645833765ade8266eca8d4fb378d7259e7bd06ad
[dpdk.git] / drivers / net / cxgbe / base / t4_hw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <netinet/in.h>
7
8 #include <rte_interrupts.h>
9 #include <rte_log.h>
10 #include <rte_debug.h>
11 #include <rte_pci.h>
12 #include <rte_branch_prediction.h>
13 #include <rte_memory.h>
14 #include <rte_tailq.h>
15 #include <rte_eal.h>
16 #include <rte_alarm.h>
17 #include <rte_ether.h>
18 #include <ethdev_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_random.h>
21 #include <rte_dev.h>
22 #include <rte_byteorder.h>
23
24 #include "common.h"
25 #include "t4_regs.h"
26 #include "t4_regs_values.h"
27 #include "t4fw_interface.h"
28
29 /**
30  * t4_read_mtu_tbl - returns the values in the HW path MTU table
31  * @adap: the adapter
32  * @mtus: where to store the MTU values
33  * @mtu_log: where to store the MTU base-2 log (may be %NULL)
34  *
35  * Reads the HW path MTU table.
36  */
37 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
38 {
39         u32 v;
40         int i;
41
42         for (i = 0; i < NMTUS; ++i) {
43                 t4_write_reg(adap, A_TP_MTU_TABLE,
44                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
45                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
46                 mtus[i] = G_MTUVALUE(v);
47                 if (mtu_log)
48                         mtu_log[i] = G_MTUWIDTH(v);
49         }
50 }
51
52 /**
53  * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
54  * @adap: the adapter
55  * @addr: the indirect TP register address
56  * @mask: specifies the field within the register to modify
57  * @val: new value for the field
58  *
59  * Sets a field of an indirect TP register to the given value.
60  */
61 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
62                             unsigned int mask, unsigned int val)
63 {
64         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
65         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
66         t4_write_reg(adap, A_TP_PIO_DATA, val);
67 }
68
69 /* The minimum additive increment value for the congestion control table */
70 #define CC_MIN_INCR 2U
71
72 /**
73  * t4_load_mtus - write the MTU and congestion control HW tables
74  * @adap: the adapter
75  * @mtus: the values for the MTU table
76  * @alpha: the values for the congestion control alpha parameter
77  * @beta: the values for the congestion control beta parameter
78  *
79  * Write the HW MTU table with the supplied MTUs and the high-speed
80  * congestion control table with the supplied alpha, beta, and MTUs.
81  * We write the two tables together because the additive increments
82  * depend on the MTUs.
83  */
84 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
85                   const unsigned short *alpha, const unsigned short *beta)
86 {
87         static const unsigned int avg_pkts[NCCTRL_WIN] = {
88                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
89                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
90                 28672, 40960, 57344, 81920, 114688, 163840, 229376
91         };
92
93         unsigned int i, w;
94
95         for (i = 0; i < NMTUS; ++i) {
96                 unsigned int mtu = mtus[i];
97                 unsigned int log2 = cxgbe_fls(mtu);
98
99                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
100                         log2--;
101                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
102                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
103
104                 for (w = 0; w < NCCTRL_WIN; ++w) {
105                         unsigned int inc;
106
107                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
108                                   CC_MIN_INCR);
109
110                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
111                                      (w << 16) | (beta[w] << 13) | inc);
112                 }
113         }
114 }
115
116 /**
117  * t4_wait_op_done_val - wait until an operation is completed
118  * @adapter: the adapter performing the operation
119  * @reg: the register to check for completion
120  * @mask: a single-bit field within @reg that indicates completion
121  * @polarity: the value of the field when the operation is completed
122  * @attempts: number of check iterations
123  * @delay: delay in usecs between iterations
124  * @valp: where to store the value of the register at completion time
125  *
126  * Wait until an operation is completed by checking a bit in a register
127  * up to @attempts times.  If @valp is not NULL the value of the register
128  * at the time it indicated completion is stored there.  Returns 0 if the
129  * operation completes and -EAGAIN otherwise.
130  */
131 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
132                         int polarity, int attempts, int delay, u32 *valp)
133 {
134         while (1) {
135                 u32 val = t4_read_reg(adapter, reg);
136
137                 if (!!(val & mask) == polarity) {
138                         if (valp)
139                                 *valp = val;
140                         return 0;
141                 }
142                 if (--attempts == 0)
143                         return -EAGAIN;
144                 if (delay)
145                         udelay(delay);
146         }
147 }
148
149 /**
150  * t4_set_reg_field - set a register field to a value
151  * @adapter: the adapter to program
152  * @addr: the register address
153  * @mask: specifies the portion of the register to modify
154  * @val: the new value for the register field
155  *
156  * Sets a register field specified by the supplied mask to the
157  * given value.
158  */
159 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
160                       u32 val)
161 {
162         u32 v = t4_read_reg(adapter, addr) & ~mask;
163
164         t4_write_reg(adapter, addr, v | val);
165         (void)t4_read_reg(adapter, addr);      /* flush */
166 }
167
168 /**
169  * t4_read_indirect - read indirectly addressed registers
170  * @adap: the adapter
171  * @addr_reg: register holding the indirect address
172  * @data_reg: register holding the value of the indirect register
173  * @vals: where the read register values are stored
174  * @nregs: how many indirect registers to read
175  * @start_idx: index of first indirect register to read
176  *
177  * Reads registers that are accessed indirectly through an address/data
178  * register pair.
179  */
180 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
181                       unsigned int data_reg, u32 *vals, unsigned int nregs,
182                       unsigned int start_idx)
183 {
184         while (nregs--) {
185                 t4_write_reg(adap, addr_reg, start_idx);
186                 *vals++ = t4_read_reg(adap, data_reg);
187                 start_idx++;
188         }
189 }
190
191 /**
192  * t4_write_indirect - write indirectly addressed registers
193  * @adap: the adapter
194  * @addr_reg: register holding the indirect addresses
195  * @data_reg: register holding the value for the indirect registers
196  * @vals: values to write
197  * @nregs: how many indirect registers to write
198  * @start_idx: address of first indirect register to write
199  *
200  * Writes a sequential block of registers that are accessed indirectly
201  * through an address/data register pair.
202  */
203 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
204                        unsigned int data_reg, const u32 *vals,
205                        unsigned int nregs, unsigned int start_idx)
206 {
207         while (nregs--) {
208                 t4_write_reg(adap, addr_reg, start_idx++);
209                 t4_write_reg(adap, data_reg, *vals++);
210         }
211 }
212
213 /**
214  * t4_report_fw_error - report firmware error
215  * @adap: the adapter
216  *
217  * The adapter firmware can indicate error conditions to the host.
218  * If the firmware has indicated an error, print out the reason for
219  * the firmware error.
220  */
221 static void t4_report_fw_error(struct adapter *adap)
222 {
223         static const char * const reason[] = {
224                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
225                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
226                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
227                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
228                 "Unexpected Event",     /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
229                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
230                 "Device Shutdown",      /* PCIE_FW_EVAL_DEVICESHUTDOWN */
231                 "Reserved",                     /* reserved */
232         };
233         u32 pcie_fw;
234
235         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
236         if (pcie_fw & F_PCIE_FW_ERR)
237                 pr_err("%s: Firmware reports adapter error: %s\n",
238                        __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
239 }
240
241 /*
242  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
243  */
244 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
245                          u32 mbox_addr)
246 {
247         for ( ; nflit; nflit--, mbox_addr += 8)
248                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
249 }
250
251 /*
252  * Handle a FW assertion reported in a mailbox.
253  */
254 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
255 {
256         struct fw_debug_cmd asrt;
257
258         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
259         pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
260                 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
261                 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
262 }
263
264 #define X_CIM_PF_NOACCESS 0xeeeeeeee
265
266 /**
267  * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
268  * @adap: the adapter
269  * @mbox: index of the mailbox to use
270  * @cmd: the command to write
271  * @size: command length in bytes
272  * @rpl: where to optionally store the reply
273  * @sleep_ok: if true we may sleep while awaiting command completion
274  * @timeout: time to wait for command to finish before timing out
275  *           (negative implies @sleep_ok=false)
276  *
277  * Sends the given command to FW through the selected mailbox and waits
278  * for the FW to execute the command.  If @rpl is not %NULL it is used to
279  * store the FW's reply to the command.  The command and its optional
280  * reply are of the same length.  Some FW commands like RESET and
281  * INITIALIZE can take a considerable amount of time to execute.
282  * @sleep_ok determines whether we may sleep while awaiting the response.
283  * If sleeping is allowed we use progressive backoff otherwise we spin.
284  * Note that passing in a negative @timeout is an alternate mechanism
285  * for specifying @sleep_ok=false.  This is useful when a higher level
286  * interface allows for specification of @timeout but not @sleep_ok ...
287  *
288  * Returns 0 on success or a negative errno on failure.  A
289  * failure can happen either because we are not able to execute the
290  * command or FW executes it but signals an error.  In the latter case
291  * the return value is the error code indicated by FW (negated).
292  */
293 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
294                             const void __attribute__((__may_alias__)) *cmd,
295                             int size, void *rpl, bool sleep_ok, int timeout)
296 {
297         /*
298          * We delay in small increments at first in an effort to maintain
299          * responsiveness for simple, fast executing commands but then back
300          * off to larger delays to a maximum retry delay.
301          */
302         static const int delay[] = {
303                 1, 1, 3, 5, 10, 10, 20, 50, 100
304         };
305
306         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
307         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
308         struct mbox_entry *entry;
309         u32 v, ctl, pcie_fw = 0;
310         unsigned int delay_idx;
311         const __be64 *p;
312         int i, ms, ret;
313         u64 res;
314
315         if ((size & 15) != 0 || size > MBOX_LEN)
316                 return -EINVAL;
317
318         /*
319          * If we have a negative timeout, that implies that we can't sleep.
320          */
321         if (timeout < 0) {
322                 sleep_ok = false;
323                 timeout = -timeout;
324         }
325
326         entry = t4_os_alloc(sizeof(*entry));
327         if (entry == NULL)
328                 return -ENOMEM;
329
330         /*
331          * Queue ourselves onto the mailbox access list.  When our entry is at
332          * the front of the list, we have rights to access the mailbox.  So we
333          * wait [for a while] till we're at the front [or bail out with an
334          * EBUSY] ...
335          */
336         t4_os_atomic_add_tail(entry, &adap->mbox_list, &adap->mbox_lock);
337
338         delay_idx = 0;
339         ms = delay[0];
340
341         for (i = 0; ; i += ms) {
342                 /*
343                  * If we've waited too long, return a busy indication.  This
344                  * really ought to be based on our initial position in the
345                  * mailbox access list but this is a start.  We very rarely
346                  * contend on access to the mailbox ...  Also check for a
347                  * firmware error which we'll report as a device error.
348                  */
349                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
350                 if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
351                         t4_os_atomic_list_del(entry, &adap->mbox_list,
352                                               &adap->mbox_lock);
353                         t4_report_fw_error(adap);
354                         ret = ((pcie_fw & F_PCIE_FW_ERR) != 0) ? -ENXIO : -EBUSY;
355                         goto out_free;
356                 }
357
358                 /*
359                  * If we're at the head, break out and start the mailbox
360                  * protocol.
361                  */
362                 if (t4_os_list_first_entry(&adap->mbox_list) == entry)
363                         break;
364
365                 /*
366                  * Delay for a bit before checking again ...
367                  */
368                 if (sleep_ok) {
369                         ms = delay[delay_idx];  /* last element may repeat */
370                         if (delay_idx < ARRAY_SIZE(delay) - 1)
371                                 delay_idx++;
372                         msleep(ms);
373                 } else {
374                         rte_delay_ms(ms);
375                 }
376         }
377
378         /*
379          * Attempt to gain access to the mailbox.
380          */
381         for (i = 0; i < 4; i++) {
382                 ctl = t4_read_reg(adap, ctl_reg);
383                 v = G_MBOWNER(ctl);
384                 if (v != X_MBOWNER_NONE)
385                         break;
386         }
387
388         /*
389          * If we were unable to gain access, dequeue ourselves from the
390          * mailbox atomic access list and report the error to our caller.
391          */
392         if (v != X_MBOWNER_PL) {
393                 t4_os_atomic_list_del(entry, &adap->mbox_list,
394                                       &adap->mbox_lock);
395                 t4_report_fw_error(adap);
396                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
397                 goto out_free;
398         }
399
400         /*
401          * If we gain ownership of the mailbox and there's a "valid" message
402          * in it, this is likely an asynchronous error message from the
403          * firmware.  So we'll report that and then proceed on with attempting
404          * to issue our own command ... which may well fail if the error
405          * presaged the firmware crashing ...
406          */
407         if (ctl & F_MBMSGVALID) {
408                 dev_err(adap, "found VALID command in mbox %u: "
409                         "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
410                         (unsigned long long)t4_read_reg64(adap, data_reg),
411                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
412                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
413                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
414                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
415                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
416                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
417                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
418         }
419
420         /*
421          * Copy in the new mailbox command and send it on its way ...
422          */
423         for (i = 0, p = cmd; i < size; i += 8, p++)
424                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
425
426         CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
427                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
428                         (unsigned long long)t4_read_reg64(adap, data_reg),
429                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
430                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
431                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
432                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
433                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
434                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
435                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
436
437         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
438         t4_read_reg(adap, ctl_reg);          /* flush write */
439
440         delay_idx = 0;
441         ms = delay[0];
442
443         /*
444          * Loop waiting for the reply; bail out if we time out or the firmware
445          * reports an error.
446          */
447         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
448         for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
449                 if (sleep_ok) {
450                         ms = delay[delay_idx];  /* last element may repeat */
451                         if (delay_idx < ARRAY_SIZE(delay) - 1)
452                                 delay_idx++;
453                         msleep(ms);
454                 } else {
455                         msleep(ms);
456                 }
457
458                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
459                 v = t4_read_reg(adap, ctl_reg);
460                 if (v == X_CIM_PF_NOACCESS)
461                         continue;
462                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
463                         if (!(v & F_MBMSGVALID)) {
464                                 t4_write_reg(adap, ctl_reg,
465                                              V_MBOWNER(X_MBOWNER_NONE));
466                                 continue;
467                         }
468
469                         CXGBE_DEBUG_MBOX(adap,
470                         "%s: mbox %u: %016llx %016llx %016llx %016llx "
471                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
472                         (unsigned long long)t4_read_reg64(adap, data_reg),
473                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
474                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
475                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
476                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
477                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
478                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
479                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
480
481                         CXGBE_DEBUG_MBOX(adap,
482                                 "command %#x completed in %d ms (%ssleeping)\n",
483                                 *(const u8 *)cmd,
484                                 i + ms, sleep_ok ? "" : "non-");
485
486                         res = t4_read_reg64(adap, data_reg);
487                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
488                                 fw_asrt(adap, data_reg);
489                                 res = V_FW_CMD_RETVAL(EIO);
490                         } else if (rpl) {
491                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
492                         }
493                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
494                         t4_os_atomic_list_del(entry, &adap->mbox_list,
495                                               &adap->mbox_lock);
496                         ret = -G_FW_CMD_RETVAL((int)res);
497                         goto out_free;
498                 }
499         }
500
501         /*
502          * We timed out waiting for a reply to our mailbox command.  Report
503          * the error and also check to see if the firmware reported any
504          * errors ...
505          */
506         dev_err(adap, "command %#x in mailbox %d timed out\n",
507                 *(const u8 *)cmd, mbox);
508         t4_os_atomic_list_del(entry, &adap->mbox_list, &adap->mbox_lock);
509         t4_report_fw_error(adap);
510         ret = ((pcie_fw & F_PCIE_FW_ERR) != 0) ? -ENXIO : -ETIMEDOUT;
511
512 out_free:
513         t4_os_free(entry);
514         return ret;
515 }
516
517 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
518                     void *rpl, bool sleep_ok)
519 {
520         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
521                                        FW_CMD_MAX_TIMEOUT);
522 }
523
524 /**
525  * t4_get_regs_len - return the size of the chips register set
526  * @adapter: the adapter
527  *
528  * Returns the size of the chip's BAR0 register space.
529  */
530 unsigned int t4_get_regs_len(struct adapter *adapter)
531 {
532         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
533
534         switch (chip_version) {
535         case CHELSIO_T5:
536         case CHELSIO_T6:
537                 return T5_REGMAP_SIZE;
538         }
539
540         dev_err(adapter,
541                 "Unsupported chip version %d\n", chip_version);
542         return 0;
543 }
544
545 /**
546  * t4_get_regs - read chip registers into provided buffer
547  * @adap: the adapter
548  * @buf: register buffer
549  * @buf_size: size (in bytes) of register buffer
550  *
551  * If the provided register buffer isn't large enough for the chip's
552  * full register range, the register dump will be truncated to the
553  * register buffer's size.
