44227740c977a42f82659dfe15af2fd6db247cc0
[dpdk.git] / drivers / net / cxgbe / base / t4_hw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <netinet/in.h>
7
8 #include <rte_interrupts.h>
9 #include <rte_log.h>
10 #include <rte_debug.h>
11 #include <rte_pci.h>
12 #include <rte_atomic.h>
13 #include <rte_branch_prediction.h>
14 #include <rte_memory.h>
15 #include <rte_tailq.h>
16 #include <rte_eal.h>
17 #include <rte_alarm.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_malloc.h>
21 #include <rte_random.h>
22 #include <rte_dev.h>
23 #include <rte_byteorder.h>
24
25 #include "common.h"
26 #include "t4_regs.h"
27 #include "t4_regs_values.h"
28 #include "t4fw_interface.h"
29
30 /**
31  * t4_read_mtu_tbl - returns the values in the HW path MTU table
32  * @adap: the adapter
33  * @mtus: where to store the MTU values
34  * @mtu_log: where to store the MTU base-2 log (may be %NULL)
35  *
36  * Reads the HW path MTU table.
37  */
38 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
39 {
40         u32 v;
41         int i;
42
43         for (i = 0; i < NMTUS; ++i) {
44                 t4_write_reg(adap, A_TP_MTU_TABLE,
45                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
46                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
47                 mtus[i] = G_MTUVALUE(v);
48                 if (mtu_log)
49                         mtu_log[i] = G_MTUWIDTH(v);
50         }
51 }
52
53 /**
54  * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
55  * @adap: the adapter
56  * @addr: the indirect TP register address
57  * @mask: specifies the field within the register to modify
58  * @val: new value for the field
59  *
60  * Sets a field of an indirect TP register to the given value.
61  */
62 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
63                             unsigned int mask, unsigned int val)
64 {
65         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
66         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
67         t4_write_reg(adap, A_TP_PIO_DATA, val);
68 }
69
70 /* The minimum additive increment value for the congestion control table */
71 #define CC_MIN_INCR 2U
72
73 /**
74  * t4_load_mtus - write the MTU and congestion control HW tables
75  * @adap: the adapter
76  * @mtus: the values for the MTU table
77  * @alpha: the values for the congestion control alpha parameter
78  * @beta: the values for the congestion control beta parameter
79  *
80  * Write the HW MTU table with the supplied MTUs and the high-speed
81  * congestion control table with the supplied alpha, beta, and MTUs.
82  * We write the two tables together because the additive increments
83  * depend on the MTUs.
84  */
85 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
86                   const unsigned short *alpha, const unsigned short *beta)
87 {
88         static const unsigned int avg_pkts[NCCTRL_WIN] = {
89                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
90                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
91                 28672, 40960, 57344, 81920, 114688, 163840, 229376
92         };
93
94         unsigned int i, w;
95
96         for (i = 0; i < NMTUS; ++i) {
97                 unsigned int mtu = mtus[i];
98                 unsigned int log2 = cxgbe_fls(mtu);
99
100                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
101                         log2--;
102                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
103                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
104
105                 for (w = 0; w < NCCTRL_WIN; ++w) {
106                         unsigned int inc;
107
108                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
109                                   CC_MIN_INCR);
110
111                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
112                                      (w << 16) | (beta[w] << 13) | inc);
113                 }
114         }
115 }
116
117 /**
118  * t4_wait_op_done_val - wait until an operation is completed
119  * @adapter: the adapter performing the operation
120  * @reg: the register to check for completion
121  * @mask: a single-bit field within @reg that indicates completion
122  * @polarity: the value of the field when the operation is completed
123  * @attempts: number of check iterations
124  * @delay: delay in usecs between iterations
125  * @valp: where to store the value of the register at completion time
126  *
127  * Wait until an operation is completed by checking a bit in a register
128  * up to @attempts times.  If @valp is not NULL the value of the register
129  * at the time it indicated completion is stored there.  Returns 0 if the
130  * operation completes and -EAGAIN otherwise.
131  */
132 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
133                         int polarity, int attempts, int delay, u32 *valp)
134 {
135         while (1) {
136                 u32 val = t4_read_reg(adapter, reg);
137
138                 if (!!(val & mask) == polarity) {
139                         if (valp)
140                                 *valp = val;
141                         return 0;
142                 }
143                 if (--attempts == 0)
144                         return -EAGAIN;
145                 if (delay)
146                         udelay(delay);
147         }
148 }
149
150 /**
151  * t4_set_reg_field - set a register field to a value
152  * @adapter: the adapter to program
153  * @addr: the register address
154  * @mask: specifies the portion of the register to modify
155  * @val: the new value for the register field
156  *
157  * Sets a register field specified by the supplied mask to the
158  * given value.
159  */
160 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
161                       u32 val)
162 {
163         u32 v = t4_read_reg(adapter, addr) & ~mask;
164
165         t4_write_reg(adapter, addr, v | val);
166         (void)t4_read_reg(adapter, addr);      /* flush */
167 }
168
169 /**
170  * t4_read_indirect - read indirectly addressed registers
171  * @adap: the adapter
172  * @addr_reg: register holding the indirect address
173  * @data_reg: register holding the value of the indirect register
174  * @vals: where the read register values are stored
175  * @nregs: how many indirect registers to read
176  * @start_idx: index of first indirect register to read
177  *
178  * Reads registers that are accessed indirectly through an address/data
179  * register pair.
180  */
181 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
182                       unsigned int data_reg, u32 *vals, unsigned int nregs,
183                       unsigned int start_idx)
184 {
185         while (nregs--) {
186                 t4_write_reg(adap, addr_reg, start_idx);
187                 *vals++ = t4_read_reg(adap, data_reg);
188                 start_idx++;
189         }
190 }
191
192 /**
193  * t4_write_indirect - write indirectly addressed registers
194  * @adap: the adapter
195  * @addr_reg: register holding the indirect addresses
196  * @data_reg: register holding the value for the indirect registers
197  * @vals: values to write
198  * @nregs: how many indirect registers to write
199  * @start_idx: address of first indirect register to write
200  *
201  * Writes a sequential block of registers that are accessed indirectly
202  * through an address/data register pair.
203  */
204 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
205                        unsigned int data_reg, const u32 *vals,
206                        unsigned int nregs, unsigned int start_idx)
207 {
208         while (nregs--) {
209                 t4_write_reg(adap, addr_reg, start_idx++);
210                 t4_write_reg(adap, data_reg, *vals++);
211         }
212 }
213
214 /**
215  * t4_report_fw_error - report firmware error
216  * @adap: the adapter
217  *
218  * The adapter firmware can indicate error conditions to the host.
219  * If the firmware has indicated an error, print out the reason for
220  * the firmware error.
221  */
222 static void t4_report_fw_error(struct adapter *adap)
223 {
224         static const char * const reason[] = {
225                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
226                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
227                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
228                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
229                 "Unexpected Event",     /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
230                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
231                 "Device Shutdown",      /* PCIE_FW_EVAL_DEVICESHUTDOWN */
232                 "Reserved",                     /* reserved */
233         };
234         u32 pcie_fw;
235
236         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
237         if (pcie_fw & F_PCIE_FW_ERR)
238                 pr_err("%s: Firmware reports adapter error: %s\n",
239                        __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
240 }
241
242 /*
243  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
244  */
245 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
246                          u32 mbox_addr)
247 {
248         for ( ; nflit; nflit--, mbox_addr += 8)
249                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
250 }
251
252 /*
253  * Handle a FW assertion reported in a mailbox.
254  */
255 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
256 {
257         struct fw_debug_cmd asrt;
258
259         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
260         pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
261                 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
262                 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
263 }
264
265 #define X_CIM_PF_NOACCESS 0xeeeeeeee
266
267 /*
268  * If the Host OS Driver needs locking arround accesses to the mailbox, this
269  * can be turned on via the T4_OS_NEEDS_MBOX_LOCKING CPP define ...
270  */
271 /* makes single-statement usage a bit cleaner ... */
272 #ifdef T4_OS_NEEDS_MBOX_LOCKING
273 #define T4_OS_MBOX_LOCKING(x) x
274 #else
275 #define T4_OS_MBOX_LOCKING(x) do {} while (0)
276 #endif
277
278 /**
279  * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
280  * @adap: the adapter
281  * @mbox: index of the mailbox to use
282  * @cmd: the command to write
283  * @size: command length in bytes
284  * @rpl: where to optionally store the reply
285  * @sleep_ok: if true we may sleep while awaiting command completion
286  * @timeout: time to wait for command to finish before timing out
287  *           (negative implies @sleep_ok=false)
288  *
289  * Sends the given command to FW through the selected mailbox and waits
290  * for the FW to execute the command.  If @rpl is not %NULL it is used to
291  * store the FW's reply to the command.  The command and its optional
292  * reply are of the same length.  Some FW commands like RESET and
293  * INITIALIZE can take a considerable amount of time to execute.
294  * @sleep_ok determines whether we may sleep while awaiting the response.
295  * If sleeping is allowed we use progressive backoff otherwise we spin.
296  * Note that passing in a negative @timeout is an alternate mechanism
297  * for specifying @sleep_ok=false.  This is useful when a higher level
298  * interface allows for specification of @timeout but not @sleep_ok ...
299  *
300  * Returns 0 on success or a negative errno on failure.  A
301  * failure can happen either because we are not able to execute the
302  * command or FW executes it but signals an error.  In the latter case
303  * the return value is the error code indicated by FW (negated).
304  */
305 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
306                             const void __attribute__((__may_alias__)) *cmd,
307                             int size, void *rpl, bool sleep_ok, int timeout)
308 {
309         /*
310          * We delay in small increments at first in an effort to maintain
311          * responsiveness for simple, fast executing commands but then back
312          * off to larger delays to a maximum retry delay.
313          */
314         static const int delay[] = {
315                 1, 1, 3, 5, 10, 10, 20, 50, 100
316         };
317
318         u32 v;
319         u64 res;
320         int i, ms;
321         unsigned int delay_idx;
322         __be64 *temp = (__be64 *)malloc(size * sizeof(char));
323         __be64 *p = temp;
324         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
325         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
326         u32 ctl;
327         struct mbox_entry entry;
328         u32 pcie_fw = 0;
329
330         if (!temp)
331                 return -ENOMEM;
332
333         if ((size & 15) || size > MBOX_LEN) {
334                 free(temp);
335                 return -EINVAL;
336         }
337
338         memset(p, 0, size);
339         memcpy(p, (const __be64 *)cmd, size);
340
341         /*
342          * If we have a negative timeout, that implies that we can't sleep.
343          */
344         if (timeout < 0) {
345                 sleep_ok = false;
346                 timeout = -timeout;
347         }
348
349 #ifdef T4_OS_NEEDS_MBOX_LOCKING
350         /*
351          * Queue ourselves onto the mailbox access list.  When our entry is at
352          * the front of the list, we have rights to access the mailbox.  So we
353          * wait [for a while] till we're at the front [or bail out with an
354          * EBUSY] ...
355          */
356         t4_os_atomic_add_tail(&entry, &adap->mbox_list, &adap->mbox_lock);
357
358         delay_idx = 0;
359         ms = delay[0];
360
361         for (i = 0; ; i += ms) {
362                 /*
363                  * If we've waited too long, return a busy indication.  This
364                  * really ought to be based on our initial position in the
365                  * mailbox access list but this is a start.  We very rarely
366                  * contend on access to the mailbox ...  Also check for a
367                  * firmware error which we'll report as a device error.
368                  */
369                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
370                 if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
371                         t4_os_atomic_list_del(&entry, &adap->mbox_list,
372                                               &adap->mbox_lock);
373                         t4_report_fw_error(adap);
374                         free(temp);
375                         return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -EBUSY;
376                 }
377
378                 /*
379                  * If we're at the head, break out and start the mailbox
380                  * protocol.
381                  */
382                 if (t4_os_list_first_entry(&adap->mbox_list) == &entry)
383                         break;
384
385                 /*
386                  * Delay for a bit before checking again ...
387                  */
388                 if (sleep_ok) {
389                         ms = delay[delay_idx];  /* last element may repeat */
390                         if (delay_idx < ARRAY_SIZE(delay) - 1)
391                                 delay_idx++;
392                         msleep(ms);
393                 } else {
394                         rte_delay_ms(ms);
395                 }
396         }
397 #endif /* T4_OS_NEEDS_MBOX_LOCKING */
398
399         /*
400          * Attempt to gain access to the mailbox.
401          */
402         for (i = 0; i < 4; i++) {
403                 ctl = t4_read_reg(adap, ctl_reg);
404                 v = G_MBOWNER(ctl);
405                 if (v != X_MBOWNER_NONE)
406                         break;
407         }
408
409         /*
410          * If we were unable to gain access, dequeue ourselves from the
411          * mailbox atomic access list and report the error to our caller.
412          */
413         if (v != X_MBOWNER_PL) {
414                 T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
415                                                          &adap->mbox_list,
416                                                          &adap->mbox_lock));
417                 t4_report_fw_error(adap);
418                 free(temp);
419                 return (v == X_MBOWNER_FW ? -EBUSY : -ETIMEDOUT);
420         }
421
422         /*
423          * If we gain ownership of the mailbox and there's a "valid" message
424          * in it, this is likely an asynchronous error message from the
425          * firmware.  So we'll report that and then proceed on with attempting
426          * to issue our own command ... which may well fail if the error
427          * presaged the firmware crashing ...
428          */
429         if (ctl & F_MBMSGVALID) {
430                 dev_err(adap, "found VALID command in mbox %u: "
431                         "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
432                         (unsigned long long)t4_read_reg64(adap, data_reg),
433                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
434                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
435                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
436                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
437                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
438                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
439                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
440         }
441
442         /*
443          * Copy in the new mailbox command and send it on its way ...
444          */
445         for (i = 0; i < size; i += 8, p++)
446                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
447
448         CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
449                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
450                         (unsigned long long)t4_read_reg64(adap, data_reg),
451                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
452                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
453                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
454                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
455                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
456                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
457                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
458
459         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
460         t4_read_reg(adap, ctl_reg);          /* flush write */
461
462         delay_idx = 0;
463         ms = delay[0];
464
465         /*
466          * Loop waiting for the reply; bail out if we time out or the firmware
467          * reports an error.
468          */
469         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
470         for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
471                 if (sleep_ok) {
472                         ms = delay[delay_idx];  /* last element may repeat */
473                         if (delay_idx < ARRAY_SIZE(delay) - 1)
474                                 delay_idx++;
475                         msleep(ms);
476                 } else {
477                         msleep(ms);
478                 }
479
480                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
481                 v = t4_read_reg(adap, ctl_reg);
482                 if (v == X_CIM_PF_NOACCESS)
483                         continue;
484                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
485                         if (!(v & F_MBMSGVALID)) {
486                                 t4_write_reg(adap, ctl_reg,
487                                              V_MBOWNER(X_MBOWNER_NONE));
488                                 continue;
489                         }
490
491                         CXGBE_DEBUG_MBOX(adap,
492                         "%s: mbox %u: %016llx %016llx %016llx %016llx "
493                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
494                         (unsigned long long)t4_read_reg64(adap, data_reg),
495                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
496                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
497                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
498                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
499                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
500                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
501                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
502
503                         CXGBE_DEBUG_MBOX(adap,
504                                 "command %#x completed in %d ms (%ssleeping)\n",
505                                 *(const u8 *)cmd,
506                                 i + ms, sleep_ok ? "" : "non-");
507
508                         res = t4_read_reg64(adap, data_reg);
509                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
510                                 fw_asrt(adap, data_reg);
511                                 res = V_FW_CMD_RETVAL(EIO);
512                         } else if (rpl) {
513                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
514                         }
515                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
516                         T4_OS_MBOX_LOCKING(
517                                 t4_os_atomic_list_del(&entry, &adap->mbox_list,
518                                                       &adap->mbox_lock));
519                         free(temp);
520                         return -G_FW_CMD_RETVAL((int)res);
521                 }
522         }
523
524         /*
525          * We timed out waiting for a reply to our mailbox command.  Report
526          * the error and also check to see if the firmware reported any
527          * errors ...
528          */
529         dev_err(adap, "command %#x in mailbox %d timed out\n",
530                 *(const u8 *)cmd, mbox);
531         T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
532                                                  &adap->mbox_list,
533                                                  &adap->mbox_lock));
534         t4_report_fw_error(adap);
535         free(temp);
536         return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
537 }
538
539 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
540                     void *rpl, bool sleep_ok)
541 {
542         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
543                                        FW_CMD_MAX_TIMEOUT);
544 }
545
546 /**
547  * t4_get_regs_len - return the size of the chips register set
548  * @adapter: the adapter
549  *
550  * Returns the size of the chip's BAR0 register space.
551  */
552 unsigned int t4_get_regs_len(struct adapter *adapter)
553 {
554         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
555
556         switch (chip_version) {
557         case CHELSIO_T5:
558         case CHELSIO_T6:
559                 return T5_REGMAP_SIZE;
560         }
561
562         dev_err(adapter,
563                 "Unsupported chip version %d\n", chip_version);
564         return 0;
565 }
566
567 /**
568  * t4_get_regs - read chip registers into provided buffer
569  * @adap: the adapter
570  * @buf: register buffer
571  * @buf_size: size (in bytes) of register buffer
572  *
573  * If the provided register buffer isn't large enough for the chip's
574  * full register range, the register dump will be truncated to the
575  * register buffer's size.
