net/cxgbe: track packets dropped by TP due to congestion
[dpdk.git] / drivers / net / cxgbe / base / t4_hw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <netinet/in.h>
7
8 #include <rte_interrupts.h>
9 #include <rte_log.h>
10 #include <rte_debug.h>
11 #include <rte_pci.h>
12 #include <rte_branch_prediction.h>
13 #include <rte_memory.h>
14 #include <rte_tailq.h>
15 #include <rte_eal.h>
16 #include <rte_alarm.h>
17 #include <rte_ether.h>
18 #include <ethdev_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_random.h>
21 #include <rte_dev.h>
22 #include <rte_byteorder.h>
23
24 #include "common.h"
25 #include "t4_regs.h"
26 #include "t4_regs_values.h"
27 #include "t4fw_interface.h"
28
29 /**
30  * t4_read_mtu_tbl - returns the values in the HW path MTU table
31  * @adap: the adapter
32  * @mtus: where to store the MTU values
33  * @mtu_log: where to store the MTU base-2 log (may be %NULL)
34  *
35  * Reads the HW path MTU table.
36  */
37 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
38 {
39         u32 v;
40         int i;
41
42         for (i = 0; i < NMTUS; ++i) {
43                 t4_write_reg(adap, A_TP_MTU_TABLE,
44                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
45                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
46                 mtus[i] = G_MTUVALUE(v);
47                 if (mtu_log)
48                         mtu_log[i] = G_MTUWIDTH(v);
49         }
50 }
51
52 /**
53  * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
54  * @adap: the adapter
55  * @addr: the indirect TP register address
56  * @mask: specifies the field within the register to modify
57  * @val: new value for the field
58  *
59  * Sets a field of an indirect TP register to the given value.
60  */
61 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
62                             unsigned int mask, unsigned int val)
63 {
64         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
65         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
66         t4_write_reg(adap, A_TP_PIO_DATA, val);
67 }
68
69 /* The minimum additive increment value for the congestion control table */
70 #define CC_MIN_INCR 2U
71
72 /**
73  * t4_load_mtus - write the MTU and congestion control HW tables
74  * @adap: the adapter
75  * @mtus: the values for the MTU table
76  * @alpha: the values for the congestion control alpha parameter
77  * @beta: the values for the congestion control beta parameter
78  *
79  * Write the HW MTU table with the supplied MTUs and the high-speed
80  * congestion control table with the supplied alpha, beta, and MTUs.
81  * We write the two tables together because the additive increments
82  * depend on the MTUs.
83  */
84 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
85                   const unsigned short *alpha, const unsigned short *beta)
86 {
87         static const unsigned int avg_pkts[NCCTRL_WIN] = {
88                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
89                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
90                 28672, 40960, 57344, 81920, 114688, 163840, 229376
91         };
92
93         unsigned int i, w;
94
95         for (i = 0; i < NMTUS; ++i) {
96                 unsigned int mtu = mtus[i];
97                 unsigned int log2 = cxgbe_fls(mtu);
98
99                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
100                         log2--;
101                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
102                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
103
104                 for (w = 0; w < NCCTRL_WIN; ++w) {
105                         unsigned int inc;
106
107                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
108                                   CC_MIN_INCR);
109
110                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
111                                      (w << 16) | (beta[w] << 13) | inc);
112                 }
113         }
114 }
115
116 /**
117  * t4_wait_op_done_val - wait until an operation is completed
118  * @adapter: the adapter performing the operation
119  * @reg: the register to check for completion
120  * @mask: a single-bit field within @reg that indicates completion
121  * @polarity: the value of the field when the operation is completed
122  * @attempts: number of check iterations
123  * @delay: delay in usecs between iterations
124  * @valp: where to store the value of the register at completion time
125  *
126  * Wait until an operation is completed by checking a bit in a register
127  * up to @attempts times.  If @valp is not NULL the value of the register
128  * at the time it indicated completion is stored there.  Returns 0 if the
129  * operation completes and -EAGAIN otherwise.
130  */
131 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
132                         int polarity, int attempts, int delay, u32 *valp)
133 {
134         while (1) {
135                 u32 val = t4_read_reg(adapter, reg);
136
137                 if (!!(val & mask) == polarity) {
138                         if (valp)
139                                 *valp = val;
140                         return 0;
141                 }
142                 if (--attempts == 0)
143                         return -EAGAIN;
144                 if (delay)
145                         udelay(delay);
146         }
147 }
148
149 /**
150  * t4_set_reg_field - set a register field to a value
151  * @adapter: the adapter to program
152  * @addr: the register address
153  * @mask: specifies the portion of the register to modify
154  * @val: the new value for the register field
155  *
156  * Sets a register field specified by the supplied mask to the
157  * given value.
158  */
159 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
160                       u32 val)
161 {
162         u32 v = t4_read_reg(adapter, addr) & ~mask;
163
164         t4_write_reg(adapter, addr, v | val);
165         (void)t4_read_reg(adapter, addr);      /* flush */
166 }
167
168 /**
169  * t4_read_indirect - read indirectly addressed registers
170  * @adap: the adapter
171  * @addr_reg: register holding the indirect address
172  * @data_reg: register holding the value of the indirect register
173  * @vals: where the read register values are stored
174  * @nregs: how many indirect registers to read
175  * @start_idx: index of first indirect register to read
176  *
177  * Reads registers that are accessed indirectly through an address/data
178  * register pair.
179  */
180 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
181                       unsigned int data_reg, u32 *vals, unsigned int nregs,
182                       unsigned int start_idx)
183 {
184         while (nregs--) {
185                 t4_write_reg(adap, addr_reg, start_idx);
186                 *vals++ = t4_read_reg(adap, data_reg);
187                 start_idx++;
188         }
189 }
190
191 /**
192  * t4_write_indirect - write indirectly addressed registers
193  * @adap: the adapter
194  * @addr_reg: register holding the indirect addresses
195  * @data_reg: register holding the value for the indirect registers
196  * @vals: values to write
197  * @nregs: how many indirect registers to write
198  * @start_idx: address of first indirect register to write
199  *
200  * Writes a sequential block of registers that are accessed indirectly
201  * through an address/data register pair.
202  */
203 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
204                        unsigned int data_reg, const u32 *vals,
205                        unsigned int nregs, unsigned int start_idx)
206 {
207         while (nregs--) {
208                 t4_write_reg(adap, addr_reg, start_idx++);
209                 t4_write_reg(adap, data_reg, *vals++);
210         }
211 }
212
213 /**
214  * t4_report_fw_error - report firmware error
215  * @adap: the adapter
216  *
217  * The adapter firmware can indicate error conditions to the host.
218  * If the firmware has indicated an error, print out the reason for
219  * the firmware error.
220  */
221 static void t4_report_fw_error(struct adapter *adap)
222 {
223         static const char * const reason[] = {
224                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
225                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
226                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
227                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
228                 "Unexpected Event",     /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
229                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
230                 "Device Shutdown",      /* PCIE_FW_EVAL_DEVICESHUTDOWN */
231                 "Reserved",                     /* reserved */
232         };
233         u32 pcie_fw;
234
235         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
236         if (pcie_fw & F_PCIE_FW_ERR)
237                 pr_err("%s: Firmware reports adapter error: %s\n",
238                        __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
239 }
240
241 /*
242  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
243  */
244 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
245                          u32 mbox_addr)
246 {
247         for ( ; nflit; nflit--, mbox_addr += 8)
248                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
249 }
250
251 /*
252  * Handle a FW assertion reported in a mailbox.
253  */
254 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
255 {
256         struct fw_debug_cmd asrt;
257
258         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
259         pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
260                 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
261                 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
262 }
263
264 #define X_CIM_PF_NOACCESS 0xeeeeeeee
265
266 /**
267  * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
268  * @adap: the adapter
269  * @mbox: index of the mailbox to use
270  * @cmd: the command to write
271  * @size: command length in bytes
272  * @rpl: where to optionally store the reply
273  * @sleep_ok: if true we may sleep while awaiting command completion
274  * @timeout: time to wait for command to finish before timing out
275  *           (negative implies @sleep_ok=false)
276  *
277  * Sends the given command to FW through the selected mailbox and waits
278  * for the FW to execute the command.  If @rpl is not %NULL it is used to
279  * store the FW's reply to the command.  The command and its optional
280  * reply are of the same length.  Some FW commands like RESET and
281  * INITIALIZE can take a considerable amount of time to execute.
282  * @sleep_ok determines whether we may sleep while awaiting the response.
283  * If sleeping is allowed we use progressive backoff otherwise we spin.
284  * Note that passing in a negative @timeout is an alternate mechanism
285  * for specifying @sleep_ok=false.  This is useful when a higher level
286  * interface allows for specification of @timeout but not @sleep_ok ...
287  *
288  * Returns 0 on success or a negative errno on failure.  A
289  * failure can happen either because we are not able to execute the
290  * command or FW executes it but signals an error.  In the latter case
291  * the return value is the error code indicated by FW (negated).
292  */
293 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
294                             const void __attribute__((__may_alias__)) *cmd,
295                             int size, void *rpl, bool sleep_ok, int timeout)
296 {
297         /*
298          * We delay in small increments at first in an effort to maintain
299          * responsiveness for simple, fast executing commands but then back
300          * off to larger delays to a maximum retry delay.
301          */
302         static const int delay[] = {
303                 1, 1, 3, 5, 10, 10, 20, 50, 100
304         };
305
306         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
307         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
308         struct mbox_entry *entry;
309         u32 v, ctl, pcie_fw = 0;
310         unsigned int delay_idx;
311         const __be64 *p;
312         int i, ms, ret;
313         u64 res;
314
315         if ((size & 15) != 0 || size > MBOX_LEN)
316                 return -EINVAL;
317
318         /*
319          * If we have a negative timeout, that implies that we can't sleep.
320          */
321         if (timeout < 0) {
322                 sleep_ok = false;
323                 timeout = -timeout;
324         }
325
326         entry = t4_os_alloc(sizeof(*entry));
327         if (entry == NULL)
328                 return -ENOMEM;
329
330         /*
331          * Queue ourselves onto the mailbox access list.  When our entry is at
332          * the front of the list, we have rights to access the mailbox.  So we
333          * wait [for a while] till we're at the front [or bail out with an
334          * EBUSY] ...
335          */
336         t4_os_atomic_add_tail(entry, &adap->mbox_list, &adap->mbox_lock);
337
338         delay_idx = 0;
339         ms = delay[0];
340
341         for (i = 0; ; i += ms) {
342                 /*
343                  * If we've waited too long, return a busy indication.  This
344                  * really ought to be based on our initial position in the
345                  * mailbox access list but this is a start.  We very rarely
346                  * contend on access to the mailbox ...  Also check for a
347                  * firmware error which we'll report as a device error.
348                  */
349                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
350                 if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
351                         t4_os_atomic_list_del(entry, &adap->mbox_list,
352                                               &adap->mbox_lock);
353                         t4_report_fw_error(adap);
354                         ret = ((pcie_fw & F_PCIE_FW_ERR) != 0) ? -ENXIO : -EBUSY;
355                         goto out_free;
356                 }
357
358                 /*
359                  * If we're at the head, break out and start the mailbox
360                  * protocol.
361                  */
362                 if (t4_os_list_first_entry(&adap->mbox_list) == entry)
363                         break;
364
365                 /*
366                  * Delay for a bit before checking again ...
367                  */
368                 if (sleep_ok) {
369                         ms = delay[delay_idx];  /* last element may repeat */
370                         if (delay_idx < ARRAY_SIZE(delay) - 1)
371                                 delay_idx++;
372                         msleep(ms);
373                 } else {
374                         rte_delay_ms(ms);
375                 }
376         }
377
378         /*
379          * Attempt to gain access to the mailbox.
380          */
381         for (i = 0; i < 4; i++) {
382                 ctl = t4_read_reg(adap, ctl_reg);
383                 v = G_MBOWNER(ctl);
384                 if (v != X_MBOWNER_NONE)
385                         break;
386         }
387
388         /*
389          * If we were unable to gain access, dequeue ourselves from the
390          * mailbox atomic access list and report the error to our caller.
391          */
392         if (v != X_MBOWNER_PL) {
393                 t4_os_atomic_list_del(entry, &adap->mbox_list,
394                                       &adap->mbox_lock);
395                 t4_report_fw_error(adap);
396                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
397                 goto out_free;
398         }
399
400         /*
401          * If we gain ownership of the mailbox and there's a "valid" message
402          * in it, this is likely an asynchronous error message from the
403          * firmware.  So we'll report that and then proceed on with attempting
404          * to issue our own command ... which may well fail if the error
405          * presaged the firmware crashing ...
406          */
407         if (ctl & F_MBMSGVALID) {
408                 dev_err(adap, "found VALID command in mbox %u: "
409                         "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
410                         (unsigned long long)t4_read_reg64(adap, data_reg),
411                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
412                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
413                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
414                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
415                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
416                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
417                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
418         }
419
420         /*
421          * Copy in the new mailbox command and send it on its way ...
422          */
423         for (i = 0, p = cmd; i < size; i += 8, p++)
424                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
425
426         CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
427                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
428                         (unsigned long long)t4_read_reg64(adap, data_reg),
429                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
430                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
431                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
432                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
433                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
434                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
435                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
436
437         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
438         t4_read_reg(adap, ctl_reg);          /* flush write */
439
440         delay_idx = 0;
441         ms = delay[0];
442
443         /*
444          * Loop waiting for the reply; bail out if we time out or the firmware
445          * reports an error.
446          */
447         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
448         for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
449                 if (sleep_ok) {
450                         ms = delay[delay_idx];  /* last element may repeat */
451                         if (delay_idx < ARRAY_SIZE(delay) - 1)
452                                 delay_idx++;
453                         msleep(ms);
454                 } else {
455                         msleep(ms);
456                 }
457
458                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
459                 v = t4_read_reg(adap, ctl_reg);
460                 if (v == X_CIM_PF_NOACCESS)
461                         continue;
462                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
463                         if (!(v & F_MBMSGVALID)) {
464                                 t4_write_reg(adap, ctl_reg,
465                                              V_MBOWNER(X_MBOWNER_NONE));
466                                 continue;
467                         }
468
469                         CXGBE_DEBUG_MBOX(adap,
470                         "%s: mbox %u: %016llx %016llx %016llx %016llx "
471                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
472                         (unsigned long long)t4_read_reg64(adap, data_reg),
473                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
474                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
475                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
476                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
477                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
478                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
479                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
480
481                         CXGBE_DEBUG_MBOX(adap,
482                                 "command %#x completed in %d ms (%ssleeping)\n",
483                                 *(const u8 *)cmd,
484                                 i + ms, sleep_ok ? "" : "non-");
485
486                         res = t4_read_reg64(adap, data_reg);
487                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
488                                 fw_asrt(adap, data_reg);
489                                 res = V_FW_CMD_RETVAL(EIO);
490                         } else if (rpl) {
491                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
492                         }
493                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
494                         t4_os_atomic_list_del(entry, &adap->mbox_list,
495                                               &adap->mbox_lock);
496                         ret = -G_FW_CMD_RETVAL((int)res);
497                         goto out_free;
498                 }
499         }
500
501         /*
502          * We timed out waiting for a reply to our mailbox command.  Report
503          * the error and also check to see if the firmware reported any
504          * errors ...
505          */
506         dev_err(adap, "command %#x in mailbox %d timed out\n",
507                 *(const u8 *)cmd, mbox);
508         t4_os_atomic_list_del(entry, &adap->mbox_list, &adap->mbox_lock);
509         t4_report_fw_error(adap);
510         ret = ((pcie_fw & F_PCIE_FW_ERR) != 0) ? -ENXIO : -ETIMEDOUT;
511
512 out_free:
513         t4_os_free(entry);
514         return ret;
515 }
516
517 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
518                     void *rpl, bool sleep_ok)
519 {
520         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
521                                        FW_CMD_MAX_TIMEOUT);
522 }
523
524 /**
525  * t4_get_regs_len - return the size of the chips register set
526  * @adapter: the adapter
527  *
528  * Returns the size of the chip's BAR0 register space.
529  */
530 unsigned int t4_get_regs_len(struct adapter *adapter)
531 {
532         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
533
534         switch (chip_version) {
535         case CHELSIO_T5:
536         case CHELSIO_T6:
537                 return T5_REGMAP_SIZE;
538         }
539
540         dev_err(adapter,
541                 "Unsupported chip version %d\n", chip_version);
542         return 0;
543 }
544
545 /**
546  * t4_get_regs - read chip registers into provided buffer
547  * @adap: the adapter
548  * @buf: register buffer
549  * @buf_size: size (in bytes) of register buffer
550  *
551  * If the provided register buffer isn't large enough for the chip's
552  * full register range, the register dump will be truncated to the
553  * register buffer's size.
554  */
555 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
556 {
557         static const unsigned int t5_reg_ranges[] = {
558                 0x1008, 0x10c0,
559                 0x10cc, 0x10f8,
560                 0x1100, 0x1100,
561                 0x110c, 0x1148,
562                 0x1180, 0x1184,
563                 0x1190, 0x1194,
564                 0x11a0, 0x11a4,
565                 0x11b0, 0x11b4,
566                 0x11fc, 0x123c,
567                 0x1280, 0x173c,
568                 0x1800, 0x18fc,
569                 0x3000, 0x3028,
570                 0x3060, 0x30b0,
571                 0x30b8, 0x30d8,
572                 0x30e0, 0x30fc,
573                 0x3140, 0x357c,
574                 0x35a8, 0x35cc,
575                 0x35ec, 0x35ec,
576                 0x3600, 0x5624,
577                 0x56cc, 0x56ec,
578                 0x56f4, 0x5720,
579                 0x5728, 0x575c,
580                 0x580c, 0x5814,
581                 0x5890, 0x589c,
582                 0x58a4, 0x58ac,
583                 0x58b8, 0x58bc,
584                 0x5940, 0x59c8,
585                 0x59d0, 0x59dc,
586                 0x59fc, 0x5a18,
587                 0x5a60, 0x5a70,
588                 0x5a80, 0x5a9c,
589                 0x5b94, 0x5bfc,
590                 0x6000, 0x6020,
591                 0x6028, 0x6040,
592                 0x6058, 0x609c,
593                 0x60a8, 0x614c,
594                 0x7700, 0x7798,
595                 0x77c0, 0x78fc,
596                 0x7b00, 0x7b58,
597                 0x7b60, 0x7b84,
598                 0x7b8c, 0x7c54,
599                 0x7d00, 0x7d38,
600                 0x7d40, 0x7d80,
601                 0x7d8c, 0x7ddc,
602                 0x7de4, 0x7e04,
603                 0x7e10, 0x7e1c,
604                 0x7e24, 0x7e38,
