a882dd20be74e2f109620f449d772c25de0be16a
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26
27 /*
28  * RX Ring handling
29  */
30
31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33         struct rte_mbuf *data;
34
35         data = rte_mbuf_raw_alloc(mb);
36
37         return data;
38 }
39
40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41                                      struct bnxt_rx_ring_info *rxr,
42                                      uint16_t prod)
43 {
44         struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
45         struct rte_mbuf **rx_buf = &rxr->rx_buf_ring[prod];
46         struct rte_mbuf *mbuf;
47
48         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
49         if (!mbuf) {
50                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
51                 return -ENOMEM;
52         }
53
54         *rx_buf = mbuf;
55         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
56
57         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
58
59         return 0;
60 }
61
62 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
63                                      struct bnxt_rx_ring_info *rxr,
64                                      uint16_t prod)
65 {
66         struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
67         struct rte_mbuf **rx_buf = &rxr->ag_buf_ring[prod];
68         struct rte_mbuf *mbuf;
69
70         if (rxbd == NULL) {
71                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
72                 return -EINVAL;
73         }
74
75         if (rx_buf == NULL) {
76                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
77                 return -EINVAL;
78         }
79
80         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
81         if (!mbuf) {
82                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
83                 return -ENOMEM;
84         }
85
86         *rx_buf = mbuf;
87         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
88
89         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
90
91         return 0;
92 }
93
94 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
95                                struct rte_mbuf *mbuf)
96 {
97         uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
98         struct rte_mbuf **prod_rx_buf;
99         struct rx_prod_pkt_bd *prod_bd;
100
101         prod_rx_buf = &rxr->rx_buf_ring[prod];
102
103         RTE_ASSERT(*prod_rx_buf == NULL);
104         RTE_ASSERT(mbuf != NULL);
105
106         *prod_rx_buf = mbuf;
107
108         prod_bd = &rxr->rx_desc_ring[prod];
109
110         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
111
112         rxr->rx_prod = prod;
113 }
114
115 static inline
116 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
117                                      uint16_t cons)
118 {
119         struct rte_mbuf **cons_rx_buf;
120         struct rte_mbuf *mbuf;
121
122         cons_rx_buf = &rxr->rx_buf_ring[cons];
123         RTE_ASSERT(*cons_rx_buf != NULL);
124         mbuf = *cons_rx_buf;
125         *cons_rx_buf = NULL;
126
127         return mbuf;
128 }
129
130 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
131                            struct rx_tpa_start_cmpl *tpa_start,
132                            struct rx_tpa_start_cmpl_hi *tpa_start1)
133 {
134         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
135         uint16_t agg_id;
136         uint16_t data_cons;
137         struct bnxt_tpa_info *tpa_info;
138         struct rte_mbuf *mbuf;
139
140         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
141
142         data_cons = tpa_start->opaque;
143         tpa_info = &rxr->tpa_info[agg_id];
144
145         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
146
147         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
148
149         tpa_info->agg_count = 0;
150         tpa_info->mbuf = mbuf;
151         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
152
153         mbuf->nb_segs = 1;
154         mbuf->next = NULL;
155         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
156         mbuf->data_len = mbuf->pkt_len;
157         mbuf->port = rxq->port_id;
158         mbuf->ol_flags = PKT_RX_LRO;
159         if (likely(tpa_start->flags_type &
160                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
161                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
162                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
163         } else {
164                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
165                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
166         }
167         if (tpa_start1->flags2 &
168             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
169                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
170                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
171         }
172         if (likely(tpa_start1->flags2 &
173                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
174                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
175
176         /* recycle next mbuf */
177         data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
178         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
179 }
180
181 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
182                 uint8_t agg_bufs, uint32_t raw_cp_cons)
183 {
184         uint16_t last_cp_cons;
185         struct rx_pkt_cmpl *agg_cmpl;
186
187         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
188         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
189         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