576  */
577 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
578 {
579         static const unsigned int t5_reg_ranges[] = {
580                 0x1008, 0x10c0,
581                 0x10cc, 0x10f8,
582                 0x1100, 0x1100,
583                 0x110c, 0x1148,
584                 0x1180, 0x1184,
585                 0x1190, 0x1194,
586                 0x11a0, 0x11a4,
587                 0x11b0, 0x11b4,
588                 0x11fc, 0x123c,
589                 0x1280, 0x173c,
590                 0x1800, 0x18fc,
591                 0x3000, 0x3028,
592                 0x3060, 0x30b0,
593                 0x30b8, 0x30d8,
594                 0x30e0, 0x30fc,
595                 0x3140, 0x357c,
596                 0x35a8, 0x35cc,
597                 0x35ec, 0x35ec,
598                 0x3600, 0x5624,
599                 0x56cc, 0x56ec,
600                 0x56f4, 0x5720,
601                 0x5728, 0x575c,
602                 0x580c, 0x5814,
603                 0x5890, 0x589c,
604                 0x58a4, 0x58ac,
605                 0x58b8, 0x58bc,
606                 0x5940, 0x59c8,
607                 0x59d0, 0x59dc,
608                 0x59fc, 0x5a18,
609                 0x5a60, 0x5a70,
610                 0x5a80, 0x5a9c,
611                 0x5b94, 0x5bfc,
612                 0x6000, 0x6020,
613                 0x6028, 0x6040,
614                 0x6058, 0x609c,
615                 0x60a8, 0x614c,
616                 0x7700, 0x7798,
617                 0x77c0, 0x78fc,
618                 0x7b00, 0x7b58,
619                 0x7b60, 0x7b84,
620                 0x7b8c, 0x7c54,
621                 0x7d00, 0x7d38,
622                 0x7d40, 0x7d80,
623                 0x7d8c, 0x7ddc,
624                 0x7de4, 0x7e04,
625                 0x7e10, 0x7e1c,
626                 0x7e24, 0x7e38,
627                 0x7e40, 0x7e44,
628                 0x7e4c, 0x7e78,
629                 0x7e80, 0x7edc,
630                 0x7ee8, 0x7efc,
631                 0x8dc0, 0x8de0,
632                 0x8df8, 0x8e04,
633                 0x8e10, 0x8e84,
634                 0x8ea0, 0x8f84,
635                 0x8fc0, 0x9058,
636                 0x9060, 0x9060,
637                 0x9068, 0x90f8,
638                 0x9400, 0x9408,
639                 0x9410, 0x9470,
640                 0x9600, 0x9600,
641                 0x9608, 0x9638,
642                 0x9640, 0x96f4,
643                 0x9800, 0x9808,
644                 0x9820, 0x983c,
645                 0x9850, 0x9864,
646                 0x9c00, 0x9c6c,
647                 0x9c80, 0x9cec,
648                 0x9d00, 0x9d6c,
649                 0x9d80, 0x9dec,
650                 0x9e00, 0x9e6c,
651                 0x9e80, 0x9eec,
652                 0x9f00, 0x9f6c,
653                 0x9f80, 0xa020,
654                 0xd004, 0xd004,
655                 0xd010, 0xd03c,
656                 0xdfc0, 0xdfe0,
657                 0xe000, 0x1106c,
658                 0x11074, 0x11088,
659                 0x1109c, 0x1117c,
660                 0x11190, 0x11204,
661                 0x19040, 0x1906c,
662                 0x19078, 0x19080,
663                 0x1908c, 0x190e8,
664                 0x190f0, 0x190f8,
665                 0x19100, 0x19110,
666                 0x19120, 0x19124,
667                 0x19150, 0x19194,
668                 0x1919c, 0x191b0,
669                 0x191d0, 0x191e8,
670                 0x19238, 0x19290,
671                 0x193f8, 0x19428,
672                 0x19430, 0x19444,
673                 0x1944c, 0x1946c,
674                 0x19474, 0x19474,
675                 0x19490, 0x194cc,
676                 0x194f0, 0x194f8,
677                 0x19c00, 0x19c08,
678                 0x19c10, 0x19c60,
679                 0x19c94, 0x19ce4,
680                 0x19cf0, 0x19d40,
681                 0x19d50, 0x19d94,
682                 0x19da0, 0x19de8,
683                 0x19df0, 0x19e10,
684                 0x19e50, 0x19e90,
685                 0x19ea0, 0x19f24,
686                 0x19f34, 0x19f34,
687                 0x19f40, 0x19f50,
688                 0x19f90, 0x19fb4,
689                 0x19fc4, 0x19fe4,
690                 0x1a000, 0x1a004,
691                 0x1a010, 0x1a06c,
692                 0x1a0b0, 0x1a0e4,
693                 0x1a0ec, 0x1a0f8,
694                 0x1a100, 0x1a108,
695                 0x1a114, 0x1a120,
696                 0x1a128, 0x1a130,
697                 0x1a138, 0x1a138,
698                 0x1a190, 0x1a1c4,
699                 0x1a1fc, 0x1a1fc,
700                 0x1e008, 0x1e00c,
701                 0x1e040, 0x1e044,
702                 0x1e04c, 0x1e04c,
703                 0x1e284, 0x1e290,
704                 0x1e2c0, 0x1e2c0,
705                 0x1e2e0, 0x1e2e0,
706                 0x1e300, 0x1e384,
707                 0x1e3c0, 0x1e3c8,
708                 0x1e408, 0x1e40c,
709                 0x1e440, 0x1e444,
710                 0x1e44c, 0x1e44c,
711                 0x1e684, 0x1e690,
712                 0x1e6c0, 0x1e6c0,
713                 0x1e6e0, 0x1e6e0,
714                 0x1e700, 0x1e784,
715                 0x1e7c0, 0x1e7c8,
716                 0x1e808, 0x1e80c,
717                 0x1e840, 0x1e844,
718                 0x1e84c, 0x1e84c,
719                 0x1ea84, 0x1ea90,
720                 0x1eac0, 0x1eac0,
721                 0x1eae0, 0x1eae0,
722                 0x1eb00, 0x1eb84,
723                 0x1ebc0, 0x1ebc8,
724                 0x1ec08, 0x1ec0c,
725                 0x1ec40, 0x1ec44,
726                 0x1ec4c, 0x1ec4c,
727                 0x1ee84, 0x1ee90,
728                 0x1eec0, 0x1eec0,
729                 0x1eee0, 0x1eee0,
730                 0x1ef00, 0x1ef84,
731                 0x1efc0, 0x1efc8,
732                 0x1f008, 0x1f00c,
733                 0x1f040, 0x1f044,
734                 0x1f04c, 0x1f04c,
735                 0x1f284, 0x1f290,
736                 0x1f2c0, 0x1f2c0,
737                 0x1f2e0, 0x1f2e0,
738                 0x1f300, 0x1f384,
739                 0x1f3c0, 0x1f3c8,
740                 0x1f408, 0x1f40c,
741                 0x1f440, 0x1f444,
742                 0x1f44c, 0x1f44c,
743                 0x1f684, 0x1f690,
744                 0x1f6c0, 0x1f6c0,
745                 0x1f6e0, 0x1f6e0,
746                 0x1f700, 0x1f784,
747                 0x1f7c0, 0x1f7c8,
748                 0x1f808, 0x1f80c,
749                 0x1f840, 0x1f844,
750                 0x1f84c, 0x1f84c,
751                 0x1fa84, 0x1fa90,
752                 0x1fac0, 0x1fac0,
753                 0x1fae0, 0x1fae0,
754                 0x1fb00, 0x1fb84,
755                 0x1fbc0, 0x1fbc8,
756                 0x1fc08, 0x1fc0c,
757                 0x1fc40, 0x1fc44,
758                 0x1fc4c, 0x1fc4c,
759                 0x1fe84, 0x1fe90,
760                 0x1fec0, 0x1fec0,
761                 0x1fee0, 0x1fee0,
762                 0x1ff00, 0x1ff84,
763                 0x1ffc0, 0x1ffc8,
764                 0x30000, 0x30030,
765                 0x30038, 0x30038,
766                 0x30040, 0x30040,
767                 0x30100, 0x30144,
768                 0x30190, 0x301a0,
769                 0x301a8, 0x301b8,
770                 0x301c4, 0x301c8,
771                 0x301d0, 0x301d0,
772                 0x30200, 0x30318,
773                 0x30400, 0x304b4,
774                 0x304c0, 0x3052c,
775                 0x30540, 0x3061c,
776                 0x30800, 0x30828,
777                 0x30834, 0x30834,
778                 0x308c0, 0x30908,
779                 0x30910, 0x309ac,
780                 0x30a00, 0x30a14,
781                 0x30a1c, 0x30a2c,
782                 0x30a44, 0x30a50,
783                 0x30a74, 0x30a74,
784                 0x30a7c, 0x30afc,
785                 0x30b08, 0x30c24,
786                 0x30d00, 0x30d00,
787                 0x30d08, 0x30d14,
788                 0x30d1c, 0x30d20,
789                 0x30d3c, 0x30d3c,
790                 0x30d48, 0x30d50,
791                 0x31200, 0x3120c,
792                 0x31220, 0x31220,
793                 0x31240, 0x31240,
794                 0x31600, 0x3160c,
795                 0x31a00, 0x31a1c,
796                 0x31e00, 0x31e20,
797                 0x31e38, 0x31e3c,
798                 0x31e80, 0x31e80,
799                 0x31e88, 0x31ea8,
800                 0x31eb0, 0x31eb4,
801                 0x31ec8, 0x31ed4,
802                 0x31fb8, 0x32004,
803                 0x32200, 0x32200,
804                 0x32208, 0x32240,
805                 0x32248, 0x32280,
806                 0x32288, 0x322c0,
807                 0x322c8, 0x322fc,
808                 0x32600, 0x32630,
809                 0x32a00, 0x32abc,
810                 0x32b00, 0x32b10,
811                 0x32b20, 0x32b30,
812                 0x32b40, 0x32b50,
813                 0x32b60, 0x32b70,
814                 0x33000, 0x33028,
815                 0x33030, 0x33048,
816                 0x33060, 0x33068,
817                 0x33070, 0x3309c,
818                 0x330f0, 0x33128,
819                 0x33130, 0x33148,
820                 0x33160, 0x33168,
821                 0x33170, 0x3319c,
822                 0x331f0, 0x33238,
823                 0x33240, 0x33240,
824                 0x33248, 0x33250,
825                 0x3325c, 0x33264,
826                 0x33270, 0x332b8,
827                 0x332c0, 0x332e4,
828                 0x332f8, 0x33338,
829                 0x33340, 0x33340,
830                 0x33348, 0x33350,
831                 0x3335c, 0x33364,
832                 0x33370, 0x333b8,
833                 0x333c0, 0x333e4,
834                 0x333f8, 0x33428,
835                 0x33430, 0x33448,
836                 0x33460, 0x33468,
837                 0x33470, 0x3349c,
838                 0x334f0, 0x33528,
839                 0x33530, 0x33548,
840                 0x33560, 0x33568,
841                 0x33570, 0x3359c,
842                 0x335f0, 0x33638,
843                 0x33640, 0x33640,
844                 0x33648, 0x33650,
845                 0x3365c, 0x33664,
846                 0x33670, 0x336b8,
847                 0x336c0, 0x336e4,
848                 0x336f8, 0x33738,
849                 0x33740, 0x33740,
850                 0x33748, 0x33750,
851                 0x3375c, 0x33764,
852                 0x33770, 0x337b8,
853                 0x337c0, 0x337e4,
854                 0x337f8, 0x337fc,
855                 0x33814, 0x33814,
856                 0x3382c, 0x3382c,
857                 0x33880, 0x3388c,
858                 0x338e8, 0x338ec,
859                 0x33900, 0x33928,
860                 0x33930, 0x33948,
861                 0x33960, 0x33968,
862                 0x33970, 0x3399c,
863                 0x339f0, 0x33a38,
864                 0x33a40, 0x33a40,
865                 0x33a48, 0x33a50,
866                 0x33a5c, 0x33a64,
867                 0x33a70, 0x33ab8,
868                 0x33ac0, 0x33ae4,
869                 0x33af8, 0x33b10,
870                 0x33b28, 0x33b28,
871                 0x33b3c, 0x33b50,
872                 0x33bf0, 0x33c10,
873                 0x33c28, 0x33c28,
874                 0x33c3c, 0x33c50,
875                 0x33cf0, 0x33cfc,
876                 0x34000, 0x34030,
877                 0x34038, 0x34038,
878                 0x34040, 0x34040,
879                 0x34100, 0x34144,
880                 0x34190, 0x341a0,
881                 0x341a8, 0x341b8,
882                 0x341c4, 0x341c8,
883                 0x341d0, 0x341d0,
884                 0x34200, 0x34318,
885                 0x34400, 0x344b4,
886                 0x344c0, 0x3452c,
887                 0x34540, 0x3461c,
888                 0x34800, 0x34828,
889                 0x34834, 0x34834,
890                 0x348c0, 0x34908,
891                 0x34910, 0x349ac,
892                 0x34a00, 0x34a14,
893                 0x34a1c, 0x34a2c,
894                 0x34a44, 0x34a50,
895                 0x34a74, 0x34a74,
896                 0x34a7c, 0x34afc,
897                 0x34b08, 0x34c24,
898                 0x34d00, 0x34d00,
899                 0x34d08, 0x34d14,
900                 0x34d1c, 0x34d20,
901                 0x34d3c, 0x34d3c,
902                 0x34d48, 0x34d50,
903                 0x35200, 0x3520c,
904                 0x35220, 0x35220,
905                 0x35240, 0x35240,
906                 0x35600, 0x3560c,
907                 0x35a00, 0x35a1c,
908                 0x35e00, 0x35e20,
909                 0x35e38, 0x35e3c,
910                 0x35e80, 0x35e80,
911                 0x35e88, 0x35ea8,
912                 0x35eb0, 0x35eb4,
913                 0x35ec8, 0x35ed4,
914                 0x35fb8, 0x36004,
915                 0x36200, 0x36200,
916                 0x36208, 0x36240,
917                 0x36248, 0x36280,
918                 0x36288, 0x362c0,
919                 0x362c8, 0x362fc,
920                 0x36600, 0x36630,
921                 0x36a00, 0x36abc,
922                 0x36b00, 0x36b10,
923                 0x36b20, 0x36b30,
924                 0x36b40, 0x36b50,
925                 0x36b60, 0x36b70,
926                 0x37000, 0x37028,
927                 0x37030, 0x37048,
928                 0x37060, 0x37068,
929                 0x37070, 0x3709c,
930                 0x370f0, 0x37128,
931                 0x37130, 0x37148,
932                 0x37160, 0x37168,
933                 0x37170, 0x3719c,
934                 0x371f0, 0x37238,
935                 0x37240, 0x37240,
936                 0x37248, 0x37250,
937                 0x3725c, 0x37264,
938                 0x37270, 0x372b8,
939                 0x372c0, 0x372e4,
940                 0x372f8, 0x37338,
941                 0x37340, 0x37340,
942                 0x37348, 0x37350,
943                 0x3735c, 0x37364,
944                 0x37370, 0x373b8,
945                 0x373c0, 0x373e4,
946                 0x373f8, 0x37428,
947                 0x37430, 0x37448,
948                 0x37460, 0x37468,
949                 0x37470, 0x3749c,
950                 0x374f0, 0x37528,
951                 0x37530, 0x37548,
952                 0x37560, 0x37568,
953                 0x37570, 0x3759c,
954                 0x375f0, 0x37638,
955                 0x37640, 0x37640,
956                 0x37648, 0x37650,
957                 0x3765c, 0x37664,
958                 0x37670, 0x376b8,
959                 0x376c0, 0x376e4,
960                 0x376f8, 0x37738,
961                 0x37740, 0x37740,
962                 0x37748, 0x37750,
963                 0x3775c, 0x37764,
964                 0x37770, 0x377b8,
965                 0x377c0, 0x377e4,
966                 0x377f8, 0x377fc,
967                 0x37814, 0x37814,
968                 0x3782c, 0x3782c,
969                 0x37880, 0x3788c,
970                 0x378e8, 0x378ec,
971                 0x37900, 0x37928,
972                 0x37930, 0x37948,
973                 0x37960, 0x37968,
974                 0x37970, 0x3799c,
975                 0x379f0, 0x37a38,
976                 0x37a40, 0x37a40,
977                 0x37a48, 0x37a50,
978                 0x37a5c, 0x37a64,
979                 0x37a70, 0x37ab8,
980                 0x37ac0, 0x37ae4,
981                 0x37af8, 0x37b10,
982                 0x37b28, 0x37b28,
983                 0x37b3c, 0x37b50,
984                 0x37bf0, 0x37c10,
985                 0x37c28, 0x37c28,
986                 0x37c3c, 0x37c50,
987                 0x37cf0, 0x37cfc,
988                 0x38000, 0x38030,
989                 0x38038, 0x38038,
990                 0x38040, 0x38040,
991                 0x38100, 0x38144,
992                 0x38190, 0x381a0,
993                 0x381a8, 0x381b8,
994                 0x381c4, 0x381c8,
995                 0x381d0, 0x381d0,
996                 0x38200, 0x38318,
997                 0x38400, 0x384b4,
998                 0x384c0, 0x3852c,
999                 0x38540, 0x3861c,
1000                 0x38800, 0x38828,
1001                 0x38834, 0x38834,
1002                 0x388c0, 0x38908,
1003                 0x38910, 0x389ac,
1004                 0x38a00, 0x38a14,
1005                 0x38a1c, 0x38a2c,
1006                 0x38a44, 0x38a50,
1007                 0x38a74, 0x38a74,
1008                 0x38a7c, 0x38afc,
1009                 0x38b08, 0x38c24,
1010                 0x38d00, 0x38d00,
1011                 0x38d08, 0x38d14,
1012                 0x38d1c, 0x38d20,
1013                 0x38d3c, 0x38d3c,
1014                 0x38d48, 0x38d50,
1015                 0x39200, 0x3920c,
1016                 0x39220, 0x39220,
1017                 0x39240, 0x39240,
1018                 0x39600, 0x3960c,
1019                 0x39a00, 0x39a1c,
1020                 0x39e00, 0x39e20,
1021                 0x39e38, 0x39e3c,
1022                 0x39e80, 0x39e80,
1023                 0x39e88, 0x39ea8,
1024                 0x39eb0, 0x39eb4,
1025                 0x39ec8, 0x39ed4,
1026                 0x39fb8, 0x3a004,
1027                 0x3a200, 0x3a200,
1028                 0x3a208, 0x3a240,
1029                 0x3a248, 0x3a280,
1030                 0x3a288, 0x3a2c0,
1031                 0x3a2c8, 0x3a2fc,
1032                 0x3a600, 0x3a630,
1033                 0x3aa00, 0x3aabc,
1034                 0x3ab00, 0x3ab10,
1035                 0x3ab20, 0x3ab30,
1036                 0x3ab40, 0x3ab50,
1037                 0x3ab60, 0x3ab70,
1038                 0x3b000, 0x3b028,
1039                 0x3b030, 0x3b048,
1040                 0x3b060, 0x3b068,
1041                 0x3b070, 0x3b09c,
1042                 0x3b0f0, 0x3b128,
1043                 0x3b130, 0x3b148,
1044                 0x3b160, 0x3b168,
1045                 0x3b170, 0x3b19c,
1046                 0x3b1f0, 0x3b238,
1047                 0x3b240, 0x3b240,
1048                 0x3b248, 0x3b250,
1049                 0x3b25c, 0x3b264,
1050                 0x3b270, 0x3b2b8,
1051                 0x3b2c0, 0x3b2e4,
1052                 0x3b2f8, 0x3b338,
1053                 0x3b340, 0x3b340,
1054                 0x3b348, 0x3b350,
1055                 0x3b35c, 0x3b364,
1056                 0x3b370, 0x3b3b8,
1057                 0x3b3c0, 0x3b3e4,
1058                 0x3b3f8, 0x3b428,
1059                 0x3b430, 0x3b448,
1060                 0x3b460, 0x3b468,
1061                 0x3b470, 0x3b49c,
1062                 0x3b4f0, 0x3b528,
1063                 0x3b530, 0x3b548,
1064                 0x3b560, 0x3b568,
1065                 0x3b570, 0x3b59c,
1066                 0x3b5f0, 0x3b638,
1067                 0x3b640, 0x3b640,
1068                 0x3b648, 0x3b650,
1069                 0x3b65c, 0x3b664,
1070                 0x3b670, 0x3b6b8,
1071                 0x3b6c0, 0x3b6e4,
1072                 0x3b6f8, 0x3b738,
1073                 0x3b740, 0x3b740,
1074                 0x3b748, 0x3b750,
1075                 0x3b75c, 0x3b764,
1076                 0x3b770, 0x3b7b8,
1077                 0x3b7c0, 0x3b7e4,
1078                 0x3b7f8, 0x3b7fc,
1079                 0x3b814, 0x3b814,
1080                 0x3b82c, 0x3b82c,
1081                 0x3b880, 0x3b88c,
1082                 0x3b8e8, 0x3b8ec,
1083                 0x3b900, 0x3b928,
1084                 0x3b930, 0x3b948,
1085                 0x3b960, 0x3b968,
1086                 0x3b970, 0x3b99c,
1087                 0x3b9f0, 0x3ba38,
1088                 0x3ba40, 0x3ba40,
1089                 0x3ba48, 0x3ba50,
1090                 0x3ba5c, 0x3ba64,
1091                 0x3ba70, 0x3bab8,
1092                 0x3bac0, 0x3bae4,
1093                 0x3baf8, 0x3bb10,
1094                 0x3bb28, 0x3bb28,
1095                 0x3bb3c, 0x3bb50,
1096                 0x3bbf0, 0x3bc10,
1097                 0x3bc28, 0x3bc28,
1098                 0x3bc3c, 0x3bc50,
1099                 0x3bcf0, 0x3bcfc,
1100                 0x3c000, 0x3c030,
1101                 0x3c038, 0x3c038,
1102                 0x3c040, 0x3c040,
1103                 0x3c100, 0x3c144,
1104                 0x3c190, 0x3c1a0,
1105                 0x3c1a8, 0x3c1b8,
1106                 0x3c1c4, 0x3c1c8,
1107                 0x3c1d0, 0x3c1d0,
1108                 0x3c200, 0x3c318,
1109                 0x3c400, 0x3c4b4,
1110                 0x3c4c0, 0x3c52c,
1111                 0x3c540, 0x3c61c,
1112                 0x3c800, 0x3c828,
1113                 0x3c834, 0x3c834,
1114                 0x3c8c0, 0x3c908,
1115                 0x3c910, 0x3c9ac,
1116                 0x3ca00, 0x3ca14,
1117                 0x3ca1c, 0x3ca2c,
1118                 0x3ca44, 0x3ca50,
1119                 0x3ca74, 0x3ca74,
1120                 0x3ca7c, 0x3cafc,
1121                 0x3cb08, 0x3cc24,
1122                 0x3cd00, 0x3cd00,
1123                 0x3cd08, 0x3cd14,
1124                 0x3cd1c, 0x3cd20,
1125                 0x3cd3c, 0x3cd3c,
1126                 0x3cd48, 0x3cd50,
1127                 0x3d200, 0x3d20c,
1128                 0x3d220, 0x3d220,
1129                 0x3d240, 0x3d240,
1130                 0x3d600, 0x3d60c,
1131                 0x3da00, 0x3da1c,
1132                 0x3de00, 0x3de20,
1133                 0x3de38, 0x3de3c,
1134                 0x3de80, 0x3de80,
1135                 0x3de88, 0x3dea8,
1136                 0x3deb0, 0x3deb4,
1137                 0x3dec8, 0x3ded4,
1138                 0x3dfb8, 0x3e004,
1139                 0x3e200, 0x3e200,
1140                 0x3e208, 0x3e240,
1141                 0x3e248, 0x3e280,
1142                 0x3e288, 0x3e2c0,
1143                 0x3e2c8, 0x3e2fc,
1144                 0x3e600, 0x3e630,
1145                 0x3ea00, 0x3eabc,
1146                 0x3eb00, 0x3eb10,
1147                 0x3eb20, 0x3eb30,
1148                 0x3eb40, 0x3eb50,
1149                 0x3eb60, 0x3eb70,
1150                 0x3f000, 0x3f028,
1151                 0x3f030, 0x3f048,
1152                 0x3f060, 0x3f068,
1153                 0x3f070, 0x3f09c,
1154                 0x3f0f0, 0x3f128,
1155                 0x3f130, 0x3f148,
1156                 0x3f160, 0x3f168,
1157                 0x3f170, 0x3f19c,
1158                 0x3f1f0, 0x3f238,
1159                 0x3f240, 0x3f240,
1160                 0x3f248, 0x3f250,
1161                 0x3f25c, 0x3f264,
1162                 0x3f270, 0x3f2b8,
1163                 0x3f2c0, 0x3f2e4,
1164                 0x3f2f8, 0x3f338,
1165                 0x3f340, 0x3f340,
1166                 0x3f348, 0x3f350,
1167                 0x3f35c, 0x3f364,
1168                 0x3f370, 0x3f3b8,
1169                 0x3f3c0, 0x3f3e4,
1170                 0x3f3f8, 0x3f428,
1171                 0x3f430, 0x3f448,
1172                 0x3f460, 0x3f468,
1173                 0x3f470, 0x3f49c,
1174                 0x3f4f0, 0x3f528,
1175                 0x3f530, 0x3f548,
1176                 0x3f560, 0x3f568,
1177                 0x3f570, 0x3f59c,
1178                 0x3f5f0, 0x3f638,
1179                 0x3f640, 0x3f640,
1180                 0x3f648, 0x3f650,
1181                 0x3f65c, 0x3f664,
1182                 0x3f670, 0x3f6b8,
1183                 0x3f6c0, 0x3f6e4,
1184                 0x3f6f8, 0x3f738,
1185                 0x3f740, 0x3f740,
1186                 0x3f748, 0x3f750,
1187                 0x3f75c, 0x3f764,
1188                 0x3f770, 0x3f7b8,
1189                 0x3f7c0, 0x3f7e4,
1190                 0x3f7f8, 0x3f7fc,
1191                 0x3f814, 0x3f814,
1192                 0x3f82c, 0x3f82c,
1193                 0x3f880, 0x3f88c,
1194                 0x3f8e8, 0x3f8ec,
1195                 0x3f900, 0x3f928,
1196                 0x3f930, 0x3f948,
1197                 0x3f960, 0x3f968,
1198                 0x3f970, 0x3f99c,
1199                 0x3f9f0, 0x3fa38,
1200                 0x3fa40, 0x3fa40,
1201                 0x3fa48, 0x3fa50,
1202                 0x3fa5c, 0x3fa64,
1203                 0x3fa70, 0x3fab8,
1204                 0x3fac0, 0x3fae4,
1205                 0x3faf8, 0x3fb10,
1206                 0x3fb28, 0x3fb28,
1207                 0x3fb3c, 0x3fb50,
1208                 0x3fbf0, 0x3fc10,
1209                 0x3fc28, 0x3fc28,
1210                 0x3fc3c, 0x3fc50,
1211                 0x3fcf0, 0x3fcfc,
1212                 0x40000, 0x4000c,
1213                 0x40040, 0x40050,
1214                 0x40060, 0x40068,
1215                 0x4007c, 0x4008c,
1216                 0x40094, 0x400b0,
1217                 0x400c0, 0x40144,
1218                 0x40180, 0x4018c,
1219                 0x40200, 0x40254,
1220                 0x40260, 0x40264,
1221                 0x40270, 0x40288,
1222                 0x40290, 0x40298,
1223                 0x402ac, 0x402c8,
1224                 0x402d0, 0x402e0,
1225                 0x402f0, 0x402f0,
1226                 0x40300, 0x4033c,
1227                 0x403f8, 0x403fc,
1228                 0x41304, 0x413c4,
1229                 0x41400, 0x4140c,
1230                 0x41414, 0x4141c,
1231                 0x41480, 0x414d0,
1232                 0x44000, 0x44054,
1233                 0x4405c, 0x44078,
1234                 0x440c0, 0x44174,
1235                 0x44180, 0x441ac,
1236                 0x441b4, 0x441b8,
1237                 0x441c0, 0x44254,
1238                 0x4425c, 0x44278,
1239                 0x442c0, 0x44374,
1240                 0x44380, 0x443ac,
1241                 0x443b4, 0x443b8,
1242                 0x443c0, 0x44454,
1243                 0x4445c, 0x44478,
1244                 0x444c0, 0x44574,
1245                 0x44580, 0x445ac,
1246                 0x445b4, 0x445b8,
1247                 0x445c0, 0x44654,
1248                 0x4465c, 0x44678,
1249                 0x446c0, 0x44774,
1250                 0x44780, 0x447ac,
1251                 0x447b4, 0x447b8,
1252                 0x447c0, 0x44854,
1253                 0x4485c, 0x44878,