605                 0x7e40, 0x7e44,
606                 0x7e4c, 0x7e78,
607                 0x7e80, 0x7edc,
608                 0x7ee8, 0x7efc,
609                 0x8dc0, 0x8de0,
610                 0x8df8, 0x8e04,
611                 0x8e10, 0x8e84,
612                 0x8ea0, 0x8f84,
613                 0x8fc0, 0x9058,
614                 0x9060, 0x9060,
615                 0x9068, 0x90f8,
616                 0x9400, 0x9408,
617                 0x9410, 0x9470,
618                 0x9600, 0x9600,
619                 0x9608, 0x9638,
620                 0x9640, 0x96f4,
621                 0x9800, 0x9808,
622                 0x9820, 0x983c,
623                 0x9850, 0x9864,
624                 0x9c00, 0x9c6c,
625                 0x9c80, 0x9cec,
626                 0x9d00, 0x9d6c,
627                 0x9d80, 0x9dec,
628                 0x9e00, 0x9e6c,
629                 0x9e80, 0x9eec,
630                 0x9f00, 0x9f6c,
631                 0x9f80, 0xa020,
632                 0xd004, 0xd004,
633                 0xd010, 0xd03c,
634                 0xdfc0, 0xdfe0,
635                 0xe000, 0x1106c,
636                 0x11074, 0x11088,
637                 0x1109c, 0x1117c,
638                 0x11190, 0x11204,
639                 0x19040, 0x1906c,
640                 0x19078, 0x19080,
641                 0x1908c, 0x190e8,
642                 0x190f0, 0x190f8,
643                 0x19100, 0x19110,
644                 0x19120, 0x19124,
645                 0x19150, 0x19194,
646                 0x1919c, 0x191b0,
647                 0x191d0, 0x191e8,
648                 0x19238, 0x19290,
649                 0x193f8, 0x19428,
650                 0x19430, 0x19444,
651                 0x1944c, 0x1946c,
652                 0x19474, 0x19474,
653                 0x19490, 0x194cc,
654                 0x194f0, 0x194f8,
655                 0x19c00, 0x19c08,
656                 0x19c10, 0x19c60,
657                 0x19c94, 0x19ce4,
658                 0x19cf0, 0x19d40,
659                 0x19d50, 0x19d94,
660                 0x19da0, 0x19de8,
661                 0x19df0, 0x19e10,
662                 0x19e50, 0x19e90,
663                 0x19ea0, 0x19f24,
664                 0x19f34, 0x19f34,
665                 0x19f40, 0x19f50,
666                 0x19f90, 0x19fb4,
667                 0x19fc4, 0x19fe4,
668                 0x1a000, 0x1a004,
669                 0x1a010, 0x1a06c,
670                 0x1a0b0, 0x1a0e4,
671                 0x1a0ec, 0x1a0f8,
672                 0x1a100, 0x1a108,
673                 0x1a114, 0x1a120,
674                 0x1a128, 0x1a130,
675                 0x1a138, 0x1a138,
676                 0x1a190, 0x1a1c4,
677                 0x1a1fc, 0x1a1fc,
678                 0x1e008, 0x1e00c,
679                 0x1e040, 0x1e044,
680                 0x1e04c, 0x1e04c,
681                 0x1e284, 0x1e290,
682                 0x1e2c0, 0x1e2c0,
683                 0x1e2e0, 0x1e2e0,
684                 0x1e300, 0x1e384,
685                 0x1e3c0, 0x1e3c8,
686                 0x1e408, 0x1e40c,
687                 0x1e440, 0x1e444,
688                 0x1e44c, 0x1e44c,
689                 0x1e684, 0x1e690,
690                 0x1e6c0, 0x1e6c0,
691                 0x1e6e0, 0x1e6e0,
692                 0x1e700, 0x1e784,
693                 0x1e7c0, 0x1e7c8,
694                 0x1e808, 0x1e80c,
695                 0x1e840, 0x1e844,
696                 0x1e84c, 0x1e84c,
697                 0x1ea84, 0x1ea90,
698                 0x1eac0, 0x1eac0,
699                 0x1eae0, 0x1eae0,
700                 0x1eb00, 0x1eb84,
701                 0x1ebc0, 0x1ebc8,
702                 0x1ec08, 0x1ec0c,
703                 0x1ec40, 0x1ec44,
704                 0x1ec4c, 0x1ec4c,
705                 0x1ee84, 0x1ee90,
706                 0x1eec0, 0x1eec0,
707                 0x1eee0, 0x1eee0,
708                 0x1ef00, 0x1ef84,
709                 0x1efc0, 0x1efc8,
710                 0x1f008, 0x1f00c,
711                 0x1f040, 0x1f044,
712                 0x1f04c, 0x1f04c,
713                 0x1f284, 0x1f290,
714                 0x1f2c0, 0x1f2c0,
715                 0x1f2e0, 0x1f2e0,
716                 0x1f300, 0x1f384,
717                 0x1f3c0, 0x1f3c8,
718                 0x1f408, 0x1f40c,
719                 0x1f440, 0x1f444,
720                 0x1f44c, 0x1f44c,
721                 0x1f684, 0x1f690,
722                 0x1f6c0, 0x1f6c0,
723                 0x1f6e0, 0x1f6e0,
724                 0x1f700, 0x1f784,
725                 0x1f7c0, 0x1f7c8,
726                 0x1f808, 0x1f80c,
727                 0x1f840, 0x1f844,
728                 0x1f84c, 0x1f84c,
729                 0x1fa84, 0x1fa90,
730                 0x1fac0, 0x1fac0,
731                 0x1fae0, 0x1fae0,
732                 0x1fb00, 0x1fb84,
733                 0x1fbc0, 0x1fbc8,
734                 0x1fc08, 0x1fc0c,
735                 0x1fc40, 0x1fc44,
736                 0x1fc4c, 0x1fc4c,
737                 0x1fe84, 0x1fe90,
738                 0x1fec0, 0x1fec0,
739                 0x1fee0, 0x1fee0,
740                 0x1ff00, 0x1ff84,
741                 0x1ffc0, 0x1ffc8,
742                 0x30000, 0x30030,
743                 0x30038, 0x30038,
744                 0x30040, 0x30040,
745                 0x30100, 0x30144,
746                 0x30190, 0x301a0,
747                 0x301a8, 0x301b8,
748                 0x301c4, 0x301c8,
749                 0x301d0, 0x301d0,
750                 0x30200, 0x30318,
751                 0x30400, 0x304b4,
752                 0x304c0, 0x3052c,
753                 0x30540, 0x3061c,
754                 0x30800, 0x30828,
755                 0x30834, 0x30834,
756                 0x308c0, 0x30908,
757                 0x30910, 0x309ac,
758                 0x30a00, 0x30a14,
759                 0x30a1c, 0x30a2c,
760                 0x30a44, 0x30a50,
761                 0x30a74, 0x30a74,
762                 0x30a7c, 0x30afc,
763                 0x30b08, 0x30c24,
764                 0x30d00, 0x30d00,
765                 0x30d08, 0x30d14,
766                 0x30d1c, 0x30d20,
767                 0x30d3c, 0x30d3c,
768                 0x30d48, 0x30d50,
769                 0x31200, 0x3120c,
770                 0x31220, 0x31220,
771                 0x31240, 0x31240,
772                 0x31600, 0x3160c,
773                 0x31a00, 0x31a1c,
774                 0x31e00, 0x31e20,
775                 0x31e38, 0x31e3c,
776                 0x31e80, 0x31e80,
777                 0x31e88, 0x31ea8,
778                 0x31eb0, 0x31eb4,
779                 0x31ec8, 0x31ed4,
780                 0x31fb8, 0x32004,
781                 0x32200, 0x32200,
782                 0x32208, 0x32240,
783                 0x32248, 0x32280,
784                 0x32288, 0x322c0,
785                 0x322c8, 0x322fc,
786                 0x32600, 0x32630,
787                 0x32a00, 0x32abc,
788                 0x32b00, 0x32b10,
789                 0x32b20, 0x32b30,
790                 0x32b40, 0x32b50,
791                 0x32b60, 0x32b70,
792                 0x33000, 0x33028,
793                 0x33030, 0x33048,
794                 0x33060, 0x33068,
795                 0x33070, 0x3309c,
796                 0x330f0, 0x33128,
797                 0x33130, 0x33148,
798                 0x33160, 0x33168,
799                 0x33170, 0x3319c,
800                 0x331f0, 0x33238,
801                 0x33240, 0x33240,
802                 0x33248, 0x33250,
803                 0x3325c, 0x33264,
804                 0x33270, 0x332b8,
805                 0x332c0, 0x332e4,
806                 0x332f8, 0x33338,
807                 0x33340, 0x33340,
808                 0x33348, 0x33350,
809                 0x3335c, 0x33364,
810                 0x33370, 0x333b8,
811                 0x333c0, 0x333e4,
812                 0x333f8, 0x33428,
813                 0x33430, 0x33448,
814                 0x33460, 0x33468,
815                 0x33470, 0x3349c,
816                 0x334f0, 0x33528,
817                 0x33530, 0x33548,
818                 0x33560, 0x33568,
819                 0x33570, 0x3359c,
820                 0x335f0, 0x33638,
821                 0x33640, 0x33640,
822                 0x33648, 0x33650,
823                 0x3365c, 0x33664,
824                 0x33670, 0x336b8,
825                 0x336c0, 0x336e4,
826                 0x336f8, 0x33738,
827                 0x33740, 0x33740,
828                 0x33748, 0x33750,
829                 0x3375c, 0x33764,
830                 0x33770, 0x337b8,
831                 0x337c0, 0x337e4,
832                 0x337f8, 0x337fc,
833                 0x33814, 0x33814,
834                 0x3382c, 0x3382c,
835                 0x33880, 0x3388c,
836                 0x338e8, 0x338ec,
837                 0x33900, 0x33928,
838                 0x33930, 0x33948,
839                 0x33960, 0x33968,
840                 0x33970, 0x3399c,
841                 0x339f0, 0x33a38,
842                 0x33a40, 0x33a40,
843                 0x33a48, 0x33a50,
844                 0x33a5c, 0x33a64,
845                 0x33a70, 0x33ab8,
846                 0x33ac0, 0x33ae4,
847                 0x33af8, 0x33b10,
848                 0x33b28, 0x33b28,
849                 0x33b3c, 0x33b50,
850                 0x33bf0, 0x33c10,
851                 0x33c28, 0x33c28,
852                 0x33c3c, 0x33c50,
853                 0x33cf0, 0x33cfc,
854                 0x34000, 0x34030,
855                 0x34038, 0x34038,
856                 0x34040, 0x34040,
857                 0x34100, 0x34144,
858                 0x34190, 0x341a0,
859                 0x341a8, 0x341b8,
860                 0x341c4, 0x341c8,
861                 0x341d0, 0x341d0,
862                 0x34200, 0x34318,
863                 0x34400, 0x344b4,
864                 0x344c0, 0x3452c,
865                 0x34540, 0x3461c,
866                 0x34800, 0x34828,
867                 0x34834, 0x34834,
868                 0x348c0, 0x34908,
869                 0x34910, 0x349ac,
870                 0x34a00, 0x34a14,
871                 0x34a1c, 0x34a2c,
872                 0x34a44, 0x34a50,
873                 0x34a74, 0x34a74,
874                 0x34a7c, 0x34afc,
875                 0x34b08, 0x34c24,
876                 0x34d00, 0x34d00,
877                 0x34d08, 0x34d14,
878                 0x34d1c, 0x34d20,
879                 0x34d3c, 0x34d3c,
880                 0x34d48, 0x34d50,
881                 0x35200, 0x3520c,
882                 0x35220, 0x35220,
883                 0x35240, 0x35240,
884                 0x35600, 0x3560c,
885                 0x35a00, 0x35a1c,
886                 0x35e00, 0x35e20,
887                 0x35e38, 0x35e3c,
888                 0x35e80, 0x35e80,
889                 0x35e88, 0x35ea8,
890                 0x35eb0, 0x35eb4,
891                 0x35ec8, 0x35ed4,
892                 0x35fb8, 0x36004,
893                 0x36200, 0x36200,
894                 0x36208, 0x36240,
895                 0x36248, 0x36280,
896                 0x36288, 0x362c0,
897                 0x362c8, 0x362fc,
898                 0x36600, 0x36630,
899                 0x36a00, 0x36abc,
900                 0x36b00, 0x36b10,
901                 0x36b20, 0x36b30,
902                 0x36b40, 0x36b50,
903                 0x36b60, 0x36b70,
904                 0x37000, 0x37028,
905                 0x37030, 0x37048,
906                 0x37060, 0x37068,
907                 0x37070, 0x3709c,
908                 0x370f0, 0x37128,
909                 0x37130, 0x37148,
910                 0x37160, 0x37168,
911                 0x37170, 0x3719c,
912                 0x371f0, 0x37238,
913                 0x37240, 0x37240,
914                 0x37248, 0x37250,
915                 0x3725c, 0x37264,
916                 0x37270, 0x372b8,
917                 0x372c0, 0x372e4,
918                 0x372f8, 0x37338,
919                 0x37340, 0x37340,
920                 0x37348, 0x37350,
921                 0x3735c, 0x37364,
922                 0x37370, 0x373b8,
923                 0x373c0, 0x373e4,
924                 0x373f8, 0x37428,
925                 0x37430, 0x37448,
926                 0x37460, 0x37468,
927                 0x37470, 0x3749c,
928                 0x374f0, 0x37528,
929                 0x37530, 0x37548,
930                 0x37560, 0x37568,
931                 0x37570, 0x3759c,
932                 0x375f0, 0x37638,
933                 0x37640, 0x37640,
934                 0x37648, 0x37650,
935                 0x3765c, 0x37664,
936                 0x37670, 0x376b8,
937                 0x376c0, 0x376e4,
938                 0x376f8, 0x37738,
939                 0x37740, 0x37740,
940                 0x37748, 0x37750,
941                 0x3775c, 0x37764,
942                 0x37770, 0x377b8,
943                 0x377c0, 0x377e4,
944                 0x377f8, 0x377fc,
945                 0x37814, 0x37814,
946                 0x3782c, 0x3782c,
947                 0x37880, 0x3788c,
948                 0x378e8, 0x378ec,
949                 0x37900, 0x37928,
950                 0x37930, 0x37948,
951                 0x37960, 0x37968,
952                 0x37970, 0x3799c,
953                 0x379f0, 0x37a38,
954                 0x37a40, 0x37a40,
955                 0x37a48, 0x37a50,
956                 0x37a5c, 0x37a64,
957                 0x37a70, 0x37ab8,
958                 0x37ac0, 0x37ae4,
959                 0x37af8, 0x37b10,
960                 0x37b28, 0x37b28,
961                 0x37b3c, 0x37b50,
962                 0x37bf0, 0x37c10,
963                 0x37c28, 0x37c28,
964                 0x37c3c, 0x37c50,
965                 0x37cf0, 0x37cfc,
966                 0x38000, 0x38030,
967                 0x38038, 0x38038,
968                 0x38040, 0x38040,
969                 0x38100, 0x38144,
970                 0x38190, 0x381a0,
971                 0x381a8, 0x381b8,
972                 0x381c4, 0x381c8,
973                 0x381d0, 0x381d0,
974                 0x38200, 0x38318,
975                 0x38400, 0x384b4,
976                 0x384c0, 0x3852c,
977                 0x38540, 0x3861c,
978                 0x38800, 0x38828,
979                 0x38834, 0x38834,
980                 0x388c0, 0x38908,
981                 0x38910, 0x389ac,
982                 0x38a00, 0x38a14,
983                 0x38a1c, 0x38a2c,
984                 0x38a44, 0x38a50,
985                 0x38a74, 0x38a74,
986                 0x38a7c, 0x38afc,
987                 0x38b08, 0x38c24,
988                 0x38d00, 0x38d00,
989                 0x38d08, 0x38d14,
990                 0x38d1c, 0x38d20,
991                 0x38d3c, 0x38d3c,
992                 0x38d48, 0x38d50,
993                 0x39200, 0x3920c,
994                 0x39220, 0x39220,
995                 0x39240, 0x39240,
996                 0x39600, 0x3960c,
997                 0x39a00, 0x39a1c,
998                 0x39e00, 0x39e20,
999                 0x39e38, 0x39e3c,
1000                 0x39e80, 0x39e80,
1001                 0x39e88, 0x39ea8,
1002                 0x39eb0, 0x39eb4,
1003                 0x39ec8, 0x39ed4,
1004                 0x39fb8, 0x3a004,
1005                 0x3a200, 0x3a200,
1006                 0x3a208, 0x3a240,
1007                 0x3a248, 0x3a280,
1008                 0x3a288, 0x3a2c0,
1009                 0x3a2c8, 0x3a2fc,
1010                 0x3a600, 0x3a630,
1011                 0x3aa00, 0x3aabc,
1012                 0x3ab00, 0x3ab10,
1013                 0x3ab20, 0x3ab30,
1014                 0x3ab40, 0x3ab50,
1015                 0x3ab60, 0x3ab70,
1016                 0x3b000, 0x3b028,
1017                 0x3b030, 0x3b048,
1018                 0x3b060, 0x3b068,
1019                 0x3b070, 0x3b09c,
1020                 0x3b0f0, 0x3b128,
1021                 0x3b130, 0x3b148,
1022                 0x3b160, 0x3b168,
1023                 0x3b170, 0x3b19c,
1024                 0x3b1f0, 0x3b238,
1025                 0x3b240, 0x3b240,
1026                 0x3b248, 0x3b250,
1027                 0x3b25c, 0x3b264,
1028                 0x3b270, 0x3b2b8,
1029                 0x3b2c0, 0x3b2e4,
1030                 0x3b2f8, 0x3b338,
1031                 0x3b340, 0x3b340,
1032                 0x3b348, 0x3b350,
1033                 0x3b35c, 0x3b364,
1034                 0x3b370, 0x3b3b8,
1035                 0x3b3c0, 0x3b3e4,
1036                 0x3b3f8, 0x3b428,
1037                 0x3b430, 0x3b448,
1038                 0x3b460, 0x3b468,
1039                 0x3b470, 0x3b49c,
1040                 0x3b4f0, 0x3b528,
1041                 0x3b530, 0x3b548,
1042                 0x3b560, 0x3b568,
1043                 0x3b570, 0x3b59c,
1044                 0x3b5f0, 0x3b638,
1045                 0x3b640, 0x3b640,
1046                 0x3b648, 0x3b650,
1047                 0x3b65c, 0x3b664,
1048                 0x3b670, 0x3b6b8,
1049                 0x3b6c0, 0x3b6e4,
1050                 0x3b6f8, 0x3b738,
1051                 0x3b740, 0x3b740,
1052                 0x3b748, 0x3b750,
1053                 0x3b75c, 0x3b764,
1054                 0x3b770, 0x3b7b8,
1055                 0x3b7c0, 0x3b7e4,
1056                 0x3b7f8, 0x3b7fc,
1057                 0x3b814, 0x3b814,
1058                 0x3b82c, 0x3b82c,
1059                 0x3b880, 0x3b88c,
1060                 0x3b8e8, 0x3b8ec,
1061                 0x3b900, 0x3b928,
1062                 0x3b930, 0x3b948,
1063                 0x3b960, 0x3b968,
1064                 0x3b970, 0x3b99c,
1065                 0x3b9f0, 0x3ba38,
1066                 0x3ba40, 0x3ba40,
1067                 0x3ba48, 0x3ba50,
1068                 0x3ba5c, 0x3ba64,
1069                 0x3ba70, 0x3bab8,
1070                 0x3bac0, 0x3bae4,
1071                 0x3baf8, 0x3bb10,
1072                 0x3bb28, 0x3bb28,
1073                 0x3bb3c, 0x3bb50,
1074                 0x3bbf0, 0x3bc10,
1075                 0x3bc28, 0x3bc28,
1076                 0x3bc3c, 0x3bc50,
1077                 0x3bcf0, 0x3bcfc,
1078                 0x3c000, 0x3c030,
1079                 0x3c038, 0x3c038,
1080                 0x3c040, 0x3c040,
1081                 0x3c100, 0x3c144,
1082                 0x3c190, 0x3c1a0,
1083                 0x3c1a8, 0x3c1b8,
1084                 0x3c1c4, 0x3c1c8,
1085                 0x3c1d0, 0x3c1d0,
1086                 0x3c200, 0x3c318,
1087                 0x3c400, 0x3c4b4,
1088                 0x3c4c0, 0x3c52c,
1089                 0x3c540, 0x3c61c,
1090                 0x3c800, 0x3c828,
1091                 0x3c834, 0x3c834,
1092                 0x3c8c0, 0x3c908,
1093                 0x3c910, 0x3c9ac,
1094                 0x3ca00, 0x3ca14,
1095                 0x3ca1c, 0x3ca2c,
1096                 0x3ca44, 0x3ca50,
1097                 0x3ca74, 0x3ca74,
1098                 0x3ca7c, 0x3cafc,
1099                 0x3cb08, 0x3cc24,
1100                 0x3cd00, 0x3cd00,
1101                 0x3cd08, 0x3cd14,
1102                 0x3cd1c, 0x3cd20,
1103                 0x3cd3c, 0x3cd3c,
1104                 0x3cd48, 0x3cd50,
1105                 0x3d200, 0x3d20c,
1106                 0x3d220, 0x3d220,
1107                 0x3d240, 0x3d240,
1108                 0x3d600, 0x3d60c,
1109                 0x3da00, 0x3da1c,
1110                 0x3de00, 0x3de20,
1111                 0x3de38, 0x3de3c,
1112                 0x3de80, 0x3de80,
1113                 0x3de88, 0x3dea8,
1114                 0x3deb0, 0x3deb4,
1115                 0x3dec8, 0x3ded4,
1116                 0x3dfb8, 0x3e004,
1117                 0x3e200, 0x3e200,
1118                 0x3e208, 0x3e240,
1119                 0x3e248, 0x3e280,
1120                 0x3e288, 0x3e2c0,
1121                 0x3e2c8, 0x3e2fc,
1122                 0x3e600, 0x3e630,
1123                 0x3ea00, 0x3eabc,
1124                 0x3eb00, 0x3eb10,
1125                 0x3eb20, 0x3eb30,
1126                 0x3eb40, 0x3eb50,
1127                 0x3eb60, 0x3eb70,
1128                 0x3f000, 0x3f028,
1129                 0x3f030, 0x3f048,
1130                 0x3f060, 0x3f068,
1131                 0x3f070, 0x3f09c,
1132                 0x3f0f0, 0x3f128,
1133                 0x3f130, 0x3f148,
1134                 0x3f160, 0x3f168,
1135                 0x3f170, 0x3f19c,
1136                 0x3f1f0, 0x3f238,
1137                 0x3f240, 0x3f240,
1138                 0x3f248, 0x3f250,
1139                 0x3f25c, 0x3f264,
1140                 0x3f270, 0x3f2b8,
1141                 0x3f2c0, 0x3f2e4,
1142                 0x3f2f8, 0x3f338,
1143                 0x3f340, 0x3f340,
1144                 0x3f348, 0x3f350,
1145                 0x3f35c, 0x3f364,
1146                 0x3f370, 0x3f3b8,
1147                 0x3f3c0, 0x3f3e4,
1148                 0x3f3f8, 0x3f428,
1149                 0x3f430, 0x3f448,
1150                 0x3f460, 0x3f468,
1151                 0x3f470, 0x3f49c,
1152                 0x3f4f0, 0x3f528,
1153                 0x3f530, 0x3f548,
1154                 0x3f560, 0x3f568,
1155                 0x3f570, 0x3f59c,
1156                 0x3f5f0, 0x3f638,
1157                 0x3f640, 0x3f640,
1158                 0x3f648, 0x3f650,
1159                 0x3f65c, 0x3f664,
1160                 0x3f670, 0x3f6b8,
1161                 0x3f6c0, 0x3f6e4,
1162                 0x3f6f8, 0x3f738,
1163                 0x3f740, 0x3f740,
1164                 0x3f748, 0x3f750,
1165                 0x3f75c, 0x3f764,
1166                 0x3f770, 0x3f7b8,
1167                 0x3f7c0, 0x3f7e4,
1168                 0x3f7f8, 0x3f7fc,
1169                 0x3f814, 0x3f814,
1170                 0x3f82c, 0x3f82c,
1171                 0x3f880, 0x3f88c,
1172                 0x3f8e8, 0x3f8ec,
1173                 0x3f900, 0x3f928,
1174                 0x3f930, 0x3f948,
1175                 0x3f960, 0x3f968,
1176                 0x3f970, 0x3f99c,
1177                 0x3f9f0, 0x3fa38,
1178                 0x3fa40, 0x3fa40,
1179                 0x3fa48, 0x3fa50,
1180                 0x3fa5c, 0x3fa64,
1181                 0x3fa70, 0x3fab8,
1182                 0x3fac0, 0x3fae4,
1183                 0x3faf8, 0x3fb10,
1184                 0x3fb28, 0x3fb28,
1185                 0x3fb3c, 0x3fb50,
1186                 0x3fbf0, 0x3fc10,
1187                 0x3fc28, 0x3fc28,
1188                 0x3fc3c, 0x3fc50,
1189                 0x3fcf0, 0x3fcfc,
1190                 0x40000, 0x4000c,
1191                 0x40040, 0x40050,
1192                 0x40060, 0x40068,
1193                 0x4007c, 0x4008c,
1194                 0x40094, 0x400b0,
1195                 0x400c0, 0x40144,
1196                 0x40180, 0x4018c,
1197                 0x40200, 0x40254,
1198                 0x40260, 0x40264,
1199                 0x40270, 0x40288,
1200                 0x40290, 0x40298,
1201                 0x402ac, 0x402c8,
1202                 0x402d0, 0x402e0,
1203                 0x402f0, 0x402f0,
1204                 0x40300, 0x4033c,
1205                 0x403f8, 0x403fc,
1206                 0x41304, 0x413c4,
1207                 0x41400, 0x4140c,
1208                 0x41414, 0x4141c,
1209                 0x41480, 0x414d0,
1210                 0x44000, 0x44054,
1211                 0x4405c, 0x44078,
1212                 0x440c0, 0x44174,
1213                 0x44180, 0x441ac,
1214                 0x441b4, 0x441b8,
1215                 0x441c0, 0x44254,
1216                 0x4425c, 0x44278,
1217                 0x442c0, 0x44374,
1218                 0x44380, 0x443ac,
1219                 0x443b4, 0x443b8,
1220                 0x443c0, 0x44454,
1221                 0x4445c, 0x44478,
1222                 0x444c0, 0x44574,
1223                 0x44580, 0x445ac,
1224                 0x445b4, 0x445b8,
1225                 0x445c0, 0x44654,
1226                 0x4465c, 0x44678,
1227                 0x446c0, 0x44774,
1228                 0x44780, 0x447ac,
1229                 0x447b4, 0x447b8,
1230                 0x447c0, 0x44854,
1231                 0x4485c, 0x44878,
1232                 0x448c0, 0x44974,
1233                 0x44980, 0x449ac,
1234                 0x449b4, 0x449b8,
1235                 0x449c0, 0x449fc,
1236                 0x45000, 0x45004,
1237                 0x45010, 0x45030,
1238                 0x45040, 0x45060,
1239                 0x45068, 0x45068,
1240                 0x45080, 0x45084,
1241                 0x450a0, 0x450b0,
1242                 0x45200, 0x45204,
1243                 0x45210, 0x45230,
1244                 0x45240, 0x45260,
1245                 0x45268, 0x45268,
1246                 0x45280, 0x45284,
1247                 0x452a0, 0x452b0,
1248                 0x460c0, 0x460e4,
1249                 0x47000, 0x4703c,
1250                 0x47044, 0x4708c,
1251                 0x47200, 0x47250,
1252                 0x47400, 0x47408,
1253                 0x47414, 0x47420,
1254                 0x47600, 0x47618,
