net/ena: remove redundant MTU verification
[dpdk.git] / drivers / net / bnxt / bnxt_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright(c) 2019-2021 Broadcom All rights reserved. */
3
4 #include <inttypes.h>
5 #include <stdbool.h>
6
7 #include <rte_bitmap.h>
8 #include <rte_byteorder.h>
9 #include <rte_malloc.h>
10 #include <rte_memory.h>
11 #include <rte_vect.h>
12
13 #include "bnxt.h"
14 #include "bnxt_cpr.h"
15 #include "bnxt_ring.h"
16
17 #include "bnxt_txq.h"
18 #include "bnxt_txr.h"
19 #include "bnxt_rxtx_vec_common.h"
20
21 /*
22  * RX Ring handling
23  */
24
25 #define GET_OL_FLAGS(rss_flags, ol_idx, errors, pi, ol_flags)                  \
26 {                                                                              \
27         uint32_t tmp, of;                                                      \
28                                                                                \
29         of = vgetq_lane_u32((rss_flags), (pi)) |                               \
30                    rxr->ol_flags_table[vgetq_lane_u32((ol_idx), (pi))];        \
31                                                                                \
32         tmp = vgetq_lane_u32((errors), (pi));                                  \
33         if (tmp)                                                               \
34                 of |= rxr->ol_flags_err_table[tmp];                            \
35         (ol_flags) = of;                                                       \
36 }
37
38 #define GET_DESC_FIELDS(rxcmp, rxcmp1, shuf_msk, ptype_idx, pkt_idx, ret)      \
39 {                                                                              \
40         uint32_t ptype;                                                        \
41         uint16_t vlan_tci;                                                     \
42         uint32x4_t r;                                                          \
43                                                                                \
44         /* Set mbuf pkt_len, data_len, and rss_hash fields. */                 \
45         r = vreinterpretq_u32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(rxcmp),       \
46                                               (shuf_msk)));                    \
47                                                                                \
48         /* Set packet type. */                                                 \
49         ptype = bnxt_ptype_table[vgetq_lane_u32((ptype_idx), (pkt_idx))];      \
50         r = vsetq_lane_u32(ptype, r, 0);                                       \
51                                                                                \
52         /* Set vlan_tci. */                                                    \
53         vlan_tci = vgetq_lane_u32((rxcmp1), 1);                                \
54         r = vreinterpretq_u32_u16(vsetq_lane_u16(vlan_tci,                     \
55                                 vreinterpretq_u16_u32(r), 5));                 \
56         (ret) = r;                                                             \
57 }
58
59 static void
60 descs_to_mbufs(uint32x4_t mm_rxcmp[4], uint32x4_t mm_rxcmp1[4],
61                uint64x2_t mb_init, struct rte_mbuf **mbuf,
62                struct bnxt_rx_ring_info *rxr)
63 {
64         const uint8x16_t shuf_msk = {
65                 0xFF, 0xFF, 0xFF, 0xFF,    /* pkt_type (zeroes) */
66                 2, 3, 0xFF, 0xFF,          /* pkt_len */
67                 2, 3,                      /* data_len */
68                 0xFF, 0xFF,                /* vlan_tci (zeroes) */
69                 12, 13, 14, 15             /* rss hash */
70         };
71         const uint32x4_t flags_type_mask =
72                 vdupq_n_u32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
73         const uint32x4_t flags2_mask1 =
74                 vdupq_n_u32(CMPL_FLAGS2_VLAN_TUN_MSK);
75         const uint32x4_t flags2_mask2 =
76                 vdupq_n_u32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
77         const uint32x4_t rss_mask =