1254                 0x448c0, 0x44974,
1255                 0x44980, 0x449ac,
1256                 0x449b4, 0x449b8,
1257                 0x449c0, 0x449fc,
1258                 0x45000, 0x45004,
1259                 0x45010, 0x45030,
1260                 0x45040, 0x45060,
1261                 0x45068, 0x45068,
1262                 0x45080, 0x45084,
1263                 0x450a0, 0x450b0,
1264                 0x45200, 0x45204,
1265                 0x45210, 0x45230,
1266                 0x45240, 0x45260,
1267                 0x45268, 0x45268,
1268                 0x45280, 0x45284,
1269                 0x452a0, 0x452b0,
1270                 0x460c0, 0x460e4,
1271                 0x47000, 0x4703c,
1272                 0x47044, 0x4708c,
1273                 0x47200, 0x47250,
1274                 0x47400, 0x47408,
1275                 0x47414, 0x47420,
1276                 0x47600, 0x47618,
1277                 0x47800, 0x47814,
1278                 0x48000, 0x4800c,
1279                 0x48040, 0x48050,
1280                 0x48060, 0x48068,
1281                 0x4807c, 0x4808c,
1282                 0x48094, 0x480b0,
1283                 0x480c0, 0x48144,
1284                 0x48180, 0x4818c,
1285                 0x48200, 0x48254,
1286                 0x48260, 0x48264,
1287                 0x48270, 0x48288,
1288                 0x48290, 0x48298,
1289                 0x482ac, 0x482c8,
1290                 0x482d0, 0x482e0,
1291                 0x482f0, 0x482f0,
1292                 0x48300, 0x4833c,
1293                 0x483f8, 0x483fc,
1294                 0x49304, 0x493c4,
1295                 0x49400, 0x4940c,
1296                 0x49414, 0x4941c,
1297                 0x49480, 0x494d0,
1298                 0x4c000, 0x4c054,
1299                 0x4c05c, 0x4c078,
1300                 0x4c0c0, 0x4c174,
1301                 0x4c180, 0x4c1ac,
1302                 0x4c1b4, 0x4c1b8,
1303                 0x4c1c0, 0x4c254,
1304                 0x4c25c, 0x4c278,
1305                 0x4c2c0, 0x4c374,
1306                 0x4c380, 0x4c3ac,
1307                 0x4c3b4, 0x4c3b8,
1308                 0x4c3c0, 0x4c454,
1309                 0x4c45c, 0x4c478,
1310                 0x4c4c0, 0x4c574,
1311                 0x4c580, 0x4c5ac,
1312                 0x4c5b4, 0x4c5b8,
1313                 0x4c5c0, 0x4c654,
1314                 0x4c65c, 0x4c678,
1315                 0x4c6c0, 0x4c774,
1316                 0x4c780, 0x4c7ac,
1317                 0x4c7b4, 0x4c7b8,
1318                 0x4c7c0, 0x4c854,
1319                 0x4c85c, 0x4c878,
1320                 0x4c8c0, 0x4c974,
1321                 0x4c980, 0x4c9ac,
1322                 0x4c9b4, 0x4c9b8,
1323                 0x4c9c0, 0x4c9fc,
1324                 0x4d000, 0x4d004,
1325                 0x4d010, 0x4d030,
1326                 0x4d040, 0x4d060,
1327                 0x4d068, 0x4d068,
1328                 0x4d080, 0x4d084,
1329                 0x4d0a0, 0x4d0b0,
1330                 0x4d200, 0x4d204,
1331                 0x4d210, 0x4d230,
1332                 0x4d240, 0x4d260,
1333                 0x4d268, 0x4d268,
1334                 0x4d280, 0x4d284,
1335                 0x4d2a0, 0x4d2b0,
1336                 0x4e0c0, 0x4e0e4,
1337                 0x4f000, 0x4f03c,
1338                 0x4f044, 0x4f08c,
1339                 0x4f200, 0x4f250,
1340                 0x4f400, 0x4f408,
1341                 0x4f414, 0x4f420,
1342                 0x4f600, 0x4f618,
1343                 0x4f800, 0x4f814,
1344                 0x50000, 0x50084,
1345                 0x50090, 0x500cc,
1346                 0x50400, 0x50400,
1347                 0x50800, 0x50884,
1348                 0x50890, 0x508cc,
1349                 0x50c00, 0x50c00,
1350                 0x51000, 0x5101c,
1351                 0x51300, 0x51308,
1352         };
1353
1354         static const unsigned int t6_reg_ranges[] = {
1355                 0x1008, 0x101c,
1356                 0x1024, 0x10a8,
1357                 0x10b4, 0x10f8,
1358                 0x1100, 0x1114,
1359                 0x111c, 0x112c,
1360                 0x1138, 0x113c,
1361                 0x1144, 0x114c,
1362                 0x1180, 0x1184,
1363                 0x1190, 0x1194,
1364                 0x11a0, 0x11a4,
1365                 0x11b0, 0x11b4,
1366                 0x11fc, 0x1274,
1367                 0x1280, 0x133c,
1368                 0x1800, 0x18fc,
1369                 0x3000, 0x302c,
1370                 0x3060, 0x30b0,
1371                 0x30b8, 0x30d8,
1372                 0x30e0, 0x30fc,
1373                 0x3140, 0x357c,
1374                 0x35a8, 0x35cc,
1375                 0x35ec, 0x35ec,
1376                 0x3600, 0x5624,
1377                 0x56cc, 0x56ec,
1378                 0x56f4, 0x5720,
1379                 0x5728, 0x575c,
1380                 0x580c, 0x5814,
1381                 0x5890, 0x589c,
1382                 0x58a4, 0x58ac,
1383                 0x58b8, 0x58bc,
1384                 0x5940, 0x595c,
1385                 0x5980, 0x598c,
1386                 0x59b0, 0x59c8,
1387                 0x59d0, 0x59dc,
1388                 0x59fc, 0x5a18,
1389                 0x5a60, 0x5a6c,
1390                 0x5a80, 0x5a8c,
1391                 0x5a94, 0x5a9c,
1392                 0x5b94, 0x5bfc,
1393                 0x5c10, 0x5e48,
1394                 0x5e50, 0x5e94,
1395                 0x5ea0, 0x5eb0,
1396                 0x5ec0, 0x5ec0,
1397                 0x5ec8, 0x5ed0,
1398                 0x5ee0, 0x5ee0,
1399                 0x5ef0, 0x5ef0,
1400                 0x5f00, 0x5f00,
1401                 0x6000, 0x6020,
1402                 0x6028, 0x6040,
1403                 0x6058, 0x609c,
1404                 0x60a8, 0x619c,
1405                 0x7700, 0x7798,
1406                 0x77c0, 0x7880,
1407                 0x78cc, 0x78fc,
1408                 0x7b00, 0x7b58,
1409                 0x7b60, 0x7b84,
1410                 0x7b8c, 0x7c54,
1411                 0x7d00, 0x7d38,
1412                 0x7d40, 0x7d84,
1413                 0x7d8c, 0x7ddc,
1414                 0x7de4, 0x7e04,
1415                 0x7e10, 0x7e1c,
1416                 0x7e24, 0x7e38,
1417                 0x7e40, 0x7e44,
1418                 0x7e4c, 0x7e78,
1419                 0x7e80, 0x7edc,
1420                 0x7ee8, 0x7efc,
1421                 0x8dc0, 0x8de4,
1422                 0x8df8, 0x8e04,
1423                 0x8e10, 0x8e84,
1424                 0x8ea0, 0x8f88,
1425                 0x8fb8, 0x9058,
1426                 0x9060, 0x9060,
1427                 0x9068, 0x90f8,
1428                 0x9100, 0x9124,
1429                 0x9400, 0x9470,
1430                 0x9600, 0x9600,
1431                 0x9608, 0x9638,
1432                 0x9640, 0x9704,
1433                 0x9710, 0x971c,
1434                 0x9800, 0x9808,
1435                 0x9820, 0x983c,
1436                 0x9850, 0x9864,
1437                 0x9c00, 0x9c6c,
1438                 0x9c80, 0x9cec,
1439                 0x9d00, 0x9d6c,
1440                 0x9d80, 0x9dec,
1441                 0x9e00, 0x9e6c,
1442                 0x9e80, 0x9eec,
1443                 0x9f00, 0x9f6c,
1444                 0x9f80, 0xa020,
1445                 0xd004, 0xd03c,
1446                 0xd100, 0xd118,
1447                 0xd200, 0xd214,
1448                 0xd220, 0xd234,
1449                 0xd240, 0xd254,
1450                 0xd260, 0xd274,
1451                 0xd280, 0xd294,
1452                 0xd2a0, 0xd2b4,
1453                 0xd2c0, 0xd2d4,
1454                 0xd2e0, 0xd2f4,
1455                 0xd300, 0xd31c,
1456                 0xdfc0, 0xdfe0,
1457                 0xe000, 0xf008,
1458                 0xf010, 0xf018,
1459                 0xf020, 0xf028,
1460                 0x11000, 0x11014,
1461                 0x11048, 0x1106c,
1462                 0x11074, 0x11088,
1463                 0x11098, 0x11120,
1464                 0x1112c, 0x1117c,
1465                 0x11190, 0x112e0,
1466                 0x11300, 0x1130c,
1467                 0x12000, 0x1206c,
1468                 0x19040, 0x1906c,
1469                 0x19078, 0x19080,
1470                 0x1908c, 0x190e8,
1471                 0x190f0, 0x190f8,
1472                 0x19100, 0x19110,
1473                 0x19120, 0x19124,
1474                 0x19150, 0x19194,
1475                 0x1919c, 0x191b0,
1476                 0x191d0, 0x191e8,
1477                 0x19238, 0x19290,
1478                 0x192a4, 0x192b0,
1479                 0x192bc, 0x192bc,
1480                 0x19348, 0x1934c,
1481                 0x193f8, 0x19418,
1482                 0x19420, 0x19428,
1483                 0x19430, 0x19444,
1484                 0x1944c, 0x1946c,
1485                 0x19474, 0x19474,
1486                 0x19490, 0x194cc,
1487                 0x194f0, 0x194f8,
1488                 0x19c00, 0x19c48,
1489                 0x19c50, 0x19c80,
1490                 0x19c94, 0x19c98,
1491                 0x19ca0, 0x19cbc,
1492                 0x19ce4, 0x19ce4,
1493                 0x19cf0, 0x19cf8,
1494                 0x19d00, 0x19d28,
1495                 0x19d50, 0x19d78,
1496                 0x19d94, 0x19d98,
1497                 0x19da0, 0x19dc8,
1498                 0x19df0, 0x19e10,
1499                 0x19e50, 0x19e6c,
1500                 0x19ea0, 0x19ebc,
1501                 0x19ec4, 0x19ef4,
1502                 0x19f04, 0x19f2c,
1503                 0x19f34, 0x19f34,
1504                 0x19f40, 0x19f50,
1505                 0x19f90, 0x19fac,
1506                 0x19fc4, 0x19fc8,
1507                 0x19fd0, 0x19fe4,
1508                 0x1a000, 0x1a004,
1509                 0x1a010, 0x1a06c,
1510                 0x1a0b0, 0x1a0e4,
1511                 0x1a0ec, 0x1a0f8,
1512                 0x1a100, 0x1a108,
1513                 0x1a114, 0x1a120,
1514                 0x1a128, 0x1a130,
1515                 0x1a138, 0x1a138,
1516                 0x1a190, 0x1a1c4,
1517                 0x1a1fc, 0x1a1fc,
1518                 0x1e008, 0x1e00c,
1519                 0x1e040, 0x1e044,
1520                 0x1e04c, 0x1e04c,
1521                 0x1e284, 0x1e290,
1522                 0x1e2c0, 0x1e2c0,
1523                 0x1e2e0, 0x1e2e0,
1524                 0x1e300, 0x1e384,
1525                 0x1e3c0, 0x1e3c8,
1526                 0x1e408, 0x1e40c,
1527                 0x1e440, 0x1e444,
1528                 0x1e44c, 0x1e44c,
1529                 0x1e684, 0x1e690,
1530                 0x1e6c0, 0x1e6c0,
1531                 0x1e6e0, 0x1e6e0,
1532                 0x1e700, 0x1e784,
1533                 0x1e7c0, 0x1e7c8,
1534                 0x1e808, 0x1e80c,
1535                 0x1e840, 0x1e844,
1536                 0x1e84c, 0x1e84c,
1537                 0x1ea84, 0x1ea90,
1538                 0x1eac0, 0x1eac0,
1539                 0x1eae0, 0x1eae0,
1540                 0x1eb00, 0x1eb84,
1541                 0x1ebc0, 0x1ebc8,
1542                 0x1ec08, 0x1ec0c,
1543                 0x1ec40, 0x1ec44,
1544                 0x1ec4c, 0x1ec4c,
1545                 0x1ee84, 0x1ee90,
1546                 0x1eec0, 0x1eec0,
1547                 0x1eee0, 0x1eee0,
1548                 0x1ef00, 0x1ef84,
1549                 0x1efc0, 0x1efc8,
1550                 0x1f008, 0x1f00c,
1551                 0x1f040, 0x1f044,
1552                 0x1f04c, 0x1f04c,
1553                 0x1f284, 0x1f290,
1554                 0x1f2c0, 0x1f2c0,
1555                 0x1f2e0, 0x1f2e0,
1556                 0x1f300, 0x1f384,
1557                 0x1f3c0, 0x1f3c8,
1558                 0x1f408, 0x1f40c,
1559                 0x1f440, 0x1f444,
1560                 0x1f44c, 0x1f44c,
1561                 0x1f684, 0x1f690,
1562                 0x1f6c0, 0x1f6c0,
1563                 0x1f6e0, 0x1f6e0,
1564                 0x1f700, 0x1f784,
1565                 0x1f7c0, 0x1f7c8,
1566                 0x1f808, 0x1f80c,
1567                 0x1f840, 0x1f844,
1568                 0x1f84c, 0x1f84c,
1569                 0x1fa84, 0x1fa90,
1570                 0x1fac0, 0x1fac0,
1571                 0x1fae0, 0x1fae0,
1572                 0x1fb00, 0x1fb84,
1573                 0x1fbc0, 0x1fbc8,
1574                 0x1fc08, 0x1fc0c,
1575                 0x1fc40, 0x1fc44,
1576                 0x1fc4c, 0x1fc4c,
1577                 0x1fe84, 0x1fe90,
1578                 0x1fec0, 0x1fec0,
1579                 0x1fee0, 0x1fee0,
1580                 0x1ff00, 0x1ff84,
1581                 0x1ffc0, 0x1ffc8,
1582                 0x30000, 0x30030,
1583                 0x30100, 0x30168,
1584                 0x30190, 0x301a0,
1585                 0x301a8, 0x301b8,
1586                 0x301c4, 0x301c8,
1587                 0x301d0, 0x301d0,
1588                 0x30200, 0x30320,
1589                 0x30400, 0x304b4,
1590                 0x304c0, 0x3052c,
1591                 0x30540, 0x3061c,
1592                 0x30800, 0x308a0,
1593                 0x308c0, 0x30908,
1594                 0x30910, 0x309b8,
1595                 0x30a00, 0x30a04,
1596                 0x30a0c, 0x30a14,
1597                 0x30a1c, 0x30a2c,
1598                 0x30a44, 0x30a50,
1599                 0x30a74, 0x30a74,
1600                 0x30a7c, 0x30afc,
1601                 0x30b08, 0x30c24,
1602                 0x30d00, 0x30d14,
1603                 0x30d1c, 0x30d3c,
1604                 0x30d44, 0x30d4c,
1605                 0x30d54, 0x30d74,
1606                 0x30d7c, 0x30d7c,
1607                 0x30de0, 0x30de0,
1608                 0x30e00, 0x30ed4,
1609                 0x30f00, 0x30fa4,
1610                 0x30fc0, 0x30fc4,
1611                 0x31000, 0x31004,
1612                 0x31080, 0x310fc,
1613                 0x31208, 0x31220,
1614                 0x3123c, 0x31254,
1615                 0x31300, 0x31300,
1616                 0x31308, 0x3131c,
1617                 0x31338, 0x3133c,
1618                 0x31380, 0x31380,
1619                 0x31388, 0x313a8,
1620                 0x313b4, 0x313b4,
1621                 0x31400, 0x31420,
1622                 0x31438, 0x3143c,
1623                 0x31480, 0x31480,
1624                 0x314a8, 0x314a8,
1625                 0x314b0, 0x314b4,
1626                 0x314c8, 0x314d4,
1627                 0x31a40, 0x31a4c,
1628                 0x31af0, 0x31b20,
1629                 0x31b38, 0x31b3c,
1630                 0x31b80, 0x31b80,
1631                 0x31ba8, 0x31ba8,
1632                 0x31bb0, 0x31bb4,
1633                 0x31bc8, 0x31bd4,
1634                 0x32140, 0x3218c,
1635                 0x321f0, 0x321f4,
1636                 0x32200, 0x32200,
1637                 0x32218, 0x32218,
1638                 0x32400, 0x32400,
1639                 0x32408, 0x3241c,
1640                 0x32618, 0x32620,
1641                 0x32664, 0x32664,
1642                 0x326a8, 0x326a8,
1643                 0x326ec, 0x326ec,
1644                 0x32a00, 0x32abc,
1645                 0x32b00, 0x32b38,
1646                 0x32b20, 0x32b38,
1647                 0x32b40, 0x32b58,
1648                 0x32b60, 0x32b78,
1649                 0x32c00, 0x32c00,
1650                 0x32c08, 0x32c3c,
1651                 0x33000, 0x3302c,
1652                 0x33034, 0x33050,
1653                 0x33058, 0x33058,
1654                 0x33060, 0x3308c,
1655                 0x3309c, 0x330ac,
1656                 0x330c0, 0x330c0,
1657                 0x330c8, 0x330d0,
1658                 0x330d8, 0x330e0,
1659                 0x330ec, 0x3312c,
1660                 0x33134, 0x33150,
1661                 0x33158, 0x33158,
1662                 0x33160, 0x3318c,
1663                 0x3319c, 0x331ac,
1664                 0x331c0, 0x331c0,
1665                 0x331c8, 0x331d0,
1666                 0x331d8, 0x331e0,
1667                 0x331ec, 0x33290,
1668                 0x33298, 0x332c4,
1669                 0x332e4, 0x33390,
1670                 0x33398, 0x333c4,
1671                 0x333e4, 0x3342c,
1672                 0x33434, 0x33450,
1673                 0x33458, 0x33458,
1674                 0x33460, 0x3348c,
1675                 0x3349c, 0x334ac,
1676                 0x334c0, 0x334c0,
1677                 0x334c8, 0x334d0,
1678                 0x334d8, 0x334e0,
1679                 0x334ec, 0x3352c,
1680                 0x33534, 0x33550,
1681                 0x33558, 0x33558,
1682                 0x33560, 0x3358c,
1683                 0x3359c, 0x335ac,
1684                 0x335c0, 0x335c0,
1685                 0x335c8, 0x335d0,
1686                 0x335d8, 0x335e0,
1687                 0x335ec, 0x33690,
1688                 0x33698, 0x336c4,
1689                 0x336e4, 0x33790,
1690                 0x33798, 0x337c4,
1691                 0x337e4, 0x337fc,
1692                 0x33814, 0x33814,
1693                 0x33854, 0x33868,
1694                 0x33880, 0x3388c,
1695                 0x338c0, 0x338d0,
1696                 0x338e8, 0x338ec,
1697                 0x33900, 0x3392c,
1698                 0x33934, 0x33950,
1699                 0x33958, 0x33958,
1700                 0x33960, 0x3398c,
1701                 0x3399c, 0x339ac,
1702                 0x339c0, 0x339c0,
1703                 0x339c8, 0x339d0,
1704                 0x339d8, 0x339e0,
1705                 0x339ec, 0x33a90,
1706                 0x33a98, 0x33ac4,
1707                 0x33ae4, 0x33b10,
1708                 0x33b24, 0x33b28,
1709                 0x33b38, 0x33b50,
1710                 0x33bf0, 0x33c10,
1711                 0x33c24, 0x33c28,
1712                 0x33c38, 0x33c50,
1713                 0x33cf0, 0x33cfc,
1714                 0x34000, 0x34030,
1715                 0x34100, 0x34168,
1716                 0x34190, 0x341a0,
1717                 0x341a8, 0x341b8,
1718                 0x341c4, 0x341c8,
1719                 0x341d0, 0x341d0,
1720                 0x34200, 0x34320,
1721                 0x34400, 0x344b4,
1722                 0x344c0, 0x3452c,
1723                 0x34540, 0x3461c,
1724                 0x34800, 0x348a0,
1725                 0x348c0, 0x34908,
1726                 0x34910, 0x349b8,
1727                 0x34a00, 0x34a04,
1728                 0x34a0c, 0x34a14,
1729                 0x34a1c, 0x34a2c,
1730                 0x34a44, 0x34a50,
1731                 0x34a74, 0x34a74,
1732                 0x34a7c, 0x34afc,
1733                 0x34b08, 0x34c24,
1734                 0x34d00, 0x34d14,
1735                 0x34d1c, 0x34d3c,
1736                 0x34d44, 0x34d4c,
1737                 0x34d54, 0x34d74,
1738                 0x34d7c, 0x34d7c,
1739                 0x34de0, 0x34de0,
1740                 0x34e00, 0x34ed4,
1741                 0x34f00, 0x34fa4,
1742                 0x34fc0, 0x34fc4,
1743                 0x35000, 0x35004,
1744                 0x35080, 0x350fc,
1745                 0x35208, 0x35220,
1746                 0x3523c, 0x35254,
1747                 0x35300, 0x35300,
1748                 0x35308, 0x3531c,
1749                 0x35338, 0x3533c,
1750                 0x35380, 0x35380,
1751                 0x35388, 0x353a8,
1752                 0x353b4, 0x353b4,
1753                 0x35400, 0x35420,
1754                 0x35438, 0x3543c,
1755                 0x35480, 0x35480,
1756                 0x354a8, 0x354a8,
1757                 0x354b0, 0x354b4,
1758                 0x354c8, 0x354d4,
1759                 0x35a40, 0x35a4c,
1760                 0x35af0, 0x35b20,
1761                 0x35b38, 0x35b3c,
1762                 0x35b80, 0x35b80,
1763                 0x35ba8, 0x35ba8,
1764                 0x35bb0, 0x35bb4,
1765                 0x35bc8, 0x35bd4,
1766                 0x36140, 0x3618c,
1767                 0x361f0, 0x361f4,
1768                 0x36200, 0x36200,
1769                 0x36218, 0x36218,
1770                 0x36400, 0x36400,
1771                 0x36408, 0x3641c,
1772                 0x36618, 0x36620,
1773                 0x36664, 0x36664,
1774                 0x366a8, 0x366a8,
1775                 0x366ec, 0x366ec,
1776                 0x36a00, 0x36abc,
1777                 0x36b00, 0x36b38,
1778                 0x36b20, 0x36b38,
1779                 0x36b40, 0x36b58,
1780                 0x36b60, 0x36b78,
1781                 0x36c00, 0x36c00,
1782                 0x36c08, 0x36c3c,
1783                 0x37000, 0x3702c,
1784                 0x37034, 0x37050,
1785                 0x37058, 0x37058,
1786                 0x37060, 0x3708c,
1787                 0x3709c, 0x370ac,
1788                 0x370c0, 0x370c0,
1789                 0x370c8, 0x370d0,
1790                 0x370d8, 0x370e0,
1791                 0x370ec, 0x3712c,
1792                 0x37134, 0x37150,
1793                 0x37158, 0x37158,
1794                 0x37160, 0x3718c,
1795                 0x3719c, 0x371ac,
1796                 0x371c0, 0x371c0,
1797                 0x371c8, 0x371d0,
1798                 0x371d8, 0x371e0,
1799                 0x371ec, 0x37290,
1800                 0x37298, 0x372c4,
1801                 0x372e4, 0x37390,
1802                 0x37398, 0x373c4,
1803                 0x373e4, 0x3742c,
1804                 0x37434, 0x37450,
1805                 0x37458, 0x37458,
1806                 0x37460, 0x3748c,
1807                 0x3749c, 0x374ac,
1808                 0x374c0, 0x374c0,
1809                 0x374c8, 0x374d0,
1810                 0x374d8, 0x374e0,
1811                 0x374ec, 0x3752c,
1812                 0x37534, 0x37550,
1813                 0x37558, 0x37558,
1814                 0x37560, 0x3758c,
1815                 0x3759c, 0x375ac,
1816                 0x375c0, 0x375c0,
1817                 0x375c8, 0x375d0,
1818                 0x375d8, 0x375e0,
1819                 0x375ec, 0x37690,
1820                 0x37698, 0x376c4,
1821                 0x376e4, 0x37790,
1822                 0x37798, 0x377c4,
1823                 0x377e4, 0x377fc,
1824                 0x37814, 0x37814,
1825                 0x37854, 0x37868,
1826                 0x37880, 0x3788c,
1827                 0x378c0, 0x378d0,
1828                 0x378e8, 0x378ec,
1829                 0x37900, 0x3792c,
1830                 0x37934, 0x37950,
1831                 0x37958, 0x37958,
1832                 0x37960, 0x3798c,
1833                 0x3799c, 0x379ac,
1834                 0x379c0, 0x379c0,
1835                 0x379c8, 0x379d0,
1836                 0x379d8, 0x379e0,
1837                 0x379ec, 0x37a90,
1838                 0x37a98, 0x37ac4,
1839                 0x37ae4, 0x37b10,
1840                 0x37b24, 0x37b28,
1841                 0x37b38, 0x37b50,
1842                 0x37bf0, 0x37c10,
1843                 0x37c24, 0x37c28,
1844                 0x37c38, 0x37c50,
1845                 0x37cf0, 0x37cfc,
1846                 0x40040, 0x40040,
1847                 0x40080, 0x40084,
1848                 0x40100, 0x40100,
1849                 0x40140, 0x401bc,
1850                 0x40200, 0x40214,
1851                 0x40228, 0x40228,
1852                 0x40240, 0x40258,
1853                 0x40280, 0x40280,
1854                 0x40304, 0x40304,
1855                 0x40330, 0x4033c,
1856                 0x41304, 0x413c8,
1857                 0x413d0, 0x413dc,
1858                 0x413f0, 0x413f0,
1859                 0x41400, 0x4140c,
1860                 0x41414, 0x4141c,
1861                 0x41480, 0x414d0,
1862                 0x44000, 0x4407c,
1863                 0x440c0, 0x441ac,
1864                 0x441b4, 0x4427c,
1865                 0x442c0, 0x443ac,
1866                 0x443b4, 0x4447c,
1867                 0x444c0, 0x445ac,
1868                 0x445b4, 0x4467c,
1869                 0x446c0, 0x447ac,
1870                 0x447b4, 0x4487c,
1871                 0x448c0, 0x449ac,
1872                 0x449b4, 0x44a7c,
1873                 0x44ac0, 0x44bac,
1874                 0x44bb4, 0x44c7c,
1875                 0x44cc0, 0x44dac,
1876                 0x44db4, 0x44e7c,
1877                 0x44ec0, 0x44fac,
1878                 0x44fb4, 0x4507c,
1879                 0x450c0, 0x451ac,
1880                 0x451b4, 0x451fc,
1881                 0x45800, 0x45804,
1882                 0x45810, 0x45830,
1883                 0x45840, 0x45860,
1884                 0x45868, 0x45868,
1885                 0x45880, 0x45884,
1886                 0x458a0, 0x458b0,
1887                 0x45a00, 0x45a04,
1888                 0x45a10, 0x45a30,
1889                 0x45a40, 0x45a60,
1890                 0x45a68, 0x45a68,
1891                 0x45a80, 0x45a84,
1892                 0x45aa0, 0x45ab0,
1893                 0x460c0, 0x460e4,
1894                 0x47000, 0x4703c,
1895                 0x47044, 0x4708c,
1896                 0x47200, 0x47250,
1897                 0x47400, 0x47408,
1898                 0x47414, 0x47420,
1899                 0x47600, 0x47618,
1900                 0x47800, 0x47814,
1901                 0x47820, 0x4782c,
1902                 0x50000, 0x50084,
1903                 0x50090, 0x500cc,
1904                 0x50300, 0x50384,
1905                 0x50400, 0x50400,
1906                 0x50800, 0x50884,
1907                 0x50890, 0x508cc,
1908                 0x50b00, 0x50b84,
1909                 0x50c00, 0x50c00,
1910                 0x51000, 0x51020,
1911                 0x51028, 0x510b0,
1912                 0x51300, 0x51324,
1913         };
1914
1915         u32 *buf_end = (u32 *)((char *)buf + buf_size);
1916         const unsigned int *reg_ranges;
1917         int reg_ranges_size, range;
1918         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1919
1920         /* Select the right set of register ranges to dump depending on the
1921          * adapter chip type.