554  */
555 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
556 {
557         static const unsigned int t5_reg_ranges[] = {
558                 0x1008, 0x10c0,
559                 0x10cc, 0x10f8,
560                 0x1100, 0x1100,
561                 0x110c, 0x1148,
562                 0x1180, 0x1184,
563                 0x1190, 0x1194,
564                 0x11a0, 0x11a4,
565                 0x11b0, 0x11b4,
566                 0x11fc, 0x123c,
567                 0x1280, 0x173c,
568                 0x1800, 0x18fc,
569                 0x3000, 0x3028,
570                 0x3060, 0x30b0,
571                 0x30b8, 0x30d8,
572                 0x30e0, 0x30fc,
573                 0x3140, 0x357c,
574                 0x35a8, 0x35cc,
575                 0x35ec, 0x35ec,
576                 0x3600, 0x5624,
577                 0x56cc, 0x56ec,
578                 0x56f4, 0x5720,
579                 0x5728, 0x575c,
580                 0x580c, 0x5814,
581                 0x5890, 0x589c,
582                 0x58a4, 0x58ac,
583                 0x58b8, 0x58bc,
584                 0x5940, 0x59c8,
585                 0x59d0, 0x59dc,
586                 0x59fc, 0x5a18,
587                 0x5a60, 0x5a70,
588                 0x5a80, 0x5a9c,
589                 0x5b94, 0x5bfc,
590                 0x6000, 0x6020,
591                 0x6028, 0x6040,
592                 0x6058, 0x609c,
593                 0x60a8, 0x614c,
594                 0x7700, 0x7798,
595                 0x77c0, 0x78fc,
596                 0x7b00, 0x7b58,
597                 0x7b60, 0x7b84,
598                 0x7b8c, 0x7c54,
599                 0x7d00, 0x7d38,
600                 0x7d40, 0x7d80,
601                 0x7d8c, 0x7ddc,
602                 0x7de4, 0x7e04,
603                 0x7e10, 0x7e1c,
604                 0x7e24, 0x7e38,
605                 0x7e40, 0x7e44,
606                 0x7e4c, 0x7e78,
607                 0x7e80, 0x7edc,
608                 0x7ee8, 0x7efc,
609                 0x8dc0, 0x8de0,
610                 0x8df8, 0x8e04,
611                 0x8e10, 0x8e84,
612                 0x8ea0, 0x8f84,
613                 0x8fc0, 0x9058,
614                 0x9060, 0x9060,
615                 0x9068, 0x90f8,
616                 0x9400, 0x9408,
617                 0x9410, 0x9470,
618                 0x9600, 0x9600,
619                 0x9608, 0x9638,
620                 0x9640, 0x96f4,
621                 0x9800, 0x9808,
622                 0x9820, 0x983c,
623                 0x9850, 0x9864,
624                 0x9c00, 0x9c6c,
625                 0x9c80, 0x9cec,
626                 0x9d00, 0x9d6c,
627                 0x9d80, 0x9dec,
628                 0x9e00, 0x9e6c,
629                 0x9e80, 0x9eec,
630                 0x9f00, 0x9f6c,
631                 0x9f80, 0xa020,
632                 0xd004, 0xd004,
633                 0xd010, 0xd03c,
634                 0xdfc0, 0xdfe0,
635                 0xe000, 0x1106c,
636                 0x11074, 0x11088,
637                 0x1109c, 0x1117c,
638                 0x11190, 0x11204,
639                 0x19040, 0x1906c,
640                 0x19078, 0x19080,
641                 0x1908c, 0x190e8,
642                 0x190f0, 0x190f8,
643                 0x19100, 0x19110,
644                 0x19120, 0x19124,
645                 0x19150, 0x19194,
646                 0x1919c, 0x191b0,
647                 0x191d0, 0x191e8,
648                 0x19238, 0x19290,
649                 0x193f8, 0x19428,
650                 0x19430, 0x19444,
651                 0x1944c, 0x1946c,
652                 0x19474, 0x19474,
653                 0x19490, 0x194cc,
654                 0x194f0, 0x194f8,
655                 0x19c00, 0x19c08,
656                 0x19c10, 0x19c60,
657                 0x19c94, 0x19ce4,
658                 0x19cf0, 0x19d40,
659                 0x19d50, 0x19d94,
660                 0x19da0, 0x19de8,
661                 0x19df0, 0x19e10,
662                 0x19e50, 0x19e90,
663                 0x19ea0, 0x19f24,
664                 0x19f34, 0x19f34,
665                 0x19f40, 0x19f50,
666                 0x19f90, 0x19fb4,
667                 0x19fc4, 0x19fe4,
668                 0x1a000, 0x1a004,
669                 0x1a010, 0x1a06c,
670                 0x1a0b0, 0x1a0e4,
671                 0x1a0ec, 0x1a0f8,
672                 0x1a100, 0x1a108,
673                 0x1a114, 0x1a120,
674                 0x1a128, 0x1a130,
675                 0x1a138, 0x1a138,
676                 0x1a190, 0x1a1c4,
677                 0x1a1fc, 0x1a1fc,
678                 0x1e008, 0x1e00c,
679                 0x1e040, 0x1e044,
680                 0x1e04c, 0x1e04c,
681                 0x1e284, 0x1e290,
682                 0x1e2c0, 0x1e2c0,
683                 0x1e2e0, 0x1e2e0,
684                 0x1e300, 0x1e384,
685                 0x1e3c0, 0x1e3c8,
686                 0x1e408, 0x1e40c,
687                 0x1e440, 0x1e444,
688                 0x1e44c, 0x1e44c,
689                 0x1e684, 0x1e690,
690                 0x1e6c0, 0x1e6c0,
691                 0x1e6e0, 0x1e6e0,
692                 0x1e700, 0x1e784,
693                 0x1e7c0, 0x1e7c8,
694                 0x1e808, 0x1e80c,
695                 0x1e840, 0x1e844,
696                 0x1e84c, 0x1e84c,
697                 0x1ea84, 0x1ea90,
698                 0x1eac0, 0x1eac0,
699                 0x1eae0, 0x1eae0,
700                 0x1eb00, 0x1eb84,
701                 0x1ebc0, 0x1ebc8,
702                 0x1ec08, 0x1ec0c,
703                 0x1ec40, 0x1ec44,
704                 0x1ec4c, 0x1ec4c,
705                 0x1ee84, 0x1ee90,
706                 0x1eec0, 0x1eec0,
707                 0x1eee0, 0x1eee0,
708                 0x1ef00, 0x1ef84,
709                 0x1efc0, 0x1efc8,
710                 0x1f008, 0x1f00c,
711                 0x1f040, 0x1f044,
712                 0x1f04c, 0x1f04c,
713                 0x1f284, 0x1f290,
714                 0x1f2c0, 0x1f2c0,
715                 0x1f2e0, 0x1f2e0,
716                 0x1f300, 0x1f384,
717                 0x1f3c0, 0x1f3c8,
718                 0x1f408, 0x1f40c,
719                 0x1f440, 0x1f444,
720                 0x1f44c, 0x1f44c,
721                 0x1f684, 0x1f690,
722                 0x1f6c0, 0x1f6c0,
723                 0x1f6e0, 0x1f6e0,
724                 0x1f700, 0x1f784,
725                 0x1f7c0, 0x1f7c8,
726                 0x1f808, 0x1f80c,
727                 0x1f840, 0x1f844,
728                 0x1f84c, 0x1f84c,
729                 0x1fa84, 0x1fa90,
730                 0x1fac0, 0x1fac0,
731                 0x1fae0, 0x1fae0,
732                 0x1fb00, 0x1fb84,
733                 0x1fbc0, 0x1fbc8,
734                 0x1fc08, 0x1fc0c,
735                 0x1fc40, 0x1fc44,
736                 0x1fc4c, 0x1fc4c,
737                 0x1fe84, 0x1fe90,
738                 0x1fec0, 0x1fec0,
739                 0x1fee0, 0x1fee0,
740                 0x1ff00, 0x1ff84,
741                 0x1ffc0, 0x1ffc8,
742                 0x30000, 0x30030,
743                 0x30038, 0x30038,
744                 0x30040, 0x30040,
745                 0x30100, 0x30144,
746                 0x30190, 0x301a0,
747                 0x301a8, 0x301b8,
748                 0x301c4, 0x301c8,
749                 0x301d0, 0x301d0,
750                 0x30200, 0x30318,
751                 0x30400, 0x304b4,
752                 0x304c0, 0x3052c,
753                 0x30540, 0x3061c,
754                 0x30800, 0x30828,
755                 0x30834, 0x30834,
756                 0x308c0, 0x30908,
757                 0x30910, 0x309ac,
758                 0x30a00, 0x30a14,
759                 0x30a1c, 0x30a2c,
760                 0x30a44, 0x30a50,
761                 0x30a74, 0x30a74,
762                 0x30a7c, 0x30afc,
763                 0x30b08, 0x30c24,
764                 0x30d00, 0x30d00,
765                 0x30d08, 0x30d14,
766                 0x30d1c, 0x30d20,
767                 0x30d3c, 0x30d3c,
768                 0x30d48, 0x30d50,
769                 0x31200, 0x3120c,
770                 0x31220, 0x31220,
771                 0x31240, 0x31240,
772                 0x31600, 0x3160c,
773                 0x31a00, 0x31a1c,
774                 0x31e00, 0x31e20,
775                 0x31e38, 0x31e3c,
776                 0x31e80, 0x31e80,
777                 0x31e88, 0x31ea8,
778                 0x31eb0, 0x31eb4,
779                 0x31ec8, 0x31ed4,
780                 0x31fb8, 0x32004,
781                 0x32200, 0x32200,
782                 0x32208, 0x32240,
783                 0x32248, 0x32280,
784                 0x32288, 0x322c0,
785                 0x322c8, 0x322fc,
786                 0x32600, 0x32630,
787                 0x32a00, 0x32abc,
788                 0x32b00, 0x32b10,
789                 0x32b20, 0x32b30,
790                 0x32b40, 0x32b50,
791                 0x32b60, 0x32b70,
792                 0x33000, 0x33028,
793                 0x33030, 0x33048,
794                 0x33060, 0x33068,
795                 0x33070, 0x3309c,
796                 0x330f0, 0x33128,
797                 0x33130, 0x33148,
798                 0x33160, 0x33168,
799                 0x33170, 0x3319c,
800                 0x331f0, 0x33238,
801                 0x33240, 0x33240,
802                 0x33248, 0x33250,
803                 0x3325c, 0x33264,
804                 0x33270, 0x332b8,
805                 0x332c0, 0x332e4,
806                 0x332f8, 0x33338,
807                 0x33340, 0x33340,
808                 0x33348, 0x33350,
809                 0x3335c, 0x33364,
810                 0x33370, 0x333b8,
811                 0x333c0, 0x333e4,
812                 0x333f8, 0x33428,
813                 0x33430, 0x33448,
814                 0x33460, 0x33468,
815                 0x33470, 0x3349c,
816                 0x334f0, 0x33528,
817                 0x33530, 0x33548,
818                 0x33560, 0x33568,
819                 0x33570, 0x3359c,
820                 0x335f0, 0x33638,
821                 0x33640, 0x33640,
822                 0x33648, 0x33650,
823                 0x3365c, 0x33664,
824                 0x33670, 0x336b8,
825                 0x336c0, 0x336e4,
826                 0x336f8, 0x33738,
827                 0x33740, 0x33740,
828                 0x33748, 0x33750,
829                 0x3375c, 0x33764,
830                 0x33770, 0x337b8,
831                 0x337c0, 0x337e4,
832                 0x337f8, 0x337fc,
833                 0x33814, 0x33814,
834                 0x3382c, 0x3382c,
835                 0x33880, 0x3388c,
836                 0x338e8, 0x338ec,
837                 0x33900, 0x33928,
838                 0x33930, 0x33948,
839                 0x33960, 0x33968,
840                 0x33970, 0x3399c,
841                 0x339f0, 0x33a38,
842                 0x33a40, 0x33a40,
843                 0x33a48, 0x33a50,
844                 0x33a5c, 0x33a64,
845                 0x33a70, 0x33ab8,
846                 0x33ac0, 0x33ae4,
847                 0x33af8, 0x33b10,
848                 0x33b28, 0x33b28,
849                 0x33b3c, 0x33b50,
850                 0x33bf0, 0x33c10,
851                 0x33c28, 0x33c28,
852                 0x33c3c, 0x33c50,
853                 0x33cf0, 0x33cfc,
854                 0x34000, 0x34030,
855                 0x34038, 0x34038,
856                 0x34040, 0x34040,
857                 0x34100, 0x34144,
858                 0x34190, 0x341a0,
859                 0x341a8, 0x341b8,
860                 0x341c4, 0x341c8,
861                 0x341d0, 0x341d0,
862                 0x34200, 0x34318,
863                 0x34400, 0x344b4,
864                 0x344c0, 0x3452c,
865                 0x34540, 0x3461c,
866                 0x34800, 0x34828,
867                 0x34834, 0x34834,
868                 0x348c0, 0x34908,
869                 0x34910, 0x349ac,
870                 0x34a00, 0x34a14,
871                 0x34a1c, 0x34a2c,
872                 0x34a44, 0x34a50,
873                 0x34a74, 0x34a74,
874                 0x34a7c, 0x34afc,
875                 0x34b08, 0x34c24,
876                 0x34d00, 0x34d00,
877                 0x34d08, 0x34d14,
878                 0x34d1c, 0x34d20,
879                 0x34d3c, 0x34d3c,
880                 0x34d48, 0x34d50,
881                 0x35200, 0x3520c,
882                 0x35220, 0x35220,
883                 0x35240, 0x35240,
884                 0x35600, 0x3560c,
885                 0x35a00, 0x35a1c,
886                 0x35e00, 0x35e20,
887                 0x35e38, 0x35e3c,
888                 0x35e80, 0x35e80,
889                 0x35e88, 0x35ea8,
890                 0x35eb0, 0x35eb4,
891                 0x35ec8, 0x35ed4,
892                 0x35fb8, 0x36004,
893                 0x36200, 0x36200,
894                 0x36208, 0x36240,
895                 0x36248, 0x36280,
896                 0x36288, 0x362c0,
897                 0x362c8, 0x362fc,
898                 0x36600, 0x36630,
899                 0x36a00, 0x36abc,
900                 0x36b00, 0x36b10,
901                 0x36b20, 0x36b30,
902                 0x36b40, 0x36b50,
903                 0x36b60, 0x36b70,
904                 0x37000, 0x37028,
905                 0x37030, 0x37048,
906                 0x37060, 0x37068,
907                 0x37070, 0x3709c,
908                 0x370f0, 0x37128,
909                 0x37130, 0x37148,
910                 0x37160, 0x37168,
911                 0x37170, 0x3719c,
912                 0x371f0, 0x37238,
913                 0x37240, 0x37240,
914                 0x37248, 0x37250,
915                 0x3725c, 0x37264,
916                 0x37270, 0x372b8,
917                 0x372c0, 0x372e4,
918                 0x372f8, 0x37338,
919                 0x37340, 0x37340,
920                 0x37348, 0x37350,
921                 0x3735c, 0x37364,
922                 0x37370, 0x373b8,
923                 0x373c0, 0x373e4,
924                 0x373f8, 0x37428,
925                 0x37430, 0x37448,
926                 0x37460, 0x37468,
927                 0x37470, 0x3749c,
928                 0x374f0, 0x37528,
929                 0x37530, 0x37548,
930                 0x37560, 0x37568,
931                 0x37570, 0x3759c,
932                 0x375f0, 0x37638,
933                 0x37640, 0x37640,
934                 0x37648, 0x37650,
935                 0x3765c, 0x37664,
936                 0x37670, 0x376b8,
937                 0x376c0, 0x376e4,
938                 0x376f8, 0x37738,
939                 0x37740, 0x37740,
940                 0x37748, 0x37750,
941                 0x3775c, 0x37764,
942                 0x37770, 0x377b8,
943                 0x377c0, 0x377e4,
944                 0x377f8, 0x377fc,
945                 0x37814, 0x37814,
946                 0x3782c, 0x3782c,
947                 0x37880, 0x3788c,
948                 0x378e8, 0x378ec,
949                 0x37900, 0x37928,
950                 0x37930, 0x37948,
951                 0x37960, 0x37968,
952                 0x37970, 0x3799c,
953                 0x379f0, 0x37a38,
954                 0x37a40, 0x37a40,
955                 0x37a48, 0x37a50,
956                 0x37a5c, 0x37a64,
957                 0x37a70, 0x37ab8,
958                 0x37ac0, 0x37ae4,
959                 0x37af8, 0x37b10,
960                 0x37b28, 0x37b28,
961                 0x37b3c, 0x37b50,
962                 0x37bf0, 0x37c10,
963                 0x37c28, 0x37c28,
964                 0x37c3c, 0x37c50,
965                 0x37cf0, 0x37cfc,
966                 0x38000, 0x38030,
967                 0x38038, 0x38038,
968                 0x38040, 0x38040,
969                 0x38100, 0x38144,
970                 0x38190, 0x381a0,
971                 0x381a8, 0x381b8,
972                 0x381c4, 0x381c8,
973                 0x381d0, 0x381d0,
974                 0x38200, 0x38318,
975                 0x38400, 0x384b4,
976                 0x384c0, 0x3852c,
977                 0x38540, 0x3861c,
978                 0x38800, 0x38828,
979                 0x38834, 0x38834,
980                 0x388c0, 0x38908,
981                 0x38910, 0x389ac,
982                 0x38a00, 0x38a14,
983                 0x38a1c, 0x38a2c,
984                 0x38a44, 0x38a50,
985                 0x38a74, 0x38a74,
986                 0x38a7c, 0x38afc,
987                 0x38b08, 0x38c24,
988                 0x38d00, 0x38d00,
989                 0x38d08, 0x38d14,
990                 0x38d1c, 0x38d20,
991                 0x38d3c, 0x38d3c,
992                 0x38d48, 0x38d50,
993                 0x39200, 0x3920c,
994                 0x39220, 0x39220,
995                 0x39240, 0x39240,
996                 0x39600, 0x3960c,
997                 0x39a00, 0x39a1c,
998                 0x39e00, 0x39e20,
999                 0x39e38, 0x39e3c,
1000                 0x39e80, 0x39e80,
1001                 0x39e88, 0x39ea8,
1002                 0x39eb0, 0x39eb4,
1003                 0x39ec8, 0x39ed4,
1004                 0x39fb8, 0x3a004,
1005                 0x3a200, 0x3a200,
1006                 0x3a208, 0x3a240,
1007                 0x3a248, 0x3a280,
1008                 0x3a288, 0x3a2c0,
1009                 0x3a2c8, 0x3a2fc,
1010                 0x3a600, 0x3a630,
