net/bnxt: update HWRM structures
[dpdk.git] / drivers / net / bnxt / bnxt_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright(c) 2019-2021 Broadcom All rights reserved. */
3
4 #include <inttypes.h>
5 #include <stdbool.h>
6
7 #include <rte_bitmap.h>
8 #include <rte_byteorder.h>
9 #include <rte_malloc.h>
10 #include <rte_memory.h>
11 #include <rte_vect.h>
12
13 #include "bnxt.h"
14 #include "bnxt_cpr.h"
15 #include "bnxt_ring.h"
16
17 #include "bnxt_txq.h"
18 #include "bnxt_txr.h"
19 #include "bnxt_rxtx_vec_common.h"
20
21 /*
22  * RX Ring handling
23  */
24
25 #define GET_OL_FLAGS(rss_flags, ol_idx, errors, pi, ol_flags)                  \
26 {                                                                              \
27         uint32_t tmp, of;                                                      \
28                                                                                \
29         of = vgetq_lane_u32((rss_flags), (pi)) |                               \
30                    rxr->ol_flags_table[vgetq_lane_u32((ol_idx), (pi))];        \
31                                                                                \
32         tmp = vgetq_lane_u32((errors), (pi));                                  \
33         if (tmp)                                                               \
34                 of |= rxr->ol_flags_err_table[tmp];                            \
35         (ol_flags) = of;                                                       \
36 }
37
38 #define GET_DESC_FIELDS(rxcmp, rxcmp1, shuf_msk, ptype_idx, pkt_idx, ret)      \
39 {                                                                              \
40         uint32_t ptype;                                                        \
41         uint16_t vlan_tci;                                                     \
42         uint32x4_t r;                                                          \
43                                                                                \
44         /* Set mbuf pkt_len, data_len, and rss_hash fields. */                 \
45         r = vreinterpretq_u32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(rxcmp),       \
46                                               (shuf_msk)));                    \
47                                                                                \
48         /* Set packet type. */                                                 \
49         ptype = bnxt_ptype_table[vgetq_lane_u32((ptype_idx), (pkt_idx))];      \
50         r = vsetq_lane_u32(ptype, r, 0);                                       \
51                                                                                \
52         /* Set vlan_tci. */                                                    \
53         vlan_tci = vgetq_lane_u32((rxcmp1), 1);                                \
54         r = vreinterpretq_u32_u16(vsetq_lane_u16(vlan_tci,                     \
55                                 vreinterpretq_u16_u32(r), 5));                 \
56         (ret) = r;                                                             \
57 }
58
59 static void
60 descs_to_mbufs(uint32x4_t mm_rxcmp[4], uint32x4_t mm_rxcmp1[4],
61                uint64x2_t mb_init, struct rte_mbuf **mbuf,
62                struct bnxt_rx_ring_info *rxr)
63 {
64         const uint8x16_t shuf_msk = {
65                 0xFF, 0xFF, 0xFF, 0xFF,    /* pkt_type (zeroes) */
66                 2, 3, 0xFF, 0xFF,          /* pkt_len */
67                 2, 3,                      /* data_len */
68                 0xFF, 0xFF,                /* vlan_tci (zeroes) */
69                 12, 13, 14, 15             /* rss hash */
70         };
71         const uint32x4_t flags_type_mask =
72                 vdupq_n_u32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
73         const uint32x4_t flags2_mask1 =
74                 vdupq_n_u32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
75                             RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC);
76         const uint32x4_t flags2_mask2 =
77                 vdupq_n_u32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
78         const uint32x4_t rss_mask =
79                 vdupq_n_u32(RX_PKT_CMPL_FLAGS_RSS_VALID);
80         const uint32x4_t flags2_index_mask = vdupq_n_u32(0x1F);
81         const uint32x4_t flags2_error_mask = vdupq_n_u32(0x0F);
82         uint32x4_t flags_type, flags2, index, errors, rss_flags;
83         uint32x4_t tmp, ptype_idx, is_tunnel;
84         uint64x2_t t0, t1;
85         uint32_t ol_flags;
86
87         /* Compute packet type table indexes for four packets */
88         t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[0], mm_rxcmp[1]));
89         t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp[2], mm_rxcmp[3]));
90
91         flags_type = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
92                                                         vget_low_u64(t1)));
93         ptype_idx =
94                 vshrq_n_u32(vandq_u32(flags_type, flags_type_mask), 9);
95
96         t0 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