190         cpr->valid = FLIP_VALID(raw_cp_cons,
191                                 cpr->cp_ring_struct->ring_mask,
192                                 cpr->valid);
193         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
194 }
195
196 /* TPA consume agg buffer out of order, allocate connected data only */
197 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
198 {
199         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
200         uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
201
202         /* TODO batch allocation for better performance */
203         while (rte_bitmap_get(rxr->ag_bitmap, next)) {
204                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
205                         PMD_DRV_LOG(ERR,
206                                 "agg mbuf alloc failed: prod=0x%x\n", next);
207                         break;
208                 }
209                 rte_bitmap_clear(rxr->ag_bitmap, next);
210                 rxr->ag_prod = next;
211                 next = RING_NEXT(rxr->ag_ring_struct, next);
212         }
213
214         return 0;
215 }
216
217 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
218                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
219                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
220 {
221         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
222         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
223         int i;
224         uint16_t cp_cons, ag_cons;
225         struct rx_pkt_cmpl *rxcmp;
226         struct rte_mbuf *last = mbuf;
227         bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);
228
229         for (i = 0; i < agg_buf; i++) {
230                 struct rte_mbuf **ag_buf;
231                 struct rte_mbuf *ag_mbuf;
232
233                 if (is_thor_tpa) {
234                         rxcmp = (void *)&tpa_info->agg_arr[i];
235                 } else {
236                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
237                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
238                         rxcmp = (struct rx_pkt_cmpl *)
239                                         &cpr->cp_desc_ring[cp_cons];
240                 }
241
242 #ifdef BNXT_DEBUG
243                 bnxt_dump_cmpl(cp_cons, rxcmp);
244 #endif
245
246                 ag_cons = rxcmp->opaque;
247                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
248                 ag_buf = &rxr->ag_buf_ring[ag_cons];
249                 ag_mbuf = *ag_buf;
250                 RTE_ASSERT(ag_mbuf != NULL);
251
252                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
253
254                 mbuf->nb_segs++;
255                 mbuf->pkt_len += ag_mbuf->data_len;
256
257                 last->next = ag_mbuf;
258                 last = ag_mbuf;
259
260                 *ag_buf = NULL;
261
262                 /*
263                  * As aggregation buffer consumed out of order in TPA module,
264                  * use bitmap to track freed slots to be allocated and notified
265                  * to NIC
266                  */
267                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
268         }
269         bnxt_prod_ag_mbuf(rxq);
270         return 0;
271 }
272
273 static inline struct rte_mbuf *bnxt_tpa_end(
274                 struct bnxt_rx_queue *rxq,
275                 uint32_t *raw_cp_cons,
276                 struct rx_tpa_end_cmpl *tpa_end,
277                 struct rx_tpa_end_cmpl_hi *tpa_end1)
278 {
279         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
280         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
281         uint16_t agg_id;
282         struct rte_mbuf *mbuf;
283         uint8_t agg_bufs;
284         uint8_t payload_offset;
285         struct bnxt_tpa_info *tpa_info;
286
287         if (BNXT_CHIP_THOR(rxq->bp)) {
288                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
289                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
290
291                 th_tpa_end = (void *)tpa_end;
292                 th_tpa_end1 = (void *)tpa_end1;
293                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
294                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
295                 payload_offset = th_tpa_end1->payload_offset;
296         } else {
297                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
298                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
299                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
300                         return NULL;
301                 payload_offset = tpa_end->payload_offset;
302         }
303
304         tpa_info = &rxr->tpa_info[agg_id];
305         mbuf = tpa_info->mbuf;
306         RTE_ASSERT(mbuf != NULL);
307
308         rte_prefetch0(mbuf);
309         if (agg_bufs) {
310                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
311         }
312         mbuf->l4_len = payload_offset;
313
314         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
315         RTE_ASSERT(new_data != NULL);
316         if (!new_data) {
317                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
318                 return NULL;
319         }
320         tpa_info->mbuf = new_data;
321
322         return mbuf;
323 }
324
325 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
326
327 static void __rte_cold
328 bnxt_init_ptype_table(void)
329 {
330         uint32_t *pt = bnxt_ptype_table;
331         static bool initialized;
332         int ip6, tun, type;
333         uint32_t l3;
334         int i;
335
336         if (initialized)
337                 return;