1011                 0x3aa00, 0x3aabc,
1012                 0x3ab00, 0x3ab10,
1013                 0x3ab20, 0x3ab30,
1014                 0x3ab40, 0x3ab50,
1015                 0x3ab60, 0x3ab70,
1016                 0x3b000, 0x3b028,
1017                 0x3b030, 0x3b048,
1018                 0x3b060, 0x3b068,
1019                 0x3b070, 0x3b09c,
1020                 0x3b0f0, 0x3b128,
1021                 0x3b130, 0x3b148,
1022                 0x3b160, 0x3b168,
1023                 0x3b170, 0x3b19c,
1024                 0x3b1f0, 0x3b238,
1025                 0x3b240, 0x3b240,
1026                 0x3b248, 0x3b250,
1027                 0x3b25c, 0x3b264,
1028                 0x3b270, 0x3b2b8,
1029                 0x3b2c0, 0x3b2e4,
1030                 0x3b2f8, 0x3b338,
1031                 0x3b340, 0x3b340,
1032                 0x3b348, 0x3b350,
1033                 0x3b35c, 0x3b364,
1034                 0x3b370, 0x3b3b8,
1035                 0x3b3c0, 0x3b3e4,
1036                 0x3b3f8, 0x3b428,
1037                 0x3b430, 0x3b448,
1038                 0x3b460, 0x3b468,
1039                 0x3b470, 0x3b49c,
1040                 0x3b4f0, 0x3b528,
1041                 0x3b530, 0x3b548,
1042                 0x3b560, 0x3b568,
1043                 0x3b570, 0x3b59c,
1044                 0x3b5f0, 0x3b638,
1045                 0x3b640, 0x3b640,
1046                 0x3b648, 0x3b650,
1047                 0x3b65c, 0x3b664,
1048                 0x3b670, 0x3b6b8,
1049                 0x3b6c0, 0x3b6e4,
1050                 0x3b6f8, 0x3b738,
1051                 0x3b740, 0x3b740,
1052                 0x3b748, 0x3b750,
1053                 0x3b75c, 0x3b764,
1054                 0x3b770, 0x3b7b8,
1055                 0x3b7c0, 0x3b7e4,
1056                 0x3b7f8, 0x3b7fc,
1057                 0x3b814, 0x3b814,
1058                 0x3b82c, 0x3b82c,
1059                 0x3b880, 0x3b88c,
1060                 0x3b8e8, 0x3b8ec,
1061                 0x3b900, 0x3b928,
1062                 0x3b930, 0x3b948,
1063                 0x3b960, 0x3b968,
1064                 0x3b970, 0x3b99c,
1065                 0x3b9f0, 0x3ba38,
1066                 0x3ba40, 0x3ba40,
1067                 0x3ba48, 0x3ba50,
1068                 0x3ba5c, 0x3ba64,
1069                 0x3ba70, 0x3bab8,
1070                 0x3bac0, 0x3bae4,
1071                 0x3baf8, 0x3bb10,
1072                 0x3bb28, 0x3bb28,
1073                 0x3bb3c, 0x3bb50,
1074                 0x3bbf0, 0x3bc10,
1075                 0x3bc28, 0x3bc28,
1076                 0x3bc3c, 0x3bc50,
1077                 0x3bcf0, 0x3bcfc,
1078                 0x3c000, 0x3c030,
1079                 0x3c038, 0x3c038,
1080                 0x3c040, 0x3c040,
1081                 0x3c100, 0x3c144,
1082                 0x3c190, 0x3c1a0,
1083                 0x3c1a8, 0x3c1b8,
1084                 0x3c1c4, 0x3c1c8,
1085                 0x3c1d0, 0x3c1d0,
1086                 0x3c200, 0x3c318,
1087                 0x3c400, 0x3c4b4,
1088                 0x3c4c0, 0x3c52c,
1089                 0x3c540, 0x3c61c,
1090                 0x3c800, 0x3c828,
1091                 0x3c834, 0x3c834,
1092                 0x3c8c0, 0x3c908,
1093                 0x3c910, 0x3c9ac,
1094                 0x3ca00, 0x3ca14,
1095                 0x3ca1c, 0x3ca2c,
1096                 0x3ca44, 0x3ca50,
1097                 0x3ca74, 0x3ca74,
1098                 0x3ca7c, 0x3cafc,
1099                 0x3cb08, 0x3cc24,
1100                 0x3cd00, 0x3cd00,
1101                 0x3cd08, 0x3cd14,
1102                 0x3cd1c, 0x3cd20,
1103                 0x3cd3c, 0x3cd3c,
1104                 0x3cd48, 0x3cd50,
1105                 0x3d200, 0x3d20c,
1106                 0x3d220, 0x3d220,
1107                 0x3d240, 0x3d240,
1108                 0x3d600, 0x3d60c,
1109                 0x3da00, 0x3da1c,
1110                 0x3de00, 0x3de20,
1111                 0x3de38, 0x3de3c,
1112                 0x3de80, 0x3de80,
1113                 0x3de88, 0x3dea8,
1114                 0x3deb0, 0x3deb4,
1115                 0x3dec8, 0x3ded4,
1116                 0x3dfb8, 0x3e004,
1117                 0x3e200, 0x3e200,
1118                 0x3e208, 0x3e240,
1119                 0x3e248, 0x3e280,
1120                 0x3e288, 0x3e2c0,
1121                 0x3e2c8, 0x3e2fc,
1122                 0x3e600, 0x3e630,
1123                 0x3ea00, 0x3eabc,
1124                 0x3eb00, 0x3eb10,
1125                 0x3eb20, 0x3eb30,
1126                 0x3eb40, 0x3eb50,
1127                 0x3eb60, 0x3eb70,
1128                 0x3f000, 0x3f028,
1129                 0x3f030, 0x3f048,
1130                 0x3f060, 0x3f068,
1131                 0x3f070, 0x3f09c,
1132                 0x3f0f0, 0x3f128,
1133                 0x3f130, 0x3f148,
1134                 0x3f160, 0x3f168,
1135                 0x3f170, 0x3f19c,
1136                 0x3f1f0, 0x3f238,
1137                 0x3f240, 0x3f240,
1138                 0x3f248, 0x3f250,
1139                 0x3f25c, 0x3f264,
1140                 0x3f270, 0x3f2b8,
1141                 0x3f2c0, 0x3f2e4,
1142                 0x3f2f8, 0x3f338,
1143                 0x3f340, 0x3f340,
1144                 0x3f348, 0x3f350,
1145                 0x3f35c, 0x3f364,
1146                 0x3f370, 0x3f3b8,
1147                 0x3f3c0, 0x3f3e4,
1148                 0x3f3f8, 0x3f428,
1149                 0x3f430, 0x3f448,
1150                 0x3f460, 0x3f468,
1151                 0x3f470, 0x3f49c,
1152                 0x3f4f0, 0x3f528,
1153                 0x3f530, 0x3f548,
1154                 0x3f560, 0x3f568,
1155                 0x3f570, 0x3f59c,
1156                 0x3f5f0, 0x3f638,
1157                 0x3f640, 0x3f640,
1158                 0x3f648, 0x3f650,
1159                 0x3f65c, 0x3f664,
1160                 0x3f670, 0x3f6b8,
1161                 0x3f6c0, 0x3f6e4,
1162                 0x3f6f8, 0x3f738,
1163                 0x3f740, 0x3f740,
1164                 0x3f748, 0x3f750,
1165                 0x3f75c, 0x3f764,
1166                 0x3f770, 0x3f7b8,
1167                 0x3f7c0, 0x3f7e4,
1168                 0x3f7f8, 0x3f7fc,
1169                 0x3f814, 0x3f814,
1170                 0x3f82c, 0x3f82c,
1171                 0x3f880, 0x3f88c,
1172                 0x3f8e8, 0x3f8ec,
1173                 0x3f900, 0x3f928,
1174                 0x3f930, 0x3f948,
1175                 0x3f960, 0x3f968,
1176                 0x3f970, 0x3f99c,
1177                 0x3f9f0, 0x3fa38,
1178                 0x3fa40, 0x3fa40,
1179                 0x3fa48, 0x3fa50,
1180                 0x3fa5c, 0x3fa64,
1181                 0x3fa70, 0x3fab8,
1182                 0x3fac0, 0x3fae4,
1183                 0x3faf8, 0x3fb10,
1184                 0x3fb28, 0x3fb28,
1185                 0x3fb3c, 0x3fb50,
1186                 0x3fbf0, 0x3fc10,
1187                 0x3fc28, 0x3fc28,
1188                 0x3fc3c, 0x3fc50,
1189                 0x3fcf0, 0x3fcfc,
1190                 0x40000, 0x4000c,
1191                 0x40040, 0x40050,
1192                 0x40060, 0x40068,
1193                 0x4007c, 0x4008c,
1194                 0x40094, 0x400b0,
1195                 0x400c0, 0x40144,
1196                 0x40180, 0x4018c,
1197                 0x40200, 0x40254,
1198                 0x40260, 0x40264,
1199                 0x40270, 0x40288,
1200                 0x40290, 0x40298,
1201                 0x402ac, 0x402c8,
1202                 0x402d0, 0x402e0,
1203                 0x402f0, 0x402f0,
1204                 0x40300, 0x4033c,
1205                 0x403f8, 0x403fc,
1206                 0x41304, 0x413c4,
1207                 0x41400, 0x4140c,
1208                 0x41414, 0x4141c,
1209                 0x41480, 0x414d0,
1210                 0x44000, 0x44054,
1211                 0x4405c, 0x44078,
1212                 0x440c0, 0x44174,
1213                 0x44180, 0x441ac,
1214                 0x441b4, 0x441b8,
1215                 0x441c0, 0x44254,
1216                 0x4425c, 0x44278,
1217                 0x442c0, 0x44374,
1218                 0x44380, 0x443ac,
1219                 0x443b4, 0x443b8,
1220                 0x443c0, 0x44454,
1221                 0x4445c, 0x44478,
1222                 0x444c0, 0x44574,
1223                 0x44580, 0x445ac,
1224                 0x445b4, 0x445b8,
1225                 0x445c0, 0x44654,
1226                 0x4465c, 0x44678,
1227                 0x446c0, 0x44774,
1228                 0x44780, 0x447ac,
1229                 0x447b4, 0x447b8,
1230                 0x447c0, 0x44854,
1231                 0x4485c, 0x44878,
1232                 0x448c0, 0x44974,
1233                 0x44980, 0x449ac,
1234                 0x449b4, 0x449b8,
1235                 0x449c0, 0x449fc,
1236                 0x45000, 0x45004,
1237                 0x45010, 0x45030,
1238                 0x45040, 0x45060,
1239                 0x45068, 0x45068,
1240                 0x45080, 0x45084,
1241                 0x450a0, 0x450b0,
1242                 0x45200, 0x45204,
1243                 0x45210, 0x45230,
1244                 0x45240, 0x45260,
1245                 0x45268, 0x45268,
1246                 0x45280, 0x45284,
1247                 0x452a0, 0x452b0,
1248                 0x460c0, 0x460e4,
1249                 0x47000, 0x4703c,
1250                 0x47044, 0x4708c,
1251                 0x47200, 0x47250,
1252                 0x47400, 0x47408,
1253                 0x47414, 0x47420,
1254                 0x47600, 0x47618,
1255                 0x47800, 0x47814,
1256                 0x48000, 0x4800c,
1257                 0x48040, 0x48050,
1258                 0x48060, 0x48068,
1259                 0x4807c, 0x4808c,
1260                 0x48094, 0x480b0,
1261                 0x480c0, 0x48144,
1262                 0x48180, 0x4818c,
1263                 0x48200, 0x48254,
1264                 0x48260, 0x48264,
1265                 0x48270, 0x48288,
1266                 0x48290, 0x48298,
1267                 0x482ac, 0x482c8,
1268                 0x482d0, 0x482e0,
1269                 0x482f0, 0x482f0,
1270                 0x48300, 0x4833c,
1271                 0x483f8, 0x483fc,
1272                 0x49304, 0x493c4,
1273                 0x49400, 0x4940c,
1274                 0x49414, 0x4941c,
1275                 0x49480, 0x494d0,
1276                 0x4c000, 0x4c054,
1277                 0x4c05c, 0x4c078,
1278                 0x4c0c0, 0x4c174,
1279                 0x4c180, 0x4c1ac,
1280                 0x4c1b4, 0x4c1b8,
1281                 0x4c1c0, 0x4c254,
1282                 0x4c25c, 0x4c278,
1283                 0x4c2c0, 0x4c374,
1284                 0x4c380, 0x4c3ac,
1285                 0x4c3b4, 0x4c3b8,
1286                 0x4c3c0, 0x4c454,
1287                 0x4c45c, 0x4c478,
1288                 0x4c4c0, 0x4c574,
1289                 0x4c580, 0x4c5ac,
1290                 0x4c5b4, 0x4c5b8,
1291                 0x4c5c0, 0x4c654,
1292                 0x4c65c, 0x4c678,
1293                 0x4c6c0, 0x4c774,
1294                 0x4c780, 0x4c7ac,
1295                 0x4c7b4, 0x4c7b8,
1296                 0x4c7c0, 0x4c854,
1297                 0x4c85c, 0x4c878,
1298                 0x4c8c0, 0x4c974,
1299                 0x4c980, 0x4c9ac,
1300                 0x4c9b4, 0x4c9b8,
1301                 0x4c9c0, 0x4c9fc,
1302                 0x4d000, 0x4d004,
1303                 0x4d010, 0x4d030,
1304                 0x4d040, 0x4d060,
1305                 0x4d068, 0x4d068,
1306                 0x4d080, 0x4d084,
1307                 0x4d0a0, 0x4d0b0,
1308                 0x4d200, 0x4d204,
1309                 0x4d210, 0x4d230,
1310                 0x4d240, 0x4d260,
1311                 0x4d268, 0x4d268,
1312                 0x4d280, 0x4d284,
1313                 0x4d2a0, 0x4d2b0,
1314                 0x4e0c0, 0x4e0e4,
1315                 0x4f000, 0x4f03c,
1316                 0x4f044, 0x4f08c,
1317                 0x4f200, 0x4f250,
1318                 0x4f400, 0x4f408,
1319                 0x4f414, 0x4f420,
1320                 0x4f600, 0x4f618,
1321                 0x4f800, 0x4f814,
1322                 0x50000, 0x50084,
1323                 0x50090, 0x500cc,
1324                 0x50400, 0x50400,
1325                 0x50800, 0x50884,
1326                 0x50890, 0x508cc,
1327                 0x50c00, 0x50c00,
1328                 0x51000, 0x5101c,
1329                 0x51300, 0x51308,
1330         };
1331
1332         static const unsigned int t6_reg_ranges[] = {
1333                 0x1008, 0x101c,
1334                 0x1024, 0x10a8,
1335                 0x10b4, 0x10f8,
1336                 0x1100, 0x1114,
1337                 0x111c, 0x112c,
1338                 0x1138, 0x113c,
1339                 0x1144, 0x114c,
1340                 0x1180, 0x1184,
1341                 0x1190, 0x1194,
1342                 0x11a0, 0x11a4,
1343                 0x11b0, 0x11b4,
1344                 0x11fc, 0x1274,
1345                 0x1280, 0x133c,
1346                 0x1800, 0x18fc,
1347                 0x3000, 0x302c,
1348                 0x3060, 0x30b0,
1349                 0x30b8, 0x30d8,
1350                 0x30e0, 0x30fc,
1351                 0x3140, 0x357c,
1352                 0x35a8, 0x35cc,
1353                 0x35ec, 0x35ec,
1354                 0x3600, 0x5624,
1355                 0x56cc, 0x56ec,
1356                 0x56f4, 0x5720,
1357                 0x5728, 0x575c,
1358                 0x580c, 0x5814,
1359                 0x5890, 0x589c,
1360                 0x58a4, 0x58ac,
1361                 0x58b8, 0x58bc,
1362                 0x5940, 0x595c,
1363                 0x5980, 0x598c,
1364                 0x59b0, 0x59c8,
1365                 0x59d0, 0x59dc,
1366                 0x59fc, 0x5a18,
1367                 0x5a60, 0x5a6c,
1368                 0x5a80, 0x5a8c,
1369                 0x5a94, 0x5a9c,
1370                 0x5b94, 0x5bfc,
1371                 0x5c10, 0x5e48,
1372                 0x5e50, 0x5e94,
1373                 0x5ea0, 0x5eb0,
1374                 0x5ec0, 0x5ec0,
1375                 0x5ec8, 0x5ed0,
1376                 0x5ee0, 0x5ee0,
1377                 0x5ef0, 0x5ef0,
1378                 0x5f00, 0x5f00,
1379                 0x6000, 0x6020,
1380                 0x6028, 0x6040,
1381                 0x6058, 0x609c,
1382                 0x60a8, 0x619c,
1383                 0x7700, 0x7798,
1384                 0x77c0, 0x7880,
1385                 0x78cc, 0x78fc,
1386                 0x7b00, 0x7b58,
1387                 0x7b60, 0x7b84,
1388                 0x7b8c, 0x7c54,
1389                 0x7d00, 0x7d38,
1390                 0x7d40, 0x7d84,
1391                 0x7d8c, 0x7ddc,
1392                 0x7de4, 0x7e04,
1393                 0x7e10, 0x7e1c,
1394                 0x7e24, 0x7e38,
1395                 0x7e40, 0x7e44,
1396                 0x7e4c, 0x7e78,
1397                 0x7e80, 0x7edc,
1398                 0x7ee8, 0x7efc,
1399                 0x8dc0, 0x8de4,
1400                 0x8df8, 0x8e04,
1401                 0x8e10, 0x8e84,
1402                 0x8ea0, 0x8f88,
1403                 0x8fb8, 0x9058,
1404                 0x9060, 0x9060,
1405                 0x9068, 0x90f8,
1406                 0x9100, 0x9124,
1407                 0x9400, 0x9470,
1408                 0x9600, 0x9600,
1409                 0x9608, 0x9638,
1410                 0x9640, 0x9704,
1411                 0x9710, 0x971c,
1412                 0x9800, 0x9808,
1413                 0x9820, 0x983c,
1414                 0x9850, 0x9864,
1415                 0x9c00, 0x9c6c,
1416                 0x9c80, 0x9cec,
1417                 0x9d00, 0x9d6c,
1418                 0x9d80, 0x9dec,
1419                 0x9e00, 0x9e6c,
1420                 0x9e80, 0x9eec,
1421                 0x9f00, 0x9f6c,
1422                 0x9f80, 0xa020,
1423                 0xd004, 0xd03c,
1424                 0xd100, 0xd118,
1425                 0xd200, 0xd214,
1426                 0xd220, 0xd234,
1427                 0xd240, 0xd254,
1428                 0xd260, 0xd274,
1429                 0xd280, 0xd294,
1430                 0xd2a0, 0xd2b4,
1431                 0xd2c0, 0xd2d4,
1432                 0xd2e0, 0xd2f4,
1433                 0xd300, 0xd31c,
1434                 0xdfc0, 0xdfe0,
1435                 0xe000, 0xf008,
1436                 0xf010, 0xf018,
1437                 0xf020, 0xf028,
1438                 0x11000, 0x11014,
1439                 0x11048, 0x1106c,
1440                 0x11074, 0x11088,
1441                 0x11098, 0x11120,
1442                 0x1112c, 0x1117c,
1443                 0x11190, 0x112e0,
1444                 0x11300, 0x1130c,
1445                 0x12000, 0x1206c,
1446                 0x19040, 0x1906c,
1447                 0x19078, 0x19080,
1448                 0x1908c, 0x190e8,
1449                 0x190f0, 0x190f8,
1450                 0x19100, 0x19110,
1451                 0x19120, 0x19124,
1452                 0x19150, 0x19194,
1453                 0x1919c, 0x191b0,
1454                 0x191d0, 0x191e8,
1455                 0x19238, 0x19290,
1456                 0x192a4, 0x192b0,
1457                 0x192bc, 0x192bc,
1458                 0x19348, 0x1934c,
