sleep in control plane thread
[dpdk.git] / drivers / net / bnxt / bnxt_rxtx_vec_sse.c
1 // SPDX-License-Identifier: BSD-3-Clause
2 /* Copyright(c) 2019 Broadcom All rights reserved. */
3
4 #include <inttypes.h>
5 #include <stdbool.h>
6
7 #include <rte_bitmap.h>
8 #include <rte_byteorder.h>
9 #include <rte_malloc.h>
10 #include <rte_memory.h>
11 #if defined(RTE_ARCH_X86)
12 #include <tmmintrin.h>
13 #else
14 #error "bnxt vector pmd: unsupported target."
15 #endif
16
17 #include "bnxt.h"
18 #include "bnxt_cpr.h"
19 #include "bnxt_ring.h"
20 #include "bnxt_rxr.h"
21 #include "bnxt_rxq.h"
22 #include "hsi_struct_def_dpdk.h"
23
24 #include "bnxt_txq.h"
25 #include "bnxt_txr.h"
26
27 /*
28  * RX Ring handling
29  */
30
31 #define RTE_BNXT_MAX_RX_BURST           32
32 #define RTE_BNXT_MAX_TX_BURST           32
33 #define RTE_BNXT_RXQ_REARM_THRESH       32
34 #define RTE_BNXT_DESCS_PER_LOOP         4
35
36 static inline void
37 bnxt_rxq_rearm(struct bnxt_rx_queue *rxq, struct bnxt_rx_ring_info *rxr)
38 {
39         struct rx_prod_pkt_bd *rxbds = &rxr->rx_desc_ring[rxq->rxrearm_start];
40         struct bnxt_sw_rx_bd *rx_bufs = &rxr->rx_buf_ring[rxq->rxrearm_start];
41         struct rte_mbuf *mb0, *mb1;
42         int i;
43
44         const __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, 0);
45         const __m128i addrmask = _mm_set_epi64x(UINT64_MAX, 0);
46
47         /* Pull RTE_BNXT_RXQ_REARM_THRESH more mbufs into the software ring */
48         if (rte_mempool_get_bulk(rxq->mb_pool,
49                                  (void *)rx_bufs,
50                                  RTE_BNXT_RXQ_REARM_THRESH) < 0) {
51                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
52                         RTE_BNXT_RXQ_REARM_THRESH;
53
54                 return;
55         }
56
57         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
58         for (i = 0; i < RTE_BNXT_RXQ_REARM_THRESH; i += 2, rx_bufs += 2) {
59                 __m128i buf_addr0, buf_addr1;
60                 __m128i rxbd0, rxbd1;
61
62                 mb0 = rx_bufs[0].mbuf;
63                 mb1 = rx_bufs[1].mbuf;
64
65                 /* Load address fields from both mbufs */
66                 buf_addr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
67                 buf_addr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
68
69                 /* Load both rx descriptors (preserving some existing fields) */
70                 rxbd0 = _mm_loadu_si128((__m128i *)(rxbds + 0));
71                 rxbd1 = _mm_loadu_si128((__m128i *)(rxbds + 1));
72
73                 /* Add default offset to buffer address. */
74                 buf_addr0 = _mm_add_epi64(buf_addr0, hdr_room);
75                 buf_addr1 = _mm_add_epi64(buf_addr1, hdr_room);
76
77                 /* Clear all fields except address. */
78                 buf_addr0 =  _mm_and_si128(buf_addr0, addrmask);
79                 buf_addr1 =  _mm_and_si128(buf_addr1, addrmask);
80
81                 /* Clear address field in descriptor. */
82                 rxbd0 = _mm_andnot_si128(addrmask, rxbd0);
83                 rxbd1 = _mm_andnot_si128(addrmask, rxbd1);
84
85                 /* Set address field in descriptor. */
86                 rxbd0 = _mm_add_epi64(rxbd0, buf_addr0);
87                 rxbd1 = _mm_add_epi64(rxbd1, buf_addr1);
88
89                 /* Store descriptors to memory. */
90                 _mm_store_si128((__m128i *)(rxbds++), rxbd0);
91                 _mm_store_si128((__m128i *)(rxbds++), rxbd1);
92         }
93
94         rxq->rxrearm_start += RTE_BNXT_RXQ_REARM_THRESH;
95         bnxt_db_write(&rxr->rx_db, rxq->rxrearm_start - 1);
96         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
97                 rxq->rxrearm_start = 0;
98
99         rxq->rxrearm_nb -= RTE_BNXT_RXQ_REARM_THRESH;
100 }
101
102 static uint32_t
103 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
104 {
105         uint32_t l3, pkt_type = 0;
106         uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
107         uint32_t flags_type;
108
109         vlan = !!(rxcmp1->flags2 &
110                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
111         pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
112
113         t_ipcs = !!(rxcmp1->flags2 &
114                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
115         ip6 = !!(rxcmp1->flags2 &
116                  rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
117
118         flags_type = rxcmp->flags_type &
119                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
120
121         if (!t_ipcs && !ip6)
122                 l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
123         else if (!t_ipcs && ip6)
124                 l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
125         else if (t_ipcs && !ip6)
126                 l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
127         else
128                 l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
129
130         switch (flags_type) {
131         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
132                 if (!t_ipcs)