1922          */
1923         switch (chip_version) {
1924         case CHELSIO_T5:
1925                 reg_ranges = t5_reg_ranges;
1926                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1927                 break;
1928
1929         case CHELSIO_T6:
1930                 reg_ranges = t6_reg_ranges;
1931                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1932                 break;
1933
1934         default:
1935                 dev_err(adap,
1936                         "Unsupported chip version %d\n", chip_version);
1937                 return;
1938         }
1939
1940         /* Clear the register buffer and insert the appropriate register
1941          * values selected by the above register ranges.
1942          */
1943         memset(buf, 0, buf_size);
1944         for (range = 0; range < reg_ranges_size; range += 2) {
1945                 unsigned int reg = reg_ranges[range];
1946                 unsigned int last_reg = reg_ranges[range + 1];
1947                 u32 *bufp = (u32 *)((char *)buf + reg);
1948
1949                 /* Iterate across the register range filling in the register
1950                  * buffer but don't write past the end of the register buffer.
1951                  */
1952                 while (reg <= last_reg && bufp < buf_end) {
1953                         *bufp++ = t4_read_reg(adap, reg);
1954                         reg += sizeof(u32);
1955                 }
1956         }
1957 }
1958
1959 /* EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */
1960 #define EEPROM_DELAY            10              /* 10us per poll spin */
1961 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
1962
1963 #define EEPROM_STAT_ADDR        0x7bfc
1964
1965 /**
1966  * Small utility function to wait till any outstanding VPD Access is complete.
1967  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
1968  * VPD Access in flight.  This allows us to handle the problem of having a
1969  * previous VPD Access time out and prevent an attempt to inject a new VPD
1970  * Request before any in-flight VPD request has completed.
1971  */
1972 static int t4_seeprom_wait(struct adapter *adapter)
1973 {
1974         unsigned int base = adapter->params.pci.vpd_cap_addr;
1975         int max_poll;
1976
1977         /* If no VPD Access is in flight, we can just return success right
1978          * away.
1979          */
1980         if (!adapter->vpd_busy)
1981                 return 0;
1982
1983         /* Poll the VPD Capability Address/Flag register waiting for it
1984          * to indicate that the operation is complete.
1985          */
1986         max_poll = EEPROM_MAX_POLL;
1987         do {
1988                 u16 val;
1989
1990                 udelay(EEPROM_DELAY);
1991                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
1992
1993                 /* If the operation is complete, mark the VPD as no longer
1994                  * busy and return success.
1995                  */
1996                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
1997                         adapter->vpd_busy = 0;
1998                         return 0;
1999                 }
2000         } while (--max_poll);
2001
2002         /* Failure!  Note that we leave the VPD Busy status set in order to
2003          * avoid pushing a new VPD Access request into the VPD Capability till
2004          * the current operation eventually succeeds.  It's a bug to issue a
2005          * new request when an existing request is in flight and will result
2006          * in corrupt hardware state.
2007          */
2008         return -ETIMEDOUT;
2009 }
2010
2011 /**
2012  * t4_seeprom_read - read a serial EEPROM location
2013  * @adapter: adapter to read
2014  * @addr: EEPROM virtual address
2015  * @data: where to store the read data
2016  *
2017  * Read a 32-bit word from a location in serial EEPROM using the card's PCI
2018  * VPD capability.  Note that this function must be called with a virtual
2019  * address.
2020  */
2021 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2022 {
2023         unsigned int base = adapter->params.pci.vpd_cap_addr;
2024         int ret;
2025
2026         /* VPD Accesses must alway be 4-byte aligned!
2027          */
2028         if (addr >= EEPROMVSIZE || (addr & 3))
2029                 return -EINVAL;
2030
2031         /* Wait for any previous operation which may still be in flight to
2032          * complete.
2033          */
2034         ret = t4_seeprom_wait(adapter);
2035         if (ret) {
2036                 dev_err(adapter, "VPD still busy from previous operation\n");
2037                 return ret;
2038         }
2039
2040         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2041          * for our request to complete.  If it doesn't complete, note the
2042          * error and return it to our caller.  Note that we do not reset the
2043          * VPD Busy status!
2044          */
2045         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2046         adapter->vpd_busy = 1;
2047         adapter->vpd_flag = PCI_VPD_ADDR_F;
2048         ret = t4_seeprom_wait(adapter);
2049         if (ret) {
2050                 dev_err(adapter, "VPD read of address %#x failed\n", addr);
2051                 return ret;
2052         }
2053
2054         /* Grab the returned data, swizzle it into our endianness and
2055          * return success.
2056          */
2057         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2058         *data = le32_to_cpu(*data);
2059         return 0;
2060 }
2061
2062 /**
2063  * t4_seeprom_write - write a serial EEPROM location
2064  * @adapter: adapter to write
2065  * @addr: virtual EEPROM address
2066  * @data: value to write
2067  *
2068  * Write a 32-bit word to a location in serial EEPROM using the card's PCI
2069  * VPD capability.  Note that this function must be called with a virtual
2070  * address.
2071  */
2072 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2073 {
2074         unsigned int base = adapter->params.pci.vpd_cap_addr;
2075         int ret;
2076         u32 stats_reg = 0;
2077         int max_poll;
2078
2079         /* VPD Accesses must alway be 4-byte aligned!
2080          */
2081         if (addr >= EEPROMVSIZE || (addr & 3))
2082                 return -EINVAL;
2083
2084         /* Wait for any previous operation which may still be in flight to
2085          * complete.
2086          */
2087         ret = t4_seeprom_wait(adapter);
2088         if (ret) {
2089                 dev_err(adapter, "VPD still busy from previous operation\n");
2090                 return ret;
2091         }
2092
2093         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2094          * for our request to complete.  If it doesn't complete, note the
2095          * error and return it to our caller.  Note that we do not reset the
2096          * VPD Busy status!
2097          */
2098         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2099                              cpu_to_le32(data));
2100         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2101                              (u16)addr | PCI_VPD_ADDR_F);
2102         adapter->vpd_busy = 1;
2103         adapter->vpd_flag = 0;
2104         ret = t4_seeprom_wait(adapter);
2105         if (ret) {
2106                 dev_err(adapter, "VPD write of address %#x failed\n", addr);
2107                 return ret;
2108         }
2109
2110         /* Reset PCI_VPD_DATA register after a transaction and wait for our
2111          * request to complete. If it doesn't complete, return error.
2112          */
2113         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2114         max_poll = EEPROM_MAX_POLL;
2115         do {
2116                 udelay(EEPROM_DELAY);
2117                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2118         } while ((stats_reg & 0x1) && --max_poll);
2119         if (!max_poll)
2120                 return -ETIMEDOUT;
2121
2122         /* Return success! */
2123         return 0;
2124 }
2125
2126 /**
2127  * t4_seeprom_wp - enable/disable EEPROM write protection
2128  * @adapter: the adapter
2129  * @enable: whether to enable or disable write protection
2130  *
2131  * Enables or disables write protection on the serial EEPROM.
2132  */
2133 int t4_seeprom_wp(struct adapter *adapter, int enable)
2134 {
2135         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2136 }
2137
2138 /**
2139  * t4_fw_tp_pio_rw - Access TP PIO through LDST
2140  * @adap: the adapter
2141  * @vals: where the indirect register values are stored/written
2142  * @nregs: how many indirect registers to read/write
2143  * @start_idx: index of first indirect register to read/write
2144  * @rw: Read (1) or Write (0)
2145  *
2146  * Access TP PIO registers through LDST
2147  */
2148 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
2149                      unsigned int start_index, unsigned int rw)
2150 {
2151         int cmd = FW_LDST_ADDRSPC_TP_PIO;
2152         struct fw_ldst_cmd c;
2153         unsigned int i;
2154         int ret;
2155
2156         for (i = 0 ; i < nregs; i++) {
2157                 memset(&c, 0, sizeof(c));
2158                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
2159                                                 F_FW_CMD_REQUEST |
2160                                                 (rw ? F_FW_CMD_READ :
2161                                                       F_FW_CMD_WRITE) |
2162                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
2163                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
2164
2165                 c.u.addrval.addr = cpu_to_be32(start_index + i);
2166                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
2167                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2168                 if (ret == 0) {
2169                         if (rw)
2170                                 vals[i] = be32_to_cpu(c.u.addrval.val);
2171                 }
2172         }
2173 }
2174
2175 /**
2176  * t4_read_rss_key - read the global RSS key
2177  * @adap: the adapter
2178  * @key: 10-entry array holding the 320-bit RSS key
2179  *
2180  * Reads the global 320-bit RSS key.
2181  */
2182 void t4_read_rss_key(struct adapter *adap, u32 *key)
2183 {
2184         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
2185 }
2186
2187 /**
2188  * t4_write_rss_key - program one of the RSS keys
2189  * @adap: the adapter
2190  * @key: 10-entry array holding the 320-bit RSS key
2191  * @idx: which RSS key to write
2192  *
2193  * Writes one of the RSS keys with the given 320-bit value.  If @idx is
2194  * 0..15 the corresponding entry in the RSS key table is written,
2195  * otherwise the global RSS key is written.
2196  */
2197 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
2198 {
2199         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
2200         u8 rss_key_addr_cnt = 16;
2201
2202         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
2203          * allows access to key addresses 16-63 by using KeyWrAddrX
2204          * as index[5:4](upper 2) into key table
2205          */
2206         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
2207             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
2208                 rss_key_addr_cnt = 32;
2209
2210         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
2211
2212         if (idx >= 0 && idx < rss_key_addr_cnt) {
2213                 if (rss_key_addr_cnt > 16)
2214                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2215                                      V_KEYWRADDRX(idx >> 4) |
2216                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
2217                 else
2218                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2219                                      V_KEYWRADDR(idx) | F_KEYWREN);
2220         }
2221 }
2222
2223 /**
2224  * t4_config_rss_range - configure a portion of the RSS mapping table
2225  * @adapter: the adapter
2226  * @mbox: mbox to use for the FW command
2227  * @viid: virtual interface whose RSS subtable is to be written
2228  * @start: start entry in the table to write
2229  * @n: how many table entries to write
2230  * @rspq: values for the "response queue" (Ingress Queue) lookup table
2231  * @nrspq: number of values in @rspq
2232  *
2233  * Programs the selected part of the VI's RSS mapping table with the
2234  * provided values.  If @nrspq < @n the supplied values are used repeatedly
2235  * until the full table range is populated.
2236  *
2237  * The caller must ensure the values in @rspq are in the range allowed for
2238  * @viid.
2239  */
2240 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2241                         int start, int n, const u16 *rspq, unsigned int nrspq)
2242 {
2243         int ret;
2244         const u16 *rsp = rspq;
2245         const u16 *rsp_end = rspq + nrspq;
2246         struct fw_rss_ind_tbl_cmd cmd;
2247
2248         memset(&cmd, 0, sizeof(cmd));
2249         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2250                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2251                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
2252         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2253
2254         /*
2255          * Each firmware RSS command can accommodate up to 32 RSS Ingress
2256          * Queue Identifiers.  These Ingress Queue IDs are packed three to
2257          * a 32-bit word as 10-bit values with the upper remaining 2 bits
2258          * reserved.
2259          */
2260         while (n > 0) {
2261                 int nq = min(n, 32);
2262                 int nq_packed = 0;
2263                 __be32 *qp = &cmd.iq0_to_iq2;
2264
2265                 /*
2266                  * Set up the firmware RSS command header to send the next
2267                  * "nq" Ingress Queue IDs to the firmware.
2268                  */
2269                 cmd.niqid = cpu_to_be16(nq);
2270                 cmd.startidx = cpu_to_be16(start);
2271
2272                 /*
2273                  * "nq" more done for the start of the next loop.
2274                  */
2275                 start += nq;
2276                 n -= nq;
2277
2278                 /*
2279                  * While there are still Ingress Queue IDs to stuff into the
2280                  * current firmware RSS command, retrieve them from the
2281                  * Ingress Queue ID array and insert them into the command.
2282                  */
2283                 while (nq > 0) {
2284                         /*
2285                          * Grab up to the next 3 Ingress Queue IDs (wrapping
2286                          * around the Ingress Queue ID array if necessary) and
2287                          * insert them into the firmware RSS command at the
2288                          * current 3-tuple position within the commad.
2289                          */
2290                         u16 qbuf[3];
2291                         u16 *qbp = qbuf;
2292                         int nqbuf = min(3, nq);
2293
2294                         nq -= nqbuf;
2295                         qbuf[0] = 0;
2296                         qbuf[1] = 0;
2297                         qbuf[2] = 0;
2298                         while (nqbuf && nq_packed < 32) {
2299                                 nqbuf--;
2300                                 nq_packed++;
2301                                 *qbp++ = *rsp++;
2302                                 if (rsp >= rsp_end)
2303                                         rsp = rspq;
2304                         }
2305                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2306                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2307                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2308                 }
2309
2310                 /*
2311                  * Send this portion of the RRS table update to the firmware;
2312                  * bail out on any errors.
2313                  */
2314                 if (is_pf4(adapter))
2315                         ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd),
2316                                          NULL);
2317                 else
2318                         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
2319                 if (ret)
2320                         return ret;
2321         }
2322
2323         return 0;
2324 }
2325
2326 /**
2327  * t4_config_vi_rss - configure per VI RSS settings
2328  * @adapter: the adapter
2329  * @mbox: mbox to use for the FW command
2330  * @viid: the VI id
2331  * @flags: RSS flags
2332  * @defq: id of the default RSS queue for the VI.
2333  *
2334  * Configures VI-specific RSS properties.
2335  */
2336 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2337                      unsigned int flags, unsigned int defq)
2338 {
2339         struct fw_rss_vi_config_cmd c;
2340
2341         memset(&c, 0, sizeof(c));
2342         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2343                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2344                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2345         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2346         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
2347                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2348         if (is_pf4(adapter))
2349                 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2350         else
2351                 return t4vf_wr_mbox(adapter, &c, sizeof(c), NULL);
2352 }
2353
2354 /**
2355  * t4_read_config_vi_rss - read the configured per VI RSS settings
2356  * @adapter: the adapter
2357  * @mbox: mbox to use for the FW command
2358  * @viid: the VI id
2359  * @flags: where to place the configured flags
2360  * @defq: where to place the id of the default RSS queue for the VI.
2361  *
2362  * Read configured VI-specific RSS properties.
2363  */
2364 int t4_read_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2365                           u64 *flags, unsigned int *defq)
2366 {
2367         struct fw_rss_vi_config_cmd c;
2368         unsigned int result;
2369         int ret;
2370
2371         memset(&c, 0, sizeof(c));
2372         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2373                                    F_FW_CMD_REQUEST | F_FW_CMD_READ |
2374                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2375         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2376         ret = t4_wr_mbox(adapter, mbox, &c, sizeof(c), &c);
2377         if (!ret) {
2378                 result = be32_to_cpu(c.u.basicvirtual.defaultq_to_udpen);
2379                 if (defq)
2380                         *defq = G_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(result);
2381                 if (flags)
2382                         *flags = result & M_FW_RSS_VI_CONFIG_CMD_DEFAULTQ;
2383         }
2384
2385         return ret;
2386 }
2387
2388 /**
2389  * init_cong_ctrl - initialize congestion control parameters
2390  * @a: the alpha values for congestion control
2391  * @b: the beta values for congestion control
2392  *
2393  * Initialize the congestion control parameters.
2394  */
2395 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2396 {
2397         int i;
2398
2399         for (i = 0; i < 9; i++) {
2400                 a[i] = 1;
2401                 b[i] = 0;
2402         }
2403
2404         a[9] = 2;
2405         a[10] = 3;
2406         a[11] = 4;
2407         a[12] = 5;
2408         a[13] = 6;
2409         a[14] = 7;
2410         a[15] = 8;
2411         a[16] = 9;
2412         a[17] = 10;
2413         a[18] = 14;
2414         a[19] = 17;
2415         a[20] = 21;
2416         a[21] = 25;
2417         a[22] = 30;
2418         a[23] = 35;
2419         a[24] = 45;
2420         a[25] = 60;
2421         a[26] = 80;
2422         a[27] = 100;
2423         a[28] = 200;
2424         a[29] = 300;
2425         a[30] = 400;
2426         a[31] = 500;
2427
2428         b[9] = 1;
2429         b[10] = 1;
2430         b[11] = 2;
2431         b[12] = 2;
2432         b[13] = 3;
2433         b[14] = 3;
2434         b[15] = 3;
2435         b[16] = 3;
2436         b[17] = 4;
2437         b[18] = 4;
2438         b[19] = 4;
2439         b[20] = 4;
2440         b[21] = 4;
2441         b[22] = 5;
2442         b[23] = 5;
2443         b[24] = 5;
2444         b[25] = 5;
2445         b[26] = 5;
2446         b[27] = 5;
2447         b[28] = 6;
2448         b[29] = 6;
2449         b[30] = 7;
2450         b[31] = 7;
2451 }
2452
2453 #define INIT_CMD(var, cmd, rd_wr) do { \
2454         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
2455                         F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
2456         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
2457 } while (0)
2458
2459 int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
2460 {
2461         u32 cclk_param, cclk_val;
2462         int ret;
2463
2464         /*
2465          * Ask firmware for the Core Clock since it knows how to translate the
2466          * Reference Clock ('V2') VPD field into a Core Clock value ...
2467          */
2468         cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2469                       V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
2470         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2471                               1, &cclk_param, &cclk_val);
2472         if (ret) {
2473                 dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
2474                         __func__, ret);
2475                 return ret;
2476         }
2477
2478         p->cclk = cclk_val;
2479         dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
2480         return 0;
2481 }
2482
2483 /**
2484  * t4_get_pfres - retrieve VF resource limits
2485  * @adapter: the adapter
2486  *
2487  * Retrieves configured resource limits and capabilities for a physical
2488  * function.  The results are stored in @adapter->pfres.
2489  */
2490 int t4_get_pfres(struct adapter *adapter)
2491 {
2492         struct pf_resources *pfres = &adapter->params.pfres;
2493         struct fw_pfvf_cmd cmd, rpl;
2494         u32 word;
2495         int v;
2496
2497         /*
2498          * Execute PFVF Read command to get VF resource limits; bail out early
2499          * with error on command failure.
2500          */
2501         memset(&cmd, 0, sizeof(cmd));
2502         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
2503                                     F_FW_CMD_REQUEST |
2504                                     F_FW_CMD_READ |
2505                                     V_FW_PFVF_CMD_PFN(adapter->pf) |
2506                                     V_FW_PFVF_CMD_VFN(0));
2507         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2508         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2509         if (v != FW_SUCCESS)
2510                 return v;
2511
2512         /*
2513          * Extract PF resource limits and return success.
2514          */
2515         word = be32_to_cpu(rpl.niqflint_niq);
2516         pfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
2517
2518         word = be32_to_cpu(rpl.type_to_neq);
2519         pfres->neq = G_FW_PFVF_CMD_NEQ(word);
2520
2521         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2522         pfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
2523
2524         return 0;
2525 }
2526
2527 /* serial flash and firmware constants and flash config file constants */
2528 enum {
2529         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2530
2531         /* flash command opcodes */
2532         SF_PROG_PAGE    = 2,          /* program page */
2533         SF_WR_DISABLE   = 4,          /* disable writes */
2534         SF_RD_STATUS    = 5,          /* read status register */
2535         SF_WR_ENABLE    = 6,          /* enable writes */
2536         SF_RD_DATA_FAST = 0xb,        /* read flash */
2537         SF_RD_ID        = 0x9f,       /* read ID */
2538         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2539 };
2540
2541 /**
2542  * sf1_read - read data from the serial flash
2543  * @adapter: the adapter
2544  * @byte_cnt: number of bytes to read
2545  * @cont: whether another operation will be chained
2546  * @lock: whether to lock SF for PL access only
2547  * @valp: where to store the read data
2548  *
2549  * Reads up to 4 bytes of data from the serial flash.  The location of
2550  * the read needs to be specified prior to calling this by issuing the
2551  * appropriate commands to the serial flash.
2552  */
2553 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2554                     int lock, u32 *valp)
2555 {
2556         int ret;
2557
2558         if (!byte_cnt || byte_cnt > 4)
2559                 return -EINVAL;
2560         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2561                 return -EBUSY;
2562         t4_write_reg(adapter, A_SF_OP,
2563                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
2564         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2565         if (!ret)
2566                 *valp = t4_read_reg(adapter, A_SF_DATA);
2567         return ret;
2568 }
2569
2570 /**
2571  * sf1_write - write data to the serial flash
2572  * @adapter: the adapter
2573  * @byte_cnt: number of bytes to write
2574  * @cont: whether another operation will be chained
2575  * @lock: whether to lock SF for PL access only
2576  * @val: value to write
2577  *
2578  * Writes up to 4 bytes of data to the serial flash.  The location of
2579  * the write needs to be specified prior to calling this by issuing the
2580  * appropriate commands to the serial flash.