78                 vdupq_n_u32(RX_PKT_CMPL_FLAGS_RSS_VALID);
79         const uint32x4_t flags2_index_mask = vdupq_n_u32(0x1F);
80         const uint32x4_t flags2_error_mask = vdupq_n_u32(0x0F);
81         uint32x4_t flags_type, flags2, index, errors, rss_flags;
82         uint32x4_t tmp, ptype_idx, is_tunnel;
83         uint64x2_t t0, t1;
84         uint32_t ol_flags;
85
86         /* Validate ptype table indexing at build time. */
87         bnxt_check_ptype_constants();
88
89         /* Compute packet type table indexes for four packets */
90         t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[0], mm_rxcmp[1]));
91         t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[2], mm_rxcmp[3]));
92
93         flags_type = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
94                                                         vget_low_u64(t1)));
95         ptype_idx = vshrq_n_u32(vandq_u32(flags_type, flags_type_mask),
96                                 RX_PKT_CMPL_FLAGS_ITYPE_SFT -
97                                 BNXT_PTYPE_TBL_TYPE_SFT);
98
99         t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
100         t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));
101
102         flags2 = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
103                                                     vget_low_u64(t1)));
104
105         ptype_idx = vorrq_u32(ptype_idx,
106                         vshrq_n_u32(vandq_u32(flags2, flags2_mask1),
107                                     RX_PKT_CMPL_FLAGS2_META_FORMAT_SFT -
108                                     BNXT_PTYPE_TBL_VLAN_SFT));
109         ptype_idx = vorrq_u32(ptype_idx,
110                         vshrq_n_u32(vandq_u32(flags2, flags2_mask2),
111                                     RX_PKT_CMPL_FLAGS2_IP_TYPE_SFT -
112                                     BNXT_PTYPE_TBL_IP_VER_SFT));
113
114         /* Extract RSS valid flags for four packets. */
115         rss_flags = vshrq_n_u32(vandq_u32(flags_type, rss_mask), 9);
116
117         flags2 = vandq_u32(flags2, flags2_index_mask);
118
119         /* Extract errors_v2 fields for four packets. */
120         t0 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
121         t1 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));
122
123         errors = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
124                                                     vget_low_u64(t1)));
125
126         /* Compute ol_flags and checksum error indexes for four packets. */
127         is_tunnel = vandq_u32(flags2, vdupq_n_u32(4));
128         is_tunnel = vshlq_n_u32(is_tunnel, 3);
129         errors = vandq_u32(vshrq_n_u32(errors, 4), flags2_error_mask);
130         errors = vandq_u32(errors, flags2);
131
132         index = vbicq_u32(flags2, errors);
133         errors = vorrq_u32(errors, vshrq_n_u32(is_tunnel, 1));
134         index = vorrq_u32(index, is_tunnel);
135
136         /* Update mbuf rearm_data for four packets. */
137         GET_OL_FLAGS(rss_flags, index, errors, 0, ol_flags);
138         vst1q_u32((uint32_t *)&mbuf[0]->rearm_data,
139                   vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
140         GET_OL_FLAGS(rss_flags, index, errors, 1, ol_flags);
141         vst1q_u32((uint32_t *)&mbuf[1]->rearm_data,
142                   vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
143         GET_OL_FLAGS(rss_flags, index, errors, 2, ol_flags);
144         vst1q_u32((uint32_t *)&mbuf[2]->rearm_data,
145                   vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
146         GET_OL_FLAGS(rss_flags, index, errors, 3, ol_flags);
147         vst1q_u32((uint32_t *)&mbuf[3]->rearm_data,
148                   vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
149
150         /* Update mbuf rx_descriptor_fields1 for four packets. */
151         GET_DESC_FIELDS(mm_rxcmp[0], mm_rxcmp1[0], shuf_msk, ptype_idx, 0, tmp);
152         vst1q_u32((uint32_t *)&mbuf[0]->rx_descriptor_fields1, tmp);
153         GET_DESC_FIELDS(mm_rxcmp[1], mm_rxcmp1[1], shuf_msk, ptype_idx, 1, tmp);