1255                 0x47800, 0x47814,
1256                 0x48000, 0x4800c,
1257                 0x48040, 0x48050,
1258                 0x48060, 0x48068,
1259                 0x4807c, 0x4808c,
1260                 0x48094, 0x480b0,
1261                 0x480c0, 0x48144,
1262                 0x48180, 0x4818c,
1263                 0x48200, 0x48254,
1264                 0x48260, 0x48264,
1265                 0x48270, 0x48288,
1266                 0x48290, 0x48298,
1267                 0x482ac, 0x482c8,
1268                 0x482d0, 0x482e0,
1269                 0x482f0, 0x482f0,
1270                 0x48300, 0x4833c,
1271                 0x483f8, 0x483fc,
1272                 0x49304, 0x493c4,
1273                 0x49400, 0x4940c,
1274                 0x49414, 0x4941c,
1275                 0x49480, 0x494d0,
1276                 0x4c000, 0x4c054,
1277                 0x4c05c, 0x4c078,
1278                 0x4c0c0, 0x4c174,
1279                 0x4c180, 0x4c1ac,
1280                 0x4c1b4, 0x4c1b8,
1281                 0x4c1c0, 0x4c254,
1282                 0x4c25c, 0x4c278,
1283                 0x4c2c0, 0x4c374,
1284                 0x4c380, 0x4c3ac,
1285                 0x4c3b4, 0x4c3b8,
1286                 0x4c3c0, 0x4c454,
1287                 0x4c45c, 0x4c478,
1288                 0x4c4c0, 0x4c574,
1289                 0x4c580, 0x4c5ac,
1290                 0x4c5b4, 0x4c5b8,
1291                 0x4c5c0, 0x4c654,
1292                 0x4c65c, 0x4c678,
1293                 0x4c6c0, 0x4c774,
1294                 0x4c780, 0x4c7ac,
1295                 0x4c7b4, 0x4c7b8,
1296                 0x4c7c0, 0x4c854,
1297                 0x4c85c, 0x4c878,
1298                 0x4c8c0, 0x4c974,
1299                 0x4c980, 0x4c9ac,
1300                 0x4c9b4, 0x4c9b8,
1301                 0x4c9c0, 0x4c9fc,
1302                 0x4d000, 0x4d004,
1303                 0x4d010, 0x4d030,
1304                 0x4d040, 0x4d060,
1305                 0x4d068, 0x4d068,
1306                 0x4d080, 0x4d084,
1307                 0x4d0a0, 0x4d0b0,
1308                 0x4d200, 0x4d204,
1309                 0x4d210, 0x4d230,
1310                 0x4d240, 0x4d260,
1311                 0x4d268, 0x4d268,
1312                 0x4d280, 0x4d284,
1313                 0x4d2a0, 0x4d2b0,
1314                 0x4e0c0, 0x4e0e4,
1315                 0x4f000, 0x4f03c,
1316                 0x4f044, 0x4f08c,
1317                 0x4f200, 0x4f250,
1318                 0x4f400, 0x4f408,
1319                 0x4f414, 0x4f420,
1320                 0x4f600, 0x4f618,
1321                 0x4f800, 0x4f814,
1322                 0x50000, 0x50084,
1323                 0x50090, 0x500cc,
1324                 0x50400, 0x50400,
1325                 0x50800, 0x50884,
1326                 0x50890, 0x508cc,
1327                 0x50c00, 0x50c00,
1328                 0x51000, 0x5101c,
1329                 0x51300, 0x51308,
1330         };
1331
1332         static const unsigned int t6_reg_ranges[] = {
1333                 0x1008, 0x101c,
1334                 0x1024, 0x10a8,
1335                 0x10b4, 0x10f8,
1336                 0x1100, 0x1114,
1337                 0x111c, 0x112c,
1338                 0x1138, 0x113c,
1339                 0x1144, 0x114c,
1340                 0x1180, 0x1184,
1341                 0x1190, 0x1194,
1342                 0x11a0, 0x11a4,
1343                 0x11b0, 0x11b4,
1344                 0x11fc, 0x1274,
1345                 0x1280, 0x133c,
1346                 0x1800, 0x18fc,
1347                 0x3000, 0x302c,
1348                 0x3060, 0x30b0,
1349                 0x30b8, 0x30d8,
1350                 0x30e0, 0x30fc,
1351                 0x3140, 0x357c,
1352                 0x35a8, 0x35cc,
1353                 0x35ec, 0x35ec,
1354                 0x3600, 0x5624,
1355                 0x56cc, 0x56ec,
1356                 0x56f4, 0x5720,
1357                 0x5728, 0x575c,
1358                 0x580c, 0x5814,
1359                 0x5890, 0x589c,
1360                 0x58a4, 0x58ac,
1361                 0x58b8, 0x58bc,
1362                 0x5940, 0x595c,
1363                 0x5980, 0x598c,
1364                 0x59b0, 0x59c8,
1365                 0x59d0, 0x59dc,
1366                 0x59fc, 0x5a18,
1367                 0x5a60, 0x5a6c,
1368                 0x5a80, 0x5a8c,
1369                 0x5a94, 0x5a9c,
1370                 0x5b94, 0x5bfc,
1371                 0x5c10, 0x5e48,
1372                 0x5e50, 0x5e94,
1373                 0x5ea0, 0x5eb0,
1374                 0x5ec0, 0x5ec0,
1375                 0x5ec8, 0x5ed0,
1376                 0x5ee0, 0x5ee0,
1377                 0x5ef0, 0x5ef0,
1378                 0x5f00, 0x5f00,
1379                 0x6000, 0x6020,
1380                 0x6028, 0x6040,
1381                 0x6058, 0x609c,
1382                 0x60a8, 0x619c,
1383                 0x7700, 0x7798,
1384                 0x77c0, 0x7880,
1385                 0x78cc, 0x78fc,
1386                 0x7b00, 0x7b58,
1387                 0x7b60, 0x7b84,
1388                 0x7b8c, 0x7c54,
1389                 0x7d00, 0x7d38,
1390                 0x7d40, 0x7d84,
1391                 0x7d8c, 0x7ddc,
1392                 0x7de4, 0x7e04,
1393                 0x7e10, 0x7e1c,
1394                 0x7e24, 0x7e38,
1395                 0x7e40, 0x7e44,
1396                 0x7e4c, 0x7e78,
1397                 0x7e80, 0x7edc,
1398                 0x7ee8, 0x7efc,
1399                 0x8dc0, 0x8de4,
1400                 0x8df8, 0x8e04,
1401                 0x8e10, 0x8e84,
1402                 0x8ea0, 0x8f88,
1403                 0x8fb8, 0x9058,
1404                 0x9060, 0x9060,
1405                 0x9068, 0x90f8,
1406                 0x9100, 0x9124,
1407                 0x9400, 0x9470,
1408                 0x9600, 0x9600,
1409                 0x9608, 0x9638,
1410                 0x9640, 0x9704,
1411                 0x9710, 0x971c,
1412                 0x9800, 0x9808,
1413                 0x9820, 0x983c,
1414                 0x9850, 0x9864,
1415                 0x9c00, 0x9c6c,
1416                 0x9c80, 0x9cec,
1417                 0x9d00, 0x9d6c,
1418                 0x9d80, 0x9dec,
1419                 0x9e00, 0x9e6c,
1420                 0x9e80, 0x9eec,
1421                 0x9f00, 0x9f6c,
1422                 0x9f80, 0xa020,
1423                 0xd004, 0xd03c,
1424                 0xd100, 0xd118,
1425                 0xd200, 0xd214,
1426                 0xd220, 0xd234,
1427                 0xd240, 0xd254,
1428                 0xd260, 0xd274,
1429                 0xd280, 0xd294,
1430                 0xd2a0, 0xd2b4,
1431                 0xd2c0, 0xd2d4,
1432                 0xd2e0, 0xd2f4,
1433                 0xd300, 0xd31c,
1434                 0xdfc0, 0xdfe0,
1435                 0xe000, 0xf008,
1436                 0xf010, 0xf018,
1437                 0xf020, 0xf028,
1438                 0x11000, 0x11014,
1439                 0x11048, 0x1106c,
1440                 0x11074, 0x11088,
1441                 0x11098, 0x11120,
1442                 0x1112c, 0x1117c,
1443                 0x11190, 0x112e0,
1444                 0x11300, 0x1130c,
1445                 0x12000, 0x1206c,
1446                 0x19040, 0x1906c,
1447                 0x19078, 0x19080,
1448                 0x1908c, 0x190e8,
1449                 0x190f0, 0x190f8,
1450                 0x19100, 0x19110,
1451                 0x19120, 0x19124,
1452                 0x19150, 0x19194,
1453                 0x1919c, 0x191b0,
1454                 0x191d0, 0x191e8,
1455                 0x19238, 0x19290,
1456                 0x192a4, 0x192b0,
1457                 0x192bc, 0x192bc,
1458                 0x19348, 0x1934c,
1459                 0x193f8, 0x19418,
1460                 0x19420, 0x19428,
1461                 0x19430, 0x19444,
1462                 0x1944c, 0x1946c,
1463                 0x19474, 0x19474,
1464                 0x19490, 0x194cc,
1465                 0x194f0, 0x194f8,
1466                 0x19c00, 0x19c48,
1467                 0x19c50, 0x19c80,
1468                 0x19c94, 0x19c98,
1469                 0x19ca0, 0x19cbc,
1470                 0x19ce4, 0x19ce4,
1471                 0x19cf0, 0x19cf8,
1472                 0x19d00, 0x19d28,
1473                 0x19d50, 0x19d78,
1474                 0x19d94, 0x19d98,
1475                 0x19da0, 0x19dc8,
1476                 0x19df0, 0x19e10,
1477                 0x19e50, 0x19e6c,
1478                 0x19ea0, 0x19ebc,
1479                 0x19ec4, 0x19ef4,
1480                 0x19f04, 0x19f2c,
1481                 0x19f34, 0x19f34,
1482                 0x19f40, 0x19f50,
1483                 0x19f90, 0x19fac,
1484                 0x19fc4, 0x19fc8,
1485                 0x19fd0, 0x19fe4,
1486                 0x1a000, 0x1a004,
1487                 0x1a010, 0x1a06c,
1488                 0x1a0b0, 0x1a0e4,
1489                 0x1a0ec, 0x1a0f8,
1490                 0x1a100, 0x1a108,
1491                 0x1a114, 0x1a120,
1492                 0x1a128, 0x1a130,
1493                 0x1a138, 0x1a138,
1494                 0x1a190, 0x1a1c4,
1495                 0x1a1fc, 0x1a1fc,
1496                 0x1e008, 0x1e00c,
1497                 0x1e040, 0x1e044,
1498                 0x1e04c, 0x1e04c,
1499                 0x1e284, 0x1e290,
1500                 0x1e2c0, 0x1e2c0,
1501                 0x1e2e0, 0x1e2e0,
1502                 0x1e300, 0x1e384,
1503                 0x1e3c0, 0x1e3c8,
1504                 0x1e408, 0x1e40c,
1505                 0x1e440, 0x1e444,
1506                 0x1e44c, 0x1e44c,
1507                 0x1e684, 0x1e690,
1508                 0x1e6c0, 0x1e6c0,
1509                 0x1e6e0, 0x1e6e0,
1510                 0x1e700, 0x1e784,
1511                 0x1e7c0, 0x1e7c8,
1512                 0x1e808, 0x1e80c,
1513                 0x1e840, 0x1e844,
1514                 0x1e84c, 0x1e84c,
1515                 0x1ea84, 0x1ea90,
1516                 0x1eac0, 0x1eac0,
1517                 0x1eae0, 0x1eae0,
1518                 0x1eb00, 0x1eb84,
1519                 0x1ebc0, 0x1ebc8,
1520                 0x1ec08, 0x1ec0c,
1521                 0x1ec40, 0x1ec44,
1522                 0x1ec4c, 0x1ec4c,
1523                 0x1ee84, 0x1ee90,
1524                 0x1eec0, 0x1eec0,
1525                 0x1eee0, 0x1eee0,
1526                 0x1ef00, 0x1ef84,
1527                 0x1efc0, 0x1efc8,
1528                 0x1f008, 0x1f00c,
1529                 0x1f040, 0x1f044,
1530                 0x1f04c, 0x1f04c,
1531                 0x1f284, 0x1f290,
1532                 0x1f2c0, 0x1f2c0,
1533                 0x1f2e0, 0x1f2e0,
1534                 0x1f300, 0x1f384,
1535                 0x1f3c0, 0x1f3c8,
1536                 0x1f408, 0x1f40c,
1537                 0x1f440, 0x1f444,
1538                 0x1f44c, 0x1f44c,
1539                 0x1f684, 0x1f690,
1540                 0x1f6c0, 0x1f6c0,
1541                 0x1f6e0, 0x1f6e0,
1542                 0x1f700, 0x1f784,
1543                 0x1f7c0, 0x1f7c8,
1544                 0x1f808, 0x1f80c,
1545                 0x1f840, 0x1f844,
1546                 0x1f84c, 0x1f84c,
1547                 0x1fa84, 0x1fa90,
1548                 0x1fac0, 0x1fac0,
1549                 0x1fae0, 0x1fae0,
1550                 0x1fb00, 0x1fb84,
1551                 0x1fbc0, 0x1fbc8,
1552                 0x1fc08, 0x1fc0c,
1553                 0x1fc40, 0x1fc44,
1554                 0x1fc4c, 0x1fc4c,
1555                 0x1fe84, 0x1fe90,
1556                 0x1fec0, 0x1fec0,
1557                 0x1fee0, 0x1fee0,
1558                 0x1ff00, 0x1ff84,
1559                 0x1ffc0, 0x1ffc8,
1560                 0x30000, 0x30030,
1561                 0x30100, 0x30168,
1562                 0x30190, 0x301a0,
1563                 0x301a8, 0x301b8,
1564                 0x301c4, 0x301c8,
1565                 0x301d0, 0x301d0,
1566                 0x30200, 0x30320,
1567                 0x30400, 0x304b4,
1568                 0x304c0, 0x3052c,
1569                 0x30540, 0x3061c,
1570                 0x30800, 0x308a0,
1571                 0x308c0, 0x30908,
1572                 0x30910, 0x309b8,
1573                 0x30a00, 0x30a04,
1574                 0x30a0c, 0x30a14,
1575                 0x30a1c, 0x30a2c,
1576                 0x30a44, 0x30a50,
1577                 0x30a74, 0x30a74,
1578                 0x30a7c, 0x30afc,
1579                 0x30b08, 0x30c24,
1580                 0x30d00, 0x30d14,
1581                 0x30d1c, 0x30d3c,
1582                 0x30d44, 0x30d4c,
1583                 0x30d54, 0x30d74,
1584                 0x30d7c, 0x30d7c,
1585                 0x30de0, 0x30de0,
1586                 0x30e00, 0x30ed4,
1587                 0x30f00, 0x30fa4,
1588                 0x30fc0, 0x30fc4,
1589                 0x31000, 0x31004,
1590                 0x31080, 0x310fc,
1591                 0x31208, 0x31220,
1592                 0x3123c, 0x31254,
1593                 0x31300, 0x31300,
1594                 0x31308, 0x3131c,
1595                 0x31338, 0x3133c,
1596                 0x31380, 0x31380,
1597                 0x31388, 0x313a8,
1598                 0x313b4, 0x313b4,
1599                 0x31400, 0x31420,
1600                 0x31438, 0x3143c,
1601                 0x31480, 0x31480,
1602                 0x314a8, 0x314a8,
1603                 0x314b0, 0x314b4,
1604                 0x314c8, 0x314d4,
1605                 0x31a40, 0x31a4c,
1606                 0x31af0, 0x31b20,
1607                 0x31b38, 0x31b3c,
1608                 0x31b80, 0x31b80,
1609                 0x31ba8, 0x31ba8,
1610                 0x31bb0, 0x31bb4,
1611                 0x31bc8, 0x31bd4,
1612                 0x32140, 0x3218c,
1613                 0x321f0, 0x321f4,
1614                 0x32200, 0x32200,
1615                 0x32218, 0x32218,
1616                 0x32400, 0x32400,
1617                 0x32408, 0x3241c,
1618                 0x32618, 0x32620,
1619                 0x32664, 0x32664,
1620                 0x326a8, 0x326a8,
1621                 0x326ec, 0x326ec,
1622                 0x32a00, 0x32abc,
1623                 0x32b00, 0x32b38,
1624                 0x32b20, 0x32b38,
1625                 0x32b40, 0x32b58,
1626                 0x32b60, 0x32b78,
1627                 0x32c00, 0x32c00,
1628                 0x32c08, 0x32c3c,
1629                 0x33000, 0x3302c,
1630                 0x33034, 0x33050,
1631                 0x33058, 0x33058,
1632                 0x33060, 0x3308c,
1633                 0x3309c, 0x330ac,
1634                 0x330c0, 0x330c0,
1635                 0x330c8, 0x330d0,
1636                 0x330d8, 0x330e0,
1637                 0x330ec, 0x3312c,
1638                 0x33134, 0x33150,
1639                 0x33158, 0x33158,
1640                 0x33160, 0x3318c,
1641                 0x3319c, 0x331ac,
1642                 0x331c0, 0x331c0,
1643                 0x331c8, 0x331d0,
1644                 0x331d8, 0x331e0,
1645                 0x331ec, 0x33290,
1646                 0x33298, 0x332c4,
1647                 0x332e4, 0x33390,
1648                 0x33398, 0x333c4,
1649                 0x333e4, 0x3342c,
1650                 0x33434, 0x33450,
1651                 0x33458, 0x33458,
1652                 0x33460, 0x3348c,
1653                 0x3349c, 0x334ac,
1654                 0x334c0, 0x334c0,
1655                 0x334c8, 0x334d0,
1656                 0x334d8, 0x334e0,
1657                 0x334ec, 0x3352c,
1658                 0x33534, 0x33550,
1659                 0x33558, 0x33558,
1660                 0x33560, 0x3358c,
1661                 0x3359c, 0x335ac,
1662                 0x335c0, 0x335c0,
1663                 0x335c8, 0x335d0,
1664                 0x335d8, 0x335e0,
1665                 0x335ec, 0x33690,
1666                 0x33698, 0x336c4,
1667                 0x336e4, 0x33790,
1668                 0x33798, 0x337c4,
1669                 0x337e4, 0x337fc,
1670                 0x33814, 0x33814,
1671                 0x33854, 0x33868,
1672                 0x33880, 0x3388c,
1673                 0x338c0, 0x338d0,
1674                 0x338e8, 0x338ec,
1675                 0x33900, 0x3392c,
1676                 0x33934, 0x33950,
1677                 0x33958, 0x33958,
1678                 0x33960, 0x3398c,
1679                 0x3399c, 0x339ac,
1680                 0x339c0, 0x339c0,
1681                 0x339c8, 0x339d0,
1682                 0x339d8, 0x339e0,
1683                 0x339ec, 0x33a90,
1684                 0x33a98, 0x33ac4,
1685                 0x33ae4, 0x33b10,
1686                 0x33b24, 0x33b28,
1687                 0x33b38, 0x33b50,
1688                 0x33bf0, 0x33c10,
1689                 0x33c24, 0x33c28,
1690                 0x33c38, 0x33c50,
1691                 0x33cf0, 0x33cfc,
1692                 0x34000, 0x34030,
1693                 0x34100, 0x34168,
1694                 0x34190, 0x341a0,
1695                 0x341a8, 0x341b8,
1696                 0x341c4, 0x341c8,
1697                 0x341d0, 0x341d0,
1698                 0x34200, 0x34320,
1699                 0x34400, 0x344b4,
1700                 0x344c0, 0x3452c,
1701                 0x34540, 0x3461c,
1702                 0x34800, 0x348a0,
1703                 0x348c0, 0x34908,
1704                 0x34910, 0x349b8,
1705                 0x34a00, 0x34a04,
1706                 0x34a0c, 0x34a14,
1707                 0x34a1c, 0x34a2c,
1708                 0x34a44, 0x34a50,
1709                 0x34a74, 0x34a74,
1710                 0x34a7c, 0x34afc,
1711                 0x34b08, 0x34c24,
1712                 0x34d00, 0x34d14,
1713                 0x34d1c, 0x34d3c,
1714                 0x34d44, 0x34d4c,
1715                 0x34d54, 0x34d74,
1716                 0x34d7c, 0x34d7c,
1717                 0x34de0, 0x34de0,
1718                 0x34e00, 0x34ed4,
1719                 0x34f00, 0x34fa4,
1720                 0x34fc0, 0x34fc4,
1721                 0x35000, 0x35004,
1722                 0x35080, 0x350fc,
1723                 0x35208, 0x35220,
1724                 0x3523c, 0x35254,
1725                 0x35300, 0x35300,
1726                 0x35308, 0x3531c,
1727                 0x35338, 0x3533c,
1728                 0x35380, 0x35380,
1729                 0x35388, 0x353a8,
1730                 0x353b4, 0x353b4,
1731                 0x35400, 0x35420,
1732                 0x35438, 0x3543c,
1733                 0x35480, 0x35480,
1734                 0x354a8, 0x354a8,
1735                 0x354b0, 0x354b4,
1736                 0x354c8, 0x354d4,
1737                 0x35a40, 0x35a4c,
1738                 0x35af0, 0x35b20,
1739                 0x35b38, 0x35b3c,
1740                 0x35b80, 0x35b80,
1741                 0x35ba8, 0x35ba8,
1742                 0x35bb0, 0x35bb4,
1743                 0x35bc8, 0x35bd4,
1744                 0x36140, 0x3618c,
1745                 0x361f0, 0x361f4,
1746                 0x36200, 0x36200,
1747                 0x36218, 0x36218,
1748                 0x36400, 0x36400,
1749                 0x36408, 0x3641c,
1750                 0x36618, 0x36620,
1751                 0x36664, 0x36664,
1752                 0x366a8, 0x366a8,
1753                 0x366ec, 0x366ec,
1754                 0x36a00, 0x36abc,
1755                 0x36b00, 0x36b38,
1756                 0x36b20, 0x36b38,
1757                 0x36b40, 0x36b58,
1758                 0x36b60, 0x36b78,
1759                 0x36c00, 0x36c00,
1760                 0x36c08, 0x36c3c,
1761                 0x37000, 0x3702c,
1762                 0x37034, 0x37050,
1763                 0x37058, 0x37058,
1764                 0x37060, 0x3708c,
1765                 0x3709c, 0x370ac,
1766                 0x370c0, 0x370c0,
1767                 0x370c8, 0x370d0,
1768                 0x370d8, 0x370e0,
1769                 0x370ec, 0x3712c,
1770                 0x37134, 0x37150,
1771                 0x37158, 0x37158,
1772                 0x37160, 0x3718c,
1773                 0x3719c, 0x371ac,
1774                 0x371c0, 0x371c0,
1775                 0x371c8, 0x371d0,
1776                 0x371d8, 0x371e0,
1777                 0x371ec, 0x37290,
1778                 0x37298, 0x372c4,
1779                 0x372e4, 0x37390,
1780                 0x37398, 0x373c4,
1781                 0x373e4, 0x3742c,
1782                 0x37434, 0x37450,
1783                 0x37458, 0x37458,
1784                 0x37460, 0x3748c,
1785                 0x3749c, 0x374ac,
1786                 0x374c0, 0x374c0,
1787                 0x374c8, 0x374d0,
1788                 0x374d8, 0x374e0,
1789                 0x374ec, 0x3752c,
1790                 0x37534, 0x37550,
1791                 0x37558, 0x37558,
1792                 0x37560, 0x3758c,
1793                 0x3759c, 0x375ac,
1794                 0x375c0, 0x375c0,
1795                 0x375c8, 0x375d0,
1796                 0x375d8, 0x375e0,
1797                 0x375ec, 0x37690,
1798                 0x37698, 0x376c4,
1799                 0x376e4, 0x37790,
1800                 0x37798, 0x377c4,
1801                 0x377e4, 0x377fc,
1802                 0x37814, 0x37814,
1803                 0x37854, 0x37868,
1804                 0x37880, 0x3788c,
1805                 0x378c0, 0x378d0,
1806                 0x378e8, 0x378ec,
1807                 0x37900, 0x3792c,
1808                 0x37934, 0x37950,
1809                 0x37958, 0x37958,
1810                 0x37960, 0x3798c,
1811                 0x3799c, 0x379ac,
1812                 0x379c0, 0x379c0,
1813                 0x379c8, 0x379d0,
1814                 0x379d8, 0x379e0,
1815                 0x379ec, 0x37a90,
1816                 0x37a98, 0x37ac4,
1817                 0x37ae4, 0x37b10,
1818                 0x37b24, 0x37b28,
1819                 0x37b38, 0x37b50,
1820                 0x37bf0, 0x37c10,
1821                 0x37c24, 0x37c28,
1822                 0x37c38, 0x37c50,
1823                 0x37cf0, 0x37cfc,
1824                 0x40040, 0x40040,
1825                 0x40080, 0x40084,
1826                 0x40100, 0x40100,
1827                 0x40140, 0x401bc,
1828                 0x40200, 0x40214,
1829                 0x40228, 0x40228,
1830                 0x40240, 0x40258,
1831                 0x40280, 0x40280,
1832                 0x40304, 0x40304,
1833                 0x40330, 0x4033c,
1834                 0x41304, 0x413c8,
1835                 0x413d0, 0x413dc,
1836                 0x413f0, 0x413f0,
1837                 0x41400, 0x4140c,
1838                 0x41414, 0x4141c,
1839                 0x41480, 0x414d0,
1840                 0x44000, 0x4407c,
1841                 0x440c0, 0x441ac,
1842                 0x441b4, 0x4427c,
1843                 0x442c0, 0x443ac,
1844                 0x443b4, 0x4447c,
1845                 0x444c0, 0x445ac,
1846                 0x445b4, 0x4467c,
1847                 0x446c0, 0x447ac,
1848                 0x447b4, 0x4487c,
1849                 0x448c0, 0x449ac,
1850                 0x449b4, 0x44a7c,
1851                 0x44ac0, 0x44bac,
1852                 0x44bb4, 0x44c7c,
1853                 0x44cc0, 0x44dac,
1854                 0x44db4, 0x44e7c,
1855                 0x44ec0, 0x44fac,
1856                 0x44fb4, 0x4507c,
1857                 0x450c0, 0x451ac,
1858                 0x451b4, 0x451fc,
1859                 0x45800, 0x45804,
1860                 0x45810, 0x45830,
1861                 0x45840, 0x45860,
1862                 0x45868, 0x45868,
1863                 0x45880, 0x45884,
1864                 0x458a0, 0x458b0,
1865                 0x45a00, 0x45a04,
1866                 0x45a10, 0x45a30,
1867                 0x45a40, 0x45a60,
1868                 0x45a68, 0x45a68,
1869                 0x45a80, 0x45a84,
1870                 0x45aa0, 0x45ab0,
1871                 0x460c0, 0x460e4,
1872                 0x47000, 0x4703c,
1873                 0x47044, 0x4708c,
1874                 0x47200, 0x47250,
1875                 0x47400, 0x47408,
1876                 0x47414, 0x47420,
1877                 0x47600, 0x47618,
1878                 0x47800, 0x47814,
1879                 0x47820, 0x4782c,
1880                 0x50000, 0x50084,
1881                 0x50090, 0x500cc,
1882                 0x50300, 0x50384,
1883                 0x50400, 0x50400,
1884                 0x50800, 0x50884,
1885                 0x50890, 0x508cc,
1886                 0x50b00, 0x50b84,
1887                 0x50c00, 0x50c00,
1888                 0x51000, 0x51020,
1889                 0x51028, 0x510b0,
1890                 0x51300, 0x51324,
1891         };
1892
1893         u32 *buf_end = (u32 *)((char *)buf + buf_size);
1894         const unsigned int *reg_ranges;
1895         int reg_ranges_size, range;
1896         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1897
1898         /* Select the right set of register ranges to dump depending on the
1899          * adapter chip type.