338
339         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
340                 if (i & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN >> 2))
341                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
342                 else
343                         pt[i] = RTE_PTYPE_L2_ETHER;
344
345                 ip6 = i & (RX_PKT_CMPL_FLAGS2_IP_TYPE >> 7);
346                 tun = i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC >> 2);
347                 type = (i & 0x38) << 9;
348
349                 if (!tun && !ip6)
350                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
351                 else if (!tun && ip6)
352                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
353                 else if (tun && !ip6)
354                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
355                 else
356                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
357
358                 switch (type) {
359                 case RX_PKT_CMPL_FLAGS_ITYPE_ICMP:
360                         if (tun)
361                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
362                         else
363                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
364                         break;
365                 case RX_PKT_CMPL_FLAGS_ITYPE_TCP:
366                         if (tun)
367                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
368                         else
369                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
370                         break;
371                 case RX_PKT_CMPL_FLAGS_ITYPE_UDP:
372                         if (tun)
373                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
374                         else
375                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
376                         break;
377                 case RX_PKT_CMPL_FLAGS_ITYPE_IP:
378                         pt[i] |= l3;
379                         break;
380                 }
381         }
382         initialized = true;
383 }
384
385 static uint32_t
386 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
387 {
388         uint32_t flags_type, flags2;
389         uint8_t index;
390
391         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
392         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
393
394         /*
395          * Index format:
396          *     bit 0: RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC
397          *     bit 1: RX_CMPL_FLAGS2_IP_TYPE
398          *     bit 2: RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN
399          *     bits 3-6: RX_PKT_CMPL_FLAGS_ITYPE
400          */
401         index = ((flags_type & RX_PKT_CMPL_FLAGS_ITYPE_MASK) >> 9) |
402                 ((flags2 & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
403                            RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)) >> 2) |
404                 ((flags2 & RX_PKT_CMPL_FLAGS2_IP_TYPE) >> 7);
405
406         return bnxt_ptype_table[index];
407 }
408
409 #ifdef RTE_LIBRTE_IEEE1588
410 static void
411 bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
412 {
413         uint64_t systime_cycles = 0;
414
415         if (!BNXT_CHIP_THOR(bp))
416                 return;
417
418         /* On Thor, Rx timestamps are provided directly in the
419          * Rx completion records to the driver. Only 32 bits of
420          * the timestamp is present in the completion. Driver needs
421          * to read the current 48 bit free running timer using the
422          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
423          * from the HWRM response with the lower 32 bits in the
424          * Rx completion to produce the 48 bit timestamp for the Rx packet
425          */
426         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
427                                 &systime_cycles);
428         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
429         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
430 }
431 #endif
432
433 static uint32_t
434 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
435                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
436 {
437         uint32_t cfa_code;
438         uint32_t meta_fmt;
439         uint32_t meta;
440         bool gfid = false;
441         uint32_t mark_id;
442         uint32_t flags2;
443         uint32_t gfid_support = 0;
444         int rc;
445
446         if (BNXT_GFID_ENABLED(bp))
447                 gfid_support = 1;
448
449         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
450         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
451         meta = rte_le_to_cpu_32(rxcmp1->metadata);
452
453         /*
454          * The flags field holds extra bits of info from [6:4]
455          * which indicate if the flow is in TCAM or EM or EEM
456          */
457         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
458                 BNXT_CFA_META_FMT_SHFT;
459
460         switch (meta_fmt) {
461         case 0:
462                 if (gfid_support) {
463                         /* Not an LFID or GFID, a flush cmd. */
464                         goto skip_mark;
465                 } else {
466                         /* LFID mode, no vlan scenario */
467                         gfid = false;
468                 }
469                 break;
470         case 4:
471         case 5:
472                 /*
473                  * EM/TCAM case
474                  * Assume that EM doesn't support Mark due to GFID
475                  * collisions with EEM.  Simply return without setting the mark
476                  * in the mbuf.