1459                 0x193f8, 0x19418,
1460                 0x19420, 0x19428,
1461                 0x19430, 0x19444,
1462                 0x1944c, 0x1946c,
1463                 0x19474, 0x19474,
1464                 0x19490, 0x194cc,
1465                 0x194f0, 0x194f8,
1466                 0x19c00, 0x19c48,
1467                 0x19c50, 0x19c80,
1468                 0x19c94, 0x19c98,
1469                 0x19ca0, 0x19cbc,
1470                 0x19ce4, 0x19ce4,
1471                 0x19cf0, 0x19cf8,
1472                 0x19d00, 0x19d28,
1473                 0x19d50, 0x19d78,
1474                 0x19d94, 0x19d98,
1475                 0x19da0, 0x19dc8,
1476                 0x19df0, 0x19e10,
1477                 0x19e50, 0x19e6c,
1478                 0x19ea0, 0x19ebc,
1479                 0x19ec4, 0x19ef4,
1480                 0x19f04, 0x19f2c,
1481                 0x19f34, 0x19f34,
1482                 0x19f40, 0x19f50,
1483                 0x19f90, 0x19fac,
1484                 0x19fc4, 0x19fc8,
1485                 0x19fd0, 0x19fe4,
1486                 0x1a000, 0x1a004,
1487                 0x1a010, 0x1a06c,
1488                 0x1a0b0, 0x1a0e4,
1489                 0x1a0ec, 0x1a0f8,
1490                 0x1a100, 0x1a108,
1491                 0x1a114, 0x1a120,
1492                 0x1a128, 0x1a130,
1493                 0x1a138, 0x1a138,
1494                 0x1a190, 0x1a1c4,
1495                 0x1a1fc, 0x1a1fc,
1496                 0x1e008, 0x1e00c,
1497                 0x1e040, 0x1e044,
1498                 0x1e04c, 0x1e04c,
1499                 0x1e284, 0x1e290,
1500                 0x1e2c0, 0x1e2c0,
1501                 0x1e2e0, 0x1e2e0,
1502                 0x1e300, 0x1e384,
1503                 0x1e3c0, 0x1e3c8,
1504                 0x1e408, 0x1e40c,
1505                 0x1e440, 0x1e444,
1506                 0x1e44c, 0x1e44c,
1507                 0x1e684, 0x1e690,
1508                 0x1e6c0, 0x1e6c0,
1509                 0x1e6e0, 0x1e6e0,
1510                 0x1e700, 0x1e784,
1511                 0x1e7c0, 0x1e7c8,
1512                 0x1e808, 0x1e80c,
1513                 0x1e840, 0x1e844,
1514                 0x1e84c, 0x1e84c,
1515                 0x1ea84, 0x1ea90,
1516                 0x1eac0, 0x1eac0,
1517                 0x1eae0, 0x1eae0,
1518                 0x1eb00, 0x1eb84,
1519                 0x1ebc0, 0x1ebc8,
1520                 0x1ec08, 0x1ec0c,
1521                 0x1ec40, 0x1ec44,
1522                 0x1ec4c, 0x1ec4c,
1523                 0x1ee84, 0x1ee90,
1524                 0x1eec0, 0x1eec0,
1525                 0x1eee0, 0x1eee0,
1526                 0x1ef00, 0x1ef84,
1527                 0x1efc0, 0x1efc8,
1528                 0x1f008, 0x1f00c,
1529                 0x1f040, 0x1f044,
1530                 0x1f04c, 0x1f04c,
1531                 0x1f284, 0x1f290,
1532                 0x1f2c0, 0x1f2c0,
1533                 0x1f2e0, 0x1f2e0,
1534                 0x1f300, 0x1f384,
1535                 0x1f3c0, 0x1f3c8,
1536                 0x1f408, 0x1f40c,
1537                 0x1f440, 0x1f444,
1538                 0x1f44c, 0x1f44c,
1539                 0x1f684, 0x1f690,
1540                 0x1f6c0, 0x1f6c0,
1541                 0x1f6e0, 0x1f6e0,
1542                 0x1f700, 0x1f784,
1543                 0x1f7c0, 0x1f7c8,
1544                 0x1f808, 0x1f80c,
1545                 0x1f840, 0x1f844,
1546                 0x1f84c, 0x1f84c,
1547                 0x1fa84, 0x1fa90,
1548                 0x1fac0, 0x1fac0,
1549                 0x1fae0, 0x1fae0,
1550                 0x1fb00, 0x1fb84,
1551                 0x1fbc0, 0x1fbc8,
1552                 0x1fc08, 0x1fc0c,
1553                 0x1fc40, 0x1fc44,
1554                 0x1fc4c, 0x1fc4c,
1555                 0x1fe84, 0x1fe90,
1556                 0x1fec0, 0x1fec0,
1557                 0x1fee0, 0x1fee0,
1558                 0x1ff00, 0x1ff84,
1559                 0x1ffc0, 0x1ffc8,
1560                 0x30000, 0x30030,
1561                 0x30100, 0x30168,
1562                 0x30190, 0x301a0,
1563                 0x301a8, 0x301b8,
1564                 0x301c4, 0x301c8,
1565                 0x301d0, 0x301d0,
1566                 0x30200, 0x30320,
1567                 0x30400, 0x304b4,
1568                 0x304c0, 0x3052c,
1569                 0x30540, 0x3061c,
1570                 0x30800, 0x308a0,
1571                 0x308c0, 0x30908,
1572                 0x30910, 0x309b8,
1573                 0x30a00, 0x30a04,
1574                 0x30a0c, 0x30a14,
1575                 0x30a1c, 0x30a2c,
1576                 0x30a44, 0x30a50,
1577                 0x30a74, 0x30a74,
1578                 0x30a7c, 0x30afc,
1579                 0x30b08, 0x30c24,
1580                 0x30d00, 0x30d14,
1581                 0x30d1c, 0x30d3c,
1582                 0x30d44, 0x30d4c,
1583                 0x30d54, 0x30d74,
1584                 0x30d7c, 0x30d7c,
1585                 0x30de0, 0x30de0,
1586                 0x30e00, 0x30ed4,
1587                 0x30f00, 0x30fa4,
1588                 0x30fc0, 0x30fc4,
1589                 0x31000, 0x31004,
1590                 0x31080, 0x310fc,
1591                 0x31208, 0x31220,
1592                 0x3123c, 0x31254,
1593                 0x31300, 0x31300,
1594                 0x31308, 0x3131c,
1595                 0x31338, 0x3133c,
1596                 0x31380, 0x31380,
1597                 0x31388, 0x313a8,
1598                 0x313b4, 0x313b4,
1599                 0x31400, 0x31420,
1600                 0x31438, 0x3143c,
1601                 0x31480, 0x31480,
1602                 0x314a8, 0x314a8,
1603                 0x314b0, 0x314b4,
1604                 0x314c8, 0x314d4,
1605                 0x31a40, 0x31a4c,
1606                 0x31af0, 0x31b20,
1607                 0x31b38, 0x31b3c,
1608                 0x31b80, 0x31b80,
1609                 0x31ba8, 0x31ba8,
1610                 0x31bb0, 0x31bb4,
1611                 0x31bc8, 0x31bd4,
1612                 0x32140, 0x3218c,
1613                 0x321f0, 0x321f4,
1614                 0x32200, 0x32200,
1615                 0x32218, 0x32218,
1616                 0x32400, 0x32400,
1617                 0x32408, 0x3241c,
1618                 0x32618, 0x32620,
1619                 0x32664, 0x32664,
1620                 0x326a8, 0x326a8,
1621                 0x326ec, 0x326ec,
1622                 0x32a00, 0x32abc,
1623                 0x32b00, 0x32b38,
1624                 0x32b20, 0x32b38,
1625                 0x32b40, 0x32b58,
1626                 0x32b60, 0x32b78,
1627                 0x32c00, 0x32c00,
1628                 0x32c08, 0x32c3c,
1629                 0x33000, 0x3302c,
1630                 0x33034, 0x33050,
1631                 0x33058, 0x33058,
1632                 0x33060, 0x3308c,
1633                 0x3309c, 0x330ac,
1634                 0x330c0, 0x330c0,
1635                 0x330c8, 0x330d0,
1636                 0x330d8, 0x330e0,
1637                 0x330ec, 0x3312c,
1638                 0x33134, 0x33150,
1639                 0x33158, 0x33158,
1640                 0x33160, 0x3318c,
1641                 0x3319c, 0x331ac,
1642                 0x331c0, 0x331c0,
1643                 0x331c8, 0x331d0,
1644                 0x331d8, 0x331e0,
1645                 0x331ec, 0x33290,
1646                 0x33298, 0x332c4,
1647                 0x332e4, 0x33390,
1648                 0x33398, 0x333c4,
1649                 0x333e4, 0x3342c,
1650                 0x33434, 0x33450,
1651                 0x33458, 0x33458,
1652                 0x33460, 0x3348c,
1653                 0x3349c, 0x334ac,
1654                 0x334c0, 0x334c0,
1655                 0x334c8, 0x334d0,
1656                 0x334d8, 0x334e0,
1657                 0x334ec, 0x3352c,
1658                 0x33534, 0x33550,
1659                 0x33558, 0x33558,
1660                 0x33560, 0x3358c,
1661                 0x3359c, 0x335ac,
1662                 0x335c0, 0x335c0,
1663                 0x335c8, 0x335d0,
1664                 0x335d8, 0x335e0,
1665                 0x335ec, 0x33690,
1666                 0x33698, 0x336c4,
1667                 0x336e4, 0x33790,
1668                 0x33798, 0x337c4,
1669                 0x337e4, 0x337fc,
1670                 0x33814, 0x33814,
1671                 0x33854, 0x33868,
1672                 0x33880, 0x3388c,
1673                 0x338c0, 0x338d0,
1674                 0x338e8, 0x338ec,
1675                 0x33900, 0x3392c,
1676                 0x33934, 0x33950,
1677                 0x33958, 0x33958,
1678                 0x33960, 0x3398c,
1679                 0x3399c, 0x339ac,
1680                 0x339c0, 0x339c0,
1681                 0x339c8, 0x339d0,
1682                 0x339d8, 0x339e0,
1683                 0x339ec, 0x33a90,
1684                 0x33a98, 0x33ac4,
1685                 0x33ae4, 0x33b10,
1686                 0x33b24, 0x33b28,
1687                 0x33b38, 0x33b50,
1688                 0x33bf0, 0x33c10,
1689                 0x33c24, 0x33c28,
1690                 0x33c38, 0x33c50,
1691                 0x33cf0, 0x33cfc,
1692                 0x34000, 0x34030,
1693                 0x34100, 0x34168,
1694                 0x34190, 0x341a0,
1695                 0x341a8, 0x341b8,
1696                 0x341c4, 0x341c8,
1697                 0x341d0, 0x341d0,
1698                 0x34200, 0x34320,
1699                 0x34400, 0x344b4,
1700                 0x344c0, 0x3452c,
1701                 0x34540, 0x3461c,
1702                 0x34800, 0x348a0,
1703                 0x348c0, 0x34908,
1704                 0x34910, 0x349b8,
1705                 0x34a00, 0x34a04,
1706                 0x34a0c, 0x34a14,
1707                 0x34a1c, 0x34a2c,
1708                 0x34a44, 0x34a50,
1709                 0x34a74, 0x34a74,
1710                 0x34a7c, 0x34afc,
1711                 0x34b08, 0x34c24,
1712                 0x34d00, 0x34d14,
1713                 0x34d1c, 0x34d3c,
1714                 0x34d44, 0x34d4c,
1715                 0x34d54, 0x34d74,
1716                 0x34d7c, 0x34d7c,
1717                 0x34de0, 0x34de0,
1718                 0x34e00, 0x34ed4,
1719                 0x34f00, 0x34fa4,
1720                 0x34fc0, 0x34fc4,
1721                 0x35000, 0x35004,
1722                 0x35080, 0x350fc,
1723                 0x35208, 0x35220,
1724                 0x3523c, 0x35254,
1725                 0x35300, 0x35300,
1726                 0x35308, 0x3531c,
1727                 0x35338, 0x3533c,
1728                 0x35380, 0x35380,
1729                 0x35388, 0x353a8,
1730                 0x353b4, 0x353b4,
1731                 0x35400, 0x35420,
1732                 0x35438, 0x3543c,
1733                 0x35480, 0x35480,
1734                 0x354a8, 0x354a8,
1735                 0x354b0, 0x354b4,
1736                 0x354c8, 0x354d4,
1737                 0x35a40, 0x35a4c,
1738                 0x35af0, 0x35b20,
1739                 0x35b38, 0x35b3c,
1740                 0x35b80, 0x35b80,
1741                 0x35ba8, 0x35ba8,
1742                 0x35bb0, 0x35bb4,
1743                 0x35bc8, 0x35bd4,
1744                 0x36140, 0x3618c,
1745                 0x361f0, 0x361f4,
1746                 0x36200, 0x36200,
1747                 0x36218, 0x36218,
1748                 0x36400, 0x36400,
1749                 0x36408, 0x3641c,
1750                 0x36618, 0x36620,
1751                 0x36664, 0x36664,
1752                 0x366a8, 0x366a8,
1753                 0x366ec, 0x366ec,
1754                 0x36a00, 0x36abc,
1755                 0x36b00, 0x36b38,
1756                 0x36b20, 0x36b38,
1757                 0x36b40, 0x36b58,
1758                 0x36b60, 0x36b78,
1759                 0x36c00, 0x36c00,
1760                 0x36c08, 0x36c3c,
1761                 0x37000, 0x3702c,
1762                 0x37034, 0x37050,
1763                 0x37058, 0x37058,
1764                 0x37060, 0x3708c,
1765                 0x3709c, 0x370ac,
1766                 0x370c0, 0x370c0,
1767                 0x370c8, 0x370d0,
1768                 0x370d8, 0x370e0,
1769                 0x370ec, 0x3712c,
1770                 0x37134, 0x37150,
1771                 0x37158, 0x37158,
1772                 0x37160, 0x3718c,
1773                 0x3719c, 0x371ac,
1774                 0x371c0, 0x371c0,
1775                 0x371c8, 0x371d0,
1776                 0x371d8, 0x371e0,
1777                 0x371ec, 0x37290,
1778                 0x37298, 0x372c4,
1779                 0x372e4, 0x37390,
1780                 0x37398, 0x373c4,
1781                 0x373e4, 0x3742c,
1782                 0x37434, 0x37450,
1783                 0x37458, 0x37458,
1784                 0x37460, 0x3748c,
1785                 0x3749c, 0x374ac,
1786                 0x374c0, 0x374c0,
1787                 0x374c8, 0x374d0,
1788                 0x374d8, 0x374e0,
1789                 0x374ec, 0x3752c,
1790                 0x37534, 0x37550,
1791                 0x37558, 0x37558,
1792                 0x37560, 0x3758c,
1793                 0x3759c, 0x375ac,
1794                 0x375c0, 0x375c0,
1795                 0x375c8, 0x375d0,
1796                 0x375d8, 0x375e0,
1797                 0x375ec, 0x37690,
1798                 0x37698, 0x376c4,
1799                 0x376e4, 0x37790,
1800                 0x37798, 0x377c4,
1801                 0x377e4, 0x377fc,
1802                 0x37814, 0x37814,
1803                 0x37854, 0x37868,
1804                 0x37880, 0x3788c,
1805                 0x378c0, 0x378d0,
1806                 0x378e8, 0x378ec,
1807                 0x37900, 0x3792c,
1808                 0x37934, 0x37950,
1809                 0x37958, 0x37958,
1810                 0x37960, 0x3798c,
1811                 0x3799c, 0x379ac,
1812                 0x379c0, 0x379c0,
1813                 0x379c8, 0x379d0,
1814                 0x379d8, 0x379e0,
1815                 0x379ec, 0x37a90,
1816                 0x37a98, 0x37ac4,
1817                 0x37ae4, 0x37b10,
1818                 0x37b24, 0x37b28,
1819                 0x37b38, 0x37b50,
1820                 0x37bf0, 0x37c10,
1821                 0x37c24, 0x37c28,
1822                 0x37c38, 0x37c50,
1823                 0x37cf0, 0x37cfc,
1824                 0x40040, 0x40040,
1825                 0x40080, 0x40084,
1826                 0x40100, 0x40100,
1827                 0x40140, 0x401bc,
1828                 0x40200, 0x40214,
1829                 0x40228, 0x40228,
1830                 0x40240, 0x40258,
1831                 0x40280, 0x40280,
1832                 0x40304, 0x40304,
1833                 0x40330, 0x4033c,
1834                 0x41304, 0x413c8,
1835                 0x413d0, 0x413dc,
1836                 0x413f0, 0x413f0,
1837                 0x41400, 0x4140c,
1838                 0x41414, 0x4141c,
1839                 0x41480, 0x414d0,
1840                 0x44000, 0x4407c,
1841                 0x440c0, 0x441ac,
1842                 0x441b4, 0x4427c,
1843                 0x442c0, 0x443ac,
1844                 0x443b4, 0x4447c,
1845                 0x444c0, 0x445ac,
1846                 0x445b4, 0x4467c,
1847                 0x446c0, 0x447ac,
1848                 0x447b4, 0x4487c,
1849                 0x448c0, 0x449ac,
1850                 0x449b4, 0x44a7c,
1851                 0x44ac0, 0x44bac,
1852                 0x44bb4, 0x44c7c,
1853                 0x44cc0, 0x44dac,
1854                 0x44db4, 0x44e7c,
1855                 0x44ec0, 0x44fac,
1856                 0x44fb4, 0x4507c,
1857                 0x450c0, 0x451ac,
1858                 0x451b4, 0x451fc,
1859                 0x45800, 0x45804,
1860                 0x45810, 0x45830,
1861                 0x45840, 0x45860,
1862                 0x45868, 0x45868,
1863                 0x45880, 0x45884,
1864                 0x458a0, 0x458b0,
1865                 0x45a00, 0x45a04,
1866                 0x45a10, 0x45a30,
1867                 0x45a40, 0x45a60,
1868                 0x45a68, 0x45a68,
1869                 0x45a80, 0x45a84,
1870                 0x45aa0, 0x45ab0,
1871                 0x460c0, 0x460e4,
1872                 0x47000, 0x4703c,
1873                 0x47044, 0x4708c,
1874                 0x47200, 0x47250,
1875                 0x47400, 0x47408,
1876                 0x47414, 0x47420,
1877                 0x47600, 0x47618,
1878                 0x47800, 0x47814,
1879                 0x47820, 0x4782c,
1880                 0x50000, 0x50084,
1881                 0x50090, 0x500cc,
1882                 0x50300, 0x50384,
1883                 0x50400, 0x50400,
1884                 0x50800, 0x50884,
1885                 0x50890, 0x508cc,
1886                 0x50b00, 0x50b84,
1887                 0x50c00, 0x50c00,
1888                 0x51000, 0x51020,
1889                 0x51028, 0x510b0,
1890                 0x51300, 0x51324,
1891         };
1892
1893         u32 *buf_end = (u32 *)((char *)buf + buf_size);
1894         const unsigned int *reg_ranges;
1895         int reg_ranges_size, range;
1896         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1897
1898         /* Select the right set of register ranges to dump depending on the
1899          * adapter chip type.