1900          */
1901         switch (chip_version) {
1902         case CHELSIO_T5:
1903                 reg_ranges = t5_reg_ranges;
1904                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1905                 break;
1906
1907         case CHELSIO_T6:
1908                 reg_ranges = t6_reg_ranges;
1909                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1910                 break;
1911
1912         default:
1913                 dev_err(adap,
1914                         "Unsupported chip version %d\n", chip_version);
1915                 return;
1916         }
1917
1918         /* Clear the register buffer and insert the appropriate register
1919          * values selected by the above register ranges.
1920          */
1921         memset(buf, 0, buf_size);
1922         for (range = 0; range < reg_ranges_size; range += 2) {
1923                 unsigned int reg = reg_ranges[range];
1924                 unsigned int last_reg = reg_ranges[range + 1];
1925                 u32 *bufp = (u32 *)((char *)buf + reg);
1926
1927                 /* Iterate across the register range filling in the register
1928                  * buffer but don't write past the end of the register buffer.
1929                  */
1930                 while (reg <= last_reg && bufp < buf_end) {
1931                         *bufp++ = t4_read_reg(adap, reg);
1932                         reg += sizeof(u32);
1933                 }
1934         }
1935 }
1936
1937 /* EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */
1938 #define EEPROM_DELAY            10              /* 10us per poll spin */
1939 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
1940
1941 #define EEPROM_STAT_ADDR        0x7bfc
1942
1943 /**
1944  * Small utility function to wait till any outstanding VPD Access is complete.
1945  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
1946  * VPD Access in flight.  This allows us to handle the problem of having a
1947  * previous VPD Access time out and prevent an attempt to inject a new VPD
1948  * Request before any in-flight VPD request has completed.
1949  */
1950 static int t4_seeprom_wait(struct adapter *adapter)
1951 {
1952         unsigned int base = adapter->params.pci.vpd_cap_addr;
1953         int max_poll;
1954
1955         /* If no VPD Access is in flight, we can just return success right
1956          * away.
1957          */
1958         if (!adapter->vpd_busy)
1959                 return 0;
1960
1961         /* Poll the VPD Capability Address/Flag register waiting for it
1962          * to indicate that the operation is complete.
1963          */
1964         max_poll = EEPROM_MAX_POLL;
1965         do {
1966                 u16 val;
1967
1968                 udelay(EEPROM_DELAY);
1969                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
1970
1971                 /* If the operation is complete, mark the VPD as no longer
1972                  * busy and return success.
1973                  */
1974                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
1975                         adapter->vpd_busy = 0;
1976                         return 0;
1977                 }
1978         } while (--max_poll);
1979
1980         /* Failure!  Note that we leave the VPD Busy status set in order to
1981          * avoid pushing a new VPD Access request into the VPD Capability till
1982          * the current operation eventually succeeds.  It's a bug to issue a
1983          * new request when an existing request is in flight and will result
1984          * in corrupt hardware state.
1985          */
1986         return -ETIMEDOUT;
1987 }
1988
1989 /**
1990  * t4_seeprom_read - read a serial EEPROM location
1991  * @adapter: adapter to read
1992  * @addr: EEPROM virtual address
1993  * @data: where to store the read data
1994  *
1995  * Read a 32-bit word from a location in serial EEPROM using the card's PCI
1996  * VPD capability.  Note that this function must be called with a virtual
1997  * address.
1998  */
1999 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2000 {
2001         unsigned int base = adapter->params.pci.vpd_cap_addr;
2002         int ret;
2003
2004         /* VPD Accesses must alway be 4-byte aligned!
2005          */
2006         if (addr >= EEPROMVSIZE || (addr & 3))
2007                 return -EINVAL;
2008
2009         /* Wait for any previous operation which may still be in flight to
2010          * complete.
2011          */
2012         ret = t4_seeprom_wait(adapter);
2013         if (ret) {
2014                 dev_err(adapter, "VPD still busy from previous operation\n");
2015                 return ret;
2016         }
2017
2018         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2019          * for our request to complete.  If it doesn't complete, note the
2020          * error and return it to our caller.  Note that we do not reset the
2021          * VPD Busy status!
2022          */
2023         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2024         adapter->vpd_busy = 1;
2025         adapter->vpd_flag = PCI_VPD_ADDR_F;
2026         ret = t4_seeprom_wait(adapter);
2027         if (ret) {
2028                 dev_err(adapter, "VPD read of address %#x failed\n", addr);
2029                 return ret;
2030         }
2031
2032         /* Grab the returned data, swizzle it into our endianness and
2033          * return success.
2034          */
2035         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2036         *data = le32_to_cpu(*data);
2037         return 0;
2038 }
2039
2040 /**
2041  * t4_seeprom_write - write a serial EEPROM location
2042  * @adapter: adapter to write
2043  * @addr: virtual EEPROM address
2044  * @data: value to write
2045  *
2046  * Write a 32-bit word to a location in serial EEPROM using the card's PCI
2047  * VPD capability.  Note that this function must be called with a virtual
2048  * address.
2049  */
2050 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2051 {
2052         unsigned int base = adapter->params.pci.vpd_cap_addr;
2053         int ret;
2054         u32 stats_reg = 0;
2055         int max_poll;
2056
2057         /* VPD Accesses must alway be 4-byte aligned!
2058          */
2059         if (addr >= EEPROMVSIZE || (addr & 3))
2060                 return -EINVAL;
2061
2062         /* Wait for any previous operation which may still be in flight to
2063          * complete.
2064          */
2065         ret = t4_seeprom_wait(adapter);
2066         if (ret) {
2067                 dev_err(adapter, "VPD still busy from previous operation\n");
2068                 return ret;
2069         }
2070
2071         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2072          * for our request to complete.  If it doesn't complete, note the
2073          * error and return it to our caller.  Note that we do not reset the
2074          * VPD Busy status!
2075          */
2076         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2077                              cpu_to_le32(data));
2078         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2079                              (u16)addr | PCI_VPD_ADDR_F);
2080         adapter->vpd_busy = 1;
2081         adapter->vpd_flag = 0;
2082         ret = t4_seeprom_wait(adapter);
2083         if (ret) {
2084                 dev_err(adapter, "VPD write of address %#x failed\n", addr);
2085                 return ret;
2086         }
2087
2088         /* Reset PCI_VPD_DATA register after a transaction and wait for our
2089          * request to complete. If it doesn't complete, return error.
2090          */
2091         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2092         max_poll = EEPROM_MAX_POLL;
2093         do {
2094                 udelay(EEPROM_DELAY);
2095                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2096         } while ((stats_reg & 0x1) && --max_poll);
2097         if (!max_poll)
2098                 return -ETIMEDOUT;
2099
2100         /* Return success! */
2101         return 0;
2102 }
2103
2104 /**
2105  * t4_seeprom_wp - enable/disable EEPROM write protection
2106  * @adapter: the adapter
2107  * @enable: whether to enable or disable write protection
2108  *
2109  * Enables or disables write protection on the serial EEPROM.
2110  */
2111 int t4_seeprom_wp(struct adapter *adapter, int enable)
2112 {
2113         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2114 }
2115
2116 /**
2117  * t4_fw_tp_pio_rw - Access TP PIO through LDST
2118  * @adap: the adapter
2119  * @vals: where the indirect register values are stored/written
2120  * @nregs: how many indirect registers to read/write
2121  * @start_idx: index of first indirect register to read/write
2122  * @rw: Read (1) or Write (0)
2123  *
2124  * Access TP PIO registers through LDST
2125  */
2126 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
2127                      unsigned int start_index, unsigned int rw)
2128 {
2129         int cmd = FW_LDST_ADDRSPC_TP_PIO;
2130         struct fw_ldst_cmd c;
2131         unsigned int i;
2132         int ret;
2133
2134         for (i = 0 ; i < nregs; i++) {
2135                 memset(&c, 0, sizeof(c));
2136                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
2137                                                 F_FW_CMD_REQUEST |
2138                                                 (rw ? F_FW_CMD_READ :
2139                                                       F_FW_CMD_WRITE) |
2140                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
2141                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
2142
2143                 c.u.addrval.addr = cpu_to_be32(start_index + i);
2144                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
2145                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2146                 if (ret == 0) {
2147                         if (rw)
2148                                 vals[i] = be32_to_cpu(c.u.addrval.val);
2149                 }
2150         }
2151 }
2152
2153 /**
2154  * t4_read_rss_key - read the global RSS key
2155  * @adap: the adapter
2156  * @key: 10-entry array holding the 320-bit RSS key
2157  *
2158  * Reads the global 320-bit RSS key.
2159  */
2160 void t4_read_rss_key(struct adapter *adap, u32 *key)
2161 {
2162         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
2163 }
2164
2165 /**
2166  * t4_write_rss_key - program one of the RSS keys
2167  * @adap: the adapter
2168  * @key: 10-entry array holding the 320-bit RSS key
2169  * @idx: which RSS key to write
2170  *
2171  * Writes one of the RSS keys with the given 320-bit value.  If @idx is
2172  * 0..15 the corresponding entry in the RSS key table is written,
2173  * otherwise the global RSS key is written.
2174  */
2175 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
2176 {
2177         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
2178         u8 rss_key_addr_cnt = 16;
2179
2180         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
2181          * allows access to key addresses 16-63 by using KeyWrAddrX
2182          * as index[5:4](upper 2) into key table
2183          */
2184         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
2185             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
2186                 rss_key_addr_cnt = 32;
2187
2188         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
2189
2190         if (idx >= 0 && idx < rss_key_addr_cnt) {
2191                 if (rss_key_addr_cnt > 16)
2192                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2193                                      V_KEYWRADDRX(idx >> 4) |
2194                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
2195                 else
2196                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2197                                      V_KEYWRADDR(idx) | F_KEYWREN);
2198         }
2199 }
2200
2201 /**
2202  * t4_config_rss_range - configure a portion of the RSS mapping table
2203  * @adapter: the adapter
2204  * @mbox: mbox to use for the FW command
2205  * @viid: virtual interface whose RSS subtable is to be written
2206  * @start: start entry in the table to write
2207  * @n: how many table entries to write
2208  * @rspq: values for the "response queue" (Ingress Queue) lookup table
2209  * @nrspq: number of values in @rspq
2210  *
2211  * Programs the selected part of the VI's RSS mapping table with the
2212  * provided values.  If @nrspq < @n the supplied values are used repeatedly
2213  * until the full table range is populated.
2214  *
2215  * The caller must ensure the values in @rspq are in the range allowed for
2216  * @viid.
2217  */
2218 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2219                         int start, int n, const u16 *rspq, unsigned int nrspq)
2220 {
2221         int ret;
2222         const u16 *rsp = rspq;
2223         const u16 *rsp_end = rspq + nrspq;
2224         struct fw_rss_ind_tbl_cmd cmd;
2225
2226         memset(&cmd, 0, sizeof(cmd));
2227         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2228                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2229                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
2230         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2231
2232         /*
2233          * Each firmware RSS command can accommodate up to 32 RSS Ingress
2234          * Queue Identifiers.  These Ingress Queue IDs are packed three to
2235          * a 32-bit word as 10-bit values with the upper remaining 2 bits
2236          * reserved.
2237          */
2238         while (n > 0) {
2239                 int nq = min(n, 32);
2240                 int nq_packed = 0;
2241                 __be32 *qp = &cmd.iq0_to_iq2;
2242
2243                 /*
2244                  * Set up the firmware RSS command header to send the next
2245                  * "nq" Ingress Queue IDs to the firmware.
2246                  */
2247                 cmd.niqid = cpu_to_be16(nq);
2248                 cmd.startidx = cpu_to_be16(start);
2249
2250                 /*
2251                  * "nq" more done for the start of the next loop.
2252                  */
2253                 start += nq;
2254                 n -= nq;
2255
2256                 /*
2257                  * While there are still Ingress Queue IDs to stuff into the
2258                  * current firmware RSS command, retrieve them from the
2259                  * Ingress Queue ID array and insert them into the command.
2260                  */
2261                 while (nq > 0) {
2262                         /*
2263                          * Grab up to the next 3 Ingress Queue IDs (wrapping
2264                          * around the Ingress Queue ID array if necessary) and
2265                          * insert them into the firmware RSS command at the
2266                          * current 3-tuple position within the commad.
2267                          */
2268                         u16 qbuf[3];
2269                         u16 *qbp = qbuf;
2270                         int nqbuf = min(3, nq);
2271
2272                         nq -= nqbuf;
2273                         qbuf[0] = 0;
2274                         qbuf[1] = 0;
2275                         qbuf[2] = 0;
2276                         while (nqbuf && nq_packed < 32) {
2277                                 nqbuf--;
2278                                 nq_packed++;
2279                                 *qbp++ = *rsp++;
2280                                 if (rsp >= rsp_end)
2281                                         rsp = rspq;
2282                         }
2283                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2284                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2285                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2286                 }
2287
2288                 /*
2289                  * Send this portion of the RRS table update to the firmware;
2290                  * bail out on any errors.
2291                  */
2292                 if (is_pf4(adapter))
2293                         ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd),
2294                                          NULL);
2295                 else
2296                         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
2297                 if (ret)
2298                         return ret;
2299         }
2300
2301         return 0;
2302 }
2303
2304 /**
2305  * t4_config_vi_rss - configure per VI RSS settings
2306  * @adapter: the adapter
2307  * @mbox: mbox to use for the FW command
2308  * @viid: the VI id
2309  * @flags: RSS flags
2310  * @defq: id of the default RSS queue for the VI.
2311  *
2312  * Configures VI-specific RSS properties.
2313  */
2314 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2315                      unsigned int flags, unsigned int defq)
2316 {
2317         struct fw_rss_vi_config_cmd c;
2318
2319         memset(&c, 0, sizeof(c));
2320         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2321                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2322                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2323         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2324         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
2325                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2326         if (is_pf4(adapter))
2327                 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2328         else
2329                 return t4vf_wr_mbox(adapter, &c, sizeof(c), NULL);
2330 }
2331
2332 /**
2333  * t4_read_config_vi_rss - read the configured per VI RSS settings
2334  * @adapter: the adapter
2335  * @mbox: mbox to use for the FW command
2336  * @viid: the VI id
2337  * @flags: where to place the configured flags
2338  * @defq: where to place the id of the default RSS queue for the VI.
2339  *
2340  * Read configured VI-specific RSS properties.
2341  */
2342 int t4_read_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2343                           u64 *flags, unsigned int *defq)
2344 {
2345         struct fw_rss_vi_config_cmd c;
2346         unsigned int result;
2347         int ret;
2348
2349         memset(&c, 0, sizeof(c));
2350         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2351                                    F_FW_CMD_REQUEST | F_FW_CMD_READ |
2352                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2353         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2354         ret = t4_wr_mbox(adapter, mbox, &c, sizeof(c), &c);
2355         if (!ret) {
2356                 result = be32_to_cpu(c.u.basicvirtual.defaultq_to_udpen);
2357                 if (defq)
2358                         *defq = G_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(result);
2359                 if (flags)
2360                         *flags = result & M_FW_RSS_VI_CONFIG_CMD_DEFAULTQ;
2361         }
2362
2363         return ret;
2364 }
2365
2366 /**
2367  * init_cong_ctrl - initialize congestion control parameters
2368  * @a: the alpha values for congestion control
2369  * @b: the beta values for congestion control
2370  *
2371  * Initialize the congestion control parameters.
2372  */
2373 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2374 {
2375         int i;
2376
2377         for (i = 0; i < 9; i++) {
2378                 a[i] = 1;
2379                 b[i] = 0;
2380         }
2381
2382         a[9] = 2;
2383         a[10] = 3;
2384         a[11] = 4;
2385         a[12] = 5;
2386         a[13] = 6;
2387         a[14] = 7;
2388         a[15] = 8;
2389         a[16] = 9;
2390         a[17] = 10;
2391         a[18] = 14;
2392         a[19] = 17;
2393         a[20] = 21;
2394         a[21] = 25;
2395         a[22] = 30;
2396         a[23] = 35;
2397         a[24] = 45;
2398         a[25] = 60;
2399         a[26] = 80;
2400         a[27] = 100;
2401         a[28] = 200;
2402         a[29] = 300;
2403         a[30] = 400;
2404         a[31] = 500;
2405
2406         b[9] = 1;
2407         b[10] = 1;
2408         b[11] = 2;
2409         b[12] = 2;
2410         b[13] = 3;
2411         b[14] = 3;
2412         b[15] = 3;
2413         b[16] = 3;
2414         b[17] = 4;
2415         b[18] = 4;
2416         b[19] = 4;
2417         b[20] = 4;
2418         b[21] = 4;
2419         b[22] = 5;
2420         b[23] = 5;
2421         b[24] = 5;
2422         b[25] = 5;
2423         b[26] = 5;
2424         b[27] = 5;
2425         b[28] = 6;
2426         b[29] = 6;
2427         b[30] = 7;
2428         b[31] = 7;
2429 }
2430
2431 #define INIT_CMD(var, cmd, rd_wr) do { \
2432         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
2433                         F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
2434         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
2435 } while (0)
2436
2437 int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
2438 {
2439         u32 cclk_param, cclk_val;
2440         int ret;
2441
2442         /*
2443          * Ask firmware for the Core Clock since it knows how to translate the
2444          * Reference Clock ('V2') VPD field into a Core Clock value ...
2445          */
2446         cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2447                       V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
2448         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2449                               1, &cclk_param, &cclk_val);
2450         if (ret) {
2451                 dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
2452                         __func__, ret);
2453                 return ret;
2454         }
2455
2456         p->cclk = cclk_val;
2457         dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
2458         return 0;
2459 }
2460
2461 /**
2462  * t4_get_pfres - retrieve VF resource limits
2463  * @adapter: the adapter
2464  *
2465  * Retrieves configured resource limits and capabilities for a physical
2466  * function.  The results are stored in @adapter->pfres.
2467  */
2468 int t4_get_pfres(struct adapter *adapter)
2469 {
2470         struct pf_resources *pfres = &adapter->params.pfres;
2471         struct fw_pfvf_cmd cmd, rpl;
2472         u32 word;
2473         int v;
2474
2475         /*
2476          * Execute PFVF Read command to get VF resource limits; bail out early
2477          * with error on command failure.
2478          */
2479         memset(&cmd, 0, sizeof(cmd));
2480         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
2481                                     F_FW_CMD_REQUEST |
2482                                     F_FW_CMD_READ |
2483                                     V_FW_PFVF_CMD_PFN(adapter->pf) |
2484                                     V_FW_PFVF_CMD_VFN(0));
2485         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2486         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2487         if (v != FW_SUCCESS)
2488                 return v;
2489
2490         /*
2491          * Extract PF resource limits and return success.
2492          */
2493         word = be32_to_cpu(rpl.niqflint_niq);
2494         pfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
2495
2496         word = be32_to_cpu(rpl.type_to_neq);
2497         pfres->neq = G_FW_PFVF_CMD_NEQ(word);
2498
2499         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2500         pfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
2501
2502         return 0;
2503 }
2504
2505 /* serial flash and firmware constants and flash config file constants */
2506 enum {
2507         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2508
2509         /* flash command opcodes */
2510         SF_PROG_PAGE    = 2,          /* program page */
2511         SF_WR_DISABLE   = 4,          /* disable writes */
2512         SF_RD_STATUS    = 5,          /* read status register */
2513         SF_WR_ENABLE    = 6,          /* enable writes */
2514         SF_RD_DATA_FAST = 0xb,        /* read flash */
2515         SF_RD_ID        = 0x9f,       /* read ID */
2516         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2517 };
2518
2519 /**
2520  * sf1_read - read data from the serial flash
2521  * @adapter: the adapter
2522  * @byte_cnt: number of bytes to read
2523  * @cont: whether another operation will be chained
2524  * @lock: whether to lock SF for PL access only
2525  * @valp: where to store the read data
2526  *
2527  * Reads up to 4 bytes of data from the serial flash.  The location of
2528  * the read needs to be specified prior to calling this by issuing the
2529  * appropriate commands to the serial flash.
2530  */
2531 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2532                     int lock, u32 *valp)
2533 {
2534         int ret;
2535
2536         if (!byte_cnt || byte_cnt > 4)
2537                 return -EINVAL;
2538         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2539                 return -EBUSY;
2540         t4_write_reg(adapter, A_SF_OP,
2541                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
2542         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2543         if (!ret)
2544                 *valp = t4_read_reg(adapter, A_SF_DATA);
2545         return ret;
2546 }
2547
2548 /**
2549  * sf1_write - write data to the serial flash
2550  * @adapter: the adapter
2551  * @byte_cnt: number of bytes to write
2552  * @cont: whether another operation will be chained
2553  * @lock: whether to lock SF for PL access only
2554  * @val: value to write
2555  *
2556  * Writes up to 4 bytes of data to the serial flash.  The location of
2557  * the write needs to be specified prior to calling this by issuing the
2558  * appropriate commands to the serial flash.
2559  */
2560 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2561                      int lock, u32 val)
2562 {
2563         if (!byte_cnt || byte_cnt > 4)
2564                 return -EINVAL;
2565         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2566                 return -EBUSY;
2567         t4_write_reg(adapter, A_SF_DATA, val);
2568         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
2569                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
2570         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2571 }
2572
2573 /**
2574  * t4_read_flash - read words from serial flash
2575  * @adapter: the adapter
2576  * @addr: the start address for the read
2577  * @nwords: how many 32-bit words to read
2578  * @data: where to store the read data
2579  * @byte_oriented: whether to store data as bytes or as words
2580  *
2581  * Read the specified number of 32-bit words from the serial flash.
2582  * If @byte_oriented is set the read data is stored as a byte array
2583  * (i.e., big-endian), otherwise as 32-bit words in the platform's
2584  * natural endianness.
2585  */
2586 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2587                   unsigned int nwords, u32 *data, int byte_oriented)
2588 {
2589         int ret;
2590
2591         if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
2592             (addr & 3))
2593                 return -EINVAL;
2594
2595         addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;
2596
2597         ret = sf1_write(adapter, 4, 1, 0, addr);
2598         if (ret != 0)
2599                 return ret;
2600
2601         ret = sf1_read(adapter, 1, 1, 0, data);
2602         if (ret != 0)
2603                 return ret;
2604
2605         for ( ; nwords; nwords--, data++) {
2606                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2607                 if (nwords == 1)
2608                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
2609                 if (ret)
2610                         return ret;
2611                 if (byte_oriented)
2612                         *data = cpu_to_be32(*data);
2613         }
2614         return 0;
2615 }
2616
2617 /**
2618  * t4_get_exprom_version - return the Expansion ROM version (if any)
2619  * @adapter: the adapter
2620  * @vers: where to place the version
2621  *
2622  * Reads the Expansion ROM header from FLASH and returns the version
2623  * number (if present) through the @vers return value pointer.  We return
2624  * this in the Firmware Version Format since it's convenient.  Return
2625  * 0 on success, -ENOENT if no Expansion ROM is present.