477                  */
478                 if (BNXT_CFA_META_EM_TEST(meta)) {
479                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
480                         gfid = true;
481                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
482                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
483                 } else {
484                         /*
485                          * It is a TCAM entry, so it is an LFID.
486                          * The TCAM IDX and Mode can also be determined
487                          * by decoding the meta_data. We are not
488                          * using these for now.
489                          */
490                 }
491                 break;
492         case 6:
493         case 7:
494                 /* EEM Case, only using gfid in EEM for now. */
495                 gfid = true;
496
497                 /*
498                  * For EEM flows, The first part of cfa_code is 16 bits.
499                  * The second part is embedded in the
500                  * metadata field from bit 19 onwards. The driver needs to
501                  * ignore the first 19 bits of metadata and use the next 12
502                  * bits as higher 12 bits of cfa_code.
503                  */
504                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
505                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
506                 break;
507         default:
508                 /* For other values, the cfa_code is assumed to be an LFID. */
509                 break;
510         }
511
512         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
513                                   cfa_code, vfr_flag, &mark_id);
514         if (!rc) {
515                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
516                 if (vfr_flag && *vfr_flag)
517                         return mark_id;
518                 /* Got the mark, write it to the mbuf and return */
519                 mbuf->hash.fdir.hi = mark_id;
520                 mbuf->udata64 = (cfa_code & 0xffffffffull) << 32;
521                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
522                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
523                 return mark_id;
524         }
525
526 skip_mark:
527         mbuf->hash.fdir.hi = 0;
528         mbuf->hash.fdir.id = 0;
529
530         return 0;
531 }
532
533 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
534                            struct rx_pkt_cmpl_hi *rxcmp1,
535                            struct rte_mbuf *mbuf)
536 {
537         uint32_t cfa_code = 0;
538         uint8_t meta_fmt = 0;
539         uint16_t flags2 = 0;
540         uint32_t meta =  0;
541
542         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
543         if (!cfa_code)
544                 return;
545
546         if (cfa_code && !bp->mark_table[cfa_code].valid)
547                 return;
548
549         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
550         meta = rte_le_to_cpu_32(rxcmp1->metadata);
551         if (meta) {
552                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
553
554                 /* The flags field holds extra bits of info from [6:4]
555                  * which indicate if the flow is in TCAM or EM or EEM
556                  */
557                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
558                            BNXT_CFA_META_FMT_SHFT;
559
560                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
561                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
562                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
563                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
564                  */
565                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
566         }
567
568         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
569         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
570 }
571
572 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
573                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
574 {
575         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
576         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
577         struct rx_pkt_cmpl *rxcmp;
578         struct rx_pkt_cmpl_hi *rxcmp1;
579         uint32_t tmp_raw_cons = *raw_cons;
580         uint16_t cons, prod, cp_cons =
581             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
582         struct rte_mbuf *mbuf;
583         int rc = 0;
584         uint8_t agg_buf = 0;
585         uint16_t cmp_type;
586         uint32_t flags2_f = 0, vfr_flag = 0, mark_id = 0;
587         uint16_t flags_type;
588         struct bnxt *bp = rxq->bp;
589
590         rxcmp = (struct rx_pkt_cmpl *)
591             &cpr->cp_desc_ring[cp_cons];
592
593         cmp_type = CMP_TYPE(rxcmp);
594
595         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
596                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
597                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
598                 struct bnxt_tpa_info *tpa_info;
599
600                 tpa_info = &rxr->tpa_info[agg_id];
601                 RTE_ASSERT(tpa_info->agg_count < 16);
602                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
603                 rc = -EINVAL; /* Continue w/o new mbuf */
604                 goto next_rx;
605         }
606
607         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
608         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
609         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
610
611         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
612                 return -EBUSY;
613
614         cpr->valid = FLIP_VALID(cp_cons,
615                                 cpr->cp_ring_struct->ring_mask,
616                                 cpr->valid);
617
618         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
619                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
620                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
621                 rc = -EINVAL; /* Continue w/o new mbuf */