1900          */
1901         switch (chip_version) {
1902         case CHELSIO_T5:
1903                 reg_ranges = t5_reg_ranges;
1904                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1905                 break;
1906
1907         case CHELSIO_T6:
1908                 reg_ranges = t6_reg_ranges;
1909                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1910                 break;
1911
1912         default:
1913                 dev_err(adap,
1914                         "Unsupported chip version %d\n", chip_version);
1915                 return;
1916         }
1917
1918         /* Clear the register buffer and insert the appropriate register
1919          * values selected by the above register ranges.
1920          */
1921         memset(buf, 0, buf_size);
1922         for (range = 0; range < reg_ranges_size; range += 2) {
1923                 unsigned int reg = reg_ranges[range];
1924                 unsigned int last_reg = reg_ranges[range + 1];
1925                 u32 *bufp = (u32 *)((char *)buf + reg);
1926
1927                 /* Iterate across the register range filling in the register
1928                  * buffer but don't write past the end of the register buffer.
1929                  */
1930                 while (reg <= last_reg && bufp < buf_end) {
1931                         *bufp++ = t4_read_reg(adap, reg);
1932                         reg += sizeof(u32);
1933                 }
1934         }
1935 }
1936
1937 /* EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */
1938 #define EEPROM_DELAY            10              /* 10us per poll spin */
1939 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
1940
1941 #define EEPROM_STAT_ADDR        0x7bfc
1942
1943 /**
1944  * Small utility function to wait till any outstanding VPD Access is complete.
1945  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
1946  * VPD Access in flight.  This allows us to handle the problem of having a
1947  * previous VPD Access time out and prevent an attempt to inject a new VPD
1948  * Request before any in-flight VPD request has completed.
1949  */
1950 static int t4_seeprom_wait(struct adapter *adapter)
1951 {
1952         unsigned int base = adapter->params.pci.vpd_cap_addr;
1953         int max_poll;
1954
1955         /* If no VPD Access is in flight, we can just return success right
1956          * away.
1957          */
1958         if (!adapter->vpd_busy)
1959                 return 0;
1960
1961         /* Poll the VPD Capability Address/Flag register waiting for it
1962          * to indicate that the operation is complete.
1963          */
1964         max_poll = EEPROM_MAX_POLL;
1965         do {
1966                 u16 val;
1967
1968                 udelay(EEPROM_DELAY);
1969                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
1970
1971                 /* If the operation is complete, mark the VPD as no longer
1972                  * busy and return success.
1973                  */
1974                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
1975                         adapter->vpd_busy = 0;
1976                         return 0;
1977                 }
1978         } while (--max_poll);
1979
1980         /* Failure!  Note that we leave the VPD Busy status set in order to
1981          * avoid pushing a new VPD Access request into the VPD Capability till
1982          * the current operation eventually succeeds.  It's a bug to issue a
1983          * new request when an existing request is in flight and will result
1984          * in corrupt hardware state.
1985          */
1986         return -ETIMEDOUT;
1987 }
1988
1989 /**
1990  * t4_seeprom_read - read a serial EEPROM location
1991  * @adapter: adapter to read
1992  * @addr: EEPROM virtual address
1993  * @data: where to store the read data
1994  *
1995  * Read a 32-bit word from a location in serial EEPROM using the card's PCI
1996  * VPD capability.  Note that this function must be called with a virtual
1997  * address.
1998  */
1999 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2000 {
2001         unsigned int base = adapter->params.pci.vpd_cap_addr;
2002         int ret;
2003
2004         /* VPD Accesses must alway be 4-byte aligned!
2005          */
2006         if (addr >= EEPROMVSIZE || (addr & 3))
2007                 return -EINVAL;
2008
2009         /* Wait for any previous operation which may still be in flight to
2010          * complete.
2011          */
2012         ret = t4_seeprom_wait(adapter);
2013         if (ret) {
2014                 dev_err(adapter, "VPD still busy from previous operation\n");
2015                 return ret;
2016         }
2017
2018         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2019          * for our request to complete.  If it doesn't complete, note the
2020          * error and return it to our caller.  Note that we do not reset the
2021          * VPD Busy status!
2022          */
2023         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2024         adapter->vpd_busy = 1;
2025         adapter->vpd_flag = PCI_VPD_ADDR_F;
2026         ret = t4_seeprom_wait(adapter);
2027         if (ret) {
2028                 dev_err(adapter, "VPD read of address %#x failed\n", addr);
2029                 return ret;
2030         }
2031
2032         /* Grab the returned data, swizzle it into our endianness and
2033          * return success.
2034          */
2035         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2036         *data = le32_to_cpu(*data);
2037         return 0;
2038 }
2039
2040 /**
2041  * t4_seeprom_write - write a serial EEPROM location
2042  * @adapter: adapter to write
2043  * @addr: virtual EEPROM address
2044  * @data: value to write
2045  *
2046  * Write a 32-bit word to a location in serial EEPROM using the card's PCI
2047  * VPD capability.  Note that this function must be called with a virtual
2048  * address.
2049  */
2050 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2051 {
2052         unsigned int base = adapter->params.pci.vpd_cap_addr;
2053         int ret;
2054         u32 stats_reg = 0;
2055         int max_poll;
2056
2057         /* VPD Accesses must alway be 4-byte aligned!
2058          */
2059         if (addr >= EEPROMVSIZE || (addr & 3))
2060                 return -EINVAL;
2061
2062         /* Wait for any previous operation which may still be in flight to
2063          * complete.
2064          */
2065         ret = t4_seeprom_wait(adapter);
2066         if (ret) {
2067                 dev_err(adapter, "VPD still busy from previous operation\n");
2068                 return ret;
2069         }
2070
2071         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2072          * for our request to complete.  If it doesn't complete, note the
2073          * error and return it to our caller.  Note that we do not reset the
2074          * VPD Busy status!
2075          */
2076         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2077                              cpu_to_le32(data));
2078         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2079                              (u16)addr | PCI_VPD_ADDR_F);
2080         adapter->vpd_busy = 1;
2081         adapter->vpd_flag = 0;
2082         ret = t4_seeprom_wait(adapter);
2083         if (ret) {
2084                 dev_err(adapter, "VPD write of address %#x failed\n", addr);
2085                 return ret;
2086         }
2087
2088         /* Reset PCI_VPD_DATA register after a transaction and wait for our
2089          * request to complete. If it doesn't complete, return error.
2090          */
2091         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2092         max_poll = EEPROM_MAX_POLL;
2093         do {
2094                 udelay(EEPROM_DELAY);
2095                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2096         } while ((stats_reg & 0x1) && --max_poll);
2097         if (!max_poll)
2098                 return -ETIMEDOUT;
2099
2100         /* Return success! */
2101         return 0;
2102 }
2103
2104 /**
2105  * t4_seeprom_wp - enable/disable EEPROM write protection
2106  * @adapter: the adapter
2107  * @enable: whether to enable or disable write protection
2108  *
2109  * Enables or disables write protection on the serial EEPROM.
2110  */
2111 int t4_seeprom_wp(struct adapter *adapter, int enable)
2112 {
2113         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2114 }
2115
2116 /**
2117  * t4_fw_tp_pio_rw - Access TP PIO through LDST
2118  * @adap: the adapter
2119  * @vals: where the indirect register values are stored/written
2120  * @nregs: how many indirect registers to read/write
2121  * @start_idx: index of first indirect register to read/write
2122  * @rw: Read (1) or Write (0)
2123  *
2124  * Access TP PIO registers through LDST
2125  */
2126 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
2127                      unsigned int start_index, unsigned int rw)
2128 {
2129         int cmd = FW_LDST_ADDRSPC_TP_PIO;
2130         struct fw_ldst_cmd c;
2131         unsigned int i;
2132         int ret;
2133
2134         for (i = 0 ; i < nregs; i++) {
2135                 memset(&c, 0, sizeof(c));
2136                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
2137                                                 F_FW_CMD_REQUEST |
2138                                                 (rw ? F_FW_CMD_READ :
2139                                                       F_FW_CMD_WRITE) |
2140                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
2141                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
2142
2143                 c.u.addrval.addr = cpu_to_be32(start_index + i);
2144                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
2145                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2146                 if (ret == 0) {
2147                         if (rw)
2148                                 vals[i] = be32_to_cpu(c.u.addrval.val);
2149                 }
2150         }
2151 }
2152
2153 /**
2154  * t4_read_rss_key - read the global RSS key
2155  * @adap: the adapter
2156  * @key: 10-entry array holding the 320-bit RSS key
2157  *
2158  * Reads the global 320-bit RSS key.
2159  */
2160 void t4_read_rss_key(struct adapter *adap, u32 *key)
2161 {
2162         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
2163 }
2164
2165 /**
2166  * t4_write_rss_key - program one of the RSS keys
2167  * @adap: the adapter
2168  * @key: 10-entry array holding the 320-bit RSS key
2169  * @idx: which RSS key to write
2170  *
2171  * Writes one of the RSS keys with the given 320-bit value.  If @idx is
2172  * 0..15 the corresponding entry in the RSS key table is written,
2173  * otherwise the global RSS key is written.
2174  */
2175 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
2176 {
2177         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
2178         u8 rss_key_addr_cnt = 16;
2179
2180         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
2181          * allows access to key addresses 16-63 by using KeyWrAddrX
2182          * as index[5:4](upper 2) into key table
2183          */
2184         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
2185             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
2186                 rss_key_addr_cnt = 32;
2187
2188         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
2189
2190         if (idx >= 0 && idx < rss_key_addr_cnt) {
2191                 if (rss_key_addr_cnt > 16)
2192                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2193                                      V_KEYWRADDRX(idx >> 4) |
2194                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
2195                 else
2196                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2197                                      V_KEYWRADDR(idx) | F_KEYWREN);
2198         }
2199 }
2200
2201 /**
2202  * t4_config_rss_range - configure a portion of the RSS mapping table
2203  * @adapter: the adapter
2204  * @mbox: mbox to use for the FW command
2205  * @viid: virtual interface whose RSS subtable is to be written
2206  * @start: start entry in the table to write
2207  * @n: how many table entries to write
2208  * @rspq: values for the "response queue" (Ingress Queue) lookup table
2209  * @nrspq: number of values in @rspq
2210  *
2211  * Programs the selected part of the VI's RSS mapping table with the
2212  * provided values.  If @nrspq < @n the supplied values are used repeatedly
2213  * until the full table range is populated.
2214  *
2215  * The caller must ensure the values in @rspq are in the range allowed for
2216  * @viid.
2217  */
2218 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2219                         int start, int n, const u16 *rspq, unsigned int nrspq)
2220 {
2221         int ret;
2222         const u16 *rsp = rspq;
2223         const u16 *rsp_end = rspq + nrspq;
2224         struct fw_rss_ind_tbl_cmd cmd;
2225
2226         memset(&cmd, 0, sizeof(cmd));
2227         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2228                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2229                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
2230         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2231
2232         /*
2233          * Each firmware RSS command can accommodate up to 32 RSS Ingress
2234          * Queue Identifiers.  These Ingress Queue IDs are packed three to
2235          * a 32-bit word as 10-bit values with the upper remaining 2 bits
2236          * reserved.
2237          */
2238         while (n > 0) {
2239                 int nq = min(n, 32);
2240                 int nq_packed = 0;
2241                 __be32 *qp = &cmd.iq0_to_iq2;
2242
2243                 /*
2244                  * Set up the firmware RSS command header to send the next
2245                  * "nq" Ingress Queue IDs to the firmware.
2246                  */
2247                 cmd.niqid = cpu_to_be16(nq);
2248                 cmd.startidx = cpu_to_be16(start);
2249
2250                 /*
2251                  * "nq" more done for the start of the next loop.
2252                  */
2253                 start += nq;
2254                 n -= nq;
2255
2256                 /*
2257                  * While there are still Ingress Queue IDs to stuff into the
2258                  * current firmware RSS command, retrieve them from the
2259                  * Ingress Queue ID array and insert them into the command.
2260                  */
2261                 while (nq > 0) {
2262                         /*
2263                          * Grab up to the next 3 Ingress Queue IDs (wrapping
2264                          * around the Ingress Queue ID array if necessary) and
2265                          * insert them into the firmware RSS command at the
2266                          * current 3-tuple position within the commad.
2267                          */
2268                         u16 qbuf[3];
2269                         u16 *qbp = qbuf;
2270                         int nqbuf = min(3, nq);
2271
2272                         nq -= nqbuf;
2273                         qbuf[0] = 0;
2274                         qbuf[1] = 0;
2275                         qbuf[2] = 0;
2276                         while (nqbuf && nq_packed < 32) {
2277                                 nqbuf--;
2278                                 nq_packed++;
2279                                 *qbp++ = *rsp++;
2280                                 if (rsp >= rsp_end)
2281                                         rsp = rspq;
2282                         }
2283                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2284                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2285                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2286                 }
2287
2288                 /*
2289                  * Send this portion of the RRS table update to the firmware;
2290                  * bail out on any errors.
2291                  */
2292                 if (is_pf4(adapter))
2293                         ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd),
2294                                          NULL);
2295                 else
2296                         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
2297                 if (ret)
2298                         return ret;
2299         }
2300
2301         return 0;
2302 }
2303
2304 /**
2305  * t4_config_vi_rss - configure per VI RSS settings
2306  * @adapter: the adapter
2307  * @mbox: mbox to use for the FW command
2308  * @viid: the VI id
2309  * @flags: RSS flags
2310  * @defq: id of the default RSS queue for the VI.
2311  *
2312  * Configures VI-specific RSS properties.
2313  */
2314 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2315                      unsigned int flags, unsigned int defq)
2316 {
2317         struct fw_rss_vi_config_cmd c;
2318
2319         memset(&c, 0, sizeof(c));
2320         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2321                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2322                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2323         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2324         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
2325                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2326         if (is_pf4(adapter))
2327                 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2328         else
2329                 return t4vf_wr_mbox(adapter, &c, sizeof(c), NULL);
2330 }
2331
2332 /**
2333  * t4_read_config_vi_rss - read the configured per VI RSS settings
2334  * @adapter: the adapter
2335  * @mbox: mbox to use for the FW command
2336  * @viid: the VI id
2337  * @flags: where to place the configured flags
2338  * @defq: where to place the id of the default RSS queue for the VI.
2339  *
2340  * Read configured VI-specific RSS properties.