154         vst1q_u32((uint32_t *)&mbuf[1]->rx_descriptor_fields1, tmp);
155         GET_DESC_FIELDS(mm_rxcmp[2], mm_rxcmp1[2], shuf_msk, ptype_idx, 2, tmp);
156         vst1q_u32((uint32_t *)&mbuf[2]->rx_descriptor_fields1, tmp);
157         GET_DESC_FIELDS(mm_rxcmp[3], mm_rxcmp1[3], shuf_msk, ptype_idx, 3, tmp);
158         vst1q_u32((uint32_t *)&mbuf[3]->rx_descriptor_fields1, tmp);
159 }
160
161 static uint16_t
162 recv_burst_vec_neon(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
163 {
164         struct bnxt_rx_queue *rxq = rx_queue;
165         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
166         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
167         uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
168         uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
169         struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
170         uint64_t valid, desc_valid_mask = ~0UL;
171         const uint32x4_t info3_v_mask = vdupq_n_u32(CMPL_BASE_V);
172         uint32_t raw_cons = cpr->cp_raw_cons;
173         uint32_t cons, mbcons;
174         int nb_rx_pkts = 0;
175         const uint64x2_t mb_init = {rxq->mbuf_initializer, 0};
176         const uint32x4_t valid_target =
177                 vdupq_n_u32(!!(raw_cons & cp_ring_size));
178         int i;
179
180         /* If Rx Q was stopped return */
181         if (unlikely(!rxq->rx_started))
182                 return 0;
183
184         if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
185                 bnxt_rxq_rearm(rxq, rxr);
186
187         cons = raw_cons & (cp_ring_size - 1);
188         mbcons = (raw_cons / 2) & (rx_ring_size - 1);
189
190         /* Prefetch first four descriptor pairs. */
191         rte_prefetch0(&cp_desc_ring[cons]);
192         rte_prefetch0(&cp_desc_ring[cons + 4]);
193
194         /* Ensure that we do not go past the ends of the rings. */
195         nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
196                                            (cp_ring_size - cons) / 2));
197         /*
198          * If we are at the end of the ring, ensure that descriptors after the
199          * last valid entry are not treated as valid. Otherwise, force the
200          * maximum number of packets to receive to be a multiple of the per-
201          * loop count.
202          */
203         if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC128) {
204                 desc_valid_mask >>=
205                         16 * (BNXT_RX_DESCS_PER_LOOP_VEC128 - nb_pkts);
206         } else {
207                 nb_pkts =
208                         RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC128);
209         }
210
211         /* Handle RX burst request */
212         for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC128,
213                                   cons += BNXT_RX_DESCS_PER_LOOP_VEC128 * 2,
214                                   mbcons += BNXT_RX_DESCS_PER_LOOP_VEC128) {
215                 uint32x4_t rxcmp1[BNXT_RX_DESCS_PER_LOOP_VEC128];
216                 uint32x4_t rxcmp[BNXT_RX_DESCS_PER_LOOP_VEC128];
217                 uint32x4_t info3_v;
218                 uint64x2_t t0, t1;
219                 uint32_t num_valid;
220
221                 /* Copy four mbuf pointers to output array. */
222                 t0 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons]);
223                 t1 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons + 2]);
224                 vst1q_u64((void *)&rx_pkts[i], t0);
225                 vst1q_u64((void *)&rx_pkts[i + 2], t1);
226
227                 /* Prefetch four descriptor pairs for next iteration. */
228                 if (i + BNXT_RX_DESCS_PER_LOOP_VEC128 < nb_pkts) {
229                         rte_prefetch0(&cp_desc_ring[cons + 8]);
230                         rte_prefetch0(&cp_desc_ring[cons + 12]);
231                 }
232
233                 /*
234                  * Load the four current descriptors into NEON registers.
235                  * IO barriers are used to ensure consistent state.
