699
700         if (!BNXT_CHIP_P5(bp) || !ptp)
701                 return;
702
703         /* On Thor, Rx timestamps are provided directly in the
704          * Rx completion records to the driver. Only 32 bits of
705          * the timestamp is present in the completion. Driver needs
706          * to read the current 48 bit free running timer using the
707          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
708          * from the HWRM response with the lower 32 bits in the
709          * Rx completion to produce the 48 bit timestamp for the Rx packet
710          */
711         last_hwrm_time = ptp->current_time;
712         pkt_time = (last_hwrm_time & BNXT_PTP_CURRENT_TIME_MASK) | rx_ts_cmpl;
713         if (rx_ts_cmpl < (uint32_t)last_hwrm_time) {
714                 /* timer has rolled over */
715                 pkt_time += (1ULL << 32);
716         }
717         ptp->rx_timestamp = pkt_time;
718 }
719 #endif
720
721 static uint32_t
722 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
723                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
724 {
725         uint32_t cfa_code;
726         uint32_t meta_fmt;
727         uint32_t meta;
728         bool gfid = false;
729         uint32_t mark_id;
730         uint32_t flags2;
731         uint32_t gfid_support = 0;
732         int rc;
733
734         if (BNXT_GFID_ENABLED(bp))
735                 gfid_support = 1;
736
737         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
738         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
739         meta = rte_le_to_cpu_32(rxcmp1->metadata);
740
741         /*
742          * The flags field holds extra bits of info from [6:4]
743          * which indicate if the flow is in TCAM or EM or EEM
744          */
745         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
746                 BNXT_CFA_META_FMT_SHFT;
747
748         switch (meta_fmt) {
749         case 0:
750                 if (gfid_support) {
751                         /* Not an LFID or GFID, a flush cmd. */
752                         goto skip_mark;
753                 } else {
754                         /* LFID mode, no vlan scenario */
755                         gfid = false;
756                 }
757                 break;
758         case 4:
759         case 5:
760                 /*
761                  * EM/TCAM case
762                  * Assume that EM doesn't support Mark due to GFID
763                  * collisions with EEM.  Simply return without setting the mark
764                  * in the mbuf.
765                  */
766                 if (BNXT_CFA_META_EM_TEST(meta)) {
767                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
768                         gfid = true;
769                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
770                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
771                 } else {
772                         /*
773                          * It is a TCAM entry, so it is an LFID.
774                          * The TCAM IDX and Mode can also be determined
775                          * by decoding the meta_data. We are not
776                          * using these for now.
777                          */
778                 }
779                 break;
780         case 6:
781         case 7:
782                 /* EEM Case, only using gfid in EEM for now. */
783                 gfid = true;
784
785                 /*
786                  * For EEM flows, The first part of cfa_code is 16 bits.
787                  * The second part is embedded in the
788                  * metadata field from bit 19 onwards. The driver needs to
789                  * ignore the first 19 bits of metadata and use the next 12
790                  * bits as higher 12 bits of cfa_code.
791                  */
792                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
793                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
794                 break;
795         default:
796                 /* For other values, the cfa_code is assumed to be an LFID. */
797                 break;
798         }
799
800         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
801                                   cfa_code, vfr_flag, &mark_id);
802         if (!rc) {
803                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
804                 if (vfr_flag && *vfr_flag)
805                         return mark_id;
806                 /* Got the mark, write it to the mbuf and return */
807                 mbuf->hash.fdir.hi = mark_id;
808                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
809                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
810                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
811                 return mark_id;
812         }
813
814 skip_mark:
815         mbuf->hash.fdir.hi = 0;
816         mbuf->hash.fdir.id = 0;
817
818         return 0;
819 }
820
821 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
822                            struct rx_pkt_cmpl_hi *rxcmp1,
823                            struct rte_mbuf *mbuf)
824 {
825         uint32_t cfa_code = 0;
826         uint8_t meta_fmt = 0;
827         uint16_t flags2 = 0;
828         uint32_t meta =  0;
829
830         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
831         if (!cfa_code)
832                 return;
833
834         if (cfa_code && !bp->mark_table[cfa_code].valid)
835                 return;
836
837         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
838         meta = rte_le_to_cpu_32(rxcmp1->metadata);
839         if (meta) {
840                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
841
842                 /* The flags field holds extra bits of info from [6:4]
843                  * which indicate if the flow is in TCAM or EM or EEM
844                  */
845                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
846                            BNXT_CFA_META_FMT_SHFT;
847
848                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
849                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
850                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
851                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
852                  */
853                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