2581  */
2582 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2583                      int lock, u32 val)
2584 {
2585         if (!byte_cnt || byte_cnt > 4)
2586                 return -EINVAL;
2587         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2588                 return -EBUSY;
2589         t4_write_reg(adapter, A_SF_DATA, val);
2590         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
2591                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
2592         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2593 }
2594
2595 /**
2596  * t4_read_flash - read words from serial flash
2597  * @adapter: the adapter
2598  * @addr: the start address for the read
2599  * @nwords: how many 32-bit words to read
2600  * @data: where to store the read data
2601  * @byte_oriented: whether to store data as bytes or as words
2602  *
2603  * Read the specified number of 32-bit words from the serial flash.
2604  * If @byte_oriented is set the read data is stored as a byte array
2605  * (i.e., big-endian), otherwise as 32-bit words in the platform's
2606  * natural endianness.
2607  */
2608 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2609                   unsigned int nwords, u32 *data, int byte_oriented)
2610 {
2611         int ret;
2612
2613         if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
2614             (addr & 3))
2615                 return -EINVAL;
2616
2617         addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;
2618
2619         ret = sf1_write(adapter, 4, 1, 0, addr);
2620         if (ret != 0)
2621                 return ret;
2622
2623         ret = sf1_read(adapter, 1, 1, 0, data);
2624         if (ret != 0)
2625                 return ret;
2626
2627         for ( ; nwords; nwords--, data++) {
2628                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2629                 if (nwords == 1)
2630                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
2631                 if (ret)
2632                         return ret;
2633                 if (byte_oriented)
2634                         *data = cpu_to_be32(*data);
2635         }
2636         return 0;
2637 }
2638
2639 /**
2640  * t4_get_exprom_version - return the Expansion ROM version (if any)
2641  * @adapter: the adapter
2642  * @vers: where to place the version
2643  *
2644  * Reads the Expansion ROM header from FLASH and returns the version
2645  * number (if present) through the @vers return value pointer.  We return
2646  * this in the Firmware Version Format since it's convenient.  Return
2647  * 0 on success, -ENOENT if no Expansion ROM is present.
2648  */
2649 static int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
2650 {
2651         struct exprom_header {
2652                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2653                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2654         } *hdr;
2655         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2656                                            sizeof(u32))];
2657         int ret;
2658
2659         ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
2660                             ARRAY_SIZE(exprom_header_buf),
2661                             exprom_header_buf, 0);
2662         if (ret)
2663                 return ret;
2664
2665         hdr = (struct exprom_header *)exprom_header_buf;
2666         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2667                 return -ENOENT;
2668
2669         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
2670                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
2671                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
2672                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
2673         return 0;
2674 }
2675
2676 /**
2677  * t4_get_fw_version - read the firmware version
2678  * @adapter: the adapter
2679  * @vers: where to place the version
2680  *
2681  * Reads the FW version from flash.
2682  */
2683 static int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2684 {
2685         return t4_read_flash(adapter, FLASH_FW_START +
2686                              offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
2687 }
2688
2689 /**
2690  *     t4_get_bs_version - read the firmware bootstrap version
2691  *     @adapter: the adapter
2692  *     @vers: where to place the version
2693  *
2694  *     Reads the FW Bootstrap version from flash.
2695  */
2696 static int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2697 {
2698         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2699                              offsetof(struct fw_hdr, fw_ver), 1,
2700                              vers, 0);
2701 }
2702
2703 /**
2704  * t4_get_tp_version - read the TP microcode version
2705  * @adapter: the adapter
2706  * @vers: where to place the version
2707  *
2708  * Reads the TP microcode version from flash.
2709  */
2710 static int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2711 {
2712         return t4_read_flash(adapter, FLASH_FW_START +
2713                              offsetof(struct fw_hdr, tp_microcode_ver),
2714                              1, vers, 0);
2715 }
2716
2717 /**
2718  * t4_get_version_info - extract various chip/firmware version information
2719  * @adapter: the adapter
2720  *
2721  * Reads various chip/firmware version numbers and stores them into the
2722  * adapter Adapter Parameters structure.  If any of the efforts fails
2723  * the first failure will be returned, but all of the version numbers
2724  * will be read.
2725  */
2726 int t4_get_version_info(struct adapter *adapter)
2727 {
2728         int ret = 0;
2729
2730 #define FIRST_RET(__getvinfo) \
2731         do { \
2732                 int __ret = __getvinfo; \
2733                 if (__ret && !ret) \
2734                         ret = __ret; \
2735         } while (0)
2736
2737         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
2738         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
2739         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
2740         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
2741
2742 #undef FIRST_RET
2743
2744         return ret;
2745 }
2746
2747 /**
2748  * t4_dump_version_info - dump all of the adapter configuration IDs
2749  * @adapter: the adapter
2750  *
2751  * Dumps all of the various bits of adapter configuration version/revision
2752  * IDs information.  This is typically called at some point after
2753  * t4_get_version_info() has been called.
2754  */
2755 void t4_dump_version_info(struct adapter *adapter)
2756 {
2757         /**
2758          * Device information.
2759          */
2760         dev_info(adapter, "Chelsio rev %d\n",
2761                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
2762
2763         /**
2764          * Firmware Version.
2765          */
2766         if (!adapter->params.fw_vers)
2767                 dev_warn(adapter, "No firmware loaded\n");
2768         else
2769                 dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
2770                          G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
2771                          G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
2772                          G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
2773                          G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
2774
2775         /**
2776          * Bootstrap Firmware Version.
2777          */
2778         if (!adapter->params.bs_vers)
2779                 dev_warn(adapter, "No bootstrap loaded\n");
2780         else
2781                 dev_info(adapter, "Bootstrap version: %u.%u.%u.%u\n",
2782                          G_FW_HDR_FW_VER_MAJOR(adapter->params.bs_vers),
2783                          G_FW_HDR_FW_VER_MINOR(adapter->params.bs_vers),
2784                          G_FW_HDR_FW_VER_MICRO(adapter->params.bs_vers),
2785                          G_FW_HDR_FW_VER_BUILD(adapter->params.bs_vers));
2786
2787         /**
2788          * TP Microcode Version.
2789          */
2790         if (!adapter->params.tp_vers)
2791                 dev_warn(adapter, "No TP Microcode loaded\n");
2792         else
2793                 dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
2794                          G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
2795                          G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
2796                          G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
2797                          G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
2798
2799         /**
2800          * Expansion ROM version.
2801          */
2802         if (!adapter->params.er_vers)
2803                 dev_info(adapter, "No Expansion ROM loaded\n");
2804         else
2805                 dev_info(adapter, "Expansion ROM version: %u.%u.%u.%u\n",
2806                          G_FW_HDR_FW_VER_MAJOR(adapter->params.er_vers),
2807                          G_FW_HDR_FW_VER_MINOR(adapter->params.er_vers),
2808                          G_FW_HDR_FW_VER_MICRO(adapter->params.er_vers),
2809                          G_FW_HDR_FW_VER_BUILD(adapter->params.er_vers));
2810 }
2811
2812 #define ADVERT_MASK (V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED) | \
2813                      FW_PORT_CAP32_ANEG)
2814
2815 /* Translate Firmware Pause specification to Common Code */
2816 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
2817 {
2818         enum cc_pause cc_pause = 0;
2819
2820         if (fw_pause & FW_PORT_CAP32_FC_RX)
2821                 cc_pause |= PAUSE_RX;
2822         if (fw_pause & FW_PORT_CAP32_FC_TX)
2823                 cc_pause |= PAUSE_TX;
2824
2825         return cc_pause;
2826 }
2827
2828 /* Translate Common Code Pause Frame specification into Firmware */
2829 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
2830 {
2831         fw_port_cap32_t fw_pause = 0;
2832
2833         if (cc_pause & PAUSE_RX)
2834                 fw_pause |= FW_PORT_CAP32_FC_RX;
2835         if (cc_pause & PAUSE_TX)
2836                 fw_pause |= FW_PORT_CAP32_FC_TX;
2837
2838         return fw_pause;
2839 }
2840
2841 /* Translate Firmware Forward Error Correction specification to Common Code */
2842 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
2843 {
2844         enum cc_fec cc_fec = 0;
2845
2846         if (fw_fec & FW_PORT_CAP32_FEC_RS)
2847                 cc_fec |= FEC_RS;
2848         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
2849                 cc_fec |= FEC_BASER_RS;
2850
2851         return cc_fec;
2852 }
2853
2854 /* Translate Common Code Forward Error Correction specification to Firmware */
2855 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
2856 {
2857         fw_port_cap32_t fw_fec = 0;
2858
2859         if (cc_fec & FEC_RS)
2860                 fw_fec |= FW_PORT_CAP32_FEC_RS;
2861         if (cc_fec & FEC_BASER_RS)
2862                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
2863
2864         return fw_fec;
2865 }
2866
2867 /**
2868  * t4_link_l1cfg - apply link configuration to MAC/PHY
2869  * @adapter: the adapter
2870  * @mbox: the Firmware Mailbox to use
2871  * @port: the Port ID
2872  * @lc: the Port's Link Configuration
2873  *
2874  * Set up a port's MAC and PHY according to a desired link configuration.
2875  * - If the PHY can auto-negotiate first decide what to advertise, then
2876  *   enable/disable auto-negotiation as desired, and reset.
2877  * - If the PHY does not auto-negotiate just reset it.
2878  * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2879  *   otherwise do it later based on the outcome of auto-negotiation.
2880  */
2881 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
2882                   struct link_config *lc)
2883 {
2884         unsigned int fw_mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
2885         fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
2886         struct fw_port_cmd cmd;
2887
2888         lc->link_ok = 0;
2889
2890         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
2891
2892         /* Convert Common Code Forward Error Control settings into the
2893          * Firmware's API.  If the current Requested FEC has "Automatic"
2894          * (IEEE 802.3) specified, then we use whatever the Firmware
2895          * sent us as part of it's IEEE 802.3-based interpratation of
2896          * the Transceiver Module EPROM FEC parameters.  Otherwise we
2897          * use whatever is in the current Requested FEC settings.
2898          */
2899         if (lc->requested_fec & FEC_AUTO)
2900                 cc_fec = lc->auto_fec;
2901         else
2902                 cc_fec = lc->requested_fec;
2903         fw_fec = cc_to_fwcap_fec(cc_fec);
2904
2905         /* Figure out what our Requested Port Capabilities are going to be.
2906          */
2907         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2908                 rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
2909                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
2910                 lc->fec = cc_fec;
2911         } else if (lc->autoneg == AUTONEG_DISABLE) {
2912                 rcap = lc->requested_speed | fw_fc | fw_fec | fw_mdi;
2913                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
2914                 lc->fec = cc_fec;
2915         } else {
2916                 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
2917         }
2918
2919         /* And send that on to the Firmware ...
2920          */
2921         memset(&cmd, 0, sizeof(cmd));
2922         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
2923                                        F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
2924                                        V_FW_PORT_CMD_PORTID(port));
2925         cmd.action_to_len16 =
2926                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
2927                             FW_LEN16(cmd));
2928
2929         cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
2930
2931         return t4_wr_mbox(adap, mbox, &cmd, sizeof(cmd), NULL);
2932 }
2933
2934 /**
2935  * t4_flash_cfg_addr - return the address of the flash configuration file
2936  * @adapter: the adapter
2937  *
2938  * Return the address within the flash where the Firmware Configuration
2939  * File is stored, or an error if the device FLASH is too small to contain
2940  * a Firmware Configuration File.
2941  */
2942 int t4_flash_cfg_addr(struct adapter *adapter)
2943 {
2944         /*
2945          * If the device FLASH isn't large enough to hold a Firmware
2946          * Configuration File, return an error.
2947          */
2948         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
2949                 return -ENOSPC;
2950
2951         return FLASH_CFG_START;
2952 }
2953
2954 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2955
2956 /**
2957  * t4_intr_enable - enable interrupts
2958  * @adapter: the adapter whose interrupts should be enabled
2959  *
2960  * Enable PF-specific interrupts for the calling function and the top-level
2961  * interrupt concentrator for global interrupts.  Interrupts are already
2962  * enabled at each module, here we just enable the roots of the interrupt
2963  * hierarchies.
2964  *
2965  * Note: this function should be called only when the driver manages
2966  * non PF-specific interrupts from the various HW modules.  Only one PCI
2967  * function at a time should be doing this.
2968  */
2969 void t4_intr_enable(struct adapter *adapter)
2970 {
2971         u32 val = 0;
2972         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2973         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2974                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2975
2976         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2977                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
2978         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2979                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2980                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
2981                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2982                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2983                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2984                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
2985         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2986         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2987 }
2988
2989 /**
2990  * t4_intr_disable - disable interrupts
2991  * @adapter: the adapter whose interrupts should be disabled
2992  *
2993  * Disable interrupts.  We only disable the top-level interrupt
2994  * concentrators.  The caller must be a PCI function managing global
2995  * interrupts.
2996  */
2997 void t4_intr_disable(struct adapter *adapter)
2998 {
2999         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
3000         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3001                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
3002
3003         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
3004         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
3005 }
3006
3007 /**
3008  * t4_get_port_type_description - return Port Type string description
3009  * @port_type: firmware Port Type enumeration
3010  */
3011 const char *t4_get_port_type_description(enum fw_port_type port_type)
3012 {
3013         static const char * const port_type_description[] = {
3014                 "Fiber_XFI",
3015                 "Fiber_XAUI",
3016                 "BT_SGMII",
3017                 "BT_XFI",
3018                 "BT_XAUI",
3019                 "KX4",
3020                 "CX4",
3021                 "KX",
3022                 "KR",
3023                 "SFP",
3024                 "BP_AP",
3025                 "BP4_AP",
3026                 "QSFP_10G",
3027                 "QSA",
3028                 "QSFP",
3029                 "BP40_BA",
3030                 "KR4_100G",
3031                 "CR4_QSFP",
3032                 "CR_QSFP",
3033                 "CR2_QSFP",
3034                 "SFP28",
3035                 "KR_SFP28",
3036         };
3037
3038         if (port_type < ARRAY_SIZE(port_type_description))
3039                 return port_type_description[port_type];
3040         return "UNKNOWN";
3041 }
3042
3043 /**
3044  * t4_get_mps_bg_map - return the buffer groups associated with a port
3045  * @adap: the adapter
3046  * @pidx: the port index
3047  *
3048  * Returns a bitmap indicating which MPS buffer groups are associated
3049  * with the given port.  Bit i is set if buffer group i is used by the
3050  * port.
3051  */
3052 unsigned int t4_get_mps_bg_map(struct adapter *adap, unsigned int pidx)
3053 {
3054         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3055         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adap,
3056                                                           A_MPS_CMN_CTL));
3057
3058         if (pidx >= nports) {
3059                 dev_warn(adap, "MPS Port Index %d >= Nports %d\n",
3060                          pidx, nports);
3061                 return 0;
3062         }
3063
3064         switch (chip_version) {
3065         case CHELSIO_T4:
3066         case CHELSIO_T5:
3067                 switch (nports) {
3068                 case 1: return 0xf;
3069                 case 2: return 3 << (2 * pidx);
3070                 case 4: return 1 << pidx;
3071                 }
3072                 break;
3073
3074         case CHELSIO_T6:
3075                 switch (nports) {
3076                 case 2: return 1 << (2 * pidx);
3077                 }
3078                 break;
3079         }
3080
3081         dev_err(adap, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
3082                 chip_version, nports);
3083         return 0;
3084 }
3085
3086 /**
3087  * t4_get_tp_ch_map - return TP ingress channels associated with a port
3088  * @adapter: the adapter
3089  * @pidx: the port index
3090  *
3091  * Returns a bitmap indicating which TP Ingress Channels are associated with
3092  * a given Port.  Bit i is set if TP Ingress Channel i is used by the Port.
3093  */
3094 unsigned int t4_get_tp_ch_map(struct adapter *adapter, unsigned int pidx)
3095 {
3096         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
3097         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adapter,
3098                                                           A_MPS_CMN_CTL));
3099
3100         if (pidx >= nports) {
3101                 dev_warn(adap, "TP Port Index %d >= Nports %d\n",
3102                          pidx, nports);
3103                 return 0;
3104         }
3105
3106         switch (chip_version) {
3107         case CHELSIO_T4:
3108         case CHELSIO_T5:
3109                 /* Note that this happens to be the same values as the MPS
3110                  * Buffer Group Map for these Chips.  But we replicate the code
3111                  * here because they're really separate concepts.
3112                  */
3113                 switch (nports) {
3114                 case 1: return 0xf;
3115                 case 2: return 3 << (2 * pidx);
3116                 case 4: return 1 << pidx;
3117                 }
3118                 break;
3119
3120         case CHELSIO_T6:
3121                 switch (nports) {
3122                 case 2: return 1 << pidx;
3123                 }
3124                 break;
3125         }
3126
3127         dev_err(adapter, "Need TP Channel Map for Chip %0x, Nports %d\n",
3128                 chip_version, nports);
3129         return 0;
3130 }
3131
3132 /**
3133  * t4_get_port_stats - collect port statistics
3134  * @adap: the adapter
3135  * @idx: the port index
3136  * @p: the stats structure to fill
3137  *
3138  * Collect statistics related to the given port from HW.
3139  */
3140 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3141 {
3142         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3143         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
3144
3145 #define GET_STAT(name) \
3146         t4_read_reg64(adap, \
3147                       (is_t4(adap->params.chip) ? \
3148                        PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
3149                        T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3150 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3151
3152         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3153         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3154         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3155         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3156         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3157         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3158         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3159         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3160         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3161         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3162         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3163         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3164         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3165         p->tx_drop             = GET_STAT(TX_PORT_DROP);
3166         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3167         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3168         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3169         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3170         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3171         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3172         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3173         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3174         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3175
3176         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3177                 if (stat_ctl & F_COUNTPAUSESTATTX) {
3178                         p->tx_frames -= p->tx_pause;
3179                         p->tx_octets -= p->tx_pause * 64;
3180                 }
3181                 if (stat_ctl & F_COUNTPAUSEMCTX)
3182                         p->tx_mcast_frames -= p->tx_pause;
3183         }
3184
3185         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3186         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3187         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3188         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3189         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3190         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3191         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3192         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3193         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3194         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3195         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3196         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3197         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3198         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3199         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3200         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3201         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3202         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3203         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3204         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3205         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3206         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3207         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3208         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3209         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3210         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3211         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3212
3213         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3214                 if (stat_ctl & F_COUNTPAUSESTATRX) {
3215                         p->rx_frames -= p->rx_pause;
3216                         p->rx_octets -= p->rx_pause * 64;
3217                 }
3218                 if (stat_ctl & F_COUNTPAUSEMCRX)
3219                         p->rx_mcast_frames -= p->rx_pause;
3220         }
3221
3222         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3223         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3224         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3225         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3226         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3227         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3228         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3229         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3230
3231 #undef GET_STAT
3232 #undef GET_STAT_COM
3233 }
3234
3235 /**
3236  * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
3237  * @adap: The adapter
3238  * @idx: The port
3239  * @stats: Current stats to fill
3240  * @offset: Previous stats snapshot
3241  */
3242 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3243                               struct port_stats *stats,
3244                               struct port_stats *offset)
3245 {
3246         u64 *s, *o;
3247         unsigned int i;
3248
3249         t4_get_port_stats(adap, idx, stats);
3250         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
3251              i < (sizeof(struct port_stats) / sizeof(u64));
3252              i++, s++, o++)
3253                 *s -= *o;
3254 }
3255
3256 /**
3257  * t4_clr_port_stats - clear port statistics
3258  * @adap: the adapter
3259  * @idx: the port index
3260  *
3261  * Clear HW statistics for the given port.
3262  */
3263 void t4_clr_port_stats(struct adapter *adap, int idx)
3264 {
3265         unsigned int i;
3266         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3267         u32 port_base_addr;
3268
3269         if (is_t4(adap->params.chip))
3270                 port_base_addr = PORT_BASE(idx);
3271         else
3272                 port_base_addr = T5_PORT_BASE(idx);
3273
3274         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3275              i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3276                 t4_write_reg(adap, port_base_addr + i, 0);
3277         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3278              i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3279                 t4_write_reg(adap, port_base_addr + i, 0);
3280         for (i = 0; i < 4; i++)
3281                 if (bgmap & (1 << i)) {
3282                         t4_write_reg(adap,
3283                                      A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
3284                                      i * 8, 0);
3285                         t4_write_reg(adap,
3286                                      A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
3287                                      i * 8, 0);
3288                 }
3289 }
3290
3291 /**
3292  * t4_fw_hello - establish communication with FW
3293  * @adap: the adapter
3294  * @mbox: mailbox to use for the FW command
3295  * @evt_mbox: mailbox to receive async FW events
3296  * @master: specifies the caller's willingness to be the device master
3297  * @state: returns the current device state (if non-NULL)
3298  *
3299  * Issues a command to establish communication with FW.  Returns either
3300  * an error (negative integer) or the mailbox of the Master PF.
3301  */
3302 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
3303                 enum dev_master master, enum dev_state *state)
3304 {
3305         int ret;
3306         struct fw_hello_cmd c;
3307         u32 v;
3308         unsigned int master_mbox;
3309         int retries = FW_CMD_HELLO_RETRIES;
3310
3311 retry:
3312         memset(&c, 0, sizeof(c));
3313         INIT_CMD(c, HELLO, WRITE);
3314         c.err_to_clearinit = cpu_to_be32(
3315                         V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
3316                         V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
3317                         V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
3318                                                 M_FW_HELLO_CMD_MBMASTER) |
3319                         V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
3320                         V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
3321                         F_FW_HELLO_CMD_CLEARINIT);
3322
3323         /*
3324          * Issue the HELLO command to the firmware.  If it's not successful
3325          * but indicates that we got a "busy" or "timeout" condition, retry
3326          * the HELLO until we exhaust our retry limit.  If we do exceed our
3327          * retry limit, check to see if the firmware left us any error
3328          * information and report that if so ...
3329          */
3330         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3331         if (ret != FW_SUCCESS) {
3332                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
3333                         goto retry;
3334                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
3335                         t4_report_fw_error(adap);
3336                 return ret;
3337         }
3338
3339         v = be32_to_cpu(c.err_to_clearinit);
3340         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
3341         if (state) {
3342                 if (v & F_FW_HELLO_CMD_ERR)
3343                         *state = DEV_STATE_ERR;
3344                 else if (v & F_FW_HELLO_CMD_INIT)
3345                         *state = DEV_STATE_INIT;
3346                 else
3347                         *state = DEV_STATE_UNINIT;
3348         }
3349
3350         /*
3351          * If we're not the Master PF then we need to wait around for the
3352          * Master PF Driver to finish setting up the adapter.
3353          *
3354          * Note that we also do this wait if we're a non-Master-capable PF and
3355          * there is no current Master PF; a Master PF may show up momentarily
3356          * and we wouldn't want to fail pointlessly.  (This can happen when an
3357          * OS loads lots of different drivers rapidly at the same time).  In
3358          * this case, the Master PF returned by the firmware will be
3359          * M_PCIE_FW_MASTER so the test below will work ...
3360          */
3361         if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
3362             master_mbox != mbox) {
3363                 int waiting = FW_CMD_HELLO_TIMEOUT;
3364
3365                 /*
3366                  * Wait for the firmware to either indicate an error or
3367                  * initialized state.  If we see either of these we bail out
3368                  * and report the issue to the caller.  If we exhaust the
3369                  * "hello timeout" and we haven't exhausted our retries, try
3370                  * again.  Otherwise bail with a timeout error.
3371                  */
3372                 for (;;) {
3373                         u32 pcie_fw;
3374
3375                         msleep(50);
3376                         waiting -= 50;
3377
3378                         /*
3379                          * If neither Error nor Initialialized are indicated
3380                          * by the firmware keep waiting till we exaust our
3381                          * timeout ... and then retry if we haven't exhausted
3382                          * our retries ...
3383                          */
3384                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
3385                         if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
3386                                 if (waiting <= 0) {
3387                                         if (retries-- > 0)
3388                                                 goto retry;
3389
3390                                         return -ETIMEDOUT;
3391                                 }
3392                                 continue;
3393                         }
3394
3395                         /*
3396                          * We either have an Error or Initialized condition
3397                          * report errors preferentially.