2626  */
2627 static int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
2628 {
2629         struct exprom_header {
2630                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2631                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2632         } *hdr;
2633         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2634                                            sizeof(u32))];
2635         int ret;
2636
2637         ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
2638                             ARRAY_SIZE(exprom_header_buf),
2639                             exprom_header_buf, 0);
2640         if (ret)
2641                 return ret;
2642
2643         hdr = (struct exprom_header *)exprom_header_buf;
2644         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2645                 return -ENOENT;
2646
2647         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
2648                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
2649                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
2650                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
2651         return 0;
2652 }
2653
2654 /**
2655  * t4_get_fw_version - read the firmware version
2656  * @adapter: the adapter
2657  * @vers: where to place the version
2658  *
2659  * Reads the FW version from flash.
2660  */
2661 static int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2662 {
2663         return t4_read_flash(adapter, FLASH_FW_START +
2664                              offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
2665 }
2666
2667 /**
2668  *     t4_get_bs_version - read the firmware bootstrap version
2669  *     @adapter: the adapter
2670  *     @vers: where to place the version
2671  *
2672  *     Reads the FW Bootstrap version from flash.
2673  */
2674 static int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2675 {
2676         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2677                              offsetof(struct fw_hdr, fw_ver), 1,
2678                              vers, 0);
2679 }
2680
2681 /**
2682  * t4_get_tp_version - read the TP microcode version
2683  * @adapter: the adapter
2684  * @vers: where to place the version
2685  *
2686  * Reads the TP microcode version from flash.
2687  */
2688 static int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2689 {
2690         return t4_read_flash(adapter, FLASH_FW_START +
2691                              offsetof(struct fw_hdr, tp_microcode_ver),
2692                              1, vers, 0);
2693 }
2694
2695 /**
2696  * t4_get_version_info - extract various chip/firmware version information
2697  * @adapter: the adapter
2698  *
2699  * Reads various chip/firmware version numbers and stores them into the
2700  * adapter Adapter Parameters structure.  If any of the efforts fails
2701  * the first failure will be returned, but all of the version numbers
2702  * will be read.
2703  */
2704 int t4_get_version_info(struct adapter *adapter)
2705 {
2706         int ret = 0;
2707
2708 #define FIRST_RET(__getvinfo) \
2709         do { \
2710                 int __ret = __getvinfo; \
2711                 if (__ret && !ret) \
2712                         ret = __ret; \
2713         } while (0)
2714
2715         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
2716         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
2717         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
2718         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
2719
2720 #undef FIRST_RET
2721
2722         return ret;
2723 }
2724
2725 /**
2726  * t4_dump_version_info - dump all of the adapter configuration IDs
2727  * @adapter: the adapter
2728  *
2729  * Dumps all of the various bits of adapter configuration version/revision
2730  * IDs information.  This is typically called at some point after
2731  * t4_get_version_info() has been called.
2732  */
2733 void t4_dump_version_info(struct adapter *adapter)
2734 {
2735         /**
2736          * Device information.
2737          */
2738         dev_info(adapter, "Chelsio rev %d\n",
2739                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
2740
2741         /**
2742          * Firmware Version.
2743          */
2744         if (!adapter->params.fw_vers)
2745                 dev_warn(adapter, "No firmware loaded\n");
2746         else
2747                 dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
2748                          G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
2749                          G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
2750                          G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
2751                          G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
2752
2753         /**
2754          * Bootstrap Firmware Version.
2755          */
2756         if (!adapter->params.bs_vers)
2757                 dev_warn(adapter, "No bootstrap loaded\n");
2758         else
2759                 dev_info(adapter, "Bootstrap version: %u.%u.%u.%u\n",
2760                          G_FW_HDR_FW_VER_MAJOR(adapter->params.bs_vers),
2761                          G_FW_HDR_FW_VER_MINOR(adapter->params.bs_vers),
2762                          G_FW_HDR_FW_VER_MICRO(adapter->params.bs_vers),
2763                          G_FW_HDR_FW_VER_BUILD(adapter->params.bs_vers));
2764
2765         /**
2766          * TP Microcode Version.
2767          */
2768         if (!adapter->params.tp_vers)
2769                 dev_warn(adapter, "No TP Microcode loaded\n");
2770         else
2771                 dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
2772                          G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
2773                          G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
2774                          G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
2775                          G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
2776
2777         /**
2778          * Expansion ROM version.
2779          */
2780         if (!adapter->params.er_vers)
2781                 dev_info(adapter, "No Expansion ROM loaded\n");
2782         else
2783                 dev_info(adapter, "Expansion ROM version: %u.%u.%u.%u\n",
2784                          G_FW_HDR_FW_VER_MAJOR(adapter->params.er_vers),
2785                          G_FW_HDR_FW_VER_MINOR(adapter->params.er_vers),
2786                          G_FW_HDR_FW_VER_MICRO(adapter->params.er_vers),
2787                          G_FW_HDR_FW_VER_BUILD(adapter->params.er_vers));
2788 }
2789
2790 /**
2791  * t4_link_l1cfg_core - apply link configuration to MAC/PHY
2792  * @pi: the port info
2793  * @caps: link capabilities to configure
2794  * @sleep_ok: if true we may sleep while awaiting command completion
2795  *
2796  * Set up a port's MAC and PHY according to a desired link configuration.
2797  * - If the PHY can auto-negotiate first decide what to advertise, then
2798  *   enable/disable auto-negotiation as desired, and reset.
2799  * - If the PHY does not auto-negotiate just reset it.
2800  * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2801  *   otherwise do it later based on the outcome of auto-negotiation.
2802  */
2803 int t4_link_l1cfg_core(struct port_info *pi, u32 caps, u8 sleep_ok)
2804 {
2805         struct link_config *lc = &pi->link_cfg;
2806         struct adapter *adap = pi->adapter;
2807         struct fw_port_cmd cmd;
2808         int ret;
2809
2810         memset(&cmd, 0, sizeof(cmd));
2811         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
2812                                        F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
2813                                        V_FW_PORT_CMD_PORTID(pi->port_id));
2814         cmd.action_to_len16 =
2815                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
2816                             FW_LEN16(cmd));
2817
2818         cmd.u.l1cfg32.rcap32 = cpu_to_be32(caps);
2819
2820         if (sleep_ok)
2821                 ret = t4_wr_mbox(adap, adap->mbox, &cmd, sizeof(cmd), NULL);
2822         else
2823                 ret = t4_wr_mbox_ns(adap, adap->mbox, &cmd, sizeof(cmd), NULL);
2824
2825         if (ret == FW_SUCCESS)
2826                 lc->link_caps = caps;
2827         else
2828                 dev_err(adap,
2829                         "Requested Port Capabilities %#x rejected, error %d\n",
2830                         caps, ret);
2831
2832         return ret;
2833 }
2834
2835 /**
2836  * t4_flash_cfg_addr - return the address of the flash configuration file
2837  * @adapter: the adapter
2838  *
2839  * Return the address within the flash where the Firmware Configuration
2840  * File is stored, or an error if the device FLASH is too small to contain
2841  * a Firmware Configuration File.
2842  */
2843 int t4_flash_cfg_addr(struct adapter *adapter)
2844 {
2845         /*
2846          * If the device FLASH isn't large enough to hold a Firmware
2847          * Configuration File, return an error.
2848          */
2849         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
2850                 return -ENOSPC;
2851
2852         return FLASH_CFG_START;
2853 }
2854
2855 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2856
2857 /**
2858  * t4_intr_enable - enable interrupts
2859  * @adapter: the adapter whose interrupts should be enabled
2860  *
2861  * Enable PF-specific interrupts for the calling function and the top-level
2862  * interrupt concentrator for global interrupts.  Interrupts are already
2863  * enabled at each module, here we just enable the roots of the interrupt
2864  * hierarchies.
2865  *
2866  * Note: this function should be called only when the driver manages
2867  * non PF-specific interrupts from the various HW modules.  Only one PCI
2868  * function at a time should be doing this.
2869  */
2870 void t4_intr_enable(struct adapter *adapter)
2871 {
2872         u32 val = 0;
2873         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2874         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2875                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2876
2877         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2878                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
2879         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2880                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2881                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
2882                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2883                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2884                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2885                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
2886         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2887         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2888 }
2889
2890 /**
2891  * t4_intr_disable - disable interrupts
2892  * @adapter: the adapter whose interrupts should be disabled
2893  *
2894  * Disable interrupts.  We only disable the top-level interrupt
2895  * concentrators.  The caller must be a PCI function managing global
2896  * interrupts.
2897  */
2898 void t4_intr_disable(struct adapter *adapter)
2899 {
2900         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2901         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2902                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2903
2904         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2905         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2906 }
2907
2908 /**
2909  * t4_get_port_type_description - return Port Type string description
2910  * @port_type: firmware Port Type enumeration
2911  */
2912 const char *t4_get_port_type_description(enum fw_port_type port_type)
2913 {
2914         static const char * const port_type_description[] = {
2915                 "Fiber_XFI",
2916                 "Fiber_XAUI",
2917                 "BT_SGMII",
2918                 "BT_XFI",
2919                 "BT_XAUI",
2920                 "KX4",
2921                 "CX4",
2922                 "KX",
2923                 "KR",
2924                 "SFP",
2925                 "BP_AP",
2926                 "BP4_AP",
2927                 "QSFP_10G",
2928                 "QSA",
2929                 "QSFP",
2930                 "BP40_BA",
2931                 "KR4_100G",
2932                 "CR4_QSFP",
2933                 "CR_QSFP",
2934                 "CR2_QSFP",
2935                 "SFP28",
2936                 "KR_SFP28",
2937         };
2938
2939         if (port_type < ARRAY_SIZE(port_type_description))
2940                 return port_type_description[port_type];
2941         return "UNKNOWN";
2942 }
2943
2944 /**
2945  * t4_get_mps_bg_map - return the buffer groups associated with a port
2946  * @adap: the adapter
2947  * @pidx: the port index
2948  *
2949  * Returns a bitmap indicating which MPS buffer groups are associated
2950  * with the given port.  Bit i is set if buffer group i is used by the
2951  * port.
2952  */
2953 unsigned int t4_get_mps_bg_map(struct adapter *adap, unsigned int pidx)
2954 {
2955         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2956         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adap,
2957                                                           A_MPS_CMN_CTL));
2958
2959         if (pidx >= nports) {
2960                 dev_warn(adap, "MPS Port Index %d >= Nports %d\n",
2961                          pidx, nports);
2962                 return 0;
2963         }
2964
2965         switch (chip_version) {
2966         case CHELSIO_T4:
2967         case CHELSIO_T5:
2968                 switch (nports) {
2969                 case 1: return 0xf;
2970                 case 2: return 3 << (2 * pidx);
2971                 case 4: return 1 << pidx;
2972                 }
2973                 break;
2974
2975         case CHELSIO_T6:
2976                 switch (nports) {
2977                 case 2: return 1 << (2 * pidx);
2978                 }
2979                 break;
2980         }
2981
2982         dev_err(adap, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
2983                 chip_version, nports);
2984         return 0;
2985 }
2986
2987 /**
2988  * t4_get_tp_ch_map - return TP ingress channels associated with a port
2989  * @adapter: the adapter
2990  * @pidx: the port index
2991  *
2992  * Returns a bitmap indicating which TP Ingress Channels are associated with
2993  * a given Port.  Bit i is set if TP Ingress Channel i is used by the Port.
2994  */
2995 unsigned int t4_get_tp_ch_map(struct adapter *adapter, unsigned int pidx)
2996 {
2997         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
2998         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adapter,
2999                                                           A_MPS_CMN_CTL));
3000
3001         if (pidx >= nports) {
3002                 dev_warn(adap, "TP Port Index %d >= Nports %d\n",
3003                          pidx, nports);
3004                 return 0;
3005         }
3006
3007         switch (chip_version) {
3008         case CHELSIO_T4:
3009         case CHELSIO_T5:
3010                 /* Note that this happens to be the same values as the MPS
3011                  * Buffer Group Map for these Chips.  But we replicate the code
3012                  * here because they're really separate concepts.
3013                  */
3014                 switch (nports) {
3015                 case 1: return 0xf;
3016                 case 2: return 3 << (2 * pidx);
3017                 case 4: return 1 << pidx;
3018                 }
3019                 break;
3020
3021         case CHELSIO_T6:
3022                 switch (nports) {
3023                 case 2: return 1 << pidx;
3024                 }
3025                 break;
3026         }
3027
3028         dev_err(adapter, "Need TP Channel Map for Chip %0x, Nports %d\n",
3029                 chip_version, nports);
3030         return 0;
3031 }
3032
3033 /**
3034  * t4_get_port_stats - collect port statistics
3035  * @adap: the adapter
3036  * @idx: the port index
3037  * @p: the stats structure to fill
3038  *
3039  * Collect statistics related to the given port from HW.
3040  */
3041 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3042 {
3043         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
3044         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3045         u32 val[NCHAN] = { 0 };
3046         u8 i;
3047
3048 #define GET_STAT(name) \
3049         t4_read_reg64(adap, \
3050                       (is_t4(adap->params.chip) ? \
3051                        PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
3052                        T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3053 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3054
3055         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3056         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3057         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3058         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3059         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3060         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3061         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3062         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3063         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3064         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3065         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3066         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3067         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3068         p->tx_drop             = GET_STAT(TX_PORT_DROP);
3069         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3070         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3071         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3072         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3073         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3074         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3075         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3076         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3077         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3078
3079         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3080                 if (stat_ctl & F_COUNTPAUSESTATTX) {
3081                         p->tx_frames -= p->tx_pause;
3082                         p->tx_octets -= p->tx_pause * 64;
3083                 }
3084                 if (stat_ctl & F_COUNTPAUSEMCTX)
3085                         p->tx_mcast_frames -= p->tx_pause;
3086         }
3087
3088         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3089         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3090         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3091         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3092         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3093         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3094         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3095         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3096         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3097         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3098         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3099         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3100         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3101         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3102         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3103         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3104         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3105         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3106         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3107         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3108         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3109         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3110         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3111         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3112         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3113         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3114         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3115
3116         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3117                 if (stat_ctl & F_COUNTPAUSESTATRX) {
3118                         p->rx_frames -= p->rx_pause;
3119                         p->rx_octets -= p->rx_pause * 64;
3120                 }
3121                 if (stat_ctl & F_COUNTPAUSEMCRX)
3122                         p->rx_mcast_frames -= p->rx_pause;
3123         }
3124
3125         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3126         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3127         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3128         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3129         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3130         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3131         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3132         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3133
3134         t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &val[idx], 1,
3135                          A_TP_MIB_TNL_CNG_DROP_0 + idx);
3136
3137         for (i = 0; i < NCHAN; i++)
3138                 p->rx_tp_tnl_cong_drops[i] = val[i];
3139 #undef GET_STAT
3140 #undef GET_STAT_COM
3141 }
3142
3143 /**
3144  * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
3145  * @adap: The adapter
3146  * @idx: The port
3147  * @stats: Current stats to fill
3148  * @offset: Previous stats snapshot
3149  */
3150 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3151                               struct port_stats *stats,
3152                               struct port_stats *offset)
3153 {
3154         u64 *s, *o;
3155         unsigned int i;
3156
3157         t4_get_port_stats(adap, idx, stats);
3158         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
3159              i < (sizeof(struct port_stats) / sizeof(u64));
3160              i++, s++, o++)
3161                 *s -= *o;
3162 }
3163
3164 /**
3165  * t4_clr_port_stats - clear port statistics
3166  * @adap: the adapter
3167  * @idx: the port index
3168  *
3169  * Clear HW statistics for the given port.
3170  */
3171 void t4_clr_port_stats(struct adapter *adap, int idx)
3172 {
3173         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3174         u32 port_base_addr;
3175         unsigned int i;
3176         u32 val = 0;
3177
3178         if (is_t4(adap->params.chip))
3179                 port_base_addr = PORT_BASE(idx);
3180         else
3181                 port_base_addr = T5_PORT_BASE(idx);
3182
3183         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3184              i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3185                 t4_write_reg(adap, port_base_addr + i, 0);
3186         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3187              i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3188                 t4_write_reg(adap, port_base_addr + i, 0);
3189         for (i = 0; i < 4; i++)
3190                 if (bgmap & (1 << i)) {
3191                         t4_write_reg(adap,
3192                                      A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
3193                                      i * 8, 0);
3194                         t4_write_reg(adap,
3195                                      A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
3196                                      i * 8, 0);
3197                 }
3198         t4_write_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
3199                           &val, 1, A_TP_MIB_TNL_CNG_DROP_0 + idx);
3200 }
3201
3202 /**
3203  * t4_fw_hello - establish communication with FW
3204  * @adap: the adapter
3205  * @mbox: mailbox to use for the FW command
3206  * @evt_mbox: mailbox to receive async FW events
3207  * @master: specifies the caller's willingness to be the device master
3208  * @state: returns the current device state (if non-NULL)
3209  *
3210  * Issues a command to establish communication with FW.  Returns either
3211  * an error (negative integer) or the mailbox of the Master PF.
3212  */
3213 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
3214                 enum dev_master master, enum dev_state *state)
3215 {
3216         int ret;
3217         struct fw_hello_cmd c;
3218         u32 v;
3219         unsigned int master_mbox;
3220         int retries = FW_CMD_HELLO_RETRIES;
3221
3222 retry:
3223         memset(&c, 0, sizeof(c));
3224         INIT_CMD(c, HELLO, WRITE);
3225         c.err_to_clearinit = cpu_to_be32(
3226                         V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
3227                         V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
3228                         V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
3229                                                 M_FW_HELLO_CMD_MBMASTER) |
3230                         V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
3231                         V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
3232                         F_FW_HELLO_CMD_CLEARINIT);
3233
3234         /*
3235          * Issue the HELLO command to the firmware.  If it's not successful
3236          * but indicates that we got a "busy" or "timeout" condition, retry
3237          * the HELLO until we exhaust our retry limit.  If we do exceed our
3238          * retry limit, check to see if the firmware left us any error
3239          * information and report that if so ...
3240          */
3241         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3242         if (ret != FW_SUCCESS) {
3243                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
3244                         goto retry;
3245                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
3246                         t4_report_fw_error(adap);
3247                 return ret;
3248         }
3249
3250         v = be32_to_cpu(c.err_to_clearinit);
3251         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
3252         if (state) {
3253                 if (v & F_FW_HELLO_CMD_ERR)
3254                         *state = DEV_STATE_ERR;
3255                 else if (v & F_FW_HELLO_CMD_INIT)
3256                         *state = DEV_STATE_INIT;
3257                 else
3258                         *state = DEV_STATE_UNINIT;
3259         }
3260
3261         /*
3262          * If we're not the Master PF then we need to wait around for the
3263          * Master PF Driver to finish setting up the adapter.
3264          *
3265          * Note that we also do this wait if we're a non-Master-capable PF and
3266          * there is no current Master PF; a Master PF may show up momentarily
3267          * and we wouldn't want to fail pointlessly.  (This can happen when an
3268          * OS loads lots of different drivers rapidly at the same time).  In
3269          * this case, the Master PF returned by the firmware will be
3270          * M_PCIE_FW_MASTER so the test below will work ...
3271          */
3272         if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
3273             master_mbox != mbox) {
3274                 int waiting = FW_CMD_HELLO_TIMEOUT;
3275
3276                 /*
3277                  * Wait for the firmware to either indicate an error or
3278                  * initialized state.  If we see either of these we bail out
3279                  * and report the issue to the caller.  If we exhaust the
3280                  * "hello timeout" and we haven't exhausted our retries, try
3281                  * again.  Otherwise bail with a timeout error.
3282                  */
3283                 for (;;) {
3284                         u32 pcie_fw;
3285
3286                         msleep(50);
3287                         waiting -= 50;
3288
3289                         /*
3290                          * If neither Error nor Initialialized are indicated
3291                          * by the firmware keep waiting till we exaust our
3292                          * timeout ... and then retry if we haven't exhausted
3293                          * our retries ...
3294                          */
3295                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
3296                         if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
3297                                 if (waiting <= 0) {
3298                                         if (retries-- > 0)
3299                                                 goto retry;
3300
3301                                         return -ETIMEDOUT;
3302                                 }
3303                                 continue;
3304                         }
3305
3306                         /*
3307                          * We either have an Error or Initialized condition
3308                          * report errors preferentially.
3309                          */
3310                         if (state) {
3311                                 if (pcie_fw & F_PCIE_FW_ERR)
3312                                         *state = DEV_STATE_ERR;
3313                                 else if (pcie_fw & F_PCIE_FW_INIT)
3314                                         *state = DEV_STATE_INIT;
3315                         }
3316
3317                         /*
3318                          * If we arrived before a Master PF was selected and
3319                          * there's not a valid Master PF, grab its identity
3320                          * for our caller.
3321                          */
3322                         if (master_mbox == M_PCIE_FW_MASTER &&
3323                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
3324                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
3325                         break;
3326                 }
3327         }
3328
3329         return master_mbox;
3330 }
3331
3332 /**
3333  * t4_fw_bye - end communication with FW
3334  * @adap: the adapter
3335  * @mbox: mailbox to use for the FW command
3336  *
3337  * Issues a command to terminate communication with FW.
3338  */
3339 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
3340 {
3341         struct fw_bye_cmd c;
3342
3343         memset(&c, 0, sizeof(c));
3344         INIT_CMD(c, BYE, WRITE);
3345         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3346 }
3347
3348 /**
3349  * t4_fw_reset - issue a reset to FW
3350  * @adap: the adapter
3351  * @mbox: mailbox to use for the FW command
3352  * @reset: specifies the type of reset to perform
3353  *
3354  * Issues a reset command of the specified type to FW.
3355  */
3356 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
3357 {
3358         struct fw_reset_cmd c;
3359
3360         memset(&c, 0, sizeof(c));
3361         INIT_CMD(c, RESET, WRITE);
3362         c.val = cpu_to_be32(reset);
3363         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3364 }
3365
3366 /**
3367  * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
3368  * @adap: the adapter
3369  * @mbox: mailbox to use for the FW RESET command (if desired)
3370  * @force: force uP into RESET even if FW RESET command fails
3371  *
3372  * Issues a RESET command to firmware (if desired) with a HALT indication
3373  * and then puts the microprocessor into RESET state.  The RESET command
3374  * will only be issued if a legitimate mailbox is provided (mbox <=
3375  * M_PCIE_FW_MASTER).
3376  *
3377  * This is generally used in order for the host to safely manipulate the
3378  * adapter without fear of conflicting with whatever the firmware might
3379  * be doing.  The only way out of this state is to RESTART the firmware
3380  * ...
3381  */
3382 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
3383 {
3384         int ret = 0;
3385
3386         /*
3387          * If a legitimate mailbox is provided, issue a RESET command
3388          * with a HALT indication.
3389          */
3390         if (mbox <= M_PCIE_FW_MASTER) {
3391                 struct fw_reset_cmd c;
3392
3393                 memset(&c, 0, sizeof(c));
3394                 INIT_CMD(c, RESET, WRITE);
3395                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
3396                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
3397                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3398         }
3399
3400         /*
3401          * Normally we won't complete the operation if the firmware RESET
3402          * command fails but if our caller insists we'll go ahead and put the
3403          * uP into RESET.  This can be useful if the firmware is hung or even
3404          * missing ...  We'll have to take the risk of putting the uP into
3405          * RESET without the cooperation of firmware in that case.
3406          *
3407          * We also force the firmware's HALT flag to be on in case we bypassed
3408          * the firmware RESET command above or we're dealing with old firmware
3409          * which doesn't have the HALT capability.  This will serve as a flag
3410          * for the incoming firmware to know that it's coming out of a HALT
3411          * rather than a RESET ... if it's new enough to understand that ...
3412          */
3413         if (ret == 0 || force) {
3414                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
3415                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
3416                                  F_PCIE_FW_HALT);
3417         }
3418
3419         /*
3420          * And we always return the result of the firmware RESET command
3421          * even when we force the uP into RESET ...
3422          */
3423         return ret;
3424 }
3425
3426 /**
3427  * t4_fw_restart - restart the firmware by taking the uP out of RESET
3428  * @adap: the adapter
3429  * @mbox: mailbox to use for the FW RESET command (if desired)
3430  * @reset: if we want to do a RESET to restart things
3431  *
3432  * Restart firmware previously halted by t4_fw_halt().  On successful
3433  * return the previous PF Master remains as the new PF Master and there
3434  * is no need to issue a new HELLO command, etc.
3435  *
3436  * We do this in two ways:
3437  *
3438  * 1. If we're dealing with newer firmware we'll simply want to take
3439  *    the chip's microprocessor out of RESET.  This will cause the
3440  *    firmware to start up from its start vector.  And then we'll loop
3441  *    until the firmware indicates it's started again (PCIE_FW.HALT
3442  *    reset to 0) or we timeout.