854         }
855
856         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
857         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
858 }
859
860 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
861                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
862 {
863         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
864         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
865         struct rx_pkt_cmpl *rxcmp;
866         struct rx_pkt_cmpl_hi *rxcmp1;
867         uint32_t tmp_raw_cons = *raw_cons;
868         uint16_t cons, raw_prod, cp_cons =
869             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
870         struct rte_mbuf *mbuf;
871         int rc = 0;
872         uint8_t agg_buf = 0;
873         uint16_t cmp_type;
874         uint32_t vfr_flag = 0, mark_id = 0;
875         struct bnxt *bp = rxq->bp;
876
877         rxcmp = (struct rx_pkt_cmpl *)
878             &cpr->cp_desc_ring[cp_cons];
879
880         cmp_type = CMP_TYPE(rxcmp);
881
882         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
883                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
884                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
885                 struct bnxt_tpa_info *tpa_info;
886
887                 tpa_info = &rxr->tpa_info[agg_id];
888                 RTE_ASSERT(tpa_info->agg_count < 16);
889                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
890                 rc = -EINVAL; /* Continue w/o new mbuf */
891                 goto next_rx;
892         }
893
894         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
895         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
896         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
897
898         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
899                 return -EBUSY;
900
901         cpr->valid = FLIP_VALID(cp_cons,
902                                 cpr->cp_ring_struct->ring_mask,
903                                 cpr->valid);
904
905         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
906             cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2) {
907                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
908                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
909                 rc = -EINVAL; /* Continue w/o new mbuf */
910                 goto next_rx;
911         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
912                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
913                                    (struct rx_tpa_end_cmpl *)rxcmp,
914                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
915                 if (unlikely(!mbuf))
916                         return -EBUSY;
917                 *rx_pkt = mbuf;
918                 goto next_rx;
919         } else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
920                    (cmp_type != CMPL_BASE_TYPE_RX_L2_V2)) {
921                 rc = -EINVAL;
922                 goto next_rx;
923         }
924
925         agg_buf = BNXT_RX_L2_AGG_BUFS(rxcmp);
926         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
927                 return -EBUSY;
928
929         raw_prod = rxr->rx_raw_prod;
930
931         cons = rxcmp->opaque;
932         if (unlikely(cons != rxr->rx_next_cons)) {
933                 bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
934                 PMD_DRV_LOG(ERR, "RX cons %x != expected cons %x\n",
935                             cons, rxr->rx_next_cons);
936                 bnxt_sched_ring_reset(rxq);
937                 rc = -EBUSY;
938                 goto next_rx;
939         }
940         mbuf = bnxt_consume_rx_buf(rxr, cons);
941         if (mbuf == NULL)
942                 return -EBUSY;
943
944         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
945         mbuf->nb_segs = 1;
946         mbuf->next = NULL;
947         mbuf->pkt_len = rxcmp->len;
948         mbuf->data_len = mbuf->pkt_len;
949         mbuf->port = rxq->port_id;
950
951 #ifdef RTE_LIBRTE_IEEE1588
952         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
953                       RX_PKT_CMPL_FLAGS_MASK) ==
954                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
955                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
956 #endif
957
958         if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
959                 bnxt_parse_csum_v2(mbuf, rxcmp1);
960                 bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
961                 bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
962                 /* TODO Add support for cfa_code parsing */
963                 goto reuse_rx_mbuf;
964         }
965
966         bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
967
968         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
969
970         if (BNXT_TRUFLOW_EN(bp))
971                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
972                                                     &vfr_flag);
973         else
974                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
975
976 reuse_rx_mbuf:
977         if (agg_buf)
978                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
979
980 #ifdef BNXT_DEBUG
981         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
982                 /* Re-install the mbuf back to the rx ring */
983                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
984
985                 rc = -EIO;
986                 goto next_rx;
987         }
988 #endif
989         /*
990          * TODO: Redesign this....
991          * If the allocation fails, the packet does not get received.
992          * Simply returning this will result in slowly falling behind
993          * on the producer ring buffers.
994          * Instead, "filling up" the producer just before ringing the
995          * doorbell could be a better solution since it will let the
996          * producer ring starve until memory is available again pushing
997          * the drops into hardware and getting them out of the driver
998          * allowing recovery to a full producer ring.
999          *
1000          * This could also help with cache usage by preventing per-packet
1001          * calls in favour of a tight loop with the same function being called
1002          * in it.