97         t1 = vreinterpretq_u64_u32(vzip1q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));
98
99         flags2 = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
100                                                     vget_low_u64(t1)));
101
102         ptype_idx = vorrq_u32(ptype_idx,
103                         vshrq_n_u32(vandq_u32(flags2, flags2_mask1), 2));
104         ptype_idx = vorrq_u32(ptype_idx,
105                         vshrq_n_u32(vandq_u32(flags2, flags2_mask2), 7));
106
107         /* Extract RSS valid flags for four packets. */
108         rss_flags = vshrq_n_u32(vandq_u32(flags_type, rss_mask), 9);
109
110         flags2 = vandq_u32(flags2, flags2_index_mask);
111
112         /* Extract errors_v2 fields for four packets. */
113         t0 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[0], mm_rxcmp1[1]));
114         t1 = vreinterpretq_u64_u32(vzip2q_u32(mm_rxcmp1[2], mm_rxcmp1[3]));
115
116         errors = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
117                                                     vget_low_u64(t1)));
118
119         /* Compute ol_flags and checksum error indexes for four packets. */
120         is_tunnel = vandq_u32(flags2, vdupq_n_u32(4));
121         is_tunnel = vshlq_n_u32(is_tunnel, 3);
122         errors = vandq_u32(vshrq_n_u32(errors, 4), flags2_error_mask);
123         errors = vandq_u32(errors, flags2);
124
125         index = vbicq_u32(flags2, errors);
126         errors = vorrq_u32(errors, vshrq_n_u32(is_tunnel, 1));
127         index = vorrq_u32(index, is_tunnel);
128
129         /* Update mbuf rearm_data for four packets. */
130         GET_OL_FLAGS(rss_flags, index, errors, 0, ol_flags);
131         vst1q_u32((uint32_t *)&mbuf[0]->rearm_data,
132                   vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
133         GET_OL_FLAGS(rss_flags, index, errors, 1, ol_flags);
134         vst1q_u32((uint32_t *)&mbuf[1]->rearm_data,
135                   vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
136         GET_OL_FLAGS(rss_flags, index, errors, 2, ol_flags);
137         vst1q_u32((uint32_t *)&mbuf[2]->rearm_data,
138                   vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
139         GET_OL_FLAGS(rss_flags, index, errors, 3, ol_flags);
140         vst1q_u32((uint32_t *)&mbuf[3]->rearm_data,
141                   vsetq_lane_u32(ol_flags, vreinterpretq_u32_u64(mb_init), 2));
142
143         /* Update mbuf rx_descriptor_fields1 for four packets. */
144         GET_DESC_FIELDS(mm_rxcmp[0], mm_rxcmp1[0], shuf_msk, ptype_idx, 0, tmp);
145         vst1q_u32((uint32_t *)&mbuf[0]->rx_descriptor_fields1, tmp);
146         GET_DESC_FIELDS(mm_rxcmp[1], mm_rxcmp1[1], shuf_msk, ptype_idx, 1, tmp);
147         vst1q_u32((uint32_t *)&mbuf[1]->rx_descriptor_fields1, tmp);
148         GET_DESC_FIELDS(mm_rxcmp[2], mm_rxcmp1[2], shuf_msk, ptype_idx, 2, tmp);
149         vst1q_u32((uint32_t *)&mbuf[2]->rx_descriptor_fields1, tmp);
150         GET_DESC_FIELDS(mm_rxcmp[3], mm_rxcmp1[3], shuf_msk, ptype_idx, 3, tmp);
151         vst1q_u32((uint32_t *)&mbuf[3]->rx_descriptor_fields1, tmp);
152 }
153
154 uint16_t
155 bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
156                    uint16_t nb_pkts)
157 {
158         struct bnxt_rx_queue *rxq = rx_queue;
159         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
160         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
161         uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
162         uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
163         struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
164         uint64_t valid, desc_valid_mask = ~0UL;
165         const uint32x4_t info3_v_mask = vdupq_n_u32(CMPL_BASE_V);
166         uint32_t raw_cons = cpr->cp_raw_cons;
167         uint32_t cons, mbcons;
168         int nb_rx_pkts = 0;
169         const uint64x2_t mb_init = {rxq->mbuf_initializer, 0};
170         const uint32x4_t valid_target =
171                 vdupq_n_u32(!!(raw_cons & cp_ring_size));
172         int i;
173
174         /* If Rx Q was stopped return */
175         if (unlikely(!rxq->rx_started))
176                 return 0;
177
178         if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
179                 bnxt_rxq_rearm(rxq, rxr);
180
181         /* Return no more than RTE_BNXT_MAX_RX_BURST per call. */
182         nb_pkts = RTE_MIN(nb_pkts, RTE_BNXT_MAX_RX_BURST);
183
184         cons = raw_cons & (cp_ring_size - 1);
185         mbcons = (raw_cons / 2) & (rx_ring_size - 1);
186
187         /* Prefetch first four descriptor pairs. */
188         rte_prefetch0(&cp_desc_ring[cons]);
189         rte_prefetch0(&cp_desc_ring[cons + 4]);
190
191         /* Ensure that we do not go past the ends of the rings. */
192         nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
193                                            (cp_ring_size - cons) / 2));
194         /*
195          * If we are at the end of the ring, ensure that descriptors after the
196          * last valid entry are not treated as valid. Otherwise, force the
197          * maximum number of packets to receive to be a multiple of the per-
198          * loop count.