622                 goto next_rx;
623         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
624                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
625                                    (struct rx_tpa_end_cmpl *)rxcmp,
626                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
627                 if (unlikely(!mbuf))
628                         return -EBUSY;
629                 *rx_pkt = mbuf;
630                 goto next_rx;
631         } else if (cmp_type != 0x11) {
632                 rc = -EINVAL;
633                 goto next_rx;
634         }
635
636         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
637                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
638         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
639                 return -EBUSY;
640
641         prod = rxr->rx_prod;
642
643         cons = rxcmp->opaque;
644         mbuf = bnxt_consume_rx_buf(rxr, cons);
645         if (mbuf == NULL)
646                 return -EBUSY;
647
648         rte_prefetch0(mbuf);
649
650         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
651         mbuf->nb_segs = 1;
652         mbuf->next = NULL;
653         mbuf->pkt_len = rxcmp->len;
654         mbuf->data_len = mbuf->pkt_len;
655         mbuf->port = rxq->port_id;
656         mbuf->ol_flags = 0;
657
658         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
659         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
660                 mbuf->hash.rss = rxcmp->rss_hash;
661                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
662         }
663
664         if (BNXT_TRUFLOW_EN(bp))
665                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
666                                                     &vfr_flag);
667         else
668                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
669
670 #ifdef RTE_LIBRTE_IEEE1588
671         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
672                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
673                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
674                 bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
675         }
676 #endif
677         if (agg_buf)
678                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
679
680         if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
681                 mbuf->vlan_tci = rxcmp1->metadata &
682                         (RX_PKT_CMPL_METADATA_VID_MASK |
683                         RX_PKT_CMPL_METADATA_DE |
684                         RX_PKT_CMPL_METADATA_PRI_MASK);
685                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
686         }
687
688         flags2_f = flags2_0xf(rxcmp1);
689         /* IP Checksum */
690         if (likely(IS_IP_NONTUNNEL_PKT(flags2_f))) {
691                 if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
692                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
693                 else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
694                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
695                 else
696                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
697         } else if (IS_IP_TUNNEL_PKT(flags2_f)) {
698                 if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
699                              RX_CMP_IP_CS_ERROR(rxcmp1)))
700                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
701                 else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
702                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
703                 else
704                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
705         }
706
707         /* L4 Checksum */
708         if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
709                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
710                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
711                 else
712                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
713         } else if (IS_L4_TUNNEL_PKT(flags2_f)) {
714                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
715                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
716                 else
717                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
718                 if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
719                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
720                 } else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
721                                     (flags2_f))) {
722                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
723                 } else {
724                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
725                 }
726         } else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
727                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
728         }
729
730         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
731
732 #ifdef BNXT_DEBUG
733         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
734                 /* Re-install the mbuf back to the rx ring */
735                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
736
737                 rc = -EIO;
738                 goto next_rx;
739         }
740 #endif
741         /*
742          * TODO: Redesign this....
743          * If the allocation fails, the packet does not get received.
744          * Simply returning this will result in slowly falling behind
745          * on the producer ring buffers.
746          * Instead, "filling up" the producer just before ringing the
747          * doorbell could be a better solution since it will let the
748          * producer ring starve until memory is available again pushing
749          * the drops into hardware and getting them out of the driver
750          * allowing recovery to a full producer ring.
751          *
752          * This could also help with cache usage by preventing per-packet
753          * calls in favour of a tight loop with the same function being called
754          * in it.