1003          */
1004         raw_prod = RING_NEXT(raw_prod);
1005         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
1006                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
1007                             raw_prod);
1008                 rc = -ENOMEM;
1009                 goto rx;
1010         }
1011         rxr->rx_raw_prod = raw_prod;
1012         rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct, RING_NEXT(cons));
1013
1014         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
1015             vfr_flag) {
1016                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
1017                 /* Now return an error so that nb_rx_pkts is not
1018                  * incremented.
1019                  * This packet was meant to be given to the representor.
1020                  * So no need to account the packet and give it to
1021                  * parent Rx burst function.
1022                  */
1023                 rc = -ENODEV;
1024                 goto next_rx;
1025         }
1026         /*
1027          * All MBUFs are allocated with the same size under DPDK,
1028          * no optimization for rx_copy_thresh
1029          */
1030 rx:
1031         *rx_pkt = mbuf;
1032
1033 next_rx:
1034
1035         *raw_cons = tmp_raw_cons;
1036
1037         return rc;
1038 }
1039
1040 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1041                                uint16_t nb_pkts)
1042 {
1043         struct bnxt_rx_queue *rxq = rx_queue;
1044         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
1045         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
1046         uint16_t rx_raw_prod = rxr->rx_raw_prod;
1047         uint16_t ag_raw_prod = rxr->ag_raw_prod;
1048         uint32_t raw_cons = cpr->cp_raw_cons;
1049         bool alloc_failed = false;
1050         uint32_t cons;
1051         int nb_rx_pkts = 0;
1052         int nb_rep_rx_pkts = 0;
1053         struct rx_pkt_cmpl *rxcmp;
1054         int rc = 0;
1055         bool evt = false;
1056
1057         if (unlikely(is_bnxt_in_error(rxq->bp)))
1058                 return 0;
1059
1060         /* If Rx Q was stopped return */
1061         if (unlikely(!rxq->rx_started))
1062                 return 0;
1063
1064 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1065         /*
1066          * Replenish buffers if needed when a transition has been made from
1067          * vector- to non-vector- receive processing.
1068          */
1069         while (unlikely(rxq->rxrearm_nb)) {
1070                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
1071                         rxr->rx_raw_prod = rxq->rxrearm_start;
1072                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1073                         rxq->rxrearm_start++;
1074                         rxq->rxrearm_nb--;
1075                 } else {
1076                         /* Retry allocation on next call. */
1077                         break;
1078                 }
1079         }
1080 #endif
1081
1082         /* Handle RX burst request */
1083         while (1) {
1084                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1085                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1086
1087                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
1088                         break;
1089                 cpr->valid = FLIP_VALID(cons,
1090                                         cpr->cp_ring_struct->ring_mask,
1091                                         cpr->valid);
1092
1093                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE) {
1094                         PMD_DRV_LOG(ERR, "Rx flush done\n");
1095                 } else if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
1096                      (CMP_TYPE(rxcmp) <= RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG)) {
1097                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
1098                         if (!rc)
1099                                 nb_rx_pkts++;
1100                         else if (rc == -EBUSY)  /* partial completion */
1101                                 break;
1102                         else if (rc == -ENODEV) /* completion for representor */
1103                                 nb_rep_rx_pkts++;
1104                         else if (rc == -ENOMEM) {
1105                                 nb_rx_pkts++;
1106                                 alloc_failed = true;
1107                         }
1108                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
1109                         evt =
1110                         bnxt_event_hwrm_resp_handler(rxq->bp,
1111                                                      (struct cmpl_base *)rxcmp);
1112                         /* If the async event is Fatal error, return */
1113                         if (unlikely(is_bnxt_in_error(rxq->bp)))
1114                                 goto done;
1115                 }
1116
1117                 raw_cons = NEXT_RAW_CMP(raw_cons);
1118                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
1119                         break;
1120         }
1121
1122         cpr->cp_raw_cons = raw_cons;
1123         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
1124                 /*
1125                  * For PMD, there is no need to keep on pushing to REARM
1126                  * the doorbell if there are no new completions
1127                  */
1128                 goto done;
1129         }
1130
1131         /* Ring the completion queue doorbell. */
1132         bnxt_db_cq(cpr);
1133
1134         /* Ring the receive descriptor doorbell. */
1135         if (rx_raw_prod != rxr->rx_raw_prod)
1136                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1137
1138         /* Ring the AGG ring DB */
1139         if (ag_raw_prod != rxr->ag_raw_prod)
1140                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
1141
1142         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
1143         if (alloc_failed) {
1144                 int cnt;
1145
1146                 rx_raw_prod = RING_NEXT(rx_raw_prod);
1147                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
1148                         struct rte_mbuf **rx_buf;
1149                         uint16_t ndx;
1150
1151                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
1152                         rx_buf = &rxr->rx_buf_ring[ndx];
1153
1154                         /* Buffer already allocated for this index. */
1155                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
1156                                 continue;
1157
1158                         /* This slot is empty. Alloc buffer for Rx */
1159                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
1160                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
1161                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1162                         } else {
1163                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
1164                                 break;
1165                         }
1166                 }
1167         }
1168
1169 done:
1170         return nb_rx_pkts;
1171 }
1172
1173 /*
1174  * Dummy DPDK callback for RX.