199          */
200         if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP)
201                 desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts);
202         else
203                 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
204
205         /* Handle RX burst request */
206         for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP,
207                                   cons += RTE_BNXT_DESCS_PER_LOOP * 2,
208                                   mbcons += RTE_BNXT_DESCS_PER_LOOP) {
209                 uint32x4_t rxcmp1[RTE_BNXT_DESCS_PER_LOOP];
210                 uint32x4_t rxcmp[RTE_BNXT_DESCS_PER_LOOP];
211                 uint32x4_t info3_v;
212                 uint64x2_t t0, t1;
213                 uint32_t num_valid;
214
215                 /* Copy four mbuf pointers to output array. */
216                 t0 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons]);
217 #ifdef RTE_ARCH_ARM64
218                 t1 = vld1q_u64((void *)&rxr->rx_buf_ring[mbcons + 2]);
219 #endif
220                 vst1q_u64((void *)&rx_pkts[i], t0);
221 #ifdef RTE_ARCH_ARM64
222                 vst1q_u64((void *)&rx_pkts[i + 2], t1);
223 #endif
224
225                 /* Prefetch four descriptor pairs for next iteration. */
226                 if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) {
227                         rte_prefetch0(&cp_desc_ring[cons + 8]);
228                         rte_prefetch0(&cp_desc_ring[cons + 12]);
229                 }
230
231                 /*
232                  * Load the four current descriptors into SSE registers in
233                  * reverse order to ensure consistent state.
234                  */
235                 rxcmp1[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 7]);
236                 rte_io_rmb();
237                 rxcmp[3] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 6]);
238
239                 rxcmp1[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 5]);
240                 rte_io_rmb();
241                 rxcmp[2] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 4]);
242
243                 t1 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[2], rxcmp1[3]));
244
245                 rxcmp1[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 3]);
246                 rte_io_rmb();
247                 rxcmp[1] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 2]);
248
249                 rxcmp1[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 1]);
250                 rte_io_rmb();
251                 rxcmp[0] = vld1q_u32((void *)&cpr->cp_desc_ring[cons + 0]);
252
253                 t0 = vreinterpretq_u64_u32(vzip2q_u32(rxcmp1[0], rxcmp1[1]));
254
255                 /* Isolate descriptor status flags. */
256                 info3_v = vreinterpretq_u32_u64(vcombine_u64(vget_low_u64(t0),
257                                                              vget_low_u64(t1)));
258                 info3_v = vandq_u32(info3_v, info3_v_mask);
259                 info3_v = veorq_u32(info3_v, valid_target);
260
261                 /*
262                  * Pack the 128-bit array of valid descriptor flags into 64
263                  * bits and count the number of set bits in order to determine
264                  * the number of valid descriptors.
265                  */
266                 valid = vget_lane_u64(vreinterpret_u64_u16(vqmovn_u32(info3_v)),
267                                       0);
268                 /*
269                  * At this point, 'valid' is a 64-bit value containing four
270                  * 16-bit fields, each of which is either 0x0001 or 0x0000.
271                  * Compute number of valid descriptors from the index of
272                  * the highest non-zero field.