2341  */
2342 int t4_read_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2343                           u64 *flags, unsigned int *defq)
2344 {
2345         struct fw_rss_vi_config_cmd c;
2346         unsigned int result;
2347         int ret;
2348
2349         memset(&c, 0, sizeof(c));
2350         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2351                                    F_FW_CMD_REQUEST | F_FW_CMD_READ |
2352                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2353         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2354         ret = t4_wr_mbox(adapter, mbox, &c, sizeof(c), &c);
2355         if (!ret) {
2356                 result = be32_to_cpu(c.u.basicvirtual.defaultq_to_udpen);
2357                 if (defq)
2358                         *defq = G_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(result);
2359                 if (flags)
2360                         *flags = result & M_FW_RSS_VI_CONFIG_CMD_DEFAULTQ;
2361         }
2362
2363         return ret;
2364 }
2365
2366 /**
2367  * init_cong_ctrl - initialize congestion control parameters
2368  * @a: the alpha values for congestion control
2369  * @b: the beta values for congestion control
2370  *
2371  * Initialize the congestion control parameters.
2372  */
2373 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2374 {
2375         int i;
2376
2377         for (i = 0; i < 9; i++) {
2378                 a[i] = 1;
2379                 b[i] = 0;
2380         }
2381
2382         a[9] = 2;
2383         a[10] = 3;
2384         a[11] = 4;
2385         a[12] = 5;
2386         a[13] = 6;
2387         a[14] = 7;
2388         a[15] = 8;
2389         a[16] = 9;
2390         a[17] = 10;
2391         a[18] = 14;
2392         a[19] = 17;
2393         a[20] = 21;
2394         a[21] = 25;
2395         a[22] = 30;
2396         a[23] = 35;
2397         a[24] = 45;
2398         a[25] = 60;
2399         a[26] = 80;
2400         a[27] = 100;
2401         a[28] = 200;
2402         a[29] = 300;
2403         a[30] = 400;
2404         a[31] = 500;
2405
2406         b[9] = 1;
2407         b[10] = 1;
2408         b[11] = 2;
2409         b[12] = 2;
2410         b[13] = 3;
2411         b[14] = 3;
2412         b[15] = 3;
2413         b[16] = 3;
2414         b[17] = 4;
2415         b[18] = 4;
2416         b[19] = 4;
2417         b[20] = 4;
2418         b[21] = 4;
2419         b[22] = 5;
2420         b[23] = 5;
2421         b[24] = 5;
2422         b[25] = 5;
2423         b[26] = 5;
2424         b[27] = 5;
2425         b[28] = 6;
2426         b[29] = 6;
2427         b[30] = 7;
2428         b[31] = 7;
2429 }
2430
2431 #define INIT_CMD(var, cmd, rd_wr) do { \
2432         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
2433                         F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
2434         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
2435 } while (0)
2436
2437 int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
2438 {
2439         u32 cclk_param, cclk_val;
2440         int ret;
2441
2442         /*
2443          * Ask firmware for the Core Clock since it knows how to translate the
2444          * Reference Clock ('V2') VPD field into a Core Clock value ...
2445          */
2446         cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2447                       V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
2448         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2449                               1, &cclk_param, &cclk_val);
2450         if (ret) {
2451                 dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
2452                         __func__, ret);
2453                 return ret;
2454         }
2455
2456         p->cclk = cclk_val;
2457         dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
2458         return 0;
2459 }
2460
2461 /**
2462  * t4_get_pfres - retrieve VF resource limits
2463  * @adapter: the adapter
2464  *
2465  * Retrieves configured resource limits and capabilities for a physical
2466  * function.  The results are stored in @adapter->pfres.
2467  */
2468 int t4_get_pfres(struct adapter *adapter)
2469 {
2470         struct pf_resources *pfres = &adapter->params.pfres;
2471         struct fw_pfvf_cmd cmd, rpl;
2472         u32 word;
2473         int v;
2474
2475         /*
2476          * Execute PFVF Read command to get VF resource limits; bail out early
2477          * with error on command failure.
2478          */
2479         memset(&cmd, 0, sizeof(cmd));
2480         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
2481                                     F_FW_CMD_REQUEST |
2482                                     F_FW_CMD_READ |
2483                                     V_FW_PFVF_CMD_PFN(adapter->pf) |
2484                                     V_FW_PFVF_CMD_VFN(0));
2485         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2486         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2487         if (v != FW_SUCCESS)
2488                 return v;
2489
2490         /*
2491          * Extract PF resource limits and return success.
2492          */
2493         word = be32_to_cpu(rpl.niqflint_niq);
2494         pfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
2495
2496         word = be32_to_cpu(rpl.type_to_neq);
2497         pfres->neq = G_FW_PFVF_CMD_NEQ(word);
2498
2499         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2500         pfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
2501
2502         return 0;
2503 }
2504
2505 /* serial flash and firmware constants and flash config file constants */
2506 enum {
2507         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2508
2509         /* flash command opcodes */
2510         SF_PROG_PAGE    = 2,          /* program page */
2511         SF_WR_DISABLE   = 4,          /* disable writes */
2512         SF_RD_STATUS    = 5,          /* read status register */
2513         SF_WR_ENABLE    = 6,          /* enable writes */
2514         SF_RD_DATA_FAST = 0xb,        /* read flash */
2515         SF_RD_ID        = 0x9f,       /* read ID */
2516         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2517 };
2518
2519 /**
2520  * sf1_read - read data from the serial flash
2521  * @adapter: the adapter
2522  * @byte_cnt: number of bytes to read
2523  * @cont: whether another operation will be chained
2524  * @lock: whether to lock SF for PL access only
2525  * @valp: where to store the read data
2526  *
2527  * Reads up to 4 bytes of data from the serial flash.  The location of
2528  * the read needs to be specified prior to calling this by issuing the
2529  * appropriate commands to the serial flash.
2530  */
2531 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2532                     int lock, u32 *valp)
2533 {
2534         int ret;
2535
2536         if (!byte_cnt || byte_cnt > 4)
2537                 return -EINVAL;
2538         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2539                 return -EBUSY;
2540         t4_write_reg(adapter, A_SF_OP,
2541                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
2542         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2543         if (!ret)
2544                 *valp = t4_read_reg(adapter, A_SF_DATA);
2545         return ret;
2546 }
2547
2548 /**
2549  * sf1_write - write data to the serial flash
2550  * @adapter: the adapter
2551  * @byte_cnt: number of bytes to write
2552  * @cont: whether another operation will be chained
2553  * @lock: whether to lock SF for PL access only
2554  * @val: value to write
2555  *
2556  * Writes up to 4 bytes of data to the serial flash.  The location of
2557  * the write needs to be specified prior to calling this by issuing the
2558  * appropriate commands to the serial flash.
2559  */
2560 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2561                      int lock, u32 val)
2562 {
2563         if (!byte_cnt || byte_cnt > 4)
2564                 return -EINVAL;
2565         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2566                 return -EBUSY;
2567         t4_write_reg(adapter, A_SF_DATA, val);
2568         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
2569                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
2570         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2571 }
2572
2573 /**
2574  * t4_read_flash - read words from serial flash
2575  * @adapter: the adapter
2576  * @addr: the start address for the read
2577  * @nwords: how many 32-bit words to read
2578  * @data: where to store the read data
2579  * @byte_oriented: whether to store data as bytes or as words
2580  *
2581  * Read the specified number of 32-bit words from the serial flash.
2582  * If @byte_oriented is set the read data is stored as a byte array
2583  * (i.e., big-endian), otherwise as 32-bit words in the platform's
2584  * natural endianness.
2585  */
2586 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2587                   unsigned int nwords, u32 *data, int byte_oriented)
2588 {
2589         int ret;
2590
2591         if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
2592             (addr & 3))
2593                 return -EINVAL;
2594
2595         addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;
2596
2597         ret = sf1_write(adapter, 4, 1, 0, addr);
2598         if (ret != 0)
2599                 return ret;
2600
2601         ret = sf1_read(adapter, 1, 1, 0, data);
2602         if (ret != 0)
2603                 return ret;
2604
2605         for ( ; nwords; nwords--, data++) {
2606                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2607                 if (nwords == 1)
2608                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
2609                 if (ret)
2610                         return ret;
2611                 if (byte_oriented)
2612                         *data = cpu_to_be32(*data);
2613         }
2614         return 0;
2615 }
2616
2617 /**
2618  * t4_get_exprom_version - return the Expansion ROM version (if any)
2619  * @adapter: the adapter
2620  * @vers: where to place the version
2621  *
2622  * Reads the Expansion ROM header from FLASH and returns the version
2623  * number (if present) through the @vers return value pointer.  We return
2624  * this in the Firmware Version Format since it's convenient.  Return
2625  * 0 on success, -ENOENT if no Expansion ROM is present.
2626  */
2627 static int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
2628 {
2629         struct exprom_header {
2630                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2631                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2632         } *hdr;
2633         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2634                                            sizeof(u32))];
2635         int ret;
2636
2637         ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
2638                             ARRAY_SIZE(exprom_header_buf),
2639                             exprom_header_buf, 0);
2640         if (ret)
2641                 return ret;
2642
2643         hdr = (struct exprom_header *)exprom_header_buf;
2644         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2645                 return -ENOENT;
2646
2647         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
2648                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
2649                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
2650                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
2651         return 0;
2652 }
2653
2654 /**
2655  * t4_get_fw_version - read the firmware version
2656  * @adapter: the adapter
2657  * @vers: where to place the version
2658  *
2659  * Reads the FW version from flash.
2660  */
2661 static int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2662 {
2663         return t4_read_flash(adapter, FLASH_FW_START +
2664                              offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
2665 }
2666
2667 /**
2668  *     t4_get_bs_version - read the firmware bootstrap version
2669  *     @adapter: the adapter
2670  *     @vers: where to place the version
2671  *
2672  *     Reads the FW Bootstrap version from flash.
2673  */
2674 static int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2675 {
2676         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2677                              offsetof(struct fw_hdr, fw_ver), 1,
2678                              vers, 0);
2679 }
2680
2681 /**
2682  * t4_get_tp_version - read the TP microcode version
2683  * @adapter: the adapter
2684  * @vers: where to place the version
2685  *
2686  * Reads the TP microcode version from flash.
2687  */
2688 static int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2689 {
2690         return t4_read_flash(adapter, FLASH_FW_START +
2691                              offsetof(struct fw_hdr, tp_microcode_ver),
2692                              1, vers, 0);
2693 }
2694
2695 /**
2696  * t4_get_version_info - extract various chip/firmware version information
2697  * @adapter: the adapter
2698  *
2699  * Reads various chip/firmware version numbers and stores them into the
2700  * adapter Adapter Parameters structure.  If any of the efforts fails
2701  * the first failure will be returned, but all of the version numbers
2702  * will be read.
2703  */
2704 int t4_get_version_info(struct adapter *adapter)
2705 {
2706         int ret = 0;
2707
2708 #define FIRST_RET(__getvinfo) \
2709         do { \
2710                 int __ret = __getvinfo; \
2711                 if (__ret && !ret) \
2712                         ret = __ret; \
2713         } while (0)
2714
2715         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
2716         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
2717         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
2718         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
2719
2720 #undef FIRST_RET
2721
2722         return ret;
2723 }
2724
2725 /**
2726  * t4_dump_version_info - dump all of the adapter configuration IDs
2727  * @adapter: the adapter
2728  *
2729  * Dumps all of the various bits of adapter configuration version/revision
2730  * IDs information.  This is typically called at some point after
2731  * t4_get_version_info() has been called.
2732  */
2733 void t4_dump_version_info(struct adapter *adapter)
2734 {
2735         /**
2736          * Device information.
2737          */
2738         dev_info(adapter, "Chelsio rev %d\n",
2739                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
2740
2741         /**
2742          * Firmware Version.
2743          */
2744         if (!adapter->params.fw_vers)
2745                 dev_warn(adapter, "No firmware loaded\n");
2746         else
2747                 dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
2748                          G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
2749                          G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
2750                          G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
2751                          G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
2752
2753         /**
2754          * Bootstrap Firmware Version.
2755          */
2756         if (!adapter->params.bs_vers)
2757                 dev_warn(adapter, "No bootstrap loaded\n");
2758         else
2759                 dev_info(adapter, "Bootstrap version: %u.%u.%u.%u\n",
2760                          G_FW_HDR_FW_VER_MAJOR(adapter->params.bs_vers),
2761                          G_FW_HDR_FW_VER_MINOR(adapter->params.bs_vers),
2762                          G_FW_HDR_FW_VER_MICRO(adapter->params.bs_vers),
2763                          G_FW_HDR_FW_VER_BUILD(adapter->params.bs_vers));
2764
2765         /**
2766          * TP Microcode Version.
2767          */
2768         if (!adapter->params.tp_vers)
2769                 dev_warn(adapter, "No TP Microcode loaded\n");
2770         else
2771                 dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
2772                          G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
2773                          G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
2774                          G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
2775                          G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
2776
2777         /**
2778          * Expansion ROM version.
2779          */
2780         if (!adapter->params.er_vers)
2781                 dev_info(adapter, "No Expansion ROM loaded\n");
2782         else
2783                 dev_info(adapter, "Expansion ROM version: %u.%u.%u.%u\n",
2784                          G_FW_HDR_FW_VER_MAJOR(adapter->params.er_vers),
2785                          G_FW_HDR_FW_VER_MINOR(adapter->params.er_vers),
2786                          G_FW_HDR_FW_VER_MICRO(adapter->params.er_vers),
2787                          G_FW_HDR_FW_VER_BUILD(adapter->params.er_vers));
2788 }
2789
2790 /**
2791  * t4_link_l1cfg_core - apply link configuration to MAC/PHY
2792  * @pi: the port info
2793  * @caps: link capabilities to configure
2794  * @sleep_ok: if true we may sleep while awaiting command completion
2795  *
2796  * Set up a port's MAC and PHY according to a desired link configuration.
2797  * - If the PHY can auto-negotiate first decide what to advertise, then
2798  *   enable/disable auto-negotiation as desired, and reset.
2799  * - If the PHY does not auto-negotiate just reset it.
2800  * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2801  *   otherwise do it later based on the outcome of auto-negotiation.
2802  */
2803 int t4_link_l1cfg_core(struct port_info *pi, u32 caps, u8 sleep_ok)
2804 {
2805         struct link_config *lc = &pi->link_cfg;
2806         struct adapter *adap = pi->adapter;
2807         struct fw_port_cmd cmd;
2808         int ret;
2809
2810         memset(&cmd, 0, sizeof(cmd));
2811         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
2812                                        F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
2813                                        V_FW_PORT_CMD_PORTID(pi->port_id));
2814         cmd.action_to_len16 =
2815                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
2816                             FW_LEN16(cmd));
2817
2818         cmd.u.l1cfg32.rcap32 = cpu_to_be32(caps);
2819
2820         if (sleep_ok)
2821                 ret = t4_wr_mbox(adap, adap->mbox, &cmd, sizeof(cmd), NULL);
2822         else
2823                 ret = t4_wr_mbox_ns(adap, adap->mbox, &cmd, sizeof(cmd), NULL);
2824
2825         if (ret == FW_SUCCESS)
2826                 lc->link_caps = caps;
2827         else
2828                 dev_err(adap,
2829                         "Requested Port Capabilities %#x rejected, error %d\n",
2830                         caps, ret);
2831
2832         return ret;
2833 }
2834
2835 /**
2836  * t4_flash_cfg_addr - return the address of the flash configuration file
2837  * @adapter: the adapter
2838  *
2839  * Return the address within the flash where the Firmware Configuration
2840  * File is stored, or an error if the device FLASH is too small to contain
2841  * a Firmware Configuration File.
2842  */
2843 int t4_flash_cfg_addr(struct adapter *adapter)
2844 {
2845         /*
2846          * If the device FLASH isn't large enough to hold a Firmware
2847          * Configuration File, return an error.
2848          */
2849         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
2850                 return -ENOSPC;
2851
2852         return FLASH_CFG_START;
2853 }
2854
2855 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2856
2857 /**
2858  * t4_intr_enable - enable interrupts
2859  * @adapter: the adapter whose interrupts should be enabled
2860  *
2861  * Enable PF-specific interrupts for the calling function and the top-level
2862  * interrupt concentrator for global interrupts.  Interrupts are already
2863  * enabled at each module, here we just enable the roots of the interrupt
2864  * hierarchies.
2865  *
2866  * Note: this function should be called only when the driver manages
2867  * non PF-specific interrupts from the various HW modules.  Only one PCI
2868  * function at a time should be doing this.
2869  */
2870 void t4_intr_enable(struct adapter *adapter)
2871 {
2872         u32 val = 0;
2873         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2874         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2875                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2876
2877         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2878                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
2879         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2880                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2881                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
2882                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2883                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2884                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2885                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
2886         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2887         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2888 }
2889
2890 /**
2891  * t4_intr_disable - disable interrupts
2892  * @adapter: the adapter whose interrupts should be disabled
2893  *
2894  * Disable interrupts.  We only disable the top-level interrupt
2895  * concentrators.  The caller must be a PCI function managing global
2896  * interrupts.
2897  */
2898 void t4_intr_disable(struct adapter *adapter)
2899 {
2900         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2901         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2902                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2903
2904         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2905         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2906 }
2907
2908 /**
2909  * t4_get_port_type_description - return Port Type string description
2910  * @port_type: firmware Port Type enumeration
2911  */
2912 const char *t4_get_port_type_description(enum fw_port_type port_type)
2913 {
2914         static const char * const port_type_description[] = {
2915                 "Fiber_XFI",
2916                 "Fiber_XAUI",
2917                 "BT_SGMII",
2918                 "BT_XFI",
2919                 "BT_XAUI",
2920                 "KX4",
2921                 "CX4",
2922                 "KX",
2923                 "KR",
2924                 "SFP",
2925                 "BP_AP",
2926                 "BP4_AP",
2927                 "QSFP_10G",
2928                 "QSA",
2929                 "QSFP",
2930                 "BP40_BA",
2931                 "KR4_100G",
2932                 "CR4_QSFP",
2933                 "CR_QSFP",
2934                 "CR2_QSFP",
2935                 "SFP28",
2936                 "KR_SFP28",
2937         };
2938
2939         if (port_type < ARRAY_SIZE(port_type_description))
2940                 return port_type_description[port_type];
2941         return "UNKNOWN";
2942 }
2943
2944 /**
2945  * t4_get_mps_bg_map - return the buffer groups associated with a port
2946  * @adap: the adapter
2947  * @pidx: the port index
2948  *
2949  * Returns a bitmap indicating which MPS buffer groups are associated
2950  * with the given port.  Bit i is set if buffer group i is used by the
2951  * port.