3398                          */
3399                         if (state) {
3400                                 if (pcie_fw & F_PCIE_FW_ERR)
3401                                         *state = DEV_STATE_ERR;
3402                                 else if (pcie_fw & F_PCIE_FW_INIT)
3403                                         *state = DEV_STATE_INIT;
3404                         }
3405
3406                         /*
3407                          * If we arrived before a Master PF was selected and
3408                          * there's not a valid Master PF, grab its identity
3409                          * for our caller.
3410                          */
3411                         if (master_mbox == M_PCIE_FW_MASTER &&
3412                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
3413                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
3414                         break;
3415                 }
3416         }
3417
3418         return master_mbox;
3419 }
3420
3421 /**
3422  * t4_fw_bye - end communication with FW
3423  * @adap: the adapter
3424  * @mbox: mailbox to use for the FW command
3425  *
3426  * Issues a command to terminate communication with FW.
3427  */
3428 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
3429 {
3430         struct fw_bye_cmd c;
3431
3432         memset(&c, 0, sizeof(c));
3433         INIT_CMD(c, BYE, WRITE);
3434         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3435 }
3436
3437 /**
3438  * t4_fw_reset - issue a reset to FW
3439  * @adap: the adapter
3440  * @mbox: mailbox to use for the FW command
3441  * @reset: specifies the type of reset to perform
3442  *
3443  * Issues a reset command of the specified type to FW.
3444  */
3445 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
3446 {
3447         struct fw_reset_cmd c;
3448
3449         memset(&c, 0, sizeof(c));
3450         INIT_CMD(c, RESET, WRITE);
3451         c.val = cpu_to_be32(reset);
3452         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3453 }
3454
3455 /**
3456  * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
3457  * @adap: the adapter
3458  * @mbox: mailbox to use for the FW RESET command (if desired)
3459  * @force: force uP into RESET even if FW RESET command fails
3460  *
3461  * Issues a RESET command to firmware (if desired) with a HALT indication
3462  * and then puts the microprocessor into RESET state.  The RESET command
3463  * will only be issued if a legitimate mailbox is provided (mbox <=
3464  * M_PCIE_FW_MASTER).
3465  *
3466  * This is generally used in order for the host to safely manipulate the
3467  * adapter without fear of conflicting with whatever the firmware might
3468  * be doing.  The only way out of this state is to RESTART the firmware
3469  * ...
3470  */
3471 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
3472 {
3473         int ret = 0;
3474
3475         /*
3476          * If a legitimate mailbox is provided, issue a RESET command
3477          * with a HALT indication.
3478          */
3479         if (mbox <= M_PCIE_FW_MASTER) {
3480                 struct fw_reset_cmd c;
3481
3482                 memset(&c, 0, sizeof(c));
3483                 INIT_CMD(c, RESET, WRITE);
3484                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
3485                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
3486                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3487         }
3488
3489         /*
3490          * Normally we won't complete the operation if the firmware RESET
3491          * command fails but if our caller insists we'll go ahead and put the
3492          * uP into RESET.  This can be useful if the firmware is hung or even
3493          * missing ...  We'll have to take the risk of putting the uP into
3494          * RESET without the cooperation of firmware in that case.
3495          *
3496          * We also force the firmware's HALT flag to be on in case we bypassed
3497          * the firmware RESET command above or we're dealing with old firmware
3498          * which doesn't have the HALT capability.  This will serve as a flag
3499          * for the incoming firmware to know that it's coming out of a HALT
3500          * rather than a RESET ... if it's new enough to understand that ...
3501          */
3502         if (ret == 0 || force) {
3503                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
3504                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
3505                                  F_PCIE_FW_HALT);
3506         }
3507
3508         /*
3509          * And we always return the result of the firmware RESET command
3510          * even when we force the uP into RESET ...
3511          */
3512         return ret;
3513 }
3514
3515 /**
3516  * t4_fw_restart - restart the firmware by taking the uP out of RESET
3517  * @adap: the adapter
3518  * @mbox: mailbox to use for the FW RESET command (if desired)
3519  * @reset: if we want to do a RESET to restart things
3520  *
3521  * Restart firmware previously halted by t4_fw_halt().  On successful
3522  * return the previous PF Master remains as the new PF Master and there
3523  * is no need to issue a new HELLO command, etc.
3524  *
3525  * We do this in two ways:
3526  *
3527  * 1. If we're dealing with newer firmware we'll simply want to take
3528  *    the chip's microprocessor out of RESET.  This will cause the
3529  *    firmware to start up from its start vector.  And then we'll loop
3530  *    until the firmware indicates it's started again (PCIE_FW.HALT
3531  *    reset to 0) or we timeout.
3532  *
3533  * 2. If we're dealing with older firmware then we'll need to RESET
3534  *    the chip since older firmware won't recognize the PCIE_FW.HALT
3535  *    flag and automatically RESET itself on startup.
3536  */
3537 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
3538 {
3539         if (reset) {
3540                 /*
3541                  * Since we're directing the RESET instead of the firmware
3542                  * doing it automatically, we need to clear the PCIE_FW.HALT
3543                  * bit.
3544                  */
3545                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
3546
3547                 /*
3548                  * If we've been given a valid mailbox, first try to get the
3549                  * firmware to do the RESET.  If that works, great and we can
3550                  * return success.  Otherwise, if we haven't been given a
3551                  * valid mailbox or the RESET command failed, fall back to
3552                  * hitting the chip with a hammer.
3553                  */
3554                 if (mbox <= M_PCIE_FW_MASTER) {
3555                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3556                         msleep(100);
3557                         if (t4_fw_reset(adap, mbox,
3558                                         F_PIORST | F_PIORSTMODE) == 0)
3559                                 return 0;
3560                 }
3561
3562                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
3563                 msleep(2000);
3564         } else {
3565                 int ms;
3566
3567                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3568                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
3569                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
3570                                 return FW_SUCCESS;
3571                         msleep(100);
3572                         ms += 100;
3573                 }
3574                 return -ETIMEDOUT;
3575         }
3576         return 0;
3577 }
3578
3579 /**
3580  * t4_fl_pkt_align - return the fl packet alignment
3581  * @adap: the adapter
3582  *
3583  * T4 has a single field to specify the packing and padding boundary.
3584  * T5 onwards has separate fields for this and hence the alignment for
3585  * next packet offset is maximum of these two.
3586  */
3587 int t4_fl_pkt_align(struct adapter *adap)
3588 {
3589         u32 sge_control, sge_control2;
3590         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
3591
3592         sge_control = t4_read_reg(adap, A_SGE_CONTROL);
3593
3594         /* T4 uses a single control field to specify both the PCIe Padding and
3595          * Packing Boundary.  T5 introduced the ability to specify these
3596          * separately.  The actual Ingress Packet Data alignment boundary
3597          * within Packed Buffer Mode is the maximum of these two
3598          * specifications.
3599          */
3600         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
3601                 ingpad_shift = X_INGPADBOUNDARY_SHIFT;
3602         else
3603                 ingpad_shift = X_T6_INGPADBOUNDARY_SHIFT;
3604
3605         ingpadboundary = 1 << (G_INGPADBOUNDARY(sge_control) + ingpad_shift);
3606
3607         fl_align = ingpadboundary;
3608         if (!is_t4(adap->params.chip)) {
3609                 sge_control2 = t4_read_reg(adap, A_SGE_CONTROL2);
3610                 ingpackboundary = G_INGPACKBOUNDARY(sge_control2);
3611                 if (ingpackboundary == X_INGPACKBOUNDARY_16B)
3612                         ingpackboundary = 16;
3613                 else
3614                         ingpackboundary = 1 << (ingpackboundary +
3615                                         X_INGPACKBOUNDARY_SHIFT);
3616
3617                 fl_align = max(ingpadboundary, ingpackboundary);
3618         }
3619         return fl_align;
3620 }
3621
3622 /**
3623  * t4_fixup_host_params_compat - fix up host-dependent parameters
3624  * @adap: the adapter
3625  * @page_size: the host's Base Page Size
3626  * @cache_line_size: the host's Cache Line Size
3627  * @chip_compat: maintain compatibility with designated chip
3628  *
3629  * Various registers in the chip contain values which are dependent on the
3630  * host's Base Page and Cache Line Sizes.  This function will fix all of
3631  * those registers with the appropriate values as passed in ...
3632  *
3633  * @chip_compat is used to limit the set of changes that are made
3634  * to be compatible with the indicated chip release.  This is used by
3635  * drivers to maintain compatibility with chip register settings when
3636  * the drivers haven't [yet] been updated with new chip support.
3637  */
3638 int t4_fixup_host_params_compat(struct adapter *adap,
3639                                 unsigned int page_size,
3640                                 unsigned int cache_line_size,
3641                                 enum chip_type chip_compat)
3642 {
3643         unsigned int page_shift = cxgbe_fls(page_size) - 1;
3644         unsigned int sge_hps = page_shift - 10;
3645         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
3646         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
3647         unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;
3648
3649         t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
3650                      V_HOSTPAGESIZEPF0(sge_hps) |
3651                      V_HOSTPAGESIZEPF1(sge_hps) |
3652                      V_HOSTPAGESIZEPF2(sge_hps) |
3653                      V_HOSTPAGESIZEPF3(sge_hps) |
3654                      V_HOSTPAGESIZEPF4(sge_hps) |
3655                      V_HOSTPAGESIZEPF5(sge_hps) |
3656                      V_HOSTPAGESIZEPF6(sge_hps) |
3657                      V_HOSTPAGESIZEPF7(sge_hps));
3658
3659         if (is_t4(adap->params.chip) || is_t4(chip_compat))
3660                 t4_set_reg_field(adap, A_SGE_CONTROL,
3661                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3662                                  F_EGRSTATUSPAGESIZE,
3663                                  V_INGPADBOUNDARY(fl_align_log -
3664                                                   X_INGPADBOUNDARY_SHIFT) |
3665                                 V_EGRSTATUSPAGESIZE(stat_len != 64));
3666         else {
3667                 unsigned int pack_align;
3668                 unsigned int ingpad, ingpack;
3669                 unsigned int pcie_cap;
3670
3671                 /*
3672                  * T5 introduced the separation of the Free List Padding and
3673                  * Packing Boundaries.  Thus, we can select a smaller Padding
3674                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
3675                  * Bandwidth, and use a Packing Boundary which is large enough
3676                  * to avoid false sharing between CPUs, etc.
3677                  *
3678                  * For the PCI Link, the smaller the Padding Boundary the
3679                  * better.  For the Memory Controller, a smaller Padding
3680                  * Boundary is better until we cross under the Memory Line
3681                  * Size (the minimum unit of transfer to/from Memory).  If we
3682                  * have a Padding Boundary which is smaller than the Memory
3683                  * Line Size, that'll involve a Read-Modify-Write cycle on the
3684                  * Memory Controller which is never good.
3685                  */
3686
3687                 /* We want the Packing Boundary to be based on the Cache Line
3688                  * Size in order to help avoid False Sharing performance
3689                  * issues between CPUs, etc.  We also want the Packing
3690                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
3691                  * get best performance when the Packing Boundary is a
3692                  * multiple of the Maximum Payload Size.
3693                  */
3694                 pack_align = fl_align;
3695                 pcie_cap = t4_os_find_pci_capability(adap, PCI_CAP_ID_EXP);
3696                 if (pcie_cap) {
3697                         unsigned int mps, mps_log;
3698                         u16 devctl;
3699
3700                         /* The PCIe Device Control Maximum Payload Size field
3701                          * [bits 7:5] encodes sizes as powers of 2 starting at
3702                          * 128 bytes.
3703                          */
3704                         t4_os_pci_read_cfg2(adap, pcie_cap + PCI_EXP_DEVCTL,
3705                                             &devctl);
3706                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
3707                         mps = 1 << mps_log;
3708                         if (mps > pack_align)
3709                                 pack_align = mps;
3710                 }
3711
3712                 /*
3713                  * N.B. T5 has a different interpretation of the "0" value for
3714                  * the Packing Boundary.  This corresponds to 16 bytes instead
3715                  * of the expected 32 bytes.  We never have a Packing Boundary
3716                  * less than 32 bytes so we can't use that special value but
3717                  * on the other hand, if we wanted 32 bytes, the best we can
3718                  * really do is 64 bytes ...
3719                  */
3720                 if (pack_align <= 16) {
3721                         ingpack = X_INGPACKBOUNDARY_16B;
3722                         fl_align = 16;
3723                 } else if (pack_align == 32) {
3724                         ingpack = X_INGPACKBOUNDARY_64B;
3725                         fl_align = 64;
3726                 } else {
3727                         unsigned int pack_align_log = cxgbe_fls(pack_align) - 1;
3728
3729                         ingpack = pack_align_log - X_INGPACKBOUNDARY_SHIFT;
3730                         fl_align = pack_align;
3731                 }
3732
3733                 /* Use the smallest Ingress Padding which isn't smaller than
3734                  * the Memory Controller Read/Write Size.  We'll take that as
3735                  * being 8 bytes since we don't know of any system with a
3736                  * wider Memory Controller Bus Width.
3737                  */
3738                 if (is_t5(adap->params.chip))
3739                         ingpad = X_INGPADBOUNDARY_32B;
3740                 else
3741                         ingpad = X_T6_INGPADBOUNDARY_8B;
3742                 t4_set_reg_field(adap, A_SGE_CONTROL,
3743                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3744                                  F_EGRSTATUSPAGESIZE,
3745                                  V_INGPADBOUNDARY(ingpad) |
3746                                  V_EGRSTATUSPAGESIZE(stat_len != 64));
3747                 t4_set_reg_field(adap, A_SGE_CONTROL2,
3748                                  V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
3749                                  V_INGPACKBOUNDARY(ingpack));
3750         }
3751
3752         /*
3753          * Adjust various SGE Free List Host Buffer Sizes.
3754          *
3755          * The first four entries are:
3756          *
3757          *   0: Host Page Size
3758          *   1: 64KB
3759          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3760          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3761          *
3762          * For the single-MTU buffers in unpacked mode we need to include
3763          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3764          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3765          * Padding boundary.  All of these are accommodated in the Factory
3766          * Default Firmware Configuration File but we need to adjust it for
3767          * this host's cache line size.
3768          */
3769         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
3770         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
3771                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
3772                      & ~(fl_align - 1));
3773         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
3774                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
3775                      & ~(fl_align - 1));
3776
3777         t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));
3778
3779         return 0;
3780 }
3781
3782 /**
3783  * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
3784  * @adap: the adapter
3785  * @page_size: the host's Base Page Size
3786  * @cache_line_size: the host's Cache Line Size
3787  *
3788  * Various registers in T4 contain values which are dependent on the
3789  * host's Base Page and Cache Line Sizes.  This function will fix all of
3790  * those registers with the appropriate values as passed in ...
3791  *
3792  * This routine makes changes which are compatible with T4 chips.
3793  */
3794 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
3795                          unsigned int cache_line_size)
3796 {
3797         return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
3798                                            T4_LAST_REV);
3799 }
3800
3801 /**
3802  * t4_fw_initialize - ask FW to initialize the device
3803  * @adap: the adapter
3804  * @mbox: mailbox to use for the FW command
3805  *
3806  * Issues a command to FW to partially initialize the device.  This
3807  * performs initialization that generally doesn't depend on user input.
3808  */
3809 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3810 {
3811         struct fw_initialize_cmd c;
3812
3813         memset(&c, 0, sizeof(c));
3814         INIT_CMD(c, INITIALIZE, WRITE);
3815         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3816 }
3817
3818 /**
3819  * t4_query_params_rw - query FW or device parameters
3820  * @adap: the adapter
3821  * @mbox: mailbox to use for the FW command
3822  * @pf: the PF
3823  * @vf: the VF
3824  * @nparams: the number of parameters
3825  * @params: the parameter names
3826  * @val: the parameter values
3827  * @rw: Write and read flag
3828  *
3829  * Reads the value of FW or device parameters.  Up to 7 parameters can be
3830  * queried at once.
3831  */
3832 static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
3833                               unsigned int pf, unsigned int vf,
3834                               unsigned int nparams, const u32 *params,
3835                               u32 *val, int rw)
3836 {
3837         unsigned int i;
3838         int ret;
3839         struct fw_params_cmd c;
3840         __be32 *p = &c.param[0].mnem;
3841
3842         if (nparams > 7)
3843                 return -EINVAL;
3844
3845         memset(&c, 0, sizeof(c));
3846         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3847                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
3848                                   V_FW_PARAMS_CMD_PFN(pf) |
3849                                   V_FW_PARAMS_CMD_VFN(vf));
3850         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3851
3852         for (i = 0; i < nparams; i++) {
3853                 *p++ = cpu_to_be32(*params++);
3854                 if (rw)
3855                         *p = cpu_to_be32(*(val + i));
3856                 p++;
3857         }
3858
3859         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3860         if (ret == 0)
3861                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3862                         *val++ = be32_to_cpu(*p);
3863         return ret;
3864 }
3865
3866 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3867                     unsigned int vf, unsigned int nparams, const u32 *params,
3868                     u32 *val)
3869 {
3870         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
3871 }
3872
3873 /**
3874  * t4_set_params_timeout - sets FW or device parameters
3875  * @adap: the adapter
3876  * @mbox: mailbox to use for the FW command
3877  * @pf: the PF
3878  * @vf: the VF
3879  * @nparams: the number of parameters
3880  * @params: the parameter names
3881  * @val: the parameter values
3882  * @timeout: the timeout time
3883  *
3884  * Sets the value of FW or device parameters.  Up to 7 parameters can be
3885  * specified at once.
3886  */
3887 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
3888                           unsigned int pf, unsigned int vf,
3889                           unsigned int nparams, const u32 *params,
3890                           const u32 *val, int timeout)
3891 {
3892         struct fw_params_cmd c;
3893         __be32 *p = &c.param[0].mnem;
3894
3895         if (nparams > 7)
3896                 return -EINVAL;
3897
3898         memset(&c, 0, sizeof(c));
3899         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3900                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3901                                   V_FW_PARAMS_CMD_PFN(pf) |
3902                                   V_FW_PARAMS_CMD_VFN(vf));
3903         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3904
3905         while (nparams--) {
3906                 *p++ = cpu_to_be32(*params++);
3907                 *p++ = cpu_to_be32(*val++);
3908         }
3909
3910         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
3911 }
3912
3913 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3914                   unsigned int vf, unsigned int nparams, const u32 *params,
3915                   const u32 *val)
3916 {
3917         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
3918                                      FW_CMD_MAX_TIMEOUT);
3919 }
3920
3921 /**
3922  * t4_alloc_vi_func - allocate a virtual interface
3923  * @adap: the adapter
3924  * @mbox: mailbox to use for the FW command
3925  * @port: physical port associated with the VI
3926  * @pf: the PF owning the VI
3927  * @vf: the VF owning the VI
3928  * @nmac: number of MAC addresses needed (1 to 5)
3929  * @mac: the MAC addresses of the VI
3930  * @rss_size: size of RSS table slice associated with this VI
3931  * @portfunc: which Port Application Function MAC Address is desired
3932  * @idstype: Intrusion Detection Type
3933  *
3934  * Allocates a virtual interface for the given physical port.  If @mac is
3935  * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3936  * @mac should be large enough to hold @nmac Ethernet addresses, they are
3937  * stored consecutively so the space needed is @nmac * 6 bytes.
3938  * Returns a negative error number or the non-negative VI id.
3939  */
3940 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
3941                      unsigned int port, unsigned int pf, unsigned int vf,
3942                      unsigned int nmac, u8 *mac, unsigned int *rss_size,
3943                      unsigned int portfunc, unsigned int idstype,
3944                      u8 *vivld, u8 *vin)
3945 {
3946         int ret;
3947         struct fw_vi_cmd c;
3948
3949         memset(&c, 0, sizeof(c));
3950         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3951                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
3952                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
3953         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
3954         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
3955                                      V_FW_VI_CMD_FUNC(portfunc));
3956         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
3957         c.nmac = nmac - 1;
3958
3959         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3960         if (ret)
3961                 return ret;
3962
3963         if (mac) {
3964                 memcpy(mac, c.mac, sizeof(c.mac));
3965                 switch (nmac) {
3966                 case 5:
3967                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3968                         /* FALLTHROUGH */
3969                 case 4:
3970                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3971                         /* FALLTHROUGH */
3972                 case 3:
3973                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3974                         /* FALLTHROUGH */
3975                 case 2:
3976                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
3977                         /* FALLTHROUGH */
3978                 }
3979         }
3980         if (rss_size)
3981                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
3982         if (vivld)
3983                 *vivld = G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16));
3984         if (vin)
3985                 *vin = G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16));
3986         return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
3987 }
3988
3989 /**
3990  * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
3991  * @adap: the adapter
3992  * @mbox: mailbox to use for the FW command
3993  * @port: physical port associated with the VI
3994  * @pf: the PF owning the VI
3995  * @vf: the VF owning the VI
3996  * @nmac: number of MAC addresses needed (1 to 5)
3997  * @mac: the MAC addresses of the VI
3998  * @rss_size: size of RSS table slice associated with this VI
3999  *
4000  * Backwards compatible and convieniance routine to allocate a Virtual
4001  * Interface with a Ethernet Port Application Function and Intrustion
4002  * Detection System disabled.
4003  */
4004 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
4005                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
4006                 unsigned int *rss_size, u8 *vivld, u8 *vin)
4007 {
4008         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
4009                                 FW_VI_FUNC_ETH, 0, vivld, vin);
4010 }
4011
4012 /**
4013  * t4_free_vi - free a virtual interface
4014  * @adap: the adapter
4015  * @mbox: mailbox to use for the FW command
4016  * @pf: the PF owning the VI
4017  * @vf: the VF owning the VI
4018  * @viid: virtual interface identifiler
4019  *
4020  * Free a previously allocated virtual interface.
4021  */
4022 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
4023                unsigned int vf, unsigned int viid)
4024 {
4025         struct fw_vi_cmd c;
4026
4027         memset(&c, 0, sizeof(c));
4028         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
4029                                   F_FW_CMD_EXEC);
4030         if (is_pf4(adap))
4031                 c.op_to_vfn |= cpu_to_be32(V_FW_VI_CMD_PFN(pf) |
4032                                            V_FW_VI_CMD_VFN(vf));
4033         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
4034         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
4035
4036         if (is_pf4(adap))
4037                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4038         else
4039                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4040 }
4041
4042 /**
4043  * t4_set_rxmode - set Rx properties of a virtual interface
4044  * @adap: the adapter
4045  * @mbox: mailbox to use for the FW command
4046  * @viid: the VI id
4047  * @mtu: the new MTU or -1
4048  * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
4049  * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
4050  * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
4051  * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
4052  *          -1 no change
4053  * @sleep_ok: if true we may sleep while awaiting command completion
4054  *
4055  * Sets Rx properties of a virtual interface.
4056  */
4057 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
4058                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
4059                   bool sleep_ok)
4060 {
4061         struct fw_vi_rxmode_cmd c;
4062
4063         /* convert to FW values */
4064         if (mtu < 0)
4065                 mtu = M_FW_VI_RXMODE_CMD_MTU;
4066         if (promisc < 0)
4067                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
4068         if (all_multi < 0)
4069                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
4070         if (bcast < 0)
4071                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
4072         if (vlanex < 0)
4073                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
4074
4075         memset(&c, 0, sizeof(c));
4076         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
4077                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4078                                    V_FW_VI_RXMODE_CMD_VIID(viid));
4079         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4080         c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
4081                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
4082                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
4083                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
4084                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
4085         if (is_pf4(adap))
4086                 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL,
4087                                        sleep_ok);
4088         else
4089                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4090 }
4091
4092 /**
4093  *      t4_alloc_raw_mac_filt - Adds a raw mac entry in mps tcam
4094  *      @adap: the adapter
4095  *      @viid: the VI id
4096  *      @mac: the MAC address
4097  *      @mask: the mask
4098  *      @idx: index at which to add this entry
4099  *      @port_id: the port index
4100  *      @lookup_type: MAC address for inner (1) or outer (0) header
4101  *      @sleep_ok: call is allowed to sleep
4102  *
4103  *      Adds the mac entry at the specified index using raw mac interface.