3443  *
3444  * 2. If we're dealing with older firmware then we'll need to RESET
3445  *    the chip since older firmware won't recognize the PCIE_FW.HALT
3446  *    flag and automatically RESET itself on startup.
3447  */
3448 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
3449 {
3450         if (reset) {
3451                 /*
3452                  * Since we're directing the RESET instead of the firmware
3453                  * doing it automatically, we need to clear the PCIE_FW.HALT
3454                  * bit.
3455                  */
3456                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
3457
3458                 /*
3459                  * If we've been given a valid mailbox, first try to get the
3460                  * firmware to do the RESET.  If that works, great and we can
3461                  * return success.  Otherwise, if we haven't been given a
3462                  * valid mailbox or the RESET command failed, fall back to
3463                  * hitting the chip with a hammer.
3464                  */
3465                 if (mbox <= M_PCIE_FW_MASTER) {
3466                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3467                         msleep(100);
3468                         if (t4_fw_reset(adap, mbox,
3469                                         F_PIORST | F_PIORSTMODE) == 0)
3470                                 return 0;
3471                 }
3472
3473                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
3474                 msleep(2000);
3475         } else {
3476                 int ms;
3477
3478                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3479                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
3480                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
3481                                 return FW_SUCCESS;
3482                         msleep(100);
3483                         ms += 100;
3484                 }
3485                 return -ETIMEDOUT;
3486         }
3487         return 0;
3488 }
3489
3490 /**
3491  * t4_fixup_host_params_compat - fix up host-dependent parameters
3492  * @adap: the adapter
3493  * @page_size: the host's Base Page Size
3494  * @cache_line_size: the host's Cache Line Size
3495  * @chip_compat: maintain compatibility with designated chip
3496  *
3497  * Various registers in the chip contain values which are dependent on the
3498  * host's Base Page and Cache Line Sizes.  This function will fix all of
3499  * those registers with the appropriate values as passed in ...
3500  *
3501  * @chip_compat is used to limit the set of changes that are made
3502  * to be compatible with the indicated chip release.  This is used by
3503  * drivers to maintain compatibility with chip register settings when
3504  * the drivers haven't [yet] been updated with new chip support.
3505  */
3506 int t4_fixup_host_params_compat(struct adapter *adap,
3507                                 unsigned int page_size,
3508                                 unsigned int cache_line_size,
3509                                 enum chip_type chip_compat)
3510 {
3511         unsigned int page_shift = cxgbe_fls(page_size) - 1;
3512         unsigned int sge_hps = page_shift - 10;
3513         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
3514         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
3515         unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;
3516
3517         t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
3518                      V_HOSTPAGESIZEPF0(sge_hps) |
3519                      V_HOSTPAGESIZEPF1(sge_hps) |
3520                      V_HOSTPAGESIZEPF2(sge_hps) |
3521                      V_HOSTPAGESIZEPF3(sge_hps) |
3522                      V_HOSTPAGESIZEPF4(sge_hps) |
3523                      V_HOSTPAGESIZEPF5(sge_hps) |
3524                      V_HOSTPAGESIZEPF6(sge_hps) |
3525                      V_HOSTPAGESIZEPF7(sge_hps));
3526
3527         if (is_t4(adap->params.chip) || is_t4(chip_compat))
3528                 t4_set_reg_field(adap, A_SGE_CONTROL,
3529                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3530                                  F_EGRSTATUSPAGESIZE,
3531                                  V_INGPADBOUNDARY(fl_align_log -
3532                                                   X_INGPADBOUNDARY_SHIFT) |
3533                                 V_EGRSTATUSPAGESIZE(stat_len != 64));
3534         else {
3535                 unsigned int pack_align;
3536                 unsigned int ingpad, ingpack;
3537                 unsigned int pcie_cap;
3538
3539                 /*
3540                  * T5 introduced the separation of the Free List Padding and
3541                  * Packing Boundaries.  Thus, we can select a smaller Padding
3542                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
3543                  * Bandwidth, and use a Packing Boundary which is large enough
3544                  * to avoid false sharing between CPUs, etc.
3545                  *
3546                  * For the PCI Link, the smaller the Padding Boundary the
3547                  * better.  For the Memory Controller, a smaller Padding
3548                  * Boundary is better until we cross under the Memory Line
3549                  * Size (the minimum unit of transfer to/from Memory).  If we
3550                  * have a Padding Boundary which is smaller than the Memory
3551                  * Line Size, that'll involve a Read-Modify-Write cycle on the
3552                  * Memory Controller which is never good.
3553                  */
3554
3555                 /* We want the Packing Boundary to be based on the Cache Line
3556                  * Size in order to help avoid False Sharing performance
3557                  * issues between CPUs, etc.  We also want the Packing
3558                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
3559                  * get best performance when the Packing Boundary is a
3560                  * multiple of the Maximum Payload Size.
3561                  */
3562                 pack_align = fl_align;
3563                 pcie_cap = t4_os_find_pci_capability(adap, PCI_CAP_ID_EXP);
3564                 if (pcie_cap) {
3565                         unsigned int mps, mps_log;
3566                         u16 devctl;
3567
3568                         /* The PCIe Device Control Maximum Payload Size field
3569                          * [bits 7:5] encodes sizes as powers of 2 starting at
3570                          * 128 bytes.
3571                          */
3572                         t4_os_pci_read_cfg2(adap, pcie_cap + PCI_EXP_DEVCTL,
3573                                             &devctl);
3574                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
3575                         mps = 1 << mps_log;
3576                         if (mps > pack_align)
3577                                 pack_align = mps;
3578                 }
3579
3580                 /*
3581                  * N.B. T5 has a different interpretation of the "0" value for
3582                  * the Packing Boundary.  This corresponds to 16 bytes instead
3583                  * of the expected 32 bytes.  We never have a Packing Boundary
3584                  * less than 32 bytes so we can't use that special value but
3585                  * on the other hand, if we wanted 32 bytes, the best we can
3586                  * really do is 64 bytes ...
3587                  */
3588                 if (pack_align <= 16) {
3589                         ingpack = X_INGPACKBOUNDARY_16B;
3590                         fl_align = 16;
3591                 } else if (pack_align == 32) {
3592                         ingpack = X_INGPACKBOUNDARY_64B;
3593                         fl_align = 64;
3594                 } else {
3595                         unsigned int pack_align_log = cxgbe_fls(pack_align) - 1;
3596
3597                         ingpack = pack_align_log - X_INGPACKBOUNDARY_SHIFT;
3598                         fl_align = pack_align;
3599                 }
3600
3601                 /* Use the smallest Ingress Padding which isn't smaller than
3602                  * the Memory Controller Read/Write Size.  We'll take that as
3603                  * being 8 bytes since we don't know of any system with a
3604                  * wider Memory Controller Bus Width.
3605                  */
3606                 if (is_t5(adap->params.chip))
3607                         ingpad = X_INGPADBOUNDARY_32B;
3608                 else
3609                         ingpad = X_T6_INGPADBOUNDARY_8B;
3610                 t4_set_reg_field(adap, A_SGE_CONTROL,
3611                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3612                                  F_EGRSTATUSPAGESIZE,
3613                                  V_INGPADBOUNDARY(ingpad) |
3614                                  V_EGRSTATUSPAGESIZE(stat_len != 64));
3615                 t4_set_reg_field(adap, A_SGE_CONTROL2,
3616                                  V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
3617                                  V_INGPACKBOUNDARY(ingpack));
3618         }
3619
3620         /*
3621          * Adjust various SGE Free List Host Buffer Sizes.
3622          *
3623          * The first four entries are:
3624          *
3625          *   0: Host Page Size
3626          *   1: 64KB
3627          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3628          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3629          *
3630          * For the single-MTU buffers in unpacked mode we need to include
3631          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3632          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3633          * Padding boundary.  All of these are accommodated in the Factory
3634          * Default Firmware Configuration File but we need to adjust it for
3635          * this host's cache line size.
3636          */
3637         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
3638         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
3639                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
3640                      & ~(fl_align - 1));
3641         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
3642                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
3643                      & ~(fl_align - 1));
3644
3645         t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));
3646
3647         return 0;
3648 }
3649
3650 /**
3651  * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
3652  * @adap: the adapter
3653  * @page_size: the host's Base Page Size
3654  * @cache_line_size: the host's Cache Line Size
3655  *
3656  * Various registers in T4 contain values which are dependent on the
3657  * host's Base Page and Cache Line Sizes.  This function will fix all of
3658  * those registers with the appropriate values as passed in ...
3659  *
3660  * This routine makes changes which are compatible with T4 chips.
3661  */
3662 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
3663                          unsigned int cache_line_size)
3664 {
3665         return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
3666                                            T4_LAST_REV);
3667 }
3668
3669 /**
3670  * t4_fw_initialize - ask FW to initialize the device
3671  * @adap: the adapter
3672  * @mbox: mailbox to use for the FW command
3673  *
3674  * Issues a command to FW to partially initialize the device.  This
3675  * performs initialization that generally doesn't depend on user input.
3676  */
3677 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3678 {
3679         struct fw_initialize_cmd c;
3680
3681         memset(&c, 0, sizeof(c));
3682         INIT_CMD(c, INITIALIZE, WRITE);
3683         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3684 }
3685
3686 /**
3687  * t4_query_params_rw - query FW or device parameters
3688  * @adap: the adapter
3689  * @mbox: mailbox to use for the FW command
3690  * @pf: the PF
3691  * @vf: the VF
3692  * @nparams: the number of parameters
3693  * @params: the parameter names
3694  * @val: the parameter values
3695  * @rw: Write and read flag
3696  *
3697  * Reads the value of FW or device parameters.  Up to 7 parameters can be
3698  * queried at once.
3699  */
3700 static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
3701                               unsigned int pf, unsigned int vf,
3702                               unsigned int nparams, const u32 *params,
3703                               u32 *val, int rw)
3704 {
3705         unsigned int i;
3706         int ret;
3707         struct fw_params_cmd c;
3708         __be32 *p = &c.param[0].mnem;
3709
3710         if (nparams > 7)
3711                 return -EINVAL;
3712
3713         memset(&c, 0, sizeof(c));
3714         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3715                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
3716                                   V_FW_PARAMS_CMD_PFN(pf) |
3717                                   V_FW_PARAMS_CMD_VFN(vf));
3718         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3719
3720         for (i = 0; i < nparams; i++) {
3721                 *p++ = cpu_to_be32(*params++);
3722                 if (rw)
3723                         *p = cpu_to_be32(*(val + i));
3724                 p++;
3725         }
3726
3727         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3728         if (ret == 0)
3729                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3730                         *val++ = be32_to_cpu(*p);
3731         return ret;
3732 }
3733
3734 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3735                     unsigned int vf, unsigned int nparams, const u32 *params,
3736                     u32 *val)
3737 {
3738         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
3739 }
3740
3741 /**
3742  * t4_set_params_timeout - sets FW or device parameters
3743  * @adap: the adapter
3744  * @mbox: mailbox to use for the FW command
3745  * @pf: the PF
3746  * @vf: the VF
3747  * @nparams: the number of parameters
3748  * @params: the parameter names
3749  * @val: the parameter values
3750  * @timeout: the timeout time
3751  *
3752  * Sets the value of FW or device parameters.  Up to 7 parameters can be
3753  * specified at once.
3754  */
3755 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
3756                           unsigned int pf, unsigned int vf,
3757                           unsigned int nparams, const u32 *params,
3758                           const u32 *val, int timeout)
3759 {
3760         struct fw_params_cmd c;
3761         __be32 *p = &c.param[0].mnem;
3762
3763         if (nparams > 7)
3764                 return -EINVAL;
3765
3766         memset(&c, 0, sizeof(c));
3767         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3768                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3769                                   V_FW_PARAMS_CMD_PFN(pf) |
3770                                   V_FW_PARAMS_CMD_VFN(vf));
3771         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3772
3773         while (nparams--) {
3774                 *p++ = cpu_to_be32(*params++);
3775                 *p++ = cpu_to_be32(*val++);
3776         }
3777
3778         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
3779 }
3780
3781 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3782                   unsigned int vf, unsigned int nparams, const u32 *params,
3783                   const u32 *val)
3784 {
3785         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
3786                                      FW_CMD_MAX_TIMEOUT);
3787 }
3788
3789 /**
3790  * t4_alloc_vi_func - allocate a virtual interface
3791  * @adap: the adapter
3792  * @mbox: mailbox to use for the FW command
3793  * @port: physical port associated with the VI
3794  * @pf: the PF owning the VI
3795  * @vf: the VF owning the VI
3796  * @nmac: number of MAC addresses needed (1 to 5)
3797  * @mac: the MAC addresses of the VI
3798  * @rss_size: size of RSS table slice associated with this VI
3799  * @portfunc: which Port Application Function MAC Address is desired
3800  * @idstype: Intrusion Detection Type
3801  *
3802  * Allocates a virtual interface for the given physical port.  If @mac is
3803  * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3804  * @mac should be large enough to hold @nmac Ethernet addresses, they are
3805  * stored consecutively so the space needed is @nmac * 6 bytes.
3806  * Returns a negative error number or the non-negative VI id.
3807  */
3808 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
3809                      unsigned int port, unsigned int pf, unsigned int vf,
3810                      unsigned int nmac, u8 *mac, unsigned int *rss_size,
3811                      unsigned int portfunc, unsigned int idstype,
3812                      u8 *vivld, u8 *vin)
3813 {
3814         int ret;
3815         struct fw_vi_cmd c;
3816
3817         memset(&c, 0, sizeof(c));
3818         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3819                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
3820                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
3821         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
3822         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
3823                                      V_FW_VI_CMD_FUNC(portfunc));
3824         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
3825         c.nmac = nmac - 1;
3826
3827         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3828         if (ret)
3829                 return ret;
3830
3831         if (mac) {
3832                 memcpy(mac, c.mac, sizeof(c.mac));
3833                 switch (nmac) {
3834                 case 5:
3835                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3836                         /* FALLTHROUGH */
3837                 case 4:
3838                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3839                         /* FALLTHROUGH */
3840                 case 3:
3841                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3842                         /* FALLTHROUGH */
3843                 case 2:
3844                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
3845                         /* FALLTHROUGH */
3846                 }
3847         }
3848         if (rss_size)
3849                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
3850         if (vivld)
3851                 *vivld = G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16));
3852         if (vin)
3853                 *vin = G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16));
3854         return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
3855 }
3856
3857 /**
3858  * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
3859  * @adap: the adapter
3860  * @mbox: mailbox to use for the FW command
3861  * @port: physical port associated with the VI
3862  * @pf: the PF owning the VI
3863  * @vf: the VF owning the VI
3864  * @nmac: number of MAC addresses needed (1 to 5)
3865  * @mac: the MAC addresses of the VI
3866  * @rss_size: size of RSS table slice associated with this VI
3867  *
3868  * Backwards compatible and convieniance routine to allocate a Virtual
3869  * Interface with a Ethernet Port Application Function and Intrustion
3870  * Detection System disabled.
3871  */
3872 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
3873                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
3874                 unsigned int *rss_size, u8 *vivld, u8 *vin)
3875 {
3876         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
3877                                 FW_VI_FUNC_ETH, 0, vivld, vin);
3878 }
3879
3880 /**
3881  * t4_free_vi - free a virtual interface
3882  * @adap: the adapter
3883  * @mbox: mailbox to use for the FW command
3884  * @pf: the PF owning the VI
3885  * @vf: the VF owning the VI
3886  * @viid: virtual interface identifiler
3887  *
3888  * Free a previously allocated virtual interface.
3889  */
3890 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
3891                unsigned int vf, unsigned int viid)
3892 {
3893         struct fw_vi_cmd c;
3894
3895         memset(&c, 0, sizeof(c));
3896         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3897                                   F_FW_CMD_EXEC);
3898         if (is_pf4(adap))
3899                 c.op_to_vfn |= cpu_to_be32(V_FW_VI_CMD_PFN(pf) |
3900                                            V_FW_VI_CMD_VFN(vf));
3901         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
3902         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
3903
3904         if (is_pf4(adap))
3905                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3906         else
3907                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
3908 }
3909
3910 /**
3911  * t4_set_rxmode - set Rx properties of a virtual interface
3912  * @adap: the adapter
3913  * @mbox: mailbox to use for the FW command
3914  * @viid: the VI id
3915  * @mtu: the new MTU or -1
3916  * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3917  * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3918  * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
3919  * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
3920  *          -1 no change
3921  * @sleep_ok: if true we may sleep while awaiting command completion
3922  *
3923  * Sets Rx properties of a virtual interface.
3924  */
3925 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
3926                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
3927                   bool sleep_ok)
3928 {
3929         struct fw_vi_rxmode_cmd c;
3930
3931         /* convert to FW values */
3932         if (mtu < 0)
3933                 mtu = M_FW_VI_RXMODE_CMD_MTU;
3934         if (promisc < 0)
3935                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
3936         if (all_multi < 0)
3937                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
3938         if (bcast < 0)
3939                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
3940         if (vlanex < 0)
3941                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
3942
3943         memset(&c, 0, sizeof(c));
3944         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
3945                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3946                                    V_FW_VI_RXMODE_CMD_VIID(viid));
3947         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3948         c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
3949                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
3950                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
3951                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
3952                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
3953         if (is_pf4(adap))
3954                 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL,
3955                                        sleep_ok);
3956         else
3957                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
3958 }
3959
3960 /**
3961  *      t4_alloc_raw_mac_filt - Adds a raw mac entry in mps tcam
3962  *      @adap: the adapter
3963  *      @viid: the VI id
3964  *      @mac: the MAC address
3965  *      @mask: the mask
3966  *      @idx: index at which to add this entry
3967  *      @port_id: the port index
3968  *      @lookup_type: MAC address for inner (1) or outer (0) header
3969  *      @sleep_ok: call is allowed to sleep
3970  *
3971  *      Adds the mac entry at the specified index using raw mac interface.
3972  *
3973  *      Returns a negative error number or the allocated index for this mac.
3974  */
3975 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
3976                           const u8 *addr, const u8 *mask, unsigned int idx,
3977                           u8 lookup_type, u8 port_id, bool sleep_ok)
3978 {
3979         int ret = 0;
3980         struct fw_vi_mac_cmd c;
3981         struct fw_vi_mac_raw *p = &c.u.raw;
3982         u32 val;
3983
3984         memset(&c, 0, sizeof(c));
3985         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
3986                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3987                                    V_FW_VI_MAC_CMD_VIID(viid));
3988         val = V_FW_CMD_LEN16(1) |
3989               V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
3990         c.freemacs_to_len16 = cpu_to_be32(val);
3991
3992         /* Specify that this is an inner mac address */
3993         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
3994
3995         /* Lookup Type. Outer header: 0, Inner header: 1 */
3996         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
3997                                    V_DATAPORTNUM(port_id));
3998         /* Lookup mask and port mask */
3999         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4000                                     V_DATAPORTNUM(M_DATAPORTNUM));
4001
4002         /* Copy the address and the mask */
4003         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4004         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4005
4006         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4007         if (ret == 0) {
4008                 ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
4009                 if (ret != (int)idx)
4010                         ret = -ENOMEM;
4011         }
4012
4013         return ret;
4014 }
4015
4016 /**
4017  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
4018  *      @adap: the adapter
4019  *      @viid: the VI id
4020  *      @addr: the MAC address
4021  *      @mask: the mask
4022  *      @idx: index of the entry in mps tcam
4023  *      @lookup_type: MAC address for inner (1) or outer (0) header
4024  *      @port_id: the port index
4025  *      @sleep_ok: call is allowed to sleep
4026  *
4027  *      Removes the mac entry at the specified index using raw mac interface.
4028  *
4029  *      Returns a negative error number on failure.
4030  */
4031 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
4032                          const u8 *addr, const u8 *mask, unsigned int idx,
4033                          u8 lookup_type, u8 port_id, bool sleep_ok)
4034 {
4035         struct fw_vi_mac_cmd c;
4036         struct fw_vi_mac_raw *p = &c.u.raw;
4037         u32 raw;
4038
4039         memset(&c, 0, sizeof(c));
4040         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4041                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4042                                    V_FW_CMD_EXEC(0) |
4043                                    V_FW_VI_MAC_CMD_VIID(viid));
4044         raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
4045         c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0U) |
4046                                           raw |
4047                                           V_FW_CMD_LEN16(1));
4048
4049         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
4050                                      FW_VI_MAC_ID_BASED_FREE);
4051
4052         /* Lookup Type. Outer header: 0, Inner header: 1 */
4053         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
4054                                    V_DATAPORTNUM(port_id));
4055         /* Lookup mask and port mask */
4056         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4057                                     V_DATAPORTNUM(M_DATAPORTNUM));
4058
4059         /* Copy the address and the mask */
4060         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4061         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4062
4063         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4064 }
4065
4066 /**
4067  * t4_change_mac - modifies the exact-match filter for a MAC address
4068  * @adap: the adapter
4069  * @mbox: mailbox to use for the FW command
4070  * @viid: the VI id
4071  * @idx: index of existing filter for old value of MAC address, or -1
4072  * @addr: the new MAC address value
4073  * @persist: whether a new MAC allocation should be persistent
4074  * @add_smt: if true also add the address to the HW SMT
4075  *
4076  * Modifies an exact-match filter and sets it to the new MAC address if
4077  * @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
4078  * latter case the address is added persistently if @persist is %true.
4079  *
4080  * Note that in general it is not possible to modify the value of a given
4081  * filter so the generic way to modify an address filter is to free the one
4082  * being used by the old address value and allocate a new filter for the
4083  * new address value.
4084  *
4085  * Returns a negative error number or the index of the filter with the new
4086  * MAC value.  Note that this index may differ from @idx.
4087  */
4088 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
4089                   int idx, const u8 *addr, bool persist, bool add_smt)
4090 {
4091         int ret, mode;
4092         struct fw_vi_mac_cmd c;
4093         struct fw_vi_mac_exact *p = c.u.exact;
4094         int max_mac_addr = adap->params.arch.mps_tcam_size;
4095
4096         if (idx < 0)                             /* new allocation */
4097                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
4098         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
4099
4100         memset(&c, 0, sizeof(c));
4101         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4102                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4103                                    V_FW_VI_MAC_CMD_VIID(viid));
4104         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
4105         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
4106                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
4107                                       V_FW_VI_MAC_CMD_IDX(idx));
4108         memcpy(p->macaddr, addr, sizeof(p->macaddr));
4109
4110         if (is_pf4(adap))
4111                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4112         else
4113                 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
4114         if (ret == 0) {
4115                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
4116                 if (ret >= max_mac_addr)
4117                         ret = -ENOMEM;
4118         }
4119         return ret;
4120 }
4121
4122 /**
4123  * t4_enable_vi_params - enable/disable a virtual interface
4124  * @adap: the adapter
4125  * @mbox: mailbox to use for the FW command
4126  * @viid: the VI id
4127  * @rx_en: 1=enable Rx, 0=disable Rx
4128  * @tx_en: 1=enable Tx, 0=disable Tx
4129  * @dcb_en: 1=enable delivery of Data Center Bridging messages.
4130  *
4131  * Enables/disables a virtual interface.  Note that setting DCB Enable
4132  * only makes sense when enabling a Virtual Interface ...
4133  */
4134 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
4135                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
4136 {
4137         struct fw_vi_enable_cmd c;
4138
4139         memset(&c, 0, sizeof(c));
4140         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
4141                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4142                                    V_FW_VI_ENABLE_CMD_VIID(viid));
4143         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
4144                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
4145                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
4146                                      FW_LEN16(c));
4147         if (is_pf4(adap))
4148                 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4149         else
4150                 return t4vf_wr_mbox_ns(adap, &c, sizeof(c), NULL);
4151 }
4152
4153 /**
4154  * t4_enable_vi - enable/disable a virtual interface
4155  * @adap: the adapter
4156  * @mbox: mailbox to use for the FW command
4157  * @viid: the VI id
4158  * @rx_en: 1=enable Rx, 0=disable Rx
4159  * @tx_en: 1=enable Tx, 0=disable Tx
4160  *
4161  * Enables/disables a virtual interface.  Note that setting DCB Enable
4162  * only makes sense when enabling a Virtual Interface ...