273                  */
274                 num_valid = (sizeof(uint64_t) / sizeof(uint16_t)) -
275                                 (__builtin_clzl(valid & desc_valid_mask) / 16);
276
277                 switch (num_valid) {
278                 case 4:
279                         rxr->rx_buf_ring[mbcons + 3] = NULL;
280                         /* FALLTHROUGH */
281                 case 3:
282                         rxr->rx_buf_ring[mbcons + 2] = NULL;
283                         /* FALLTHROUGH */
284                 case 2:
285                         rxr->rx_buf_ring[mbcons + 1] = NULL;
286                         /* FALLTHROUGH */
287                 case 1:
288                         rxr->rx_buf_ring[mbcons + 0] = NULL;
289                         break;
290                 case 0:
291                         goto out;
292                 }
293
294                 descs_to_mbufs(rxcmp, rxcmp1, mb_init, &rx_pkts[nb_rx_pkts],
295                                rxr);
296                 nb_rx_pkts += num_valid;
297
298                 if (num_valid < RTE_BNXT_DESCS_PER_LOOP)
299                         break;
300         }
301
302 out:
303         if (nb_rx_pkts) {
304                 rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
305
306                 rxq->rxrearm_nb += nb_rx_pkts;
307                 cpr->cp_raw_cons += 2 * nb_rx_pkts;
308                 cpr->valid =
309                         !!(cpr->cp_raw_cons & cpr->cp_ring_struct->ring_size);
310                 bnxt_db_cq(cpr);
311         }
312
313         return nb_rx_pkts;
314 }
315
316 static void
317 bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
318 {
319         struct bnxt_cp_ring_info *cpr = txq->cp_ring;
320         uint32_t raw_cons = cpr->cp_raw_cons;
321         uint32_t cons;
322         uint32_t nb_tx_pkts = 0;
323         struct tx_cmpl *txcmp;
324         struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
325         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
326         uint32_t ring_mask = cp_ring_struct->ring_mask;
327
328         do {
329                 cons = RING_CMPL(ring_mask, raw_cons);
330                 txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
331
332                 if (!CMP_VALID(txcmp, raw_cons, cp_ring_struct))
333                         break;
334
335                 if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2))
336                         nb_tx_pkts += txcmp->opaque;
337                 else
338                         RTE_LOG_DP(ERR, PMD,
339                                    "Unhandled CMP type %02x\n",
340                                    CMP_TYPE(txcmp));
341                 raw_cons = NEXT_RAW_CMP(raw_cons);
342         } while (nb_tx_pkts < ring_mask);
343
344         cpr->valid = !!(raw_cons & cp_ring_struct->ring_size);
345         if (nb_tx_pkts) {
346                 if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
347                         bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
348                 else
349                         bnxt_tx_cmp_vec(txq, nb_tx_pkts);
350                 cpr->cp_raw_cons = raw_cons;
351                 bnxt_db_cq(cpr);
352         }
353 }
354
355 static uint16_t
356 bnxt_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
357                           uint16_t nb_pkts)
358 {
359         struct bnxt_tx_queue *txq = tx_queue;
360         struct bnxt_tx_ring_info *txr = txq->tx_ring;
361         uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod;
362         struct rte_mbuf *tx_mbuf;
363         struct tx_bd_long *txbd = NULL;
364         struct bnxt_sw_tx_bd *tx_buf;
365         uint16_t to_send;
366
367         nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
368
369         if (unlikely(nb_pkts == 0))
370                 return 0;
371
372         /* Handle TX burst request */
373         to_send = nb_pkts;
374         while (to_send) {
375                 tx_mbuf = *tx_pkts++;
376                 rte_prefetch0(tx_mbuf);
377
378                 tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod);
379                 tx_buf = &txr->tx_buf_ring[tx_prod];
380                 tx_buf->mbuf = tx_mbuf;
381                 tx_buf->nr_bds = 1;
382
383                 txbd = &txr->tx_desc_ring[tx_prod];
384                 txbd->address = tx_mbuf->buf_iova + tx_mbuf->data_off;
385                 txbd->len = tx_mbuf->data_len;
386                 txbd->flags_type = bnxt_xmit_flags_len(tx_mbuf->data_len,
387                                                        TX_BD_FLAGS_NOCMPL);
388                 tx_raw_prod = RING_NEXT(tx_raw_prod);
389                 to_send--;
390         }
391
392         /* Request a completion for last packet in burst */
393         if (txbd) {
394                 txbd->opaque = nb_pkts;
395                 txbd->flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
396         }
397
398         rte_compiler_barrier();
399         bnxt_db_write(&txr->tx_db, tx_raw_prod);
400
401         txr->tx_raw_prod = tx_raw_prod;
402
403         return nb_pkts;
404 }
405
406 uint16_t
407 bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
408                    uint16_t nb_pkts)
409 {
410         int nb_sent = 0;
411         struct bnxt_tx_queue *txq = tx_queue;
412
413         /* Tx queue was stopped; wait for it to be restarted */
414         if (unlikely(!txq->tx_started)) {
415                 PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
416                 return 0;
417         }
418
419         /* Handle TX completions */
420         if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
421                 bnxt_handle_tx_cp_vec(txq);
422
423         while (nb_pkts) {
424                 uint16_t ret, num;
425
426                 num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
427                 ret = bnxt_xmit_fixed_burst_vec(tx_queue,
428                                                 &tx_pkts[nb_sent],
429                                                 num);
430                 nb_sent += ret;
431                 nb_pkts -= ret;
432                 if (ret < num)
433                         break;
434         }
435
436         return nb_sent;
437 }
438
439 int __rte_cold
440 bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq)
441 {
442         return bnxt_rxq_vec_setup_common(rxq);
443 }