2952  */
2953 unsigned int t4_get_mps_bg_map(struct adapter *adap, unsigned int pidx)
2954 {
2955         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2956         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adap,
2957                                                           A_MPS_CMN_CTL));
2958
2959         if (pidx >= nports) {
2960                 dev_warn(adap, "MPS Port Index %d >= Nports %d\n",
2961                          pidx, nports);
2962                 return 0;
2963         }
2964
2965         switch (chip_version) {
2966         case CHELSIO_T4:
2967         case CHELSIO_T5:
2968                 switch (nports) {
2969                 case 1: return 0xf;
2970                 case 2: return 3 << (2 * pidx);
2971                 case 4: return 1 << pidx;
2972                 }
2973                 break;
2974
2975         case CHELSIO_T6:
2976                 switch (nports) {
2977                 case 2: return 1 << (2 * pidx);
2978                 }
2979                 break;
2980         }
2981
2982         dev_err(adap, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
2983                 chip_version, nports);
2984         return 0;
2985 }
2986
2987 /**
2988  * t4_get_tp_ch_map - return TP ingress channels associated with a port
2989  * @adapter: the adapter
2990  * @pidx: the port index
2991  *
2992  * Returns a bitmap indicating which TP Ingress Channels are associated with
2993  * a given Port.  Bit i is set if TP Ingress Channel i is used by the Port.
2994  */
2995 unsigned int t4_get_tp_ch_map(struct adapter *adapter, unsigned int pidx)
2996 {
2997         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
2998         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adapter,
2999                                                           A_MPS_CMN_CTL));
3000
3001         if (pidx >= nports) {
3002                 dev_warn(adap, "TP Port Index %d >= Nports %d\n",
3003                          pidx, nports);
3004                 return 0;
3005         }
3006
3007         switch (chip_version) {
3008         case CHELSIO_T4:
3009         case CHELSIO_T5:
3010                 /* Note that this happens to be the same values as the MPS
3011                  * Buffer Group Map for these Chips.  But we replicate the code
3012                  * here because they're really separate concepts.
3013                  */
3014                 switch (nports) {
3015                 case 1: return 0xf;
3016                 case 2: return 3 << (2 * pidx);
3017                 case 4: return 1 << pidx;
3018                 }
3019                 break;
3020
3021         case CHELSIO_T6:
3022                 switch (nports) {
3023                 case 2: return 1 << pidx;
3024                 }
3025                 break;
3026         }
3027
3028         dev_err(adapter, "Need TP Channel Map for Chip %0x, Nports %d\n",
3029                 chip_version, nports);
3030         return 0;
3031 }
3032
3033 /**
3034  * t4_get_port_stats - collect port statistics
3035  * @adap: the adapter
3036  * @idx: the port index
3037  * @p: the stats structure to fill
3038  *
3039  * Collect statistics related to the given port from HW.
3040  */
3041 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3042 {
3043         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3044         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
3045
3046 #define GET_STAT(name) \
3047         t4_read_reg64(adap, \
3048                       (is_t4(adap->params.chip) ? \
3049                        PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
3050                        T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3051 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3052
3053         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3054         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3055         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3056         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3057         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3058         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3059         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3060         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3061         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3062         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3063         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3064         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3065         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3066         p->tx_drop             = GET_STAT(TX_PORT_DROP);
3067         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3068         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3069         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3070         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3071         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3072         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3073         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3074         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3075         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3076
3077         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3078                 if (stat_ctl & F_COUNTPAUSESTATTX) {
3079                         p->tx_frames -= p->tx_pause;
3080                         p->tx_octets -= p->tx_pause * 64;
3081                 }
3082                 if (stat_ctl & F_COUNTPAUSEMCTX)
3083                         p->tx_mcast_frames -= p->tx_pause;
3084         }
3085
3086         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3087         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3088         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3089         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3090         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3091         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3092         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3093         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3094         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3095         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3096         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3097         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3098         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3099         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3100         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3101         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3102         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3103         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3104         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3105         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3106         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3107         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3108         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3109         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3110         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3111         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3112         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3113
3114         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3115                 if (stat_ctl & F_COUNTPAUSESTATRX) {
3116                         p->rx_frames -= p->rx_pause;
3117                         p->rx_octets -= p->rx_pause * 64;
3118                 }
3119                 if (stat_ctl & F_COUNTPAUSEMCRX)
3120                         p->rx_mcast_frames -= p->rx_pause;
3121         }
3122
3123         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3124         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3125         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3126         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3127         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3128         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3129         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3130         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3131
3132 #undef GET_STAT
3133 #undef GET_STAT_COM
3134 }
3135
3136 /**
3137  * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
3138  * @adap: The adapter
3139  * @idx: The port
3140  * @stats: Current stats to fill
3141  * @offset: Previous stats snapshot
3142  */
3143 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3144                               struct port_stats *stats,
3145                               struct port_stats *offset)
3146 {
3147         u64 *s, *o;
3148         unsigned int i;
3149
3150         t4_get_port_stats(adap, idx, stats);
3151         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
3152              i < (sizeof(struct port_stats) / sizeof(u64));
3153              i++, s++, o++)
3154                 *s -= *o;
3155 }
3156
3157 /**
3158  * t4_clr_port_stats - clear port statistics
3159  * @adap: the adapter
3160  * @idx: the port index
3161  *
3162  * Clear HW statistics for the given port.
3163  */
3164 void t4_clr_port_stats(struct adapter *adap, int idx)
3165 {
3166         unsigned int i;
3167         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3168         u32 port_base_addr;
3169
3170         if (is_t4(adap->params.chip))
3171                 port_base_addr = PORT_BASE(idx);
3172         else
3173                 port_base_addr = T5_PORT_BASE(idx);
3174
3175         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3176              i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3177                 t4_write_reg(adap, port_base_addr + i, 0);
3178         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3179              i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3180                 t4_write_reg(adap, port_base_addr + i, 0);
3181         for (i = 0; i < 4; i++)
3182                 if (bgmap & (1 << i)) {
3183                         t4_write_reg(adap,
3184                                      A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
3185                                      i * 8, 0);
3186                         t4_write_reg(adap,
3187                                      A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
3188                                      i * 8, 0);
3189                 }
3190 }
3191
3192 /**
3193  * t4_fw_hello - establish communication with FW
3194  * @adap: the adapter
3195  * @mbox: mailbox to use for the FW command
3196  * @evt_mbox: mailbox to receive async FW events
3197  * @master: specifies the caller's willingness to be the device master
3198  * @state: returns the current device state (if non-NULL)
3199  *
3200  * Issues a command to establish communication with FW.  Returns either
3201  * an error (negative integer) or the mailbox of the Master PF.
3202  */
3203 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
3204                 enum dev_master master, enum dev_state *state)
3205 {
3206         int ret;
3207         struct fw_hello_cmd c;
3208         u32 v;
3209         unsigned int master_mbox;
3210         int retries = FW_CMD_HELLO_RETRIES;
3211
3212 retry:
3213         memset(&c, 0, sizeof(c));
3214         INIT_CMD(c, HELLO, WRITE);
3215         c.err_to_clearinit = cpu_to_be32(
3216                         V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
3217                         V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
3218                         V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
3219                                                 M_FW_HELLO_CMD_MBMASTER) |
3220                         V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
3221                         V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
3222                         F_FW_HELLO_CMD_CLEARINIT);
3223
3224         /*
3225          * Issue the HELLO command to the firmware.  If it's not successful
3226          * but indicates that we got a "busy" or "timeout" condition, retry
3227          * the HELLO until we exhaust our retry limit.  If we do exceed our
3228          * retry limit, check to see if the firmware left us any error
3229          * information and report that if so ...
3230          */
3231         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3232         if (ret != FW_SUCCESS) {
3233                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
3234                         goto retry;
3235                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
3236                         t4_report_fw_error(adap);
3237                 return ret;
3238         }
3239
3240         v = be32_to_cpu(c.err_to_clearinit);
3241         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
3242         if (state) {
3243                 if (v & F_FW_HELLO_CMD_ERR)
3244                         *state = DEV_STATE_ERR;
3245                 else if (v & F_FW_HELLO_CMD_INIT)
3246                         *state = DEV_STATE_INIT;
3247                 else
3248                         *state = DEV_STATE_UNINIT;
3249         }
3250
3251         /*
3252          * If we're not the Master PF then we need to wait around for the
3253          * Master PF Driver to finish setting up the adapter.
3254          *
3255          * Note that we also do this wait if we're a non-Master-capable PF and
3256          * there is no current Master PF; a Master PF may show up momentarily
3257          * and we wouldn't want to fail pointlessly.  (This can happen when an
3258          * OS loads lots of different drivers rapidly at the same time).  In
3259          * this case, the Master PF returned by the firmware will be
3260          * M_PCIE_FW_MASTER so the test below will work ...
3261          */
3262         if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
3263             master_mbox != mbox) {
3264                 int waiting = FW_CMD_HELLO_TIMEOUT;
3265
3266                 /*
3267                  * Wait for the firmware to either indicate an error or
3268                  * initialized state.  If we see either of these we bail out
3269                  * and report the issue to the caller.  If we exhaust the
3270                  * "hello timeout" and we haven't exhausted our retries, try
3271                  * again.  Otherwise bail with a timeout error.
3272                  */
3273                 for (;;) {
3274                         u32 pcie_fw;
3275
3276                         msleep(50);
3277                         waiting -= 50;
3278
3279                         /*
3280                          * If neither Error nor Initialialized are indicated
3281                          * by the firmware keep waiting till we exaust our
3282                          * timeout ... and then retry if we haven't exhausted
3283                          * our retries ...
3284                          */
3285                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
3286                         if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
3287                                 if (waiting <= 0) {
3288                                         if (retries-- > 0)
3289                                                 goto retry;
3290
3291                                         return -ETIMEDOUT;
3292                                 }
3293                                 continue;
3294                         }
3295
3296                         /*
3297                          * We either have an Error or Initialized condition
3298                          * report errors preferentially.
3299                          */
3300                         if (state) {
3301                                 if (pcie_fw & F_PCIE_FW_ERR)
3302                                         *state = DEV_STATE_ERR;
3303                                 else if (pcie_fw & F_PCIE_FW_INIT)
3304                                         *state = DEV_STATE_INIT;
3305                         }
3306
3307                         /*
3308                          * If we arrived before a Master PF was selected and
3309                          * there's not a valid Master PF, grab its identity
3310                          * for our caller.
3311                          */
3312                         if (master_mbox == M_PCIE_FW_MASTER &&
3313                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
3314                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
3315                         break;
3316                 }
3317         }
3318
3319         return master_mbox;
3320 }
3321
3322 /**
3323  * t4_fw_bye - end communication with FW
3324  * @adap: the adapter
3325  * @mbox: mailbox to use for the FW command
3326  *
3327  * Issues a command to terminate communication with FW.
3328  */
3329 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
3330 {
3331         struct fw_bye_cmd c;
3332
3333         memset(&c, 0, sizeof(c));
3334         INIT_CMD(c, BYE, WRITE);
3335         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3336 }
3337
3338 /**
3339  * t4_fw_reset - issue a reset to FW
3340  * @adap: the adapter
3341  * @mbox: mailbox to use for the FW command
3342  * @reset: specifies the type of reset to perform
3343  *
3344  * Issues a reset command of the specified type to FW.
3345  */
3346 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
3347 {
3348         struct fw_reset_cmd c;
3349
3350         memset(&c, 0, sizeof(c));
3351         INIT_CMD(c, RESET, WRITE);
3352         c.val = cpu_to_be32(reset);
3353         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3354 }
3355
3356 /**
3357  * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
3358  * @adap: the adapter
3359  * @mbox: mailbox to use for the FW RESET command (if desired)
3360  * @force: force uP into RESET even if FW RESET command fails
3361  *
3362  * Issues a RESET command to firmware (if desired) with a HALT indication
3363  * and then puts the microprocessor into RESET state.  The RESET command
3364  * will only be issued if a legitimate mailbox is provided (mbox <=
3365  * M_PCIE_FW_MASTER).
3366  *
3367  * This is generally used in order for the host to safely manipulate the
3368  * adapter without fear of conflicting with whatever the firmware might
3369  * be doing.  The only way out of this state is to RESTART the firmware
3370  * ...
3371  */
3372 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
3373 {
3374         int ret = 0;
3375
3376         /*
3377          * If a legitimate mailbox is provided, issue a RESET command
3378          * with a HALT indication.
3379          */
3380         if (mbox <= M_PCIE_FW_MASTER) {
3381                 struct fw_reset_cmd c;
3382
3383                 memset(&c, 0, sizeof(c));
3384                 INIT_CMD(c, RESET, WRITE);
3385                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
3386                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
3387                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3388         }
3389
3390         /*
3391          * Normally we won't complete the operation if the firmware RESET
3392          * command fails but if our caller insists we'll go ahead and put the
3393          * uP into RESET.  This can be useful if the firmware is hung or even
3394          * missing ...  We'll have to take the risk of putting the uP into
3395          * RESET without the cooperation of firmware in that case.
3396          *
3397          * We also force the firmware's HALT flag to be on in case we bypassed
3398          * the firmware RESET command above or we're dealing with old firmware
3399          * which doesn't have the HALT capability.  This will serve as a flag
3400          * for the incoming firmware to know that it's coming out of a HALT
3401          * rather than a RESET ... if it's new enough to understand that ...
3402          */
3403         if (ret == 0 || force) {
3404                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
3405                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
3406                                  F_PCIE_FW_HALT);
3407         }
3408
3409         /*
3410          * And we always return the result of the firmware RESET command
3411          * even when we force the uP into RESET ...
3412          */
3413         return ret;
3414 }
3415
3416 /**
3417  * t4_fw_restart - restart the firmware by taking the uP out of RESET
3418  * @adap: the adapter
3419  * @mbox: mailbox to use for the FW RESET command (if desired)
3420  * @reset: if we want to do a RESET to restart things
3421  *
3422  * Restart firmware previously halted by t4_fw_halt().  On successful
3423  * return the previous PF Master remains as the new PF Master and there
3424  * is no need to issue a new HELLO command, etc.
3425  *
3426  * We do this in two ways:
3427  *
3428  * 1. If we're dealing with newer firmware we'll simply want to take
3429  *    the chip's microprocessor out of RESET.  This will cause the
3430  *    firmware to start up from its start vector.  And then we'll loop
3431  *    until the firmware indicates it's started again (PCIE_FW.HALT
3432  *    reset to 0) or we timeout.
3433  *
3434  * 2. If we're dealing with older firmware then we'll need to RESET
3435  *    the chip since older firmware won't recognize the PCIE_FW.HALT
3436  *    flag and automatically RESET itself on startup.
3437  */
3438 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
3439 {
3440         if (reset) {
3441                 /*
3442                  * Since we're directing the RESET instead of the firmware
3443                  * doing it automatically, we need to clear the PCIE_FW.HALT
3444                  * bit.
3445                  */
3446                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
3447
3448                 /*
3449                  * If we've been given a valid mailbox, first try to get the
3450                  * firmware to do the RESET.  If that works, great and we can
3451                  * return success.  Otherwise, if we haven't been given a
3452                  * valid mailbox or the RESET command failed, fall back to
3453                  * hitting the chip with a hammer.
3454                  */
3455                 if (mbox <= M_PCIE_FW_MASTER) {
3456                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3457                         msleep(100);
3458                         if (t4_fw_reset(adap, mbox,
3459                                         F_PIORST | F_PIORSTMODE) == 0)
3460                                 return 0;
3461                 }
3462
3463                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
3464                 msleep(2000);
3465         } else {
3466                 int ms;
3467
3468                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3469                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
3470                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
3471                                 return FW_SUCCESS;
3472                         msleep(100);
3473                         ms += 100;
3474                 }
3475                 return -ETIMEDOUT;
3476         }
3477         return 0;
3478 }
3479
3480 /**
3481  * t4_fl_pkt_align - return the fl packet alignment
3482  * @adap: the adapter
3483  *
3484  * T4 has a single field to specify the packing and padding boundary.
3485  * T5 onwards has separate fields for this and hence the alignment for
3486  * next packet offset is maximum of these two.
3487  */
3488 int t4_fl_pkt_align(struct adapter *adap)
3489 {
3490         u32 sge_control, sge_control2;
3491         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
3492
3493         sge_control = t4_read_reg(adap, A_SGE_CONTROL);
3494
3495         /* T4 uses a single control field to specify both the PCIe Padding and
3496          * Packing Boundary.  T5 introduced the ability to specify these
3497          * separately.  The actual Ingress Packet Data alignment boundary
3498          * within Packed Buffer Mode is the maximum of these two
3499          * specifications.
3500          */
3501         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
3502                 ingpad_shift = X_INGPADBOUNDARY_SHIFT;
3503         else
3504                 ingpad_shift = X_T6_INGPADBOUNDARY_SHIFT;
3505
3506         ingpadboundary = 1 << (G_INGPADBOUNDARY(sge_control) + ingpad_shift);
3507
3508         fl_align = ingpadboundary;
3509         if (!is_t4(adap->params.chip)) {
3510                 sge_control2 = t4_read_reg(adap, A_SGE_CONTROL2);
3511                 ingpackboundary = G_INGPACKBOUNDARY(sge_control2);
3512                 if (ingpackboundary == X_INGPACKBOUNDARY_16B)
3513                         ingpackboundary = 16;
3514                 else
3515                         ingpackboundary = 1 << (ingpackboundary +
3516                                         X_INGPACKBOUNDARY_SHIFT);
3517
3518                 fl_align = max(ingpadboundary, ingpackboundary);
3519         }
3520         return fl_align;
3521 }
3522
3523 /**
3524  * t4_fixup_host_params_compat - fix up host-dependent parameters
3525  * @adap: the adapter
3526  * @page_size: the host's Base Page Size
3527  * @cache_line_size: the host's Cache Line Size
3528  * @chip_compat: maintain compatibility with designated chip
3529  *
3530  * Various registers in the chip contain values which are dependent on the
3531  * host's Base Page and Cache Line Sizes.  This function will fix all of
3532  * those registers with the appropriate values as passed in ...