1175  *
1176  * This function is used to temporarily replace the real callback during
1177  * unsafe control operations on the queue, or in case of error.
1178  */
1179 uint16_t
1180 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
1181                      struct rte_mbuf **rx_pkts __rte_unused,
1182                      uint16_t nb_pkts __rte_unused)
1183 {
1184         return 0;
1185 }
1186
1187 void bnxt_free_rx_rings(struct bnxt *bp)
1188 {
1189         int i;
1190         struct bnxt_rx_queue *rxq;
1191
1192         if (!bp->rx_queues)
1193                 return;
1194
1195         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
1196                 rxq = bp->rx_queues[i];
1197                 if (!rxq)
1198                         continue;
1199
1200                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
1201                 rte_free(rxq->rx_ring->rx_ring_struct);
1202
1203                 /* Free the Aggregator ring */
1204                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
1205                 rte_free(rxq->rx_ring->ag_ring_struct);
1206                 rxq->rx_ring->ag_ring_struct = NULL;
1207
1208                 rte_free(rxq->rx_ring);
1209
1210                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1211                 rte_free(rxq->cp_ring->cp_ring_struct);
1212                 rte_free(rxq->cp_ring);
1213
1214                 rte_free(rxq);
1215                 bp->rx_queues[i] = NULL;
1216         }
1217 }
1218
1219 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1220 {
1221         struct bnxt_cp_ring_info *cpr;
1222         struct bnxt_rx_ring_info *rxr;
1223         struct bnxt_ring *ring;
1224
1225         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1226
1227         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1228                                  sizeof(struct bnxt_rx_ring_info),
1229                                  RTE_CACHE_LINE_SIZE, socket_id);
1230         if (rxr == NULL)
1231                 return -ENOMEM;
1232         rxq->rx_ring = rxr;
1233
1234         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1235                                    sizeof(struct bnxt_ring),
1236                                    RTE_CACHE_LINE_SIZE, socket_id);
1237         if (ring == NULL)
1238                 return -ENOMEM;
1239         rxr->rx_ring_struct = ring;
1240         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1241         ring->ring_mask = ring->ring_size - 1;
1242         ring->bd = (void *)rxr->rx_desc_ring;
1243         ring->bd_dma = rxr->rx_desc_mapping;
1244
1245         /* Allocate extra rx ring entries for vector rx. */
1246         ring->vmem_size = sizeof(struct rte_mbuf *) *
1247                           (ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES);
1248
1249         ring->vmem = (void **)&rxr->rx_buf_ring;
1250         ring->fw_ring_id = INVALID_HW_RING_ID;
1251
1252         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1253                                  sizeof(struct bnxt_cp_ring_info),
1254                                  RTE_CACHE_LINE_SIZE, socket_id);
1255         if (cpr == NULL)
1256                 return -ENOMEM;
1257         rxq->cp_ring = cpr;
1258
1259         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1260                                    sizeof(struct bnxt_ring),
1261                                    RTE_CACHE_LINE_SIZE, socket_id);
1262         if (ring == NULL)
1263                 return -ENOMEM;
1264         cpr->cp_ring_struct = ring;
1265
1266         /* Allocate two completion slots per entry in desc ring. */
1267         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1268         ring->ring_size *= AGG_RING_SIZE_FACTOR;
1269
1270         ring->ring_size = rte_align32pow2(ring->ring_size);
1271         ring->ring_mask = ring->ring_size - 1;
1272         ring->bd = (void *)cpr->cp_desc_ring;
1273         ring->bd_dma = cpr->cp_desc_mapping;
1274         ring->vmem_size = 0;
1275         ring->vmem = NULL;
1276         ring->fw_ring_id = INVALID_HW_RING_ID;
1277
1278         /* Allocate Aggregator rings */
1279         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1280                                    sizeof(struct bnxt_ring),
1281                                    RTE_CACHE_LINE_SIZE, socket_id);
1282         if (ring == NULL)
1283                 return -ENOMEM;
1284         rxr->ag_ring_struct = ring;
1285         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1286                                           AGG_RING_SIZE_FACTOR);
1287         ring->ring_mask = ring->ring_size - 1;
1288         ring->bd = (void *)rxr->ag_desc_ring;
1289         ring->bd_dma = rxr->ag_desc_mapping;
1290         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1291         ring->vmem = (void **)&rxr->ag_buf_ring;
1292         ring->fw_ring_id = INVALID_HW_RING_ID;
1293
1294         return 0;
1295 }
1296
1297 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1298                             uint16_t len)