4104  *
4105  *      Returns a negative error number or the allocated index for this mac.
4106  */
4107 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
4108                           const u8 *addr, const u8 *mask, unsigned int idx,
4109                           u8 lookup_type, u8 port_id, bool sleep_ok)
4110 {
4111         int ret = 0;
4112         struct fw_vi_mac_cmd c;
4113         struct fw_vi_mac_raw *p = &c.u.raw;
4114         u32 val;
4115
4116         memset(&c, 0, sizeof(c));
4117         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4118                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4119                                    V_FW_VI_MAC_CMD_VIID(viid));
4120         val = V_FW_CMD_LEN16(1) |
4121               V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
4122         c.freemacs_to_len16 = cpu_to_be32(val);
4123
4124         /* Specify that this is an inner mac address */
4125         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
4126
4127         /* Lookup Type. Outer header: 0, Inner header: 1 */
4128         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
4129                                    V_DATAPORTNUM(port_id));
4130         /* Lookup mask and port mask */
4131         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4132                                     V_DATAPORTNUM(M_DATAPORTNUM));
4133
4134         /* Copy the address and the mask */
4135         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4136         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4137
4138         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4139         if (ret == 0) {
4140                 ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
4141                 if (ret != (int)idx)
4142                         ret = -ENOMEM;
4143         }
4144
4145         return ret;
4146 }
4147
4148 /**
4149  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
4150  *      @adap: the adapter
4151  *      @viid: the VI id
4152  *      @addr: the MAC address
4153  *      @mask: the mask
4154  *      @idx: index of the entry in mps tcam
4155  *      @lookup_type: MAC address for inner (1) or outer (0) header
4156  *      @port_id: the port index
4157  *      @sleep_ok: call is allowed to sleep
4158  *
4159  *      Removes the mac entry at the specified index using raw mac interface.
4160  *
4161  *      Returns a negative error number on failure.
4162  */
4163 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
4164                          const u8 *addr, const u8 *mask, unsigned int idx,
4165                          u8 lookup_type, u8 port_id, bool sleep_ok)
4166 {
4167         struct fw_vi_mac_cmd c;
4168         struct fw_vi_mac_raw *p = &c.u.raw;
4169         u32 raw;
4170
4171         memset(&c, 0, sizeof(c));
4172         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4173                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4174                                    V_FW_CMD_EXEC(0) |
4175                                    V_FW_VI_MAC_CMD_VIID(viid));
4176         raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
4177         c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0U) |
4178                                           raw |
4179                                           V_FW_CMD_LEN16(1));
4180
4181         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
4182                                      FW_VI_MAC_ID_BASED_FREE);
4183
4184         /* Lookup Type. Outer header: 0, Inner header: 1 */
4185         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
4186                                    V_DATAPORTNUM(port_id));
4187         /* Lookup mask and port mask */
4188         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4189                                     V_DATAPORTNUM(M_DATAPORTNUM));
4190
4191         /* Copy the address and the mask */
4192         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4193         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4194
4195         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4196 }
4197
4198 /**
4199  * t4_change_mac - modifies the exact-match filter for a MAC address
4200  * @adap: the adapter
4201  * @mbox: mailbox to use for the FW command
4202  * @viid: the VI id
4203  * @idx: index of existing filter for old value of MAC address, or -1
4204  * @addr: the new MAC address value
4205  * @persist: whether a new MAC allocation should be persistent
4206  * @add_smt: if true also add the address to the HW SMT
4207  *
4208  * Modifies an exact-match filter and sets it to the new MAC address if
4209  * @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
4210  * latter case the address is added persistently if @persist is %true.
4211  *
4212  * Note that in general it is not possible to modify the value of a given
4213  * filter so the generic way to modify an address filter is to free the one
4214  * being used by the old address value and allocate a new filter for the
4215  * new address value.
4216  *
4217  * Returns a negative error number or the index of the filter with the new
4218  * MAC value.  Note that this index may differ from @idx.
4219  */
4220 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
4221                   int idx, const u8 *addr, bool persist, bool add_smt)
4222 {
4223         int ret, mode;
4224         struct fw_vi_mac_cmd c;
4225         struct fw_vi_mac_exact *p = c.u.exact;
4226         int max_mac_addr = adap->params.arch.mps_tcam_size;
4227
4228         if (idx < 0)                             /* new allocation */
4229                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
4230         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
4231
4232         memset(&c, 0, sizeof(c));
4233         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4234                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4235                                    V_FW_VI_MAC_CMD_VIID(viid));
4236         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
4237         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
4238                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
4239                                       V_FW_VI_MAC_CMD_IDX(idx));
4240         memcpy(p->macaddr, addr, sizeof(p->macaddr));
4241
4242         if (is_pf4(adap))
4243                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4244         else
4245                 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
4246         if (ret == 0) {
4247                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
4248                 if (ret >= max_mac_addr)
4249                         ret = -ENOMEM;
4250         }
4251         return ret;
4252 }
4253
4254 /**
4255  * t4_enable_vi_params - enable/disable a virtual interface
4256  * @adap: the adapter
4257  * @mbox: mailbox to use for the FW command
4258  * @viid: the VI id
4259  * @rx_en: 1=enable Rx, 0=disable Rx
4260  * @tx_en: 1=enable Tx, 0=disable Tx
4261  * @dcb_en: 1=enable delivery of Data Center Bridging messages.
4262  *
4263  * Enables/disables a virtual interface.  Note that setting DCB Enable
4264  * only makes sense when enabling a Virtual Interface ...
4265  */
4266 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
4267                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
4268 {
4269         struct fw_vi_enable_cmd c;
4270
4271         memset(&c, 0, sizeof(c));
4272         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
4273                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4274                                    V_FW_VI_ENABLE_CMD_VIID(viid));
4275         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
4276                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
4277                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
4278                                      FW_LEN16(c));
4279         if (is_pf4(adap))
4280                 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4281         else
4282                 return t4vf_wr_mbox_ns(adap, &c, sizeof(c), NULL);
4283 }
4284
4285 /**
4286  * t4_enable_vi - enable/disable a virtual interface
4287  * @adap: the adapter
4288  * @mbox: mailbox to use for the FW command
4289  * @viid: the VI id
4290  * @rx_en: 1=enable Rx, 0=disable Rx
4291  * @tx_en: 1=enable Tx, 0=disable Tx
4292  *
4293  * Enables/disables a virtual interface.  Note that setting DCB Enable
4294  * only makes sense when enabling a Virtual Interface ...
4295  */
4296 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
4297                  bool rx_en, bool tx_en)
4298 {
4299         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
4300 }
4301
4302 /**
4303  * t4_iq_start_stop - enable/disable an ingress queue and its FLs
4304  * @adap: the adapter
4305  * @mbox: mailbox to use for the FW command
4306  * @start: %true to enable the queues, %false to disable them
4307  * @pf: the PF owning the queues
4308  * @vf: the VF owning the queues
4309  * @iqid: ingress queue id
4310  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4311  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4312  *
4313  * Starts or stops an ingress queue and its associated FLs, if any.
4314  */
4315 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
4316                      unsigned int pf, unsigned int vf, unsigned int iqid,
4317                      unsigned int fl0id, unsigned int fl1id)
4318 {
4319         struct fw_iq_cmd c;
4320
4321         memset(&c, 0, sizeof(c));
4322         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4323                                   F_FW_CMD_EXEC);
4324         c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
4325                                        V_FW_IQ_CMD_IQSTOP(!start) |
4326                                        FW_LEN16(c));
4327         c.iqid = cpu_to_be16(iqid);
4328         c.fl0id = cpu_to_be16(fl0id);
4329         c.fl1id = cpu_to_be16(fl1id);
4330         if (is_pf4(adap)) {
4331                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4332                                            V_FW_IQ_CMD_VFN(vf));
4333                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4334         } else {
4335                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4336         }
4337 }
4338
4339 /**
4340  * t4_iq_free - free an ingress queue and its FLs
4341  * @adap: the adapter
4342  * @mbox: mailbox to use for the FW command
4343  * @pf: the PF owning the queues
4344  * @vf: the VF owning the queues
4345  * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
4346  * @iqid: ingress queue id
4347  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4348  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4349  *
4350  * Frees an ingress queue and its associated FLs, if any.
4351  */
4352 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4353                unsigned int vf, unsigned int iqtype, unsigned int iqid,
4354                unsigned int fl0id, unsigned int fl1id)
4355 {
4356         struct fw_iq_cmd c;
4357
4358         memset(&c, 0, sizeof(c));
4359         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4360                                   F_FW_CMD_EXEC);
4361         if (is_pf4(adap))
4362                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4363                                            V_FW_IQ_CMD_VFN(vf));
4364         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
4365         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
4366         c.iqid = cpu_to_be16(iqid);
4367         c.fl0id = cpu_to_be16(fl0id);
4368         c.fl1id = cpu_to_be16(fl1id);
4369         if (is_pf4(adap))
4370                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4371         else
4372                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4373 }
4374
4375 /**
4376  * t4_eth_eq_free - free an Ethernet egress queue
4377  * @adap: the adapter
4378  * @mbox: mailbox to use for the FW command
4379  * @pf: the PF owning the queue
4380  * @vf: the VF owning the queue
4381  * @eqid: egress queue id
4382  *
4383  * Frees an Ethernet egress queue.
4384  */
4385 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4386                    unsigned int vf, unsigned int eqid)
4387 {
4388         struct fw_eq_eth_cmd c;
4389
4390         memset(&c, 0, sizeof(c));
4391         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
4392                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC);
4393         if (is_pf4(adap))
4394                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4395                                            V_FW_IQ_CMD_VFN(vf));
4396         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
4397         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
4398         if (is_pf4(adap))
4399                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4400         else
4401                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4402 }
4403
4404 /**
4405  * t4_link_down_rc_str - return a string for a Link Down Reason Code
4406  * @link_down_rc: Link Down Reason Code
4407  *
4408  * Returns a string representation of the Link Down Reason Code.
4409  */
4410 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
4411 {
4412         static const char * const reason[] = {
4413                 "Link Down",
4414                 "Remote Fault",
4415                 "Auto-negotiation Failure",
4416                 "Reserved",
4417                 "Insufficient Airflow",
4418                 "Unable To Determine Reason",
4419                 "No RX Signal Detected",
4420                 "Reserved",
4421         };
4422
4423         if (link_down_rc >= ARRAY_SIZE(reason))
4424                 return "Bad Reason Code";
4425
4426         return reason[link_down_rc];
4427 }
4428
4429 /* Return the highest speed set in the port capabilities, in Mb/s. */
4430 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
4431 {
4432 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
4433         do { \
4434                 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
4435                         return __speed; \
4436         } while (0)
4437
4438         TEST_SPEED_RETURN(100G, 100000);
4439         TEST_SPEED_RETURN(50G,   50000);
4440         TEST_SPEED_RETURN(40G,   40000);
4441         TEST_SPEED_RETURN(25G,   25000);
4442         TEST_SPEED_RETURN(10G,   10000);
4443         TEST_SPEED_RETURN(1G,     1000);
4444         TEST_SPEED_RETURN(100M,    100);
4445
4446 #undef TEST_SPEED_RETURN
4447
4448         return 0;
4449 }
4450
4451 /**
4452  * t4_handle_get_port_info - process a FW reply message
4453  * @pi: the port info
4454  * @rpl: start of the FW message
4455  *
4456  * Processes a GET_PORT_INFO FW reply message.
4457  */
4458 static void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
4459 {
4460         const struct fw_port_cmd *cmd = (const void *)rpl;
4461         u8 link_ok, link_down_rc, mod_type, port_type;
4462         u32 action, pcaps, acaps, linkattr, lstatus;
4463         struct link_config *lc = &pi->link_cfg;
4464         struct adapter *adapter = pi->adapter;
4465         unsigned int speed, fc, fec;
4466
4467         /* Extract the various fields from the Port Information message.
4468          */
4469         action = be32_to_cpu(cmd->action_to_len16);
4470         if (G_FW_PORT_CMD_ACTION(action) != FW_PORT_ACTION_GET_PORT_INFO32) {
4471                 dev_warn(adapter, "Handle Port Information: Bad Command/Action %#x\n",
4472                          action);
4473                 return;
4474         }
4475
4476         lstatus = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
4477         link_ok = (lstatus & F_FW_PORT_CMD_LSTATUS32) ? 1 : 0;
4478         link_down_rc = G_FW_PORT_CMD_LINKDNRC32(lstatus);
4479         port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus);
4480         mod_type = G_FW_PORT_CMD_MODTYPE32(lstatus);
4481
4482         pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
4483         acaps = be32_to_cpu(cmd->u.info32.acaps32);
4484         linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
4485
4486         fec = fwcap_to_cc_fec(acaps);
4487
4488         fc = fwcap_to_cc_pause(linkattr);
4489         speed = fwcap_to_speed(linkattr);
4490
4491         if (mod_type != pi->mod_type) {
4492                 lc->auto_fec = fec;
4493                 pi->port_type = port_type;
4494                 pi->mod_type = mod_type;
4495                 t4_os_portmod_changed(adapter, pi->pidx);
4496         }
4497         if (link_ok != lc->link_ok || speed != lc->speed ||
4498             fc != lc->fc || fec != lc->fec) { /* something changed */
4499                 if (!link_ok && lc->link_ok) {
4500                         lc->link_down_rc = link_down_rc;
4501                         dev_warn(adap, "Port %d link down, reason: %s\n",
4502                                  pi->port_id,
4503                                  t4_link_down_rc_str(link_down_rc));
4504                 }
4505                 lc->link_ok = link_ok;
4506                 lc->speed = speed;
4507                 lc->fc = fc;
4508                 lc->fec = fec;
4509                 lc->pcaps = pcaps;
4510                 lc->acaps = acaps & ADVERT_MASK;
4511
4512                 if (lc->acaps & FW_PORT_CAP32_ANEG) {
4513                         lc->autoneg = AUTONEG_ENABLE;
4514                 } else {
4515                         /* When Autoneg is disabled, user needs to set
4516                          * single speed.
4517                          * Similar to cxgb4_ethtool.c: set_link_ksettings
4518                          */
4519                         lc->acaps = 0;
4520                         lc->requested_speed = fwcap_to_speed(acaps);
4521                         lc->autoneg = AUTONEG_DISABLE;
4522                 }
4523         }
4524 }
4525
4526 /**
4527  * t4_ctrl_eq_free - free a control egress queue
4528  * @adap: the adapter
4529  * @mbox: mailbox to use for the FW command
4530  * @pf: the PF owning the queue
4531  * @vf: the VF owning the queue
4532  * @eqid: egress queue id
4533  *
4534  * Frees a control egress queue.
4535  */
4536 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4537                     unsigned int vf, unsigned int eqid)
4538 {
4539         struct fw_eq_ctrl_cmd c;
4540
4541         memset(&c, 0, sizeof(c));
4542         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
4543                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4544                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
4545                                   V_FW_EQ_CTRL_CMD_VFN(vf));
4546         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
4547         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
4548         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4549 }
4550
4551 /**
4552  * t4_handle_fw_rpl - process a FW reply message
4553  * @adap: the adapter
4554  * @rpl: start of the FW message
4555  *
4556  * Processes a FW message, such as link state change messages.
4557  */
4558 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
4559 {
4560         u8 opcode = *(const u8 *)rpl;
4561
4562         /*
4563          * This might be a port command ... this simplifies the following
4564          * conditionals ...  We can get away with pre-dereferencing
4565          * action_to_len16 because it's in the first 16 bytes and all messages
4566          * will be at least that long.
4567          */
4568         const struct fw_port_cmd *p = (const void *)rpl;
4569         unsigned int action =
4570                 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
4571
4572         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO32) {
4573                 /* link/module state change message */
4574                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
4575                 struct port_info *pi = NULL;
4576                 int i;
4577
4578                 for_each_port(adap, i) {
4579                         pi = adap2pinfo(adap, i);
4580                         if (pi->tx_chan == chan)
4581                                 break;
4582                 }
4583
4584                 t4_handle_get_port_info(pi, rpl);
4585         } else {
4586                 dev_warn(adap, "Unknown firmware reply %d\n", opcode);
4587                 return -EINVAL;
4588         }
4589         return 0;
4590 }
4591
4592 void t4_reset_link_config(struct adapter *adap, int idx)
4593 {
4594         struct port_info *pi = adap2pinfo(adap, idx);
4595         struct link_config *lc = &pi->link_cfg;
4596
4597         lc->link_ok = 0;
4598         lc->requested_speed = 0;
4599         lc->requested_fc = 0;
4600         lc->speed = 0;
4601         lc->fc = 0;
4602 }
4603
4604 /**
4605  * init_link_config - initialize a link's SW state
4606  * @lc: structure holding the link state
4607  * @pcaps: link Port Capabilities
4608  * @acaps: link current Advertised Port Capabilities
4609  *
4610  * Initializes the SW state maintained for each link, including the link's
4611  * capabilities and default speed/flow-control/autonegotiation settings.
4612  */
4613 void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
4614                       fw_port_cap32_t acaps)
4615 {
4616         lc->pcaps = pcaps;
4617         lc->requested_speed = 0;
4618         lc->speed = 0;
4619         lc->requested_fc = 0;
4620         lc->fc = 0;
4621
4622         /**
4623          * For Forward Error Control, we default to whatever the Firmware
4624          * tells us the Link is currently advertising.
4625          */
4626         lc->auto_fec = fwcap_to_cc_fec(acaps);
4627         lc->requested_fec = FEC_AUTO;
4628         lc->fec = lc->auto_fec;
4629
4630         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
4631                 lc->acaps = lc->pcaps & ADVERT_MASK;
4632                 lc->autoneg = AUTONEG_ENABLE;
4633                 lc->requested_fc |= PAUSE_AUTONEG;
4634         } else {
4635                 lc->acaps = 0;
4636                 lc->autoneg = AUTONEG_DISABLE;
4637         }
4638 }
4639
4640 /**
4641  * t4_wait_dev_ready - wait till to reads of registers work
4642  *
4643  * Right after the device is RESET is can take a small amount of time
4644  * for it to respond to register reads.  Until then, all reads will
4645  * return either 0xff...ff or 0xee...ee.  Return an error if reads
4646  * don't work within a reasonable time frame.
4647  */
4648 static int t4_wait_dev_ready(struct adapter *adapter)
4649 {
4650         u32 whoami;
4651
4652         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4653
4654         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4655                 return 0;
4656
4657         msleep(500);
4658         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4659         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4660                 return 0;
4661
4662         dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
4663                 whoami);
4664         return -EIO;
4665 }
4666
4667 struct flash_desc {
4668         u32 vendor_and_model_id;
4669         u32 size_mb;
4670 };
4671
4672 int t4_get_flash_params(struct adapter *adapter)
4673 {
4674         /*
4675          * Table for non-standard supported Flash parts.  Note, all Flash
4676          * parts must have 64KB sectors.
4677          */
4678         static struct flash_desc supported_flash[] = {
4679                 { 0x00150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
4680         };
4681
4682         int ret;
4683         u32 flashid = 0;
4684         unsigned int part, manufacturer;
4685         unsigned int density, size = 0;
4686
4687         /**
4688          * Issue a Read ID Command to the Flash part.  We decode supported
4689          * Flash parts and their sizes from this.  There's a newer Query
4690          * Command which can retrieve detailed geometry information but
4691          * many Flash parts don't support it.
4692          */
4693         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
4694         if (!ret)
4695                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
4696         t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
4697         if (ret < 0)
4698                 return ret;
4699
4700         /**
4701          * Check to see if it's one of our non-standard supported Flash parts.
4702          */
4703         for (part = 0; part < ARRAY_SIZE(supported_flash); part++) {
4704                 if (supported_flash[part].vendor_and_model_id == flashid) {
4705                         adapter->params.sf_size =
4706                                 supported_flash[part].size_mb;
4707                         adapter->params.sf_nsec =
4708                                 adapter->params.sf_size / SF_SEC_SIZE;
4709                         goto found;
4710                 }
4711         }
4712
4713         /**
4714          * Decode Flash part size.  The code below looks repetative with
4715          * common encodings, but that's not guaranteed in the JEDEC
4716          * specification for the Read JADEC ID command.  The only thing that
4717          * we're guaranteed by the JADEC specification is where the
4718          * Manufacturer ID is in the returned result.  After that each
4719          * Manufacturer ~could~ encode things completely differently.
4720          * Note, all Flash parts must have 64KB sectors.
4721          */
4722         manufacturer = flashid & 0xff;
4723         switch (manufacturer) {
4724         case 0x20: { /* Micron/Numonix */
4725                 /**
4726                  * This Density -> Size decoding table is taken from Micron
4727                  * Data Sheets.
4728                  */
4729                 density = (flashid >> 16) & 0xff;
4730                 switch (density) {
4731                 case 0x14:
4732                         size = 1 << 20; /* 1MB */
4733                         break;
4734                 case 0x15:
4735                         size = 1 << 21; /* 2MB */
4736                         break;
4737                 case 0x16:
4738                         size = 1 << 22; /* 4MB */
4739                         break;
4740                 case 0x17:
4741                         size = 1 << 23; /* 8MB */
4742                         break;
4743                 case 0x18:
4744                         size = 1 << 24; /* 16MB */
4745                         break;
4746                 case 0x19:
4747                         size = 1 << 25; /* 32MB */
4748                         break;
4749                 case 0x20:
4750                         size = 1 << 26; /* 64MB */
4751                         break;
4752                 case 0x21:
4753                         size = 1 << 27; /* 128MB */
4754                         break;
4755                 case 0x22:
4756                         size = 1 << 28; /* 256MB */
4757                         break;
4758                 }
4759                 break;
4760         }
4761
4762         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
4763                 /**
4764                  * This Density -> Size decoding table is taken from ISSI
4765                  * Data Sheets.
4766                  */
4767                 density = (flashid >> 16) & 0xff;
4768                 switch (density) {
4769                 case 0x16:
4770                         size = 1 << 25; /* 32MB */
4771                         break;
4772                 case 0x17:
4773                         size = 1 << 26; /* 64MB */
4774                         break;
4775                 }
4776                 break;
4777         }
4778
4779         case 0xc2: { /* Macronix */
4780                 /**
4781                  * This Density -> Size decoding table is taken from Macronix
4782                  * Data Sheets.
4783                  */
4784                 density = (flashid >> 16) & 0xff;
4785                 switch (density) {
4786                 case 0x17:
4787                         size = 1 << 23; /* 8MB */
4788                         break;
4789                 case 0x18:
4790                         size = 1 << 24; /* 16MB */
4791                         break;
4792                 }
4793                 break;
4794         }
4795
4796         case 0xef: { /* Winbond */
4797                 /**
4798                  * This Density -> Size decoding table is taken from Winbond
4799                  * Data Sheets.
4800                  */
4801                 density = (flashid >> 16) & 0xff;
4802                 switch (density) {
4803                 case 0x17:
4804                         size = 1 << 23; /* 8MB */
4805                         break;
4806                 case 0x18:
4807                         size = 1 << 24; /* 16MB */
4808                         break;
4809                 }
4810                 break;
4811         }
4812         }
4813
4814         /* If we didn't recognize the FLASH part, that's no real issue: the
4815          * Hardware/Software contract says that Hardware will _*ALWAYS*_
4816          * use a FLASH part which is at least 4MB in size and has 64KB
4817          * sectors.  The unrecognized FLASH part is likely to be much larger
4818          * than 4MB, but that's all we really need.
4819          */
4820         if (size == 0) {
4821                 dev_warn(adapter,
4822                          "Unknown Flash Part, ID = %#x, assuming 4MB\n",
4823                          flashid);
4824                 size = 1 << 22;
4825         }
4826
4827         /**
4828          * Store decoded Flash size and fall through into vetting code.
4829          */
4830         adapter->params.sf_size = size;
4831         adapter->params.sf_nsec = size / SF_SEC_SIZE;
4832
4833 found:
4834         /*
4835          * We should reject adapters with FLASHes which are too small. So, emit
4836          * a warning.