4163  */
4164 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
4165                  bool rx_en, bool tx_en)
4166 {
4167         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
4168 }
4169
4170 /**
4171  * t4_iq_start_stop - enable/disable an ingress queue and its FLs
4172  * @adap: the adapter
4173  * @mbox: mailbox to use for the FW command
4174  * @start: %true to enable the queues, %false to disable them
4175  * @pf: the PF owning the queues
4176  * @vf: the VF owning the queues
4177  * @iqid: ingress queue id
4178  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4179  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4180  *
4181  * Starts or stops an ingress queue and its associated FLs, if any.
4182  */
4183 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
4184                      unsigned int pf, unsigned int vf, unsigned int iqid,
4185                      unsigned int fl0id, unsigned int fl1id)
4186 {
4187         struct fw_iq_cmd c;
4188
4189         memset(&c, 0, sizeof(c));
4190         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4191                                   F_FW_CMD_EXEC);
4192         c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
4193                                        V_FW_IQ_CMD_IQSTOP(!start) |
4194                                        FW_LEN16(c));
4195         c.iqid = cpu_to_be16(iqid);
4196         c.fl0id = cpu_to_be16(fl0id);
4197         c.fl1id = cpu_to_be16(fl1id);
4198         if (is_pf4(adap)) {
4199                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4200                                            V_FW_IQ_CMD_VFN(vf));
4201                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4202         } else {
4203                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4204         }
4205 }
4206
4207 /**
4208  * t4_iq_free - free an ingress queue and its FLs
4209  * @adap: the adapter
4210  * @mbox: mailbox to use for the FW command
4211  * @pf: the PF owning the queues
4212  * @vf: the VF owning the queues
4213  * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
4214  * @iqid: ingress queue id
4215  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4216  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4217  *
4218  * Frees an ingress queue and its associated FLs, if any.
4219  */
4220 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4221                unsigned int vf, unsigned int iqtype, unsigned int iqid,
4222                unsigned int fl0id, unsigned int fl1id)
4223 {
4224         struct fw_iq_cmd c;
4225
4226         memset(&c, 0, sizeof(c));
4227         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4228                                   F_FW_CMD_EXEC);
4229         if (is_pf4(adap))
4230                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4231                                            V_FW_IQ_CMD_VFN(vf));
4232         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
4233         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
4234         c.iqid = cpu_to_be16(iqid);
4235         c.fl0id = cpu_to_be16(fl0id);
4236         c.fl1id = cpu_to_be16(fl1id);
4237         if (is_pf4(adap))
4238                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4239         else
4240                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4241 }
4242
4243 /**
4244  * t4_eth_eq_free - free an Ethernet egress queue
4245  * @adap: the adapter
4246  * @mbox: mailbox to use for the FW command
4247  * @pf: the PF owning the queue
4248  * @vf: the VF owning the queue
4249  * @eqid: egress queue id
4250  *
4251  * Frees an Ethernet egress queue.
4252  */
4253 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4254                    unsigned int vf, unsigned int eqid)
4255 {
4256         struct fw_eq_eth_cmd c;
4257
4258         memset(&c, 0, sizeof(c));
4259         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
4260                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC);
4261         if (is_pf4(adap))
4262                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4263                                            V_FW_IQ_CMD_VFN(vf));
4264         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
4265         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
4266         if (is_pf4(adap))
4267                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4268         else
4269                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4270 }
4271
4272 /**
4273  * t4_link_down_rc_str - return a string for a Link Down Reason Code
4274  * @link_down_rc: Link Down Reason Code
4275  *
4276  * Returns a string representation of the Link Down Reason Code.
4277  */
4278 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
4279 {
4280         static const char * const reason[] = {
4281                 "Link Down",
4282                 "Remote Fault",
4283                 "Auto-negotiation Failure",
4284                 "Reserved",
4285                 "Insufficient Airflow",
4286                 "Unable To Determine Reason",
4287                 "No RX Signal Detected",
4288                 "Reserved",
4289         };
4290
4291         if (link_down_rc >= ARRAY_SIZE(reason))
4292                 return "Bad Reason Code";
4293
4294         return reason[link_down_rc];
4295 }
4296
4297 static u32 t4_speed_to_fwcap(u32 speed)
4298 {
4299         switch (speed) {
4300         case 100000:
4301                 return FW_PORT_CAP32_SPEED_100G;
4302         case 50000:
4303                 return FW_PORT_CAP32_SPEED_50G;
4304         case 40000:
4305                 return FW_PORT_CAP32_SPEED_40G;
4306         case 25000:
4307                 return FW_PORT_CAP32_SPEED_25G;
4308         case 10000:
4309                 return FW_PORT_CAP32_SPEED_10G;
4310         case 1000:
4311                 return FW_PORT_CAP32_SPEED_1G;
4312         case 100:
4313                 return FW_PORT_CAP32_SPEED_100M;
4314         default:
4315                 break;
4316         }
4317
4318         return 0;
4319 }
4320
4321 /* Return the highest speed set in the port capabilities, in Mb/s. */
4322 unsigned int t4_fwcap_to_speed(u32 caps)
4323 {
4324 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
4325         do { \
4326                 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
4327                         return __speed; \
4328         } while (0)
4329
4330         TEST_SPEED_RETURN(100G, 100000);
4331         TEST_SPEED_RETURN(50G,   50000);
4332         TEST_SPEED_RETURN(40G,   40000);
4333         TEST_SPEED_RETURN(25G,   25000);
4334         TEST_SPEED_RETURN(10G,   10000);
4335         TEST_SPEED_RETURN(1G,     1000);
4336         TEST_SPEED_RETURN(100M,    100);
4337
4338 #undef TEST_SPEED_RETURN
4339
4340         return 0;
4341 }
4342
4343 static void t4_set_link_autoneg_speed(struct port_info *pi, u32 *new_caps)
4344 {
4345         struct link_config *lc = &pi->link_cfg;
4346         u32 caps = *new_caps;
4347
4348         caps &= ~V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4349         caps |= G_FW_PORT_CAP32_SPEED(lc->acaps);
4350
4351         *new_caps = caps;
4352 }
4353
4354 int t4_set_link_speed(struct port_info *pi, u32 speed, u32 *new_caps)
4355 {
4356         u32 fw_speed_cap = t4_speed_to_fwcap(speed);
4357         struct link_config *lc = &pi->link_cfg;
4358         u32 caps = *new_caps;
4359
4360         if (!(lc->pcaps & fw_speed_cap))
4361                 return -EOPNOTSUPP;
4362
4363         caps &= ~V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4364         caps |= fw_speed_cap;
4365
4366         *new_caps = caps;
4367
4368         return 0;
4369 }
4370
4371 int t4_set_link_pause(struct port_info *pi, u8 autoneg, u8 pause_tx,
4372                       u8 pause_rx, u32 *new_caps)
4373 {
4374         struct link_config *lc = &pi->link_cfg;
4375         u32 caps = *new_caps;
4376         u32 max_speed;
4377
4378         max_speed = t4_fwcap_to_speed(lc->link_caps);
4379
4380         if (autoneg) {
4381                 if (!(lc->pcaps & FW_PORT_CAP32_ANEG))
4382                         return -EINVAL;
4383
4384                 caps |= FW_PORT_CAP32_ANEG;
4385                 t4_set_link_autoneg_speed(pi, &caps);
4386         } else {
4387                 if (!max_speed)
4388                         max_speed = t4_fwcap_to_speed(lc->acaps);
4389
4390                 caps &= ~FW_PORT_CAP32_ANEG;
4391                 t4_set_link_speed(pi, max_speed, &caps);
4392         }
4393
4394         if (lc->pcaps & FW_PORT_CAP32_MDIAUTO)
4395                 caps |= V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4396
4397         caps &= ~V_FW_PORT_CAP32_FC(M_FW_PORT_CAP32_FC);
4398         caps &= ~V_FW_PORT_CAP32_802_3(M_FW_PORT_CAP32_802_3);
4399         if (pause_tx && pause_rx) {
4400                 caps |= FW_PORT_CAP32_FC_TX | FW_PORT_CAP32_FC_RX;
4401                 if (lc->pcaps & FW_PORT_CAP32_802_3_PAUSE)
4402                         caps |= FW_PORT_CAP32_802_3_PAUSE;
4403         } else if (pause_tx) {
4404                 caps |= FW_PORT_CAP32_FC_TX;
4405                 if (lc->pcaps & FW_PORT_CAP32_802_3_ASM_DIR)
4406                         caps |= FW_PORT_CAP32_802_3_ASM_DIR;
4407         } else if (pause_rx) {
4408                 caps |= FW_PORT_CAP32_FC_RX;
4409                 if (lc->pcaps & FW_PORT_CAP32_802_3_PAUSE)
4410                         caps |= FW_PORT_CAP32_802_3_PAUSE;
4411
4412                 if (lc->pcaps & FW_PORT_CAP32_802_3_ASM_DIR)
4413                         caps |= FW_PORT_CAP32_802_3_ASM_DIR;
4414         }
4415
4416         *new_caps = caps;
4417
4418         return 0;
4419 }
4420
4421 int t4_set_link_fec(struct port_info *pi, u8 fec_rs, u8 fec_baser,
4422                     u8 fec_none, u32 *new_caps)
4423 {
4424         struct link_config *lc = &pi->link_cfg;
4425         u32 max_speed, caps = *new_caps;
4426
4427         if (!(lc->pcaps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)))
4428                 return -EOPNOTSUPP;
4429
4430         /* Link might be down. In that case consider the max
4431          * speed advertised
4432          */
4433         max_speed = t4_fwcap_to_speed(lc->link_caps);
4434         if (!max_speed)
4435                 max_speed = t4_fwcap_to_speed(lc->acaps);
4436
4437         caps &= ~V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
4438         if (fec_rs) {
4439                 switch (max_speed) {
4440                 case 100000:
4441                 case 25000:
4442                         caps |= FW_PORT_CAP32_FEC_RS;
4443                         break;
4444                 default:
4445                         return -EOPNOTSUPP;
4446                 }
4447         }
4448
4449         if (fec_baser) {
4450                 switch (max_speed) {
4451                 case 50000:
4452                 case 25000:
4453                         caps |= FW_PORT_CAP32_FEC_BASER_RS;
4454                         break;
4455                 default:
4456                         return -EOPNOTSUPP;
4457                 }
4458         }
4459
4460         if (fec_none)
4461                 caps |= FW_PORT_CAP32_FEC_NO_FEC;
4462
4463         if (!(caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC))) {
4464                 /* No explicit encoding is requested.
4465                  * So, default back to AUTO.
4466                  */
4467                 switch (max_speed) {
4468                 case 100000:
4469                         caps |= FW_PORT_CAP32_FEC_RS |
4470                                 FW_PORT_CAP32_FEC_NO_FEC;
4471                         break;
4472                 case 50000:
4473                         caps |= FW_PORT_CAP32_FEC_BASER_RS |
4474                                 FW_PORT_CAP32_FEC_NO_FEC;
4475                         break;
4476                 case 25000:
4477                         caps |= FW_PORT_CAP32_FEC_RS |
4478                                 FW_PORT_CAP32_FEC_BASER_RS |
4479                                 FW_PORT_CAP32_FEC_NO_FEC;
4480                         break;
4481                 default:
4482                         return -EOPNOTSUPP;
4483                 }
4484         }
4485
4486         *new_caps = caps;
4487
4488         return 0;
4489 }
4490
4491 /**
4492  * t4_handle_get_port_info - process a FW reply message
4493  * @pi: the port info
4494  * @rpl: start of the FW message
4495  *
4496  * Processes a GET_PORT_INFO FW reply message.
4497  */
4498 static void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
4499 {
4500         const struct fw_port_cmd *cmd = (const void *)rpl;
4501         u8 link_ok, link_down_rc, mod_type, port_type;
4502         u32 action, pcaps, acaps, link_caps, lstatus;
4503         struct link_config *lc = &pi->link_cfg;
4504         struct adapter *adapter = pi->adapter;
4505         u8 mod_changed = 0;
4506
4507         /* Extract the various fields from the Port Information message.
4508          */
4509         action = be32_to_cpu(cmd->action_to_len16);
4510         if (G_FW_PORT_CMD_ACTION(action) != FW_PORT_ACTION_GET_PORT_INFO32) {
4511                 dev_warn(adapter, "Handle Port Information: Bad Command/Action %#x\n",
4512                          action);
4513                 return;
4514         }
4515
4516         lstatus = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
4517         link_ok = (lstatus & F_FW_PORT_CMD_LSTATUS32) ? 1 : 0;
4518         link_down_rc = G_FW_PORT_CMD_LINKDNRC32(lstatus);
4519         port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus);
4520         mod_type = G_FW_PORT_CMD_MODTYPE32(lstatus);
4521
4522         pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
4523         acaps = be32_to_cpu(cmd->u.info32.acaps32);
4524         link_caps = be32_to_cpu(cmd->u.info32.linkattr32);
4525
4526         if (mod_type != lc->mod_type) {
4527                 t4_init_link_config(pi, pcaps, acaps, lc->mdio_addr,
4528                                     port_type, mod_type);
4529                 t4_os_portmod_changed(adapter, pi->pidx);
4530                 mod_changed = 1;
4531         }
4532         if (link_ok != lc->link_ok || acaps != lc->acaps ||
4533             link_caps != lc->link_caps) { /* something changed */
4534                 if (!link_ok && lc->link_ok) {
4535                         lc->link_down_rc = link_down_rc;
4536                         dev_warn(adap, "Port %d link down, reason: %s\n",
4537                                  pi->port_id,
4538                                  t4_link_down_rc_str(link_down_rc));
4539                 }
4540                 lc->link_ok = link_ok;
4541                 lc->acaps = acaps;
4542                 lc->link_caps = link_caps;
4543                 t4_os_link_changed(adapter, pi->pidx);
4544         }
4545
4546         if (mod_changed != 0 && is_pf4(adapter) != 0) {
4547                 u32 mod_caps = lc->admin_caps;
4548                 int ret;
4549
4550                 ret = t4_link_l1cfg_ns(pi, mod_caps);
4551                 if (ret != FW_SUCCESS)
4552                         dev_warn(adapter,
4553                                  "Attempt to update new Transceiver Module settings %#x failed with error: %d\n",
4554                                  mod_caps, ret);
4555         }
4556 }
4557
4558 /**
4559  * t4_ctrl_eq_free - free a control egress queue
4560  * @adap: the adapter
4561  * @mbox: mailbox to use for the FW command
4562  * @pf: the PF owning the queue
4563  * @vf: the VF owning the queue
4564  * @eqid: egress queue id
4565  *
4566  * Frees a control egress queue.
4567  */
4568 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4569                     unsigned int vf, unsigned int eqid)
4570 {
4571         struct fw_eq_ctrl_cmd c;
4572
4573         memset(&c, 0, sizeof(c));
4574         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
4575                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4576                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
4577                                   V_FW_EQ_CTRL_CMD_VFN(vf));
4578         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
4579         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
4580         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4581 }
4582
4583 /**
4584  * t4_handle_fw_rpl - process a FW reply message
4585  * @adap: the adapter
4586  * @rpl: start of the FW message
4587  *
4588  * Processes a FW message, such as link state change messages.
4589  */
4590 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
4591 {
4592         u8 opcode = *(const u8 *)rpl;
4593
4594         /*
4595          * This might be a port command ... this simplifies the following
4596          * conditionals ...  We can get away with pre-dereferencing
4597          * action_to_len16 because it's in the first 16 bytes and all messages
4598          * will be at least that long.
4599          */
4600         const struct fw_port_cmd *p = (const void *)rpl;
4601         unsigned int action =
4602                 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
4603
4604         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO32) {
4605                 /* link/module state change message */
4606                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
4607                 struct port_info *pi = NULL;
4608                 int i;
4609
4610                 for_each_port(adap, i) {
4611                         pi = adap2pinfo(adap, i);
4612                         if (pi->tx_chan == chan)
4613                                 break;
4614                 }
4615
4616                 t4_handle_get_port_info(pi, rpl);
4617         } else {
4618                 dev_warn(adap, "Unknown firmware reply %d\n", opcode);
4619                 return -EINVAL;
4620         }
4621         return 0;
4622 }
4623
4624 void t4_reset_link_config(struct adapter *adap, int idx)
4625 {
4626         struct port_info *pi = adap2pinfo(adap, idx);
4627         struct link_config *lc = &pi->link_cfg;
4628
4629         lc->link_ok = 0;
4630         lc->link_down_rc = 0;
4631         lc->link_caps = 0;
4632 }
4633
4634 /**
4635  * t4_init_link_config - initialize a link's SW state
4636  * @pi: the port info
4637  * @pcaps: link Port Capabilities
4638  * @acaps: link current Advertised Port Capabilities
4639  * @mdio_addr : address of the PHY
4640  * @port_type : firmware port type
4641  * @mod_type  : firmware module type
4642  *
4643  * Initializes the SW state maintained for each link, including the link's
4644  * capabilities and default speed/flow-control/autonegotiation settings.
4645  */
4646 void t4_init_link_config(struct port_info *pi, u32 pcaps, u32 acaps,
4647                          u8 mdio_addr, u8 port_type, u8 mod_type)
4648 {
4649         u8 fec_rs = 0, fec_baser = 0, fec_none = 0;
4650         struct link_config *lc = &pi->link_cfg;
4651
4652         lc->pcaps = pcaps;
4653         lc->acaps = acaps;
4654         lc->admin_caps = acaps;
4655         lc->link_caps = 0;
4656
4657         lc->mdio_addr = mdio_addr;
4658         lc->port_type = port_type;
4659         lc->mod_type = mod_type;
4660
4661         lc->link_ok = 0;
4662         lc->link_down_rc = 0;
4663
4664         /* Turn Tx and Rx pause off by default */
4665         lc->admin_caps &= ~V_FW_PORT_CAP32_FC(M_FW_PORT_CAP32_FC);
4666         lc->admin_caps &= ~V_FW_PORT_CAP32_802_3(M_FW_PORT_CAP32_802_3);
4667         if (lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)
4668                 lc->admin_caps &= ~FW_PORT_CAP32_FORCE_PAUSE;
4669
4670         /* Reset FEC caps to default values */
4671         if (lc->pcaps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) {
4672                 if (lc->acaps & FW_PORT_CAP32_FEC_RS)
4673                         fec_rs = 1;
4674                 else if (lc->acaps & FW_PORT_CAP32_FEC_BASER_RS)
4675                         fec_baser = 1;
4676                 else
4677                         fec_none = 1;
4678
4679                 lc->admin_caps &= ~V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
4680                 t4_set_link_fec(pi, fec_rs, fec_baser, fec_none,
4681                                 &lc->admin_caps);
4682         }
4683
4684         if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
4685                 lc->admin_caps &= ~FW_PORT_CAP32_FORCE_FEC;
4686
4687         /* Reset MDI to AUTO */
4688         if (lc->pcaps & FW_PORT_CAP32_MDIAUTO) {
4689                 lc->admin_caps &= ~V_FW_PORT_CAP32_MDI(M_FW_PORT_CAP32_MDI);
4690                 lc->admin_caps |= V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4691         }
4692 }
4693
4694 /**
4695  * t4_wait_dev_ready - wait till to reads of registers work
4696  *
4697  * Right after the device is RESET is can take a small amount of time
4698  * for it to respond to register reads.  Until then, all reads will
4699  * return either 0xff...ff or 0xee...ee.  Return an error if reads
4700  * don't work within a reasonable time frame.
4701  */
4702 static int t4_wait_dev_ready(struct adapter *adapter)
4703 {
4704         u32 whoami;
4705
4706         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4707
4708         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4709                 return 0;
4710
4711         msleep(500);
4712         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4713         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4714                 return 0;
4715
4716         dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
4717                 whoami);
4718         return -EIO;
4719 }
4720
4721 struct flash_desc {
4722         u32 vendor_and_model_id;
4723         u32 size_mb;
4724 };
4725
4726 int t4_get_flash_params(struct adapter *adapter)
4727 {
4728         /*
4729          * Table for non-standard supported Flash parts.  Note, all Flash
4730          * parts must have 64KB sectors.
4731          */
4732         static struct flash_desc supported_flash[] = {
4733                 { 0x00150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
4734         };
4735
4736         int ret;
4737         u32 flashid = 0;
4738         unsigned int part, manufacturer;
4739         unsigned int density, size = 0;
4740
4741         /**
4742          * Issue a Read ID Command to the Flash part.  We decode supported
4743          * Flash parts and their sizes from this.  There's a newer Query
4744          * Command which can retrieve detailed geometry information but
4745          * many Flash parts don't support it.
4746          */
4747         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
4748         if (!ret)
4749                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
4750         t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
4751         if (ret < 0)
4752                 return ret;
4753
4754         /**
4755          * Check to see if it's one of our non-standard supported Flash parts.
4756          */
4757         for (part = 0; part < ARRAY_SIZE(supported_flash); part++) {
4758                 if (supported_flash[part].vendor_and_model_id == flashid) {
4759                         adapter->params.sf_size =
4760                                 supported_flash[part].size_mb;
4761                         adapter->params.sf_nsec =
4762                                 adapter->params.sf_size / SF_SEC_SIZE;
4763                         goto found;
4764                 }
4765         }
4766
4767         /**
4768          * Decode Flash part size.  The code below looks repetative with
4769          * common encodings, but that's not guaranteed in the JEDEC
4770          * specification for the Read JADEC ID command.  The only thing that
4771          * we're guaranteed by the JADEC specification is where the
4772          * Manufacturer ID is in the returned result.  After that each
4773          * Manufacturer ~could~ encode things completely differently.
4774          * Note, all Flash parts must have 64KB sectors.
4775          */
4776         manufacturer = flashid & 0xff;
4777         switch (manufacturer) {
4778         case 0x20: { /* Micron/Numonix */
4779                 /**
4780                  * This Density -> Size decoding table is taken from Micron
4781                  * Data Sheets.
4782                  */
4783                 density = (flashid >> 16) & 0xff;
4784                 switch (density) {
4785                 case 0x14:
4786                         size = 1 << 20; /* 1MB */
4787                         break;
4788                 case 0x15:
4789                         size = 1 << 21; /* 2MB */
4790                         break;
4791                 case 0x16:
4792                         size = 1 << 22; /* 4MB */
4793                         break;
4794                 case 0x17:
4795                         size = 1 << 23; /* 8MB */
4796                         break;
4797                 case 0x18:
4798                         size = 1 << 24; /* 16MB */
4799                         break;
4800                 case 0x19:
4801                         size = 1 << 25; /* 32MB */
4802                         break;
4803                 case 0x20:
4804                         size = 1 << 26; /* 64MB */
4805                         break;
4806                 case 0x21:
4807                         size = 1 << 27; /* 128MB */
4808                         break;
4809                 case 0x22:
4810                         size = 1 << 28; /* 256MB */
4811                         break;
4812                 }
4813                 break;
4814         }
4815
4816         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
4817                 /**
4818                  * This Density -> Size decoding table is taken from ISSI
4819                  * Data Sheets.
4820                  */
4821                 density = (flashid >> 16) & 0xff;
4822                 switch (density) {
4823                 case 0x16:
4824                         size = 1 << 25; /* 32MB */
4825                         break;
4826                 case 0x17:
4827                         size = 1 << 26; /* 64MB */
4828                         break;
4829                 }
4830                 break;
4831         }
4832
4833         case 0xc2: { /* Macronix */
4834                 /**
4835                  * This Density -> Size decoding table is taken from Macronix
4836                  * Data Sheets.
4837                  */
4838                 density = (flashid >> 16) & 0xff;
4839                 switch (density) {
4840                 case 0x17:
4841                         size = 1 << 23; /* 8MB */
4842                         break;
4843                 case 0x18:
4844                         size = 1 << 24; /* 16MB */
4845                         break;
4846                 }
4847                 break;
4848         }
4849
4850         case 0xef: { /* Winbond */
4851                 /**
4852                  * This Density -> Size decoding table is taken from Winbond
4853                  * Data Sheets.
4854                  */
4855                 density = (flashid >> 16) & 0xff;
4856                 switch (density) {
4857                 case 0x17:
4858                         size = 1 << 23; /* 8MB */
4859                         break;
4860                 case 0x18:
4861                         size = 1 << 24; /* 16MB */
4862                         break;
4863                 }
4864                 break;
4865         }
4866         }
4867
4868         /* If we didn't recognize the FLASH part, that's no real issue: the
4869          * Hardware/Software contract says that Hardware will _*ALWAYS*_
4870          * use a FLASH part which is at least 4MB in size and has 64KB
4871          * sectors.  The unrecognized FLASH part is likely to be much larger
4872          * than 4MB, but that's all we really need.