1299 {
1300         uint32_t j;
1301         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1302
1303         if (!rx_bd_ring)
1304                 return;
1305         for (j = 0; j < ring->ring_size; j++) {
1306                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1307                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1308                 rx_bd_ring[j].opaque = j;
1309         }
1310 }
1311
1312 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1313 {
1314         struct bnxt_rx_ring_info *rxr;
1315         struct bnxt_ring *ring;
1316         uint32_t raw_prod, type;
1317         unsigned int i;
1318         uint16_t size;
1319
1320         /* Initialize packet type table. */
1321         bnxt_init_ptype_table();
1322
1323         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1324         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1325
1326         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1327
1328         rxr = rxq->rx_ring;
1329         ring = rxr->rx_ring_struct;
1330         bnxt_init_rxbds(ring, type, size);
1331
1332         /* Initialize offload flags parsing table. */
1333         bnxt_init_ol_flags_tables(rxq);
1334
1335         raw_prod = rxr->rx_raw_prod;
1336         for (i = 0; i < ring->ring_size; i++) {
1337                 if (unlikely(!rxr->rx_buf_ring[i])) {
1338                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1339                                 PMD_DRV_LOG(WARNING,
1340                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1341                                             rxq->queue_id, i, ring->ring_size);
1342                                 break;
1343                         }
1344                 }
1345                 rxr->rx_raw_prod = raw_prod;
1346                 raw_prod = RING_NEXT(raw_prod);
1347         }
1348
1349         /* Initialize dummy mbuf pointers for vector mode rx. */
1350         for (i = ring->ring_size;
1351              i < ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES; i++) {
1352                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1353         }
1354
1355         ring = rxr->ag_ring_struct;
1356         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1357         bnxt_init_rxbds(ring, type, size);
1358         raw_prod = rxr->ag_raw_prod;
1359
1360         for (i = 0; i < ring->ring_size; i++) {
1361                 if (unlikely(!rxr->ag_buf_ring[i])) {
1362                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1363                                 PMD_DRV_LOG(WARNING,
1364                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1365                                             rxq->queue_id, i, ring->ring_size);
1366                                 break;
1367                         }
1368                 }
1369                 rxr->ag_raw_prod = raw_prod;
1370                 raw_prod = RING_NEXT(raw_prod);
1371         }
1372         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1373
1374         if (rxr->tpa_info) {
1375                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1376
1377                 for (i = 0; i < max_aggs; i++) {
1378                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1379                                 rxr->tpa_info[i].mbuf =
1380                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1381                                 if (!rxr->tpa_info[i].mbuf) {
1382                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1383                                         return -ENOMEM;
1384                                 }
1385                         }
1386                 }
1387         }
1388         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1389
1390         return 0;
1391 }
1392
1393 /* Sweep the Rx completion queue till HWRM_DONE for ring flush is received.
1394  * The mbufs will not be freed in this call.
1395  * They will be freed during ring free as a part of mem cleanup.
1396  */
1397 int bnxt_flush_rx_cmp(struct bnxt_cp_ring_info *cpr)
1398 {
1399         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
1400         uint32_t ring_mask = cp_ring_struct->ring_mask;
1401         uint32_t raw_cons = cpr->cp_raw_cons;
1402         struct rx_pkt_cmpl *rxcmp;
1403         uint32_t nb_rx = 0;
1404         uint32_t cons;
1405
1406         do {
1407                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1408                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1409
1410                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE)
1411                         return 1;
1412
1413                 raw_cons = NEXT_RAW_CMP(raw_cons);
1414                 nb_rx++;
1415         } while (nb_rx < ring_mask);
1416
1417         cpr->cp_raw_cons = raw_cons;
1418
1419         /* Ring the completion queue doorbell. */
1420         bnxt_db_cq(cpr);
1421
1422         return 0;
1423 }