3533  *
3534  * @chip_compat is used to limit the set of changes that are made
3535  * to be compatible with the indicated chip release.  This is used by
3536  * drivers to maintain compatibility with chip register settings when
3537  * the drivers haven't [yet] been updated with new chip support.
3538  */
3539 int t4_fixup_host_params_compat(struct adapter *adap,
3540                                 unsigned int page_size,
3541                                 unsigned int cache_line_size,
3542                                 enum chip_type chip_compat)
3543 {
3544         unsigned int page_shift = cxgbe_fls(page_size) - 1;
3545         unsigned int sge_hps = page_shift - 10;
3546         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
3547         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
3548         unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;
3549
3550         t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
3551                      V_HOSTPAGESIZEPF0(sge_hps) |
3552                      V_HOSTPAGESIZEPF1(sge_hps) |
3553                      V_HOSTPAGESIZEPF2(sge_hps) |
3554                      V_HOSTPAGESIZEPF3(sge_hps) |
3555                      V_HOSTPAGESIZEPF4(sge_hps) |
3556                      V_HOSTPAGESIZEPF5(sge_hps) |
3557                      V_HOSTPAGESIZEPF6(sge_hps) |
3558                      V_HOSTPAGESIZEPF7(sge_hps));
3559
3560         if (is_t4(adap->params.chip) || is_t4(chip_compat))
3561                 t4_set_reg_field(adap, A_SGE_CONTROL,
3562                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3563                                  F_EGRSTATUSPAGESIZE,
3564                                  V_INGPADBOUNDARY(fl_align_log -
3565                                                   X_INGPADBOUNDARY_SHIFT) |
3566                                 V_EGRSTATUSPAGESIZE(stat_len != 64));
3567         else {
3568                 unsigned int pack_align;
3569                 unsigned int ingpad, ingpack;
3570                 unsigned int pcie_cap;
3571
3572                 /*
3573                  * T5 introduced the separation of the Free List Padding and
3574                  * Packing Boundaries.  Thus, we can select a smaller Padding
3575                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
3576                  * Bandwidth, and use a Packing Boundary which is large enough
3577                  * to avoid false sharing between CPUs, etc.
3578                  *
3579                  * For the PCI Link, the smaller the Padding Boundary the
3580                  * better.  For the Memory Controller, a smaller Padding
3581                  * Boundary is better until we cross under the Memory Line
3582                  * Size (the minimum unit of transfer to/from Memory).  If we
3583                  * have a Padding Boundary which is smaller than the Memory
3584                  * Line Size, that'll involve a Read-Modify-Write cycle on the
3585                  * Memory Controller which is never good.
3586                  */
3587
3588                 /* We want the Packing Boundary to be based on the Cache Line
3589                  * Size in order to help avoid False Sharing performance
3590                  * issues between CPUs, etc.  We also want the Packing
3591                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
3592                  * get best performance when the Packing Boundary is a
3593                  * multiple of the Maximum Payload Size.
3594                  */
3595                 pack_align = fl_align;
3596                 pcie_cap = t4_os_find_pci_capability(adap, PCI_CAP_ID_EXP);
3597                 if (pcie_cap) {
3598                         unsigned int mps, mps_log;
3599                         u16 devctl;
3600
3601                         /* The PCIe Device Control Maximum Payload Size field
3602                          * [bits 7:5] encodes sizes as powers of 2 starting at
3603                          * 128 bytes.
3604                          */
3605                         t4_os_pci_read_cfg2(adap, pcie_cap + PCI_EXP_DEVCTL,
3606                                             &devctl);
3607                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
3608                         mps = 1 << mps_log;
3609                         if (mps > pack_align)
3610                                 pack_align = mps;
3611                 }
3612
3613                 /*
3614                  * N.B. T5 has a different interpretation of the "0" value for
3615                  * the Packing Boundary.  This corresponds to 16 bytes instead
3616                  * of the expected 32 bytes.  We never have a Packing Boundary
3617                  * less than 32 bytes so we can't use that special value but
3618                  * on the other hand, if we wanted 32 bytes, the best we can
3619                  * really do is 64 bytes ...
3620                  */
3621                 if (pack_align <= 16) {
3622                         ingpack = X_INGPACKBOUNDARY_16B;
3623                         fl_align = 16;
3624                 } else if (pack_align == 32) {
3625                         ingpack = X_INGPACKBOUNDARY_64B;
3626                         fl_align = 64;
3627                 } else {
3628                         unsigned int pack_align_log = cxgbe_fls(pack_align) - 1;
3629
3630                         ingpack = pack_align_log - X_INGPACKBOUNDARY_SHIFT;
3631                         fl_align = pack_align;
3632                 }
3633
3634                 /* Use the smallest Ingress Padding which isn't smaller than
3635                  * the Memory Controller Read/Write Size.  We'll take that as
3636                  * being 8 bytes since we don't know of any system with a
3637                  * wider Memory Controller Bus Width.
3638                  */
3639                 if (is_t5(adap->params.chip))
3640                         ingpad = X_INGPADBOUNDARY_32B;
3641                 else
3642                         ingpad = X_T6_INGPADBOUNDARY_8B;
3643                 t4_set_reg_field(adap, A_SGE_CONTROL,
3644                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3645                                  F_EGRSTATUSPAGESIZE,
3646                                  V_INGPADBOUNDARY(ingpad) |
3647                                  V_EGRSTATUSPAGESIZE(stat_len != 64));
3648                 t4_set_reg_field(adap, A_SGE_CONTROL2,
3649                                  V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
3650                                  V_INGPACKBOUNDARY(ingpack));
3651         }
3652
3653         /*
3654          * Adjust various SGE Free List Host Buffer Sizes.
3655          *
3656          * The first four entries are:
3657          *
3658          *   0: Host Page Size
3659          *   1: 64KB
3660          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3661          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3662          *
3663          * For the single-MTU buffers in unpacked mode we need to include
3664          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3665          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3666          * Padding boundary.  All of these are accommodated in the Factory
3667          * Default Firmware Configuration File but we need to adjust it for
3668          * this host's cache line size.
3669          */
3670         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
3671         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
3672                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
3673                      & ~(fl_align - 1));
3674         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
3675                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
3676                      & ~(fl_align - 1));
3677
3678         t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));
3679
3680         return 0;
3681 }
3682
3683 /**
3684  * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
3685  * @adap: the adapter
3686  * @page_size: the host's Base Page Size
3687  * @cache_line_size: the host's Cache Line Size
3688  *
3689  * Various registers in T4 contain values which are dependent on the
3690  * host's Base Page and Cache Line Sizes.  This function will fix all of
3691  * those registers with the appropriate values as passed in ...
3692  *
3693  * This routine makes changes which are compatible with T4 chips.
3694  */
3695 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
3696                          unsigned int cache_line_size)
3697 {
3698         return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
3699                                            T4_LAST_REV);
3700 }
3701
3702 /**
3703  * t4_fw_initialize - ask FW to initialize the device
3704  * @adap: the adapter
3705  * @mbox: mailbox to use for the FW command
3706  *
3707  * Issues a command to FW to partially initialize the device.  This
3708  * performs initialization that generally doesn't depend on user input.
3709  */
3710 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3711 {
3712         struct fw_initialize_cmd c;
3713
3714         memset(&c, 0, sizeof(c));
3715         INIT_CMD(c, INITIALIZE, WRITE);
3716         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3717 }
3718
3719 /**
3720  * t4_query_params_rw - query FW or device parameters
3721  * @adap: the adapter
3722  * @mbox: mailbox to use for the FW command
3723  * @pf: the PF
3724  * @vf: the VF
3725  * @nparams: the number of parameters
3726  * @params: the parameter names
3727  * @val: the parameter values
3728  * @rw: Write and read flag
3729  *
3730  * Reads the value of FW or device parameters.  Up to 7 parameters can be
3731  * queried at once.
3732  */
3733 static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
3734                               unsigned int pf, unsigned int vf,
3735                               unsigned int nparams, const u32 *params,
3736                               u32 *val, int rw)
3737 {
3738         unsigned int i;
3739         int ret;
3740         struct fw_params_cmd c;
3741         __be32 *p = &c.param[0].mnem;
3742
3743         if (nparams > 7)
3744                 return -EINVAL;
3745
3746         memset(&c, 0, sizeof(c));
3747         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3748                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
3749                                   V_FW_PARAMS_CMD_PFN(pf) |
3750                                   V_FW_PARAMS_CMD_VFN(vf));
3751         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3752
3753         for (i = 0; i < nparams; i++) {
3754                 *p++ = cpu_to_be32(*params++);
3755                 if (rw)
3756                         *p = cpu_to_be32(*(val + i));
3757                 p++;
3758         }
3759
3760         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3761         if (ret == 0)
3762                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3763                         *val++ = be32_to_cpu(*p);
3764         return ret;
3765 }
3766
3767 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3768                     unsigned int vf, unsigned int nparams, const u32 *params,
3769                     u32 *val)
3770 {
3771         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
3772 }
3773
3774 /**
3775  * t4_set_params_timeout - sets FW or device parameters
3776  * @adap: the adapter
3777  * @mbox: mailbox to use for the FW command
3778  * @pf: the PF
3779  * @vf: the VF
3780  * @nparams: the number of parameters
3781  * @params: the parameter names
3782  * @val: the parameter values
3783  * @timeout: the timeout time
3784  *
3785  * Sets the value of FW or device parameters.  Up to 7 parameters can be
3786  * specified at once.
3787  */
3788 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
3789                           unsigned int pf, unsigned int vf,
3790                           unsigned int nparams, const u32 *params,
3791                           const u32 *val, int timeout)
3792 {
3793         struct fw_params_cmd c;
3794         __be32 *p = &c.param[0].mnem;
3795
3796         if (nparams > 7)
3797                 return -EINVAL;
3798
3799         memset(&c, 0, sizeof(c));
3800         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3801                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3802                                   V_FW_PARAMS_CMD_PFN(pf) |
3803                                   V_FW_PARAMS_CMD_VFN(vf));
3804         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3805
3806         while (nparams--) {
3807                 *p++ = cpu_to_be32(*params++);
3808                 *p++ = cpu_to_be32(*val++);
3809         }
3810
3811         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
3812 }
3813
3814 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3815                   unsigned int vf, unsigned int nparams, const u32 *params,
3816                   const u32 *val)
3817 {
3818         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
3819                                      FW_CMD_MAX_TIMEOUT);
3820 }
3821
3822 /**
3823  * t4_alloc_vi_func - allocate a virtual interface
3824  * @adap: the adapter
3825  * @mbox: mailbox to use for the FW command
3826  * @port: physical port associated with the VI
3827  * @pf: the PF owning the VI
3828  * @vf: the VF owning the VI
3829  * @nmac: number of MAC addresses needed (1 to 5)
3830  * @mac: the MAC addresses of the VI
3831  * @rss_size: size of RSS table slice associated with this VI
3832  * @portfunc: which Port Application Function MAC Address is desired
3833  * @idstype: Intrusion Detection Type
3834  *
3835  * Allocates a virtual interface for the given physical port.  If @mac is
3836  * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3837  * @mac should be large enough to hold @nmac Ethernet addresses, they are
3838  * stored consecutively so the space needed is @nmac * 6 bytes.
3839  * Returns a negative error number or the non-negative VI id.
3840  */
3841 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
3842                      unsigned int port, unsigned int pf, unsigned int vf,
3843                      unsigned int nmac, u8 *mac, unsigned int *rss_size,
3844                      unsigned int portfunc, unsigned int idstype,
3845                      u8 *vivld, u8 *vin)
3846 {
3847         int ret;
3848         struct fw_vi_cmd c;
3849
3850         memset(&c, 0, sizeof(c));
3851         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3852                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
3853                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
3854         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
3855         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
3856                                      V_FW_VI_CMD_FUNC(portfunc));
3857         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
3858         c.nmac = nmac - 1;
3859
3860         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3861         if (ret)
3862                 return ret;
3863
3864         if (mac) {
3865                 memcpy(mac, c.mac, sizeof(c.mac));
3866                 switch (nmac) {
3867                 case 5:
3868                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3869                         /* FALLTHROUGH */
3870                 case 4:
3871                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3872                         /* FALLTHROUGH */
3873                 case 3:
3874                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3875                         /* FALLTHROUGH */
3876                 case 2:
3877                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
3878                         /* FALLTHROUGH */
3879                 }
3880         }
3881         if (rss_size)
3882                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
3883         if (vivld)
3884                 *vivld = G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16));
3885         if (vin)
3886                 *vin = G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16));
3887         return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
3888 }
3889
3890 /**
3891  * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
3892  * @adap: the adapter
3893  * @mbox: mailbox to use for the FW command
3894  * @port: physical port associated with the VI
3895  * @pf: the PF owning the VI
3896  * @vf: the VF owning the VI
3897  * @nmac: number of MAC addresses needed (1 to 5)
3898  * @mac: the MAC addresses of the VI
3899  * @rss_size: size of RSS table slice associated with this VI
3900  *
3901  * Backwards compatible and convieniance routine to allocate a Virtual
3902  * Interface with a Ethernet Port Application Function and Intrustion
3903  * Detection System disabled.
3904  */
3905 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
3906                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
3907                 unsigned int *rss_size, u8 *vivld, u8 *vin)
3908 {
3909         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
3910                                 FW_VI_FUNC_ETH, 0, vivld, vin);
3911 }
3912
3913 /**
3914  * t4_free_vi - free a virtual interface
3915  * @adap: the adapter
3916  * @mbox: mailbox to use for the FW command
3917  * @pf: the PF owning the VI
3918  * @vf: the VF owning the VI
3919  * @viid: virtual interface identifiler
3920  *
3921  * Free a previously allocated virtual interface.
3922  */
3923 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
3924                unsigned int vf, unsigned int viid)
3925 {
3926         struct fw_vi_cmd c;
3927
3928         memset(&c, 0, sizeof(c));
3929         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3930                                   F_FW_CMD_EXEC);
3931         if (is_pf4(adap))
3932                 c.op_to_vfn |= cpu_to_be32(V_FW_VI_CMD_PFN(pf) |
3933                                            V_FW_VI_CMD_VFN(vf));
3934         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
3935         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
3936
3937         if (is_pf4(adap))
3938                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3939         else
3940                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
3941 }
3942
3943 /**
3944  * t4_set_rxmode - set Rx properties of a virtual interface
3945  * @adap: the adapter
3946  * @mbox: mailbox to use for the FW command
3947  * @viid: the VI id
3948  * @mtu: the new MTU or -1
3949  * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3950  * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3951  * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
3952  * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
3953  *          -1 no change
3954  * @sleep_ok: if true we may sleep while awaiting command completion
3955  *
3956  * Sets Rx properties of a virtual interface.
3957  */
3958 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
3959                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
3960                   bool sleep_ok)
3961 {
3962         struct fw_vi_rxmode_cmd c;
3963
3964         /* convert to FW values */
3965         if (mtu < 0)
3966                 mtu = M_FW_VI_RXMODE_CMD_MTU;
3967         if (promisc < 0)
3968                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
3969         if (all_multi < 0)
3970                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
3971         if (bcast < 0)
3972                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
3973         if (vlanex < 0)
3974                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
3975
3976         memset(&c, 0, sizeof(c));
3977         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
3978                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3979                                    V_FW_VI_RXMODE_CMD_VIID(viid));
3980         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3981         c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
3982                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
3983                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
3984                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
3985                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
3986         if (is_pf4(adap))
3987                 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL,
3988                                        sleep_ok);
3989         else
3990                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
3991 }
3992
3993 /**
3994  *      t4_alloc_raw_mac_filt - Adds a raw mac entry in mps tcam
3995  *      @adap: the adapter
3996  *      @viid: the VI id
3997  *      @mac: the MAC address
3998  *      @mask: the mask
3999  *      @idx: index at which to add this entry
4000  *      @port_id: the port index
4001  *      @lookup_type: MAC address for inner (1) or outer (0) header
4002  *      @sleep_ok: call is allowed to sleep
4003  *
4004  *      Adds the mac entry at the specified index using raw mac interface.
4005  *
4006  *      Returns a negative error number or the allocated index for this mac.
4007  */
4008 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
4009                           const u8 *addr, const u8 *mask, unsigned int idx,
4010                           u8 lookup_type, u8 port_id, bool sleep_ok)
4011 {
4012         int ret = 0;
4013         struct fw_vi_mac_cmd c;
4014         struct fw_vi_mac_raw *p = &c.u.raw;
4015         u32 val;
4016
4017         memset(&c, 0, sizeof(c));
4018         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4019                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4020                                    V_FW_VI_MAC_CMD_VIID(viid));
4021         val = V_FW_CMD_LEN16(1) |
4022               V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
4023         c.freemacs_to_len16 = cpu_to_be32(val);
4024
4025         /* Specify that this is an inner mac address */
4026         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
4027
4028         /* Lookup Type. Outer header: 0, Inner header: 1 */
4029         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
4030                                    V_DATAPORTNUM(port_id));
4031         /* Lookup mask and port mask */
4032         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4033                                     V_DATAPORTNUM(M_DATAPORTNUM));
4034
4035         /* Copy the address and the mask */
4036         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4037         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4038
4039         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4040         if (ret == 0) {
4041                 ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
4042                 if (ret != (int)idx)
4043                         ret = -ENOMEM;