133                         pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
134                 else
135                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
136                 break;
137
138         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
139                 if (!t_ipcs)
140                         pkt_type |= l3 | RTE_PTYPE_L4_TCP;
141                 else
142                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
143                 break;
144
145         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
146                 if (!t_ipcs)
147                         pkt_type |= l3 | RTE_PTYPE_L4_UDP;
148                 else
149                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
150                 break;
151
152         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
153                 pkt_type |= l3;
154                 break;
155         }
156
157         return pkt_type;
158 }
159
160 static void
161 bnxt_parse_csum(struct rte_mbuf *mbuf, struct rx_pkt_cmpl_hi *rxcmp1)
162 {
163         uint32_t flags;
164
165         flags = flags2_0xf(rxcmp1);
166         /* IP Checksum */
167         if (likely(IS_IP_NONTUNNEL_PKT(flags))) {
168                 if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
169                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
170                 else
171                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
172         } else if (IS_IP_TUNNEL_PKT(flags)) {
173                 if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
174                              RX_CMP_IP_CS_ERROR(rxcmp1)))
175                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
176                 else
177                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
178         } else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1))) {
179                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
180         }
181
182         /* L4 Checksum */
183         if (likely(IS_L4_NONTUNNEL_PKT(flags))) {
184                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
185                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
186                 else
187                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
188         } else if (IS_L4_TUNNEL_PKT(flags)) {
189                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
190                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
191                 else
192                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
193                 if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
194                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
195                 } else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
196                                     (flags))) {
197                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
198                 } else {
199                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
200                 }
201         } else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
202                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
203         }
204 }
205
206 uint16_t
207 bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
208                    uint16_t nb_pkts)
209 {
210         struct bnxt_rx_queue *rxq = rx_queue;
211         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
212         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
213         uint32_t raw_cons = cpr->cp_raw_cons;
214         uint32_t cons;
215         int nb_rx_pkts = 0;
216         struct rx_pkt_cmpl *rxcmp;
217         bool evt = false;
218         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
219         const __m128i shuf_msk =
220                 _mm_set_epi8(15, 14, 13, 12,          /* rss */
221                              0xFF, 0xFF,              /* vlan_tci (zeroes) */
222                              3, 2,                    /* data_len */
223                              0xFF, 0xFF, 3, 2,        /* pkt_len */
224                              0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
225
226         /* If Rx Q was stopped return */
227         if (unlikely(!rxq->rx_started))
228                 return 0;
229
230         if (rxq->rxrearm_nb >= RTE_BNXT_RXQ_REARM_THRESH)
231                 bnxt_rxq_rearm(rxq, rxr);
232
233         /* Return no more than RTE_BNXT_MAX_RX_BURST per call. */
234         nb_pkts = RTE_MIN(nb_pkts, RTE_BNXT_MAX_RX_BURST);
235
236         /* Make nb_pkts an integer multiple of RTE_BNXT_DESCS_PER_LOOP */
237         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
238
239         /* Handle RX burst request */
240         while (1) {
241                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
242
243                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
244
245                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
246                         break;
247
248                 if (likely(CMP_TYPE(rxcmp) == RX_PKT_CMPL_TYPE_RX_L2)) {
249                         struct rx_pkt_cmpl_hi *rxcmp1;