755          */
756         prod = RING_NEXT(rxr->rx_ring_struct, prod);
757         if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
758                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
759                 rc = -ENOMEM;
760                 goto rx;
761         }
762         rxr->rx_prod = prod;
763         /*
764          * All MBUFs are allocated with the same size under DPDK,
765          * no optimization for rx_copy_thresh
766          */
767 rx:
768         *rx_pkt = mbuf;
769
770         if (BNXT_TRUFLOW_EN(bp) &&
771             (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
772             vfr_flag) {
773                 if (!bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf)) {
774                         /* Now return an error so that nb_rx_pkts is not
775                          * incremented.
776                          * This packet was meant to be given to the representor.
777                          * So no need to account the packet and give it to
778                          * parent Rx burst function.
779                          */
780                         rc = -ENODEV;
781                 }
782         }
783
784 next_rx:
785
786         *raw_cons = tmp_raw_cons;
787
788         return rc;
789 }
790
791 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
792                                uint16_t nb_pkts)
793 {
794         struct bnxt_rx_queue *rxq = rx_queue;
795         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
796         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
797         uint32_t raw_cons = cpr->cp_raw_cons;
798         uint32_t cons;
799         int nb_rx_pkts = 0;
800         int nb_rep_rx_pkts = 0;
801         struct rx_pkt_cmpl *rxcmp;
802         uint16_t prod = rxr->rx_prod;
803         uint16_t ag_prod = rxr->ag_prod;
804         int rc = 0;
805         bool evt = false;
806
807         if (unlikely(is_bnxt_in_error(rxq->bp)))
808                 return 0;
809
810         /* If Rx Q was stopped return */
811         if (unlikely(!rxq->rx_started ||
812                      !rte_spinlock_trylock(&rxq->lock)))
813                 return 0;
814
815 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
816         /*
817          * Replenish buffers if needed when a transition has been made from
818          * vector- to non-vector- receive processing.
819          */
820         while (unlikely(rxq->rxrearm_nb)) {
821                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
822                         rxr->rx_prod = rxq->rxrearm_start;
823                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
824                         rxq->rxrearm_start++;
825                         rxq->rxrearm_nb--;
826                 } else {
827                         /* Retry allocation on next call. */
828                         break;
829                 }
830         }
831 #endif
832
833         /* Handle RX burst request */
834         while (1) {
835                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
836                 rte_prefetch0(&cpr->cp_desc_ring[cons]);
837                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
838
839                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
840                         break;
841                 cpr->valid = FLIP_VALID(cons,
842                                         cpr->cp_ring_struct->ring_mask,
843                                         cpr->valid);
844
845                 /* TODO: Avoid magic numbers... */
846                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
847                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
848                         if (likely(!rc) || rc == -ENOMEM)
849                                 nb_rx_pkts++;
850                         if (rc == -EBUSY)       /* partial completion */
851                                 break;
852                         if (rc == -ENODEV)      /* completion for representor */
853                                 nb_rep_rx_pkts++;
854                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
855                         evt =
856                         bnxt_event_hwrm_resp_handler(rxq->bp,
857                                                      (struct cmpl_base *)rxcmp);
858                         /* If the async event is Fatal error, return */
859                         if (unlikely(is_bnxt_in_error(rxq->bp)))
860                                 goto done;
861                 }
862
863                 raw_cons = NEXT_RAW_CMP(raw_cons);
864                 if (nb_rx_pkts == nb_pkts || evt)
865                         break;
866                 /* Post some Rx buf early in case of larger burst processing */
867                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
868                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
869         }
870
871         cpr->cp_raw_cons = raw_cons;
872         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
873                 /*
874                  * For PMD, there is no need to keep on pushing to REARM
875                  * the doorbell if there are no new completions
876                  */
877                 goto done;
878         }
879
880         if (prod != rxr->rx_prod)
881                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
882
883         /* Ring the AGG ring DB */
884         if (ag_prod != rxr->ag_prod)
885                 bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
886
887         bnxt_db_cq(cpr);
888
889         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
890         if (rc == -ENOMEM) {
891                 int i = RING_NEXT(rxr->rx_ring_struct, prod);
892                 int cnt = nb_rx_pkts;
893
894                 for (; cnt;
895                         i = RING_NEXT(rxr->rx_ring_struct, i), cnt--) {
896                         struct rte_mbuf **rx_buf = &rxr->rx_buf_ring[i];
897
898                         /* Buffer already allocated for this index. */
899                         if (*rx_buf != NULL)
900                                 continue;
901
902                         /* This slot is empty. Alloc buffer for Rx */
903                         if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
904                                 rxr->rx_prod = i;
905                                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
906                         } else {
907                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
908                                 break;
909                         }
910                 }
911         }
912
913 done:
914         rte_spinlock_unlock(&rxq->lock);
915
916         return nb_rx_pkts;
917 }
918
919 /*
920  * Dummy DPDK callback for RX.