236                  */
237                 rxcmp1[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 7]);
238                 rte_io_rmb();
239                 /* Reload lower 64b of descriptors to make it ordered after info3_v. */
240                 rxcmp1[3] = vreinterpretq_u32_u64(vld1q_lane_u64
241                                 ((void *)&cpr->cp_desc_ring[cons + 7],
242                                 vreinterpretq_u64_u32(rxcmp1[3]), 0));
243                 rxcmp[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 6]);
244
245                 rxcmp1[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 5]);
246                 rte_io_rmb();
247                 rxcmp1[2] = vreinterpretq_u32_u64(vld1q_lane_u64
248                                 ((void *)&cpr->cp_desc_ring[cons + 5],
249                                 vreinterpretq_u64_u32(rxcmp1[2]), 0));
250                 rxcmp[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 4]);
251
252                 t1 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[2], rxcmp1[3]));
253
254                 rxcmp1[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 3]);
255                 rte_io_rmb();
256                 rxcmp1[1] = vreinterpretq_u32_u64(vld1q_lane_u64
257                                 ((void *)&cpr->cp_desc_ring[cons + 3],
258                                 vreinterpretq_u64_u32(rxcmp1[1]), 0));
259                 rxcmp[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 2]);
260
261                 rxcmp1[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 1]);
262                 rte_io_rmb();
263                 rxcmp1[0] = vreinterpretq_u32_u64(vld1q_lane_u64
264                                 ((void *)&cpr->cp_desc_ring[cons + 1],
265                                 vreinterpretq_u64_u32(rxcmp1[0]), 0));
266                 rxcmp[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 0]);
267
268                 t0 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[0], rxcmp1[1]));
269
270                 /* Isolate descriptor status flags. */
271                 info3_v = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
272                                                              vget_low_u64(t1)));
273                 info3_v = vandq_u32(info3_v, info3_v_mask);
274                 info3_v = veorq_u32(info3_v, valid_target);
275
276                 /*
277                  * Pack the 128-bit array of valid descriptor flags into 64
278                  * bits and count the number of set bits in order to determine
279                  * the number of valid descriptors.
280                  */
281                 valid = vget_lane_u64(vreinterpret_u64_u16(vqmovn_u32(info3_v)),
282                                       0);
283                 /*
284                  * At this point, 'valid' is a 64-bit value containing four
285                  * 16-bit fields, each of which is either 0x0001 or 0x0000.
286                  * Compute number of valid descriptors from the index of
287                  * the highest non-zero field.
288                  */
289                 num_valid = (sizeof(uint64_t) / sizeof(uint16_t)) -
290                                 (__builtin_clzl(valid & desc_valid_mask) / 16);
291
292                 if (num_valid == 0)
293                         break;
294
295                 descs_to_mbufs(rxcmp, rxcmp1, mb_init, &rx_pkts[nb_rx_pkts],
296                                rxr);
297                 nb_rx_pkts += num_valid;
298
299                 if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC128)
300                         break;
301         }
302
303         if (nb_rx_pkts) {
304                 rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
305
306                 rxq->rxrearm_nb += nb_rx_pkts;
307                 cpr->cp_raw_cons += 2 * nb_rx_pkts;
308                 bnxt_db_cq(cpr);
309         }
310
311         return nb_rx_pkts;
312 }
313
314 uint16_t
315 bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
316 {
317         uint16_t cnt = 0;
318
319         while (nb_pkts > RTE_BNXT_MAX_RX_BURST) {
320                 uint16_t burst;
321
322                 burst = recv_burst_vec_neon(rx_queue, rx_pkts + cnt,
323                                             RTE_BNXT_MAX_RX_BURST);
324
325                 cnt += burst;
326                 nb_pkts -= burst;
327
328                 if (burst < RTE_BNXT_MAX_RX_BURST)
329                         return cnt;
330         }
331
332         return cnt + recv_burst_vec_neon(rx_queue, rx_pkts + cnt, nb_pkts);
333 }
334
335 static void
336 bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