250                         uint32_t tmp_raw_cons;
251                         uint16_t cp_cons;
252                         struct rte_mbuf *mbuf;
253                         __m128i mm_rxcmp, pkt_mb;
254
255                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
256                         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
257                         rxcmp1 = (struct rx_pkt_cmpl_hi *)
258                                                 &cpr->cp_desc_ring[cp_cons];
259
260                         if (!CMP_VALID(rxcmp1, tmp_raw_cons,
261                                        cpr->cp_ring_struct))
262                                 break;
263
264                         raw_cons = tmp_raw_cons;
265                         cons = rxcmp->opaque;
266
267                         mbuf = rxr->rx_buf_ring[cons].mbuf;
268                         rte_prefetch0(mbuf);
269                         rxr->rx_buf_ring[cons].mbuf = NULL;
270
271                         /* Set constant fields from mbuf initializer. */
272                         _mm_store_si128((__m128i *)&mbuf->rearm_data,
273                                         mbuf_init);
274
275                         /* Set mbuf pkt_len, data_len, and rss_hash fields. */
276                         mm_rxcmp = _mm_load_si128((__m128i *)rxcmp);
277                         pkt_mb = _mm_shuffle_epi8(mm_rxcmp, shuf_msk);
278                         _mm_storeu_si128((void *)&mbuf->rx_descriptor_fields1,
279                                          pkt_mb);
280
281                         rte_compiler_barrier();
282
283                         if (rxcmp->flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID)
284                                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
285
286                         if (rxcmp1->flags2 &
287                             RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
288                                 mbuf->vlan_tci = rxcmp1->metadata &
289                                         (RX_PKT_CMPL_METADATA_VID_MASK |
290                                         RX_PKT_CMPL_METADATA_DE |
291                                         RX_PKT_CMPL_METADATA_PRI_MASK);
292                                 mbuf->ol_flags |=
293                                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
294                         }
295
296                         bnxt_parse_csum(mbuf, rxcmp1);
297                         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
298
299                         rx_pkts[nb_rx_pkts++] = mbuf;
300                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
301                         evt =
302                         bnxt_event_hwrm_resp_handler(rxq->bp,
303                                                      (struct cmpl_base *)rxcmp);
304                 }
305
306                 raw_cons = NEXT_RAW_CMP(raw_cons);
307                 if (nb_rx_pkts == nb_pkts || evt)
308                         break;
309         }
310         rxr->rx_prod = RING_ADV(rxr->rx_ring_struct, rxr->rx_prod, nb_rx_pkts);
311
312         rxq->rxrearm_nb += nb_rx_pkts;
313         cpr->cp_raw_cons = raw_cons;
314         cpr->valid = !!(cpr->cp_raw_cons & cpr->cp_ring_struct->ring_size);
315         if (nb_rx_pkts || evt)
316                 bnxt_db_cq(cpr);
317
318         return nb_rx_pkts;
319 }
320
321 static void
322 bnxt_tx_cmp_vec(struct bnxt_tx_queue *txq, int nr_pkts)
323 {
324         struct bnxt_tx_ring_info *txr = txq->tx_ring;
325         struct rte_mbuf **free = txq->free;
326         uint16_t cons = txr->tx_cons;
327         unsigned int blk = 0;
328
329         while (nr_pkts--) {
330                 struct bnxt_sw_tx_bd *tx_buf;
331                 struct rte_mbuf *mbuf;
332
333                 tx_buf = &txr->tx_buf_ring[cons];
334                 cons = RING_NEXT(txr->tx_ring_struct, cons);
335                 mbuf = rte_pktmbuf_prefree_seg(tx_buf->mbuf);
336                 tx_buf->mbuf = NULL;
337
338                 if (blk && mbuf->pool != free[0]->pool) {
339                         rte_mempool_put_bulk(free[0]->pool, (void **)free, blk);
340                         blk = 0;
341                 }
342                 free[blk++] = mbuf;
343         }
344         if (blk)
345                 rte_mempool_put_bulk(free[0]->pool, (void **)free, blk);
346
347         txr->tx_cons = cons;
348 }
349
350 static void
351 bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
352 {
353         struct bnxt_cp_ring_info *cpr = txq->cp_ring;
354         uint32_t raw_cons = cpr->cp_raw_cons;
355         uint32_t cons;
356         uint32_t nb_tx_pkts = 0;
357         struct tx_cmpl *txcmp;
358         struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
359         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
360         uint32_t ring_mask = cp_ring_struct->ring_mask;
361
362         do {
363                 cons = RING_CMPL(ring_mask, raw_cons);
364                 txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
365
366                 if (!CMP_VALID(txcmp, raw_cons, cp_ring_struct))
367                         break;