4873          */
4874         if (size == 0) {
4875                 dev_warn(adapter,
4876                          "Unknown Flash Part, ID = %#x, assuming 4MB\n",
4877                          flashid);
4878                 size = 1 << 22;
4879         }
4880
4881         /**
4882          * Store decoded Flash size and fall through into vetting code.
4883          */
4884         adapter->params.sf_size = size;
4885         adapter->params.sf_nsec = size / SF_SEC_SIZE;
4886
4887 found:
4888         /*
4889          * We should reject adapters with FLASHes which are too small. So, emit
4890          * a warning.
4891          */
4892         if (adapter->params.sf_size < FLASH_MIN_SIZE)
4893                 dev_warn(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
4894                          flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
4895
4896         return 0;
4897 }
4898
4899 static void set_pcie_completion_timeout(struct adapter *adapter,
4900                                         u8 range)
4901 {
4902         u32 pcie_cap;
4903         u16 val;
4904
4905         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
4906         if (pcie_cap) {
4907                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
4908                 val &= 0xfff0;
4909                 val |= range;
4910                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
4911         }
4912 }
4913
4914 /**
4915  * t4_get_chip_type - Determine chip type from device ID
4916  * @adap: the adapter
4917  * @ver: adapter version
4918  */
4919 int t4_get_chip_type(struct adapter *adap, int ver)
4920 {
4921         enum chip_type chip = 0;
4922         u32 pl_rev = G_REV(t4_read_reg(adap, A_PL_REV));
4923
4924         /* Retrieve adapter's device ID */
4925         switch (ver) {
4926         case CHELSIO_T5:
4927                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4928                 break;
4929         case CHELSIO_T6:
4930                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4931                 break;
4932         default:
4933                 dev_err(adap, "Device %d is not supported\n",
4934                         adap->params.pci.device_id);
4935                 return -EINVAL;
4936         }
4937
4938         return chip;
4939 }
4940
4941 /**
4942  * t4_prep_adapter - prepare SW and HW for operation
4943  * @adapter: the adapter
4944  *
4945  * Initialize adapter SW state for the various HW modules, set initial
4946  * values for some adapter tunables, take PHYs out of reset, and
4947  * initialize the MDIO interface.
4948  */
4949 int t4_prep_adapter(struct adapter *adapter)
4950 {
4951         int ret, ver;
4952         u32 pl_rev;
4953
4954         ret = t4_wait_dev_ready(adapter);
4955         if (ret < 0)
4956                 return ret;
4957
4958         pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
4959         adapter->params.pci.device_id = adapter->pdev->id.device_id;
4960         adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
4961
4962         /*
4963          * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
4964          * ADAPTER (VERSION << 4 | REVISION)
4965          */
4966         ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
4967         adapter->params.chip = 0;
4968         switch (ver) {
4969         case CHELSIO_T5:
4970                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4971                 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
4972                 adapter->params.arch.mps_tcam_size =
4973                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4974                 adapter->params.arch.mps_rplc_size = 128;
4975                 adapter->params.arch.nchan = NCHAN;
4976                 adapter->params.arch.vfcount = 128;
4977                 /* Congestion map is for 4 channels so that
4978                  * MPS can have 4 priority per port.
4979                  */
4980                 adapter->params.arch.cng_ch_bits_log = 2;
4981                 break;
4982         case CHELSIO_T6:
4983                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4984                 adapter->params.arch.sge_fl_db = 0;
4985                 adapter->params.arch.mps_tcam_size =
4986                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4987                 adapter->params.arch.mps_rplc_size = 256;
4988                 adapter->params.arch.nchan = 2;
4989                 adapter->params.arch.vfcount = 256;
4990                 /* Congestion map is for 2 channels so that
4991                  * MPS can have 8 priority per port.
4992                  */
4993                 adapter->params.arch.cng_ch_bits_log = 3;
4994                 break;
4995         default:
4996                 dev_err(adapter, "%s: Device %d is not supported\n",
4997                         __func__, adapter->params.pci.device_id);
4998                 return -EINVAL;
4999         }
5000
5001         adapter->params.pci.vpd_cap_addr =
5002                 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
5003
5004         ret = t4_get_flash_params(adapter);
5005         if (ret < 0) {
5006                 dev_err(adapter, "Unable to retrieve Flash Parameters, ret = %d\n",
5007                         -ret);
5008                 return ret;
5009         }
5010
5011         adapter->params.cim_la_size = CIMLA_SIZE;
5012
5013         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5014
5015         /*
5016          * Default port and clock for debugging in case we can't reach FW.
5017          */
5018         adapter->params.nports = 1;
5019         adapter->params.portvec = 1;
5020         adapter->params.vpd.cclk = 50000;
5021
5022         /* Set pci completion timeout value to 4 seconds. */
5023         set_pcie_completion_timeout(adapter, 0xd);
5024         return 0;
5025 }
5026
5027 /**
5028  * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
5029  * @adapter: the adapter
5030  * @qid: the Queue ID
5031  * @qtype: the Ingress or Egress type for @qid
5032  * @pbar2_qoffset: BAR2 Queue Offset
5033  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
5034  *
5035  * Returns the BAR2 SGE Queue Registers information associated with the
5036  * indicated Absolute Queue ID.  These are passed back in return value
5037  * pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
5038  * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
5039  *
5040  * This may return an error which indicates that BAR2 SGE Queue
5041  * registers aren't available.  If an error is not returned, then the
5042  * following values are returned:
5043  *
5044  *   *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
5045  *   *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
5046  *
5047  * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
5048  * require the "Inferred Queue ID" ability may be used.  E.g. the
5049  * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
5050  * then these "Inferred Queue ID" register may not be used.
5051  */
5052 int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
5053                       enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
5054                       unsigned int *pbar2_qid)
5055 {
5056         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
5057         u64 bar2_page_offset, bar2_qoffset;
5058         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
5059
5060         /*
5061          * T4 doesn't support BAR2 SGE Queue registers.
5062          */
5063         if (is_t4(adapter->params.chip))
5064                 return -EINVAL;
5065
5066         /*
5067          * Get our SGE Page Size parameters.
5068          */
5069         page_shift = adapter->params.sge.hps + 10;
5070         page_size = 1 << page_shift;
5071
5072         /*
5073          * Get the right Queues per Page parameters for our Queue.
5074          */
5075         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
5076                               adapter->params.sge.eq_qpp :
5077                               adapter->params.sge.iq_qpp);
5078         qpp_mask = (1 << qpp_shift) - 1;
5079
5080         /*
5081          * Calculate the basics of the BAR2 SGE Queue register area:
5082          *  o The BAR2 page the Queue registers will be in.
5083          *  o The BAR2 Queue ID.
5084          *  o The BAR2 Queue ID Offset into the BAR2 page.
5085          */
5086         bar2_page_offset = ((qid >> qpp_shift) << page_shift);
5087         bar2_qid = qid & qpp_mask;
5088         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
5089
5090         /*
5091          * If the BAR2 Queue ID Offset is less than the Page Size, then the
5092          * hardware will infer the Absolute Queue ID simply from the writes to
5093          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
5094          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
5095          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
5096          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
5097          * from the BAR2 Page and BAR2 Queue ID.
5098          *
5099          * One important censequence of this is that some BAR2 SGE registers
5100          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
5101          * there.  But other registers synthesize the SGE Queue ID purely
5102          * from the writes to the registers -- the Write Combined Doorbell
5103          * Buffer is a good example.  These BAR2 SGE Registers are only
5104          * available for those BAR2 SGE Register areas where the SGE Absolute
5105          * Queue ID can be inferred from simple writes.
5106          */
5107         bar2_qoffset = bar2_page_offset;
5108         bar2_qinferred = (bar2_qid_offset < page_size);
5109         if (bar2_qinferred) {
5110                 bar2_qoffset += bar2_qid_offset;
5111                 bar2_qid = 0;
5112         }
5113
5114         *pbar2_qoffset = bar2_qoffset;
5115         *pbar2_qid = bar2_qid;
5116         return 0;
5117 }
5118
5119 /**
5120  * t4_init_sge_params - initialize adap->params.sge
5121  * @adapter: the adapter
5122  *
5123  * Initialize various fields of the adapter's SGE Parameters structure.
5124  */
5125 int t4_init_sge_params(struct adapter *adapter)
5126 {
5127         struct sge_params *sge_params = &adapter->params.sge;
5128         u32 hps, qpp;
5129         unsigned int s_hps, s_qpp;
5130
5131         /*
5132          * Extract the SGE Page Size for our PF.
5133          */
5134         hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
5135         s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
5136                  adapter->pf);
5137         sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);
5138
5139         /*
5140          * Extract the SGE Egress and Ingess Queues Per Page for our PF.
5141          */
5142         s_qpp = (S_QUEUESPERPAGEPF0 +
5143                  (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
5144         qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
5145         sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5146         qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
5147         sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5148
5149         return 0;
5150 }
5151
5152 /**
5153  * t4_init_tp_params - initialize adap->params.tp
5154  * @adap: the adapter
5155  *
5156  * Initialize various fields of the adapter's TP Parameters structure.
5157  */
5158 int t4_init_tp_params(struct adapter *adap)
5159 {
5160         int chan, ret;
5161         u32 param, v;
5162
5163         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5164         adap->params.tp.tre = G_TIMERRESOLUTION(v);
5165         adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5166
5167         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5168         for (chan = 0; chan < NCHAN; chan++)
5169                 adap->params.tp.tx_modq[chan] = chan;
5170
5171         /*
5172          * Cache the adapter's Compressed Filter Mode/Mask and global Ingress
5173          * Configuration.
5174          */
5175         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5176                  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
5177                  V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK));
5178
5179         /* Read current value */
5180         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5181                               1, &param, &v);
5182         if (!ret) {
5183                 dev_info(adap, "Current filter mode/mask 0x%x:0x%x\n",
5184                          G_FW_PARAMS_PARAM_FILTER_MODE(v),
5185                          G_FW_PARAMS_PARAM_FILTER_MASK(v));
5186                 adap->params.tp.vlan_pri_map =
5187                         G_FW_PARAMS_PARAM_FILTER_MODE(v);
5188                 adap->params.tp.filter_mask =
5189                         G_FW_PARAMS_PARAM_FILTER_MASK(v);
5190         } else {
5191                 dev_info(adap,
5192                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
5193
5194                 /* In case of older-fw (which doesn't expose the api
5195                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
5196                  * the fw api) combination, fall-back to older method of reading
5197                  * the filter mode from indirect-register
5198                  */
5199                 t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5200                                  &adap->params.tp.vlan_pri_map, 1,
5201                                  A_TP_VLAN_PRI_MAP);
5202
5203                 /* With the older-fw and newer-driver combination we might run
5204                  * into an issue when user wants to use hash filter region but
5205                  * the filter_mask is zero, in this case filter_mask validation
5206                  * is tough. To avoid that we set the filter_mask same as filter
5207                  * mode, which will behave exactly as the older way of ignoring
5208                  * the filter mask validation.
5209                  */
5210                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
5211         }
5212
5213         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5214                          &adap->params.tp.ingress_config, 1,
5215                          A_TP_INGRESS_CONFIG);
5216
5217         /* For T6, cache the adapter's compressed error vector
5218          * and passing outer header info for encapsulated packets.
5219          */
5220         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
5221                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
5222                 adap->params.tp.rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
5223         }
5224
5225         /*
5226          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5227          * shift positions of several elements of the Compressed Filter Tuple
5228          * for this adapter which we need frequently ...
5229          */
5230         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
5231         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
5232         adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
5233         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
5234                                                                F_PROTOCOL);
5235         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
5236                                                                 F_ETHERTYPE);
5237         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
5238                                                                F_MACMATCH);
5239         adap->params.tp.tos_shift = t4_filter_field_shift(adap, F_TOS);
5240
5241         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
5242         adap->params.tp.hash_filter_mask = v;
5243         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
5244         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
5245
5246         return 0;
5247 }
5248
5249 /**
5250  * t4_filter_field_shift - calculate filter field shift
5251  * @adap: the adapter
5252  * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5253  *
5254  * Return the shift position of a filter field within the Compressed
5255  * Filter Tuple.  The filter field is specified via its selection bit
5256  * within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5257  */
5258 int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
5259 {
5260         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5261         unsigned int sel;
5262         int field_shift;
5263
5264         if ((filter_mode & filter_sel) == 0)
5265                 return -1;
5266
5267         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5268                 switch (filter_mode & sel) {
5269                 case F_FCOE:
5270                         field_shift += W_FT_FCOE;
5271                         break;
5272                 case F_PORT:
5273                         field_shift += W_FT_PORT;
5274                         break;
5275                 case F_VNIC_ID:
5276                         field_shift += W_FT_VNIC_ID;
5277                         break;
5278                 case F_VLAN:
5279                         field_shift += W_FT_VLAN;
5280                         break;
5281                 case F_TOS:
5282                         field_shift += W_FT_TOS;
5283                         break;
5284                 case F_PROTOCOL:
5285                         field_shift += W_FT_PROTOCOL;
5286                         break;
5287                 case F_ETHERTYPE:
5288                         field_shift += W_FT_ETHERTYPE;
5289                         break;
5290                 case F_MACMATCH:
5291                         field_shift += W_FT_MACMATCH;
5292                         break;
5293                 case F_MPSHITTYPE:
5294                         field_shift += W_FT_MPSHITTYPE;
5295                         break;
5296                 case F_FRAGMENTATION:
5297                         field_shift += W_FT_FRAGMENTATION;
5298                         break;
5299                 }
5300         }
5301         return field_shift;
5302 }
5303
5304 int t4_init_rss_mode(struct adapter *adap, int mbox)
5305 {
5306         int i, ret;
5307         struct fw_rss_vi_config_cmd rvc;
5308
5309         memset(&rvc, 0, sizeof(rvc));
5310
5311         for_each_port(adap, i) {
5312                 struct port_info *p = adap2pinfo(adap, i);
5313
5314                 rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5315                                        F_FW_CMD_REQUEST | F_FW_CMD_READ |
5316                                        V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
5317                 rvc.retval_len16 = htonl(FW_LEN16(rvc));
5318                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
5319                 if (ret)
5320                         return ret;
5321                 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
5322         }
5323         return 0;
5324 }
5325
5326 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
5327 {
5328         u32 param, val, pcaps, acaps;
5329         enum fw_port_type port_type;
5330         struct fw_port_cmd cmd;
5331         u8 vivld = 0, vin = 0;
5332         int ret, i, j = 0;
5333         int mdio_addr;
5334         u8 addr[6];
5335
5336         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
5337                  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
5338         val = 1;
5339         ret = t4_set_params(adap, mbox, pf, vf, 1, &param, &val);
5340         if (ret < 0)
5341                 return ret;
5342
5343         memset(&cmd, 0, sizeof(cmd));
5344
5345         for_each_port(adap, i) {
5346                 struct port_info *pi = adap2pinfo(adap, i);
5347                 unsigned int rss_size = 0;
5348                 u32 lstatus32;
5349
5350                 while ((adap->params.portvec & (1 << j)) == 0)
5351                         j++;
5352
5353                 memset(&cmd, 0, sizeof(cmd));
5354                 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
5355                                                F_FW_CMD_REQUEST |
5356                                                F_FW_CMD_READ |
5357                                                V_FW_PORT_CMD_PORTID(j));
5358                 val = FW_PORT_ACTION_GET_PORT_INFO32;
5359                 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(val) |
5360                                                   FW_LEN16(cmd));
5361                 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
5362                 if (ret)
5363                         return ret;
5364
5365                 /* Extract the various fields from the Port Information
5366                  * message.
5367                  */
5368                 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
5369
5370                 port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
5371                 mdio_addr = (lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ?
5372                             (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) : -1;
5373                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
5374                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
5375
5376                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size,
5377                                   &vivld, &vin);
5378                 if (ret < 0)
5379                         return ret;
5380
5381                 pi->viid = ret;
5382                 pi->tx_chan = j;
5383                 pi->rss_size = rss_size;
5384                 t4_os_set_hw_addr(adap, i, addr);
5385
5386                 /* If fw supports returning the VIN as part of FW_VI_CMD,
5387                  * save the returned values.
5388                  */
5389                 if (adap->params.viid_smt_extn_support) {
5390                         pi->vivld = vivld;
5391                         pi->vin = vin;
5392                 } else {
5393                         /* Retrieve the values from VIID */
5394                         pi->vivld = G_FW_VIID_VIVLD(pi->viid);
5395                         pi->vin =  G_FW_VIID_VIN(pi->viid);
5396                 }
5397
5398                 t4_init_link_config(pi, pcaps, acaps, mdio_addr, port_type,
5399                                     FW_PORT_MOD_TYPE_NA);
5400                 j++;
5401         }
5402         return 0;
5403 }
5404
5405 /**
5406  * t4_memory_rw_addr - read/write adapter memory via PCIE memory window
5407  * @adap: the adapter
5408  * @win: PCI-E Memory Window to use
5409  * @addr: address within adapter memory
5410  * @len: amount of memory to transfer
5411  * @hbuf: host memory buffer
5412  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5413  *
5414  * Reads/writes an [almost] arbitrary memory region in the firmware: the
5415  * firmware memory address and host buffer must be aligned on 32-bit
5416  * boudaries; the length may be arbitrary.
5417  *
5418  * NOTES:
5419  *  1. The memory is transferred as a raw byte sequence from/to the
5420  *     firmware's memory.  If this memory contains data structures which
5421  *     contain multi-byte integers, it's the caller's responsibility to
5422  *     perform appropriate byte order conversions.
5423  *
5424  *  2. It is the Caller's responsibility to ensure that no other code
5425  *     uses the specified PCI-E Memory Window while this routine is
5426  *     using it.  This is typically done via the use of OS-specific
5427  *     locks, etc.
5428  */
5429 int t4_memory_rw_addr(struct adapter *adap, int win, u32 addr,
5430                       u32 len, void *hbuf, int dir)
5431 {
5432         u32 pos, offset, resid;
5433         u32 win_pf, mem_reg, mem_aperture, mem_base;
5434         u32 *buf;
5435
5436         /* Argument sanity checks ...*/
5437         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5438                 return -EINVAL;
5439         buf = (u32 *)hbuf;
5440
5441         /* It's convenient to be able to handle lengths which aren't a
5442          * multiple of 32-bits because we often end up transferring files to
5443          * the firmware.  So we'll handle that by normalizing the length here
5444          * and then handling any residual transfer at the end.
5445          */
5446         resid = len & 0x3;
5447         len -= resid;
5448
5449         /* Each PCI-E Memory Window is programmed with a window size -- or
5450          * "aperture" -- which controls the granularity of its mapping onto
5451          * adapter memory.  We need to grab that aperture in order to know
5452          * how to use the specified window.  The window is also programmed
5453          * with the base address of the Memory Window in BAR0's address
5454          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
5455          * the address is relative to BAR0.
5456          */
5457         mem_reg = t4_read_reg(adap,
5458                               PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
5459                                                   win));
5460         mem_aperture = 1 << (G_WINDOW(mem_reg) + X_WINDOW_SHIFT);
5461         mem_base = G_PCIEOFST(mem_reg) << X_PCIEOFST_SHIFT;
5462
5463         win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->pf);
5464
5465         /* Calculate our initial PCI-E Memory Window Position and Offset into
5466          * that Window.
5467          */
5468         pos = addr & ~(mem_aperture - 1);
5469         offset = addr - pos;
5470
5471         /* Set up initial PCI-E Memory Window to cover the start of our
5472          * transfer.  (Read it back to ensure that changes propagate before we
5473          * attempt to use the new value.)
5474          */
5475         t4_write_reg(adap,
5476                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win),
5477                      pos | win_pf);
5478         t4_read_reg(adap,
5479                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win));
5480
5481         /* Transfer data to/from the adapter as long as there's an integral
5482          * number of 32-bit transfers to complete.
5483          *
5484          * A note on Endianness issues:
5485          *
5486          * The "register" reads and writes below from/to the PCI-E Memory
5487          * Window invoke the standard adapter Big-Endian to PCI-E Link
5488          * Little-Endian "swizzel."  As a result, if we have the following
5489          * data in adapter memory:
5490          *
5491          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
5492          *     Address:      i+0  i+1  i+2  i+3
5493          *
5494          * Then a read of the adapter memory via the PCI-E Memory Window
5495          * will yield:
5496          *
5497          *     x = readl(i)
5498          *         31                  0
5499          *         [ b3 | b2 | b1 | b0 ]
5500          *
5501          * If this value is stored into local memory on a Little-Endian system
5502          * it will show up correctly in local memory as:
5503          *
5504          *     ( ..., b0, b1, b2, b3, ... )
5505          *
5506          * But on a Big-Endian system, the store will show up in memory
5507          * incorrectly swizzled as:
5508          *
5509          *     ( ..., b3, b2, b1, b0, ... )
5510          *
5511          * So we need to account for this in the reads and writes to the
5512          * PCI-E Memory Window below by undoing the register read/write
5513          * swizzels.
5514          */
5515         while (len > 0) {
5516                 if (dir == T4_MEMORY_READ)
5517                         *buf++ = le32_to_cpu((__le32)t4_read_reg(adap,
5518                                                                  mem_base +
5519                                                                  offset));
5520                 else
5521                         t4_write_reg(adap, mem_base + offset,
5522                                      (u32)cpu_to_le32(*buf++));
5523                 offset += sizeof(__be32);
5524                 len -= sizeof(__be32);
5525
5526                 /* If we've reached the end of our current window aperture,
5527                  * move the PCI-E Memory Window on to the next.  Note that
5528                  * doing this here after "len" may be 0 allows us to set up
5529                  * the PCI-E Memory Window for a possible final residual
5530                  * transfer below ...
5531                  */
5532                 if (offset == mem_aperture) {
5533                         pos += mem_aperture;
5534                         offset = 0;
5535                         t4_write_reg(adap,
5536                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5537                                                     win), pos | win_pf);
5538                         t4_read_reg(adap,
5539                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5540                                                     win));
5541                 }
5542         }
5543
5544         /* If the original transfer had a length which wasn't a multiple of
5545          * 32-bits, now's where we need to finish off the transfer of the
5546          * residual amount.  The PCI-E Memory Window has already been moved
5547          * above (if necessary) to cover this final transfer.
5548          */
5549         if (resid) {
5550                 union {
5551                         u32 word;
5552                         char byte[4];
5553                 } last;
5554                 unsigned char *bp;
5555                 int i;
5556
5557                 if (dir == T4_MEMORY_READ) {
5558                         last.word = le32_to_cpu((__le32)t4_read_reg(adap,
5559                                                                     mem_base +
5560                                                                     offset));
5561                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
5562                                 bp[i] = last.byte[i];
5563                 } else {
5564                         last.word = *buf;
5565                         for (i = resid; i < 4; i++)
5566                                 last.byte[i] = 0;
5567                         t4_write_reg(adap, mem_base + offset,
5568                                      (u32)cpu_to_le32(last.word));
5569                 }
5570         }
5571
5572         return 0;
5573 }
5574
5575 /**
5576  * t4_memory_rw_mtype -read/write EDC 0, EDC 1 or MC via PCIE memory window
5577  * @adap: the adapter
5578  * @win: PCI-E Memory Window to use
5579  * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
5580  * @maddr: address within indicated memory type
5581  * @len: amount of memory to transfer
5582  * @hbuf: host memory buffer
5583  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5584  *
5585  * Reads/writes adapter memory using t4_memory_rw_addr().  This routine
5586  * provides an (memory type, address within memory type) interface.
5587  */
5588 int t4_memory_rw_mtype(struct adapter *adap, int win, int mtype, u32 maddr,
5589                        u32 len, void *hbuf, int dir)
5590 {
5591         u32 mtype_offset;
5592         u32 edc_size, mc_size;
5593
5594         /* Offset into the region of memory which is being accessed
5595          * MEM_EDC0 = 0
5596          * MEM_EDC1 = 1
5597          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
5598          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
5599          */
5600         edc_size  = G_EDRAM0_SIZE(t4_read_reg(adap, A_MA_EDRAM0_BAR));
5601         if (mtype != MEM_MC1) {
5602                 mtype_offset = (mtype * (edc_size * 1024 * 1024));
5603         } else {
5604                 mc_size = G_EXT_MEM0_SIZE(t4_read_reg(adap,
5605                                                       A_MA_EXT_MEMORY0_BAR));
5606                 mtype_offset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
5607         }
5608
5609         return t4_memory_rw_addr(adap, win,
5610                                  mtype_offset + maddr, len,
5611                                  hbuf, dir);
5612 }