337 {
338         struct bnxt_cp_ring_info *cpr = txq->cp_ring;
339         uint32_t raw_cons = cpr->cp_raw_cons;
340         uint32_t cons;
341         uint32_t nb_tx_pkts = 0;
342         struct tx_cmpl *txcmp;
343         struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
344         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
345         uint32_t ring_mask = cp_ring_struct->ring_mask;
346
347         do {
348                 cons = RING_CMPL(ring_mask, raw_cons);
349                 txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
350
351                 if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1))
352                         break;
353
354                 if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2))
355                         nb_tx_pkts += txcmp->opaque;
356                 else
357                         RTE_LOG_DP(ERR, PMD,
358                                    "Unhandled CMP type %02x\n",
359                                    CMP_TYPE(txcmp));
360                 raw_cons = NEXT_RAW_CMP(raw_cons);
361         } while (nb_tx_pkts < ring_mask);
362
363         if (nb_tx_pkts) {
364                 if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
365                         bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
366                 else
367                         bnxt_tx_cmp_vec(txq, nb_tx_pkts);
368                 cpr->cp_raw_cons = raw_cons;
369                 bnxt_db_cq(cpr);
370         }
371 }
372
373 static uint16_t
374 bnxt_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
375                           uint16_t nb_pkts)
376 {
377         struct bnxt_tx_queue *txq = tx_queue;
378         struct bnxt_tx_ring_info *txr = txq->tx_ring;
379         uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod;
380         struct rte_mbuf *tx_mbuf;
381         struct tx_bd_long *txbd = NULL;
382         struct rte_mbuf **tx_buf;
383         uint16_t to_send;
384
385         nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
386
387         if (unlikely(nb_pkts == 0))
388                 return 0;
389
390         /* Handle TX burst request */
391         to_send = nb_pkts;
392         while (to_send) {
393                 tx_mbuf = *tx_pkts++;
394                 rte_prefetch0(tx_mbuf);
395
396                 tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod);
397                 tx_buf = &txr->tx_buf_ring[tx_prod];
398                 *tx_buf = tx_mbuf;
399
400                 txbd = &txr->tx_desc_ring[tx_prod];
401                 txbd->address = tx_mbuf->buf_iova + tx_mbuf->data_off;
402                 txbd->len = tx_mbuf->data_len;
403                 txbd->flags_type = bnxt_xmit_flags_len(tx_mbuf->data_len,
404                                                        TX_BD_FLAGS_NOCMPL);
405                 tx_raw_prod = RING_NEXT(tx_raw_prod);
406                 to_send--;
407         }
408
409         /* Request a completion for last packet in burst */
410         if (txbd) {
411                 txbd->opaque = nb_pkts;
412                 txbd->flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
413         }
414
415         rte_compiler_barrier();
416         bnxt_db_write(&txr->tx_db, tx_raw_prod);
417
418         txr->tx_raw_prod = tx_raw_prod;
419
420         return nb_pkts;
421 }
422
423 uint16_t
424 bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
425                    uint16_t nb_pkts)
426 {
427         int nb_sent = 0;
428         struct bnxt_tx_queue *txq = tx_queue;
429
430         /* Tx queue was stopped; wait for it to be restarted */
431         if (unlikely(!txq->tx_started)) {
432                 PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
433                 return 0;
434         }
435
436         /* Handle TX completions */
437         if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
438                 bnxt_handle_tx_cp_vec(txq);
439
440         while (nb_pkts) {
441                 uint16_t ret, num;
442
443                 num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
444                 ret = bnxt_xmit_fixed_burst_vec(tx_queue,
445                                                 &tx_pkts[nb_sent],
446                                                 num);
447                 nb_sent += ret;
448                 nb_pkts -= ret;
449                 if (ret < num)
450                         break;
451         }
452
453         return nb_sent;
454 }
455
456 int __rte_cold
457 bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq)
458 {
459         return bnxt_rxq_vec_setup_common(rxq);
460 }