4837          */
4838         if (adapter->params.sf_size < FLASH_MIN_SIZE)
4839                 dev_warn(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
4840                          flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
4841
4842         return 0;
4843 }
4844
4845 static void set_pcie_completion_timeout(struct adapter *adapter,
4846                                         u8 range)
4847 {
4848         u32 pcie_cap;
4849         u16 val;
4850
4851         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
4852         if (pcie_cap) {
4853                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
4854                 val &= 0xfff0;
4855                 val |= range;
4856                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
4857         }
4858 }
4859
4860 /**
4861  * t4_get_chip_type - Determine chip type from device ID
4862  * @adap: the adapter
4863  * @ver: adapter version
4864  */
4865 int t4_get_chip_type(struct adapter *adap, int ver)
4866 {
4867         enum chip_type chip = 0;
4868         u32 pl_rev = G_REV(t4_read_reg(adap, A_PL_REV));
4869
4870         /* Retrieve adapter's device ID */
4871         switch (ver) {
4872         case CHELSIO_T5:
4873                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4874                 break;
4875         case CHELSIO_T6:
4876                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4877                 break;
4878         default:
4879                 dev_err(adap, "Device %d is not supported\n",
4880                         adap->params.pci.device_id);
4881                 return -EINVAL;
4882         }
4883
4884         return chip;
4885 }
4886
4887 /**
4888  * t4_prep_adapter - prepare SW and HW for operation
4889  * @adapter: the adapter
4890  *
4891  * Initialize adapter SW state for the various HW modules, set initial
4892  * values for some adapter tunables, take PHYs out of reset, and
4893  * initialize the MDIO interface.
4894  */
4895 int t4_prep_adapter(struct adapter *adapter)
4896 {
4897         int ret, ver;
4898         u32 pl_rev;
4899
4900         ret = t4_wait_dev_ready(adapter);
4901         if (ret < 0)
4902                 return ret;
4903
4904         pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
4905         adapter->params.pci.device_id = adapter->pdev->id.device_id;
4906         adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
4907
4908         /*
4909          * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
4910          * ADAPTER (VERSION << 4 | REVISION)
4911          */
4912         ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
4913         adapter->params.chip = 0;
4914         switch (ver) {
4915         case CHELSIO_T5:
4916                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4917                 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
4918                 adapter->params.arch.mps_tcam_size =
4919                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4920                 adapter->params.arch.mps_rplc_size = 128;
4921                 adapter->params.arch.nchan = NCHAN;
4922                 adapter->params.arch.vfcount = 128;
4923                 /* Congestion map is for 4 channels so that
4924                  * MPS can have 4 priority per port.
4925                  */
4926                 adapter->params.arch.cng_ch_bits_log = 2;
4927                 break;
4928         case CHELSIO_T6:
4929                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4930                 adapter->params.arch.sge_fl_db = 0;
4931                 adapter->params.arch.mps_tcam_size =
4932                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4933                 adapter->params.arch.mps_rplc_size = 256;
4934                 adapter->params.arch.nchan = 2;
4935                 adapter->params.arch.vfcount = 256;
4936                 /* Congestion map is for 2 channels so that
4937                  * MPS can have 8 priority per port.
4938                  */
4939                 adapter->params.arch.cng_ch_bits_log = 3;
4940                 break;
4941         default:
4942                 dev_err(adapter, "%s: Device %d is not supported\n",
4943                         __func__, adapter->params.pci.device_id);
4944                 return -EINVAL;
4945         }
4946
4947         adapter->params.pci.vpd_cap_addr =
4948                 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
4949
4950         ret = t4_get_flash_params(adapter);
4951         if (ret < 0) {
4952                 dev_err(adapter, "Unable to retrieve Flash Parameters, ret = %d\n",
4953                         -ret);
4954                 return ret;
4955         }
4956
4957         adapter->params.cim_la_size = CIMLA_SIZE;
4958
4959         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
4960
4961         /*
4962          * Default port and clock for debugging in case we can't reach FW.
4963          */
4964         adapter->params.nports = 1;
4965         adapter->params.portvec = 1;
4966         adapter->params.vpd.cclk = 50000;
4967
4968         /* Set pci completion timeout value to 4 seconds. */
4969         set_pcie_completion_timeout(adapter, 0xd);
4970         return 0;
4971 }
4972
4973 /**
4974  * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
4975  * @adapter: the adapter
4976  * @qid: the Queue ID
4977  * @qtype: the Ingress or Egress type for @qid
4978  * @pbar2_qoffset: BAR2 Queue Offset
4979  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4980  *
4981  * Returns the BAR2 SGE Queue Registers information associated with the
4982  * indicated Absolute Queue ID.  These are passed back in return value
4983  * pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
4984  * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
4985  *
4986  * This may return an error which indicates that BAR2 SGE Queue
4987  * registers aren't available.  If an error is not returned, then the
4988  * following values are returned:
4989  *
4990  *   *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
4991  *   *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
4992  *
4993  * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
4994  * require the "Inferred Queue ID" ability may be used.  E.g. the
4995  * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
4996  * then these "Inferred Queue ID" register may not be used.
4997  */
4998 int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
4999                       enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
5000                       unsigned int *pbar2_qid)
5001 {
5002         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
5003         u64 bar2_page_offset, bar2_qoffset;
5004         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
5005
5006         /*
5007          * T4 doesn't support BAR2 SGE Queue registers.
5008          */
5009         if (is_t4(adapter->params.chip))
5010                 return -EINVAL;
5011
5012         /*
5013          * Get our SGE Page Size parameters.
5014          */
5015         page_shift = adapter->params.sge.hps + 10;
5016         page_size = 1 << page_shift;
5017
5018         /*
5019          * Get the right Queues per Page parameters for our Queue.
5020          */
5021         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
5022                               adapter->params.sge.eq_qpp :
5023                               adapter->params.sge.iq_qpp);
5024         qpp_mask = (1 << qpp_shift) - 1;
5025
5026         /*
5027          * Calculate the basics of the BAR2 SGE Queue register area:
5028          *  o The BAR2 page the Queue registers will be in.
5029          *  o The BAR2 Queue ID.
5030          *  o The BAR2 Queue ID Offset into the BAR2 page.
5031          */
5032         bar2_page_offset = ((qid >> qpp_shift) << page_shift);
5033         bar2_qid = qid & qpp_mask;
5034         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
5035
5036         /*
5037          * If the BAR2 Queue ID Offset is less than the Page Size, then the
5038          * hardware will infer the Absolute Queue ID simply from the writes to
5039          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
5040          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
5041          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
5042          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
5043          * from the BAR2 Page and BAR2 Queue ID.
5044          *
5045          * One important censequence of this is that some BAR2 SGE registers
5046          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
5047          * there.  But other registers synthesize the SGE Queue ID purely
5048          * from the writes to the registers -- the Write Combined Doorbell
5049          * Buffer is a good example.  These BAR2 SGE Registers are only
5050          * available for those BAR2 SGE Register areas where the SGE Absolute
5051          * Queue ID can be inferred from simple writes.
5052          */
5053         bar2_qoffset = bar2_page_offset;
5054         bar2_qinferred = (bar2_qid_offset < page_size);
5055         if (bar2_qinferred) {
5056                 bar2_qoffset += bar2_qid_offset;
5057                 bar2_qid = 0;
5058         }
5059
5060         *pbar2_qoffset = bar2_qoffset;
5061         *pbar2_qid = bar2_qid;
5062         return 0;
5063 }
5064
5065 /**
5066  * t4_init_sge_params - initialize adap->params.sge
5067  * @adapter: the adapter
5068  *
5069  * Initialize various fields of the adapter's SGE Parameters structure.
5070  */
5071 int t4_init_sge_params(struct adapter *adapter)
5072 {
5073         struct sge_params *sge_params = &adapter->params.sge;
5074         u32 hps, qpp;
5075         unsigned int s_hps, s_qpp;
5076
5077         /*
5078          * Extract the SGE Page Size for our PF.
5079          */
5080         hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
5081         s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
5082                  adapter->pf);
5083         sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);
5084
5085         /*
5086          * Extract the SGE Egress and Ingess Queues Per Page for our PF.
5087          */
5088         s_qpp = (S_QUEUESPERPAGEPF0 +
5089                  (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
5090         qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
5091         sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5092         qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
5093         sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5094
5095         return 0;
5096 }
5097
5098 /**
5099  * t4_init_tp_params - initialize adap->params.tp
5100  * @adap: the adapter
5101  *
5102  * Initialize various fields of the adapter's TP Parameters structure.
5103  */
5104 int t4_init_tp_params(struct adapter *adap)
5105 {
5106         int chan, ret;
5107         u32 param, v;
5108
5109         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5110         adap->params.tp.tre = G_TIMERRESOLUTION(v);
5111         adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5112
5113         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5114         for (chan = 0; chan < NCHAN; chan++)
5115                 adap->params.tp.tx_modq[chan] = chan;
5116
5117         /*
5118          * Cache the adapter's Compressed Filter Mode/Mask and global Ingress
5119          * Configuration.
5120          */
5121         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5122                  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
5123                  V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK));
5124
5125         /* Read current value */
5126         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5127                               1, &param, &v);
5128         if (!ret) {
5129                 dev_info(adap, "Current filter mode/mask 0x%x:0x%x\n",
5130                          G_FW_PARAMS_PARAM_FILTER_MODE(v),
5131                          G_FW_PARAMS_PARAM_FILTER_MASK(v));
5132                 adap->params.tp.vlan_pri_map =
5133                         G_FW_PARAMS_PARAM_FILTER_MODE(v);
5134                 adap->params.tp.filter_mask =
5135                         G_FW_PARAMS_PARAM_FILTER_MASK(v);
5136         } else {
5137                 dev_info(adap,
5138                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
5139
5140                 /* In case of older-fw (which doesn't expose the api
5141                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
5142                  * the fw api) combination, fall-back to older method of reading
5143                  * the filter mode from indirect-register
5144                  */
5145                 t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5146                                  &adap->params.tp.vlan_pri_map, 1,
5147                                  A_TP_VLAN_PRI_MAP);
5148
5149                 /* With the older-fw and newer-driver combination we might run
5150                  * into an issue when user wants to use hash filter region but
5151                  * the filter_mask is zero, in this case filter_mask validation
5152                  * is tough. To avoid that we set the filter_mask same as filter
5153                  * mode, which will behave exactly as the older way of ignoring
5154                  * the filter mask validation.
5155                  */
5156                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
5157         }
5158
5159         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5160                          &adap->params.tp.ingress_config, 1,
5161                          A_TP_INGRESS_CONFIG);
5162
5163         /* For T6, cache the adapter's compressed error vector
5164          * and passing outer header info for encapsulated packets.
5165          */
5166         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
5167                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
5168                 adap->params.tp.rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
5169         }
5170
5171         /*
5172          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5173          * shift positions of several elements of the Compressed Filter Tuple
5174          * for this adapter which we need frequently ...
5175          */
5176         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
5177         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
5178         adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
5179         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
5180                                                                F_PROTOCOL);
5181         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
5182                                                                 F_ETHERTYPE);
5183         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
5184                                                                F_MACMATCH);
5185         adap->params.tp.tos_shift = t4_filter_field_shift(adap, F_TOS);
5186
5187         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
5188         adap->params.tp.hash_filter_mask = v;
5189         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
5190         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
5191
5192         return 0;
5193 }
5194
5195 /**
5196  * t4_filter_field_shift - calculate filter field shift
5197  * @adap: the adapter
5198  * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5199  *
5200  * Return the shift position of a filter field within the Compressed
5201  * Filter Tuple.  The filter field is specified via its selection bit
5202  * within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5203  */
5204 int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
5205 {
5206         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5207         unsigned int sel;
5208         int field_shift;
5209
5210         if ((filter_mode & filter_sel) == 0)
5211                 return -1;
5212
5213         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5214                 switch (filter_mode & sel) {
5215                 case F_FCOE:
5216                         field_shift += W_FT_FCOE;
5217                         break;
5218                 case F_PORT:
5219                         field_shift += W_FT_PORT;
5220                         break;
5221                 case F_VNIC_ID:
5222                         field_shift += W_FT_VNIC_ID;
5223                         break;
5224                 case F_VLAN:
5225                         field_shift += W_FT_VLAN;
5226                         break;
5227                 case F_TOS:
5228                         field_shift += W_FT_TOS;
5229                         break;
5230                 case F_PROTOCOL:
5231                         field_shift += W_FT_PROTOCOL;
5232                         break;
5233                 case F_ETHERTYPE:
5234                         field_shift += W_FT_ETHERTYPE;
5235                         break;
5236                 case F_MACMATCH:
5237                         field_shift += W_FT_MACMATCH;
5238                         break;
5239                 case F_MPSHITTYPE:
5240                         field_shift += W_FT_MPSHITTYPE;
5241                         break;
5242                 case F_FRAGMENTATION:
5243                         field_shift += W_FT_FRAGMENTATION;
5244                         break;
5245                 }
5246         }
5247         return field_shift;
5248 }
5249
5250 int t4_init_rss_mode(struct adapter *adap, int mbox)
5251 {
5252         int i, ret;
5253         struct fw_rss_vi_config_cmd rvc;
5254
5255         memset(&rvc, 0, sizeof(rvc));
5256
5257         for_each_port(adap, i) {
5258                 struct port_info *p = adap2pinfo(adap, i);
5259
5260                 rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5261                                        F_FW_CMD_REQUEST | F_FW_CMD_READ |
5262                                        V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
5263                 rvc.retval_len16 = htonl(FW_LEN16(rvc));
5264                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
5265                 if (ret)
5266                         return ret;
5267                 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
5268         }
5269         return 0;
5270 }
5271
5272 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
5273 {
5274         fw_port_cap32_t pcaps, acaps;
5275         enum fw_port_type port_type;
5276         struct fw_port_cmd cmd;
5277         u8 vivld = 0, vin = 0;
5278         int ret, i, j = 0;
5279         u32 param, val;
5280         int mdio_addr;
5281         u8 addr[6];
5282
5283         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
5284                  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
5285         val = 1;
5286         ret = t4_set_params(adap, mbox, pf, vf, 1, &param, &val);
5287         if (ret < 0)
5288                 return ret;
5289
5290         memset(&cmd, 0, sizeof(cmd));
5291
5292         for_each_port(adap, i) {
5293                 struct port_info *pi = adap2pinfo(adap, i);
5294                 unsigned int rss_size = 0;
5295                 u32 lstatus32;
5296
5297                 while ((adap->params.portvec & (1 << j)) == 0)
5298                         j++;
5299
5300                 memset(&cmd, 0, sizeof(cmd));
5301                 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
5302                                                F_FW_CMD_REQUEST |
5303                                                F_FW_CMD_READ |
5304                                                V_FW_PORT_CMD_PORTID(j));
5305                 val = FW_PORT_ACTION_GET_PORT_INFO32;
5306                 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(val) |
5307                                                   FW_LEN16(cmd));
5308                 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
5309                 if (ret)
5310                         return ret;
5311
5312                 /* Extract the various fields from the Port Information
5313                  * message.
5314                  */
5315                 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
5316
5317                 port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
5318                 mdio_addr = (lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ?
5319                             (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) : -1;
5320                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
5321                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
5322
5323                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size,
5324                                   &vivld, &vin);
5325                 if (ret < 0)
5326                         return ret;
5327
5328                 pi->viid = ret;
5329                 pi->tx_chan = j;
5330                 pi->rss_size = rss_size;
5331                 t4_os_set_hw_addr(adap, i, addr);
5332
5333                 /* If fw supports returning the VIN as part of FW_VI_CMD,
5334                  * save the returned values.
5335                  */
5336                 if (adap->params.viid_smt_extn_support) {
5337                         pi->vivld = vivld;
5338                         pi->vin = vin;
5339                 } else {
5340                         /* Retrieve the values from VIID */
5341                         pi->vivld = G_FW_VIID_VIVLD(pi->viid);
5342                         pi->vin =  G_FW_VIID_VIN(pi->viid);
5343                 }
5344
5345                 pi->port_type = port_type;
5346                 pi->mdio_addr = mdio_addr;
5347                 pi->mod_type = FW_PORT_MOD_TYPE_NA;
5348
5349                 init_link_config(&pi->link_cfg, pcaps, acaps);
5350                 j++;
5351         }
5352         return 0;
5353 }
5354
5355 /**
5356  * t4_memory_rw_addr - read/write adapter memory via PCIE memory window
5357  * @adap: the adapter
5358  * @win: PCI-E Memory Window to use
5359  * @addr: address within adapter memory
5360  * @len: amount of memory to transfer
5361  * @hbuf: host memory buffer
5362  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5363  *
5364  * Reads/writes an [almost] arbitrary memory region in the firmware: the
5365  * firmware memory address and host buffer must be aligned on 32-bit
5366  * boudaries; the length may be arbitrary.
5367  *
5368  * NOTES:
5369  *  1. The memory is transferred as a raw byte sequence from/to the
5370  *     firmware's memory.  If this memory contains data structures which
5371  *     contain multi-byte integers, it's the caller's responsibility to
5372  *     perform appropriate byte order conversions.
5373  *
5374  *  2. It is the Caller's responsibility to ensure that no other code
5375  *     uses the specified PCI-E Memory Window while this routine is
5376  *     using it.  This is typically done via the use of OS-specific
5377  *     locks, etc.
5378  */
5379 int t4_memory_rw_addr(struct adapter *adap, int win, u32 addr,
5380                       u32 len, void *hbuf, int dir)
5381 {
5382         u32 pos, offset, resid;
5383         u32 win_pf, mem_reg, mem_aperture, mem_base;
5384         u32 *buf;
5385
5386         /* Argument sanity checks ...*/
5387         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5388                 return -EINVAL;
5389         buf = (u32 *)hbuf;
5390
5391         /* It's convenient to be able to handle lengths which aren't a
5392          * multiple of 32-bits because we often end up transferring files to
5393          * the firmware.  So we'll handle that by normalizing the length here
5394          * and then handling any residual transfer at the end.
5395          */
5396         resid = len & 0x3;
5397         len -= resid;
5398
5399         /* Each PCI-E Memory Window is programmed with a window size -- or
5400          * "aperture" -- which controls the granularity of its mapping onto
5401          * adapter memory.  We need to grab that aperture in order to know
5402          * how to use the specified window.  The window is also programmed
5403          * with the base address of the Memory Window in BAR0's address
5404          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
5405          * the address is relative to BAR0.
5406          */
5407         mem_reg = t4_read_reg(adap,
5408                               PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
5409                                                   win));
5410         mem_aperture = 1 << (G_WINDOW(mem_reg) + X_WINDOW_SHIFT);
5411         mem_base = G_PCIEOFST(mem_reg) << X_PCIEOFST_SHIFT;
5412
5413         win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->pf);
5414
5415         /* Calculate our initial PCI-E Memory Window Position and Offset into
5416          * that Window.
5417          */
5418         pos = addr & ~(mem_aperture - 1);
5419         offset = addr - pos;
5420
5421         /* Set up initial PCI-E Memory Window to cover the start of our
5422          * transfer.  (Read it back to ensure that changes propagate before we
5423          * attempt to use the new value.)
5424          */
5425         t4_write_reg(adap,
5426                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win),
5427                      pos | win_pf);
5428         t4_read_reg(adap,
5429                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win));
5430
5431         /* Transfer data to/from the adapter as long as there's an integral
5432          * number of 32-bit transfers to complete.
5433          *
5434          * A note on Endianness issues:
5435          *
5436          * The "register" reads and writes below from/to the PCI-E Memory
5437          * Window invoke the standard adapter Big-Endian to PCI-E Link
5438          * Little-Endian "swizzel."  As a result, if we have the following
5439          * data in adapter memory:
5440          *
5441          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
5442          *     Address:      i+0  i+1  i+2  i+3
5443          *
5444          * Then a read of the adapter memory via the PCI-E Memory Window
5445          * will yield:
5446          *
5447          *     x = readl(i)
5448          *         31                  0
5449          *         [ b3 | b2 | b1 | b0 ]
5450          *
5451          * If this value is stored into local memory on a Little-Endian system
5452          * it will show up correctly in local memory as:
5453          *
5454          *     ( ..., b0, b1, b2, b3, ... )
5455          *
5456          * But on a Big-Endian system, the store will show up in memory
5457          * incorrectly swizzled as:
5458          *
5459          *     ( ..., b3, b2, b1, b0, ... )
5460          *
5461          * So we need to account for this in the reads and writes to the
5462          * PCI-E Memory Window below by undoing the register read/write
5463          * swizzels.
5464          */
5465         while (len > 0) {
5466                 if (dir == T4_MEMORY_READ)
5467                         *buf++ = le32_to_cpu((__le32)t4_read_reg(adap,
5468                                                                  mem_base +
5469                                                                  offset));
5470                 else
5471                         t4_write_reg(adap, mem_base + offset,
5472                                      (u32)cpu_to_le32(*buf++));
5473                 offset += sizeof(__be32);
5474                 len -= sizeof(__be32);
5475
5476                 /* If we've reached the end of our current window aperture,
5477                  * move the PCI-E Memory Window on to the next.  Note that
5478                  * doing this here after "len" may be 0 allows us to set up
5479                  * the PCI-E Memory Window for a possible final residual
5480                  * transfer below ...
5481                  */
5482                 if (offset == mem_aperture) {
5483                         pos += mem_aperture;
5484                         offset = 0;
5485                         t4_write_reg(adap,
5486                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5487                                                     win), pos | win_pf);
5488                         t4_read_reg(adap,
5489                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5490                                                     win));
5491                 }
5492         }
5493
5494         /* If the original transfer had a length which wasn't a multiple of
5495          * 32-bits, now's where we need to finish off the transfer of the
5496          * residual amount.  The PCI-E Memory Window has already been moved
5497          * above (if necessary) to cover this final transfer.
5498          */
5499         if (resid) {
5500                 union {
5501                         u32 word;
5502                         char byte[4];
5503                 } last;
5504                 unsigned char *bp;
5505                 int i;
5506
5507                 if (dir == T4_MEMORY_READ) {
5508                         last.word = le32_to_cpu((__le32)t4_read_reg(adap,
5509                                                                     mem_base +
5510                                                                     offset));
5511                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
5512                                 bp[i] = last.byte[i];
5513                 } else {
5514                         last.word = *buf;
5515                         for (i = resid; i < 4; i++)
5516                                 last.byte[i] = 0;
5517                         t4_write_reg(adap, mem_base + offset,
5518                                      (u32)cpu_to_le32(last.word));
5519                 }
5520         }
5521
5522         return 0;
5523 }
5524
5525 /**
5526  * t4_memory_rw_mtype -read/write EDC 0, EDC 1 or MC via PCIE memory window
5527  * @adap: the adapter
5528  * @win: PCI-E Memory Window to use
5529  * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
5530  * @maddr: address within indicated memory type
5531  * @len: amount of memory to transfer
5532  * @hbuf: host memory buffer
5533  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5534  *
5535  * Reads/writes adapter memory using t4_memory_rw_addr().  This routine
5536  * provides an (memory type, address within memory type) interface.
5537  */
5538 int t4_memory_rw_mtype(struct adapter *adap, int win, int mtype, u32 maddr,
5539                        u32 len, void *hbuf, int dir)
5540 {
5541         u32 mtype_offset;
5542         u32 edc_size, mc_size;
5543
5544         /* Offset into the region of memory which is being accessed
5545          * MEM_EDC0 = 0
5546          * MEM_EDC1 = 1
5547          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
5548          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
5549          */
5550         edc_size  = G_EDRAM0_SIZE(t4_read_reg(adap, A_MA_EDRAM0_BAR));
5551         if (mtype != MEM_MC1) {
5552                 mtype_offset = (mtype * (edc_size * 1024 * 1024));
5553         } else {
5554                 mc_size = G_EXT_MEM0_SIZE(t4_read_reg(adap,
5555                                                       A_MA_EXT_MEMORY0_BAR));
5556                 mtype_offset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
5557         }
5558
5559         return t4_memory_rw_addr(adap, win,
5560                                  mtype_offset + maddr, len,
5561                                  hbuf, dir);
5562 }