921  *
922  * This function is used to temporarily replace the real callback during
923  * unsafe control operations on the queue, or in case of error.
924  */
925 uint16_t
926 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
927                      struct rte_mbuf **rx_pkts __rte_unused,
928                      uint16_t nb_pkts __rte_unused)
929 {
930         return 0;
931 }
932
933 void bnxt_free_rx_rings(struct bnxt *bp)
934 {
935         int i;
936         struct bnxt_rx_queue *rxq;
937
938         if (!bp->rx_queues)
939                 return;
940
941         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
942                 rxq = bp->rx_queues[i];
943                 if (!rxq)
944                         continue;
945
946                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
947                 rte_free(rxq->rx_ring->rx_ring_struct);
948
949                 /* Free the Aggregator ring */
950                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
951                 rte_free(rxq->rx_ring->ag_ring_struct);
952                 rxq->rx_ring->ag_ring_struct = NULL;
953
954                 rte_free(rxq->rx_ring);
955
956                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
957                 rte_free(rxq->cp_ring->cp_ring_struct);
958                 rte_free(rxq->cp_ring);
959
960                 rte_free(rxq);
961                 bp->rx_queues[i] = NULL;
962         }
963 }
964
965 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
966 {
967         struct rte_eth_dev *eth_dev = rxq->bp->eth_dev;
968         struct rte_eth_rxmode *rxmode;
969         struct bnxt_cp_ring_info *cpr;
970         struct bnxt_rx_ring_info *rxr;
971         struct bnxt_ring *ring;
972         bool use_agg_ring;
973
974         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
975
976         rxr = rte_zmalloc_socket("bnxt_rx_ring",
977                                  sizeof(struct bnxt_rx_ring_info),
978                                  RTE_CACHE_LINE_SIZE, socket_id);
979         if (rxr == NULL)
980                 return -ENOMEM;
981         rxq->rx_ring = rxr;
982
983         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
984                                    sizeof(struct bnxt_ring),
985                                    RTE_CACHE_LINE_SIZE, socket_id);
986         if (ring == NULL)
987                 return -ENOMEM;
988         rxr->rx_ring_struct = ring;
989         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
990         ring->ring_mask = ring->ring_size - 1;
991         ring->bd = (void *)rxr->rx_desc_ring;
992         ring->bd_dma = rxr->rx_desc_mapping;
993         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
994         ring->vmem = (void **)&rxr->rx_buf_ring;
995         ring->fw_ring_id = INVALID_HW_RING_ID;
996
997         cpr = rte_zmalloc_socket("bnxt_rx_ring",
998                                  sizeof(struct bnxt_cp_ring_info),
999                                  RTE_CACHE_LINE_SIZE, socket_id);
1000         if (cpr == NULL)
1001                 return -ENOMEM;
1002         rxq->cp_ring = cpr;
1003
1004         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1005                                    sizeof(struct bnxt_ring),
1006                                    RTE_CACHE_LINE_SIZE, socket_id);
1007         if (ring == NULL)
1008                 return -ENOMEM;
1009         cpr->cp_ring_struct = ring;
1010
1011         rxmode = &eth_dev->data->dev_conf.rxmode;
1012         use_agg_ring = (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
1013                        (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) ||
1014                        (rxmode->max_rx_pkt_len >
1015                          (uint32_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1016                                     RTE_PKTMBUF_HEADROOM));
1017
1018         /* Allocate two completion slots per entry in desc ring. */
1019         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1020
1021         /* Allocate additional slots if aggregation ring is in use. */
1022         if (use_agg_ring)
1023                 ring->ring_size *= AGG_RING_SIZE_FACTOR;
1024
1025         ring->ring_size = rte_align32pow2(ring->ring_size);
1026         ring->ring_mask = ring->ring_size - 1;
1027         ring->bd = (void *)cpr->cp_desc_ring;
1028         ring->bd_dma = cpr->cp_desc_mapping;
1029         ring->vmem_size = 0;
1030         ring->vmem = NULL;