368
369                 if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2))
370                         nb_tx_pkts += txcmp->opaque;
371                 else
372                         RTE_LOG_DP(ERR, PMD,
373                                    "Unhandled CMP type %02x\n",
374                                    CMP_TYPE(txcmp));
375                 raw_cons = NEXT_RAW_CMP(raw_cons);
376         } while (nb_tx_pkts < ring_mask);
377
378         cpr->valid = !!(raw_cons & cp_ring_struct->ring_size);
379         if (nb_tx_pkts) {
380                 bnxt_tx_cmp_vec(txq, nb_tx_pkts);
381                 cpr->cp_raw_cons = raw_cons;
382                 bnxt_db_cq(cpr);
383         }
384 }
385
386 #define TX_BD_FLAGS_CMPL ((1 << TX_BD_LONG_FLAGS_BD_CNT_SFT) | \
387                           TX_BD_SHORT_FLAGS_COAL_NOW | \
388                           TX_BD_SHORT_TYPE_TX_BD_SHORT | \
389                           TX_BD_LONG_FLAGS_PACKET_END)
390
391 #define TX_BD_FLAGS_NOCMPL (TX_BD_FLAGS_CMPL | TX_BD_LONG_FLAGS_NO_CMPL)
392
393 static inline uint32_t
394 bnxt_xmit_flags_len(uint16_t len, uint16_t flags)
395 {
396         switch (len >> 9) {
397         case 0:
398                 return flags | TX_BD_LONG_FLAGS_LHINT_LT512;
399         case 1:
400                 return flags | TX_BD_LONG_FLAGS_LHINT_LT1K;
401         case 2:
402                 return flags | TX_BD_LONG_FLAGS_LHINT_LT2K;
403         case 3:
404                 return flags | TX_BD_LONG_FLAGS_LHINT_LT2K;
405         default:
406                 return flags | TX_BD_LONG_FLAGS_LHINT_GTE2K;
407         }
408 }
409
410 static uint16_t
411 bnxt_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
412                           uint16_t nb_pkts)
413 {
414         struct bnxt_tx_queue *txq = tx_queue;
415         struct bnxt_tx_ring_info *txr = txq->tx_ring;
416         uint16_t prod = txr->tx_prod;
417         struct rte_mbuf *tx_mbuf;
418         struct tx_bd_long *txbd = NULL;
419         struct bnxt_sw_tx_bd *tx_buf;
420         uint16_t to_send;
421
422         nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
423
424         if (unlikely(nb_pkts == 0))
425                 return 0;
426
427         /* Handle TX burst request */
428         to_send = nb_pkts;
429         while (to_send) {
430                 tx_mbuf = *tx_pkts++;
431                 rte_prefetch0(tx_mbuf);
432
433                 tx_buf = &txr->tx_buf_ring[prod];
434                 tx_buf->mbuf = tx_mbuf;
435                 tx_buf->nr_bds = 1;
436
437                 txbd = &txr->tx_desc_ring[prod];
438                 txbd->address = tx_mbuf->buf_iova + tx_mbuf->data_off;
439                 txbd->len = tx_mbuf->data_len;
440                 txbd->flags_type = bnxt_xmit_flags_len(tx_mbuf->data_len,
441                                                        TX_BD_FLAGS_NOCMPL);
442                 prod = RING_NEXT(txr->tx_ring_struct, prod);
443                 to_send--;
444         }
445
446         /* Request a completion for last packet in burst */
447         if (txbd) {
448                 txbd->opaque = nb_pkts;
449                 txbd->flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
450         }
451
452         rte_compiler_barrier();
453         bnxt_db_write(&txr->tx_db, prod);
454
455         txr->tx_prod = prod;
456
457         return nb_pkts;
458 }
459
460 uint16_t
461 bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
462                    uint16_t nb_pkts)
463 {
464         int nb_sent = 0;
465         struct bnxt_tx_queue *txq = tx_queue;
466
467         /* Tx queue was stopped; wait for it to be restarted */
468         if (unlikely(!txq->tx_started)) {
469                 PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
470                 return 0;
471         }
472
473         /* Handle TX completions */
474         if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
475                 bnxt_handle_tx_cp_vec(txq);
476
477         while (nb_pkts) {
478                 uint16_t ret, num;
479
480                 num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
481                 ret = bnxt_xmit_fixed_burst_vec(tx_queue,
482                                                 &tx_pkts[nb_sent],
483                                                 num);
484                 nb_sent += ret;
485                 nb_pkts -= ret;
486                 if (ret < num)
487                         break;
488         }
489
490         return nb_sent;
491 }
492
493 int __attribute__((cold))
494 bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq)
495 {
496         uintptr_t p;
497         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
498
499         mb_def.nb_segs = 1;
500         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
501         mb_def.port = rxq->port_id;
502         rte_mbuf_refcnt_set(&mb_def, 1);
503
504         /* prevent compiler reordering: rearm_data covers previous fields */
505         rte_compiler_barrier();
506         p = (uintptr_t)&mb_def.rearm_data;
507         rxq->mbuf_initializer = *(uint64_t *)p;
508         rxq->rxrearm_nb = 0;
509         rxq->rxrearm_start = 0;
510         return 0;
511 }