1031         ring->fw_ring_id = INVALID_HW_RING_ID;
1032
1033         /* Allocate Aggregator rings */
1034         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1035                                    sizeof(struct bnxt_ring),
1036                                    RTE_CACHE_LINE_SIZE, socket_id);
1037         if (ring == NULL)
1038                 return -ENOMEM;
1039         rxr->ag_ring_struct = ring;
1040         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1041                                           AGG_RING_SIZE_FACTOR);
1042         ring->ring_mask = ring->ring_size - 1;
1043         ring->bd = (void *)rxr->ag_desc_ring;
1044         ring->bd_dma = rxr->ag_desc_mapping;
1045         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1046         ring->vmem = (void **)&rxr->ag_buf_ring;
1047         ring->fw_ring_id = INVALID_HW_RING_ID;
1048
1049         return 0;
1050 }
1051
1052 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1053                             uint16_t len)
1054 {
1055         uint32_t j;
1056         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1057
1058         if (!rx_bd_ring)
1059                 return;
1060         for (j = 0; j < ring->ring_size; j++) {
1061                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1062                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1063                 rx_bd_ring[j].opaque = j;
1064         }
1065 }
1066
1067 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1068 {
1069         struct bnxt_rx_ring_info *rxr;
1070         struct bnxt_ring *ring;
1071         uint32_t prod, type;
1072         unsigned int i;
1073         uint16_t size;
1074
1075         /* Initialize packet type table. */
1076         bnxt_init_ptype_table();
1077
1078         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1079         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1080
1081         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
1082
1083         rxr = rxq->rx_ring;
1084         ring = rxr->rx_ring_struct;
1085         bnxt_init_rxbds(ring, type, size);
1086
1087         prod = rxr->rx_prod;
1088         for (i = 0; i < ring->ring_size; i++) {
1089                 if (unlikely(!rxr->rx_buf_ring[i])) {
1090                         if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
1091                                 PMD_DRV_LOG(WARNING,
1092                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1093                                             rxq->queue_id, i, ring->ring_size);
1094                                 break;
1095                         }
1096                 }
1097                 rxr->rx_prod = prod;
1098                 prod = RING_NEXT(rxr->rx_ring_struct, prod);
1099         }
1100
1101         ring = rxr->ag_ring_struct;
1102         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1103         bnxt_init_rxbds(ring, type, size);
1104         prod = rxr->ag_prod;
1105
1106         for (i = 0; i < ring->ring_size; i++) {
1107                 if (unlikely(!rxr->ag_buf_ring[i])) {
1108                         if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
1109                                 PMD_DRV_LOG(WARNING,
1110                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1111                                             rxq->queue_id, i, ring->ring_size);
1112                                 break;
1113                         }
1114                 }
1115                 rxr->ag_prod = prod;
1116                 prod = RING_NEXT(rxr->ag_ring_struct, prod);
1117         }
1118         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1119
1120         if (rxr->tpa_info) {
1121                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1122
1123                 for (i = 0; i < max_aggs; i++) {
1124                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1125                                 rxr->tpa_info[i].mbuf =
1126                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1127                                 if (!rxr->tpa_info[i].mbuf) {
1128                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1129                                         return -ENOMEM;
1130                                 }
1131                         }
1132                 }
1133         }
1134         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1135
1136         return 0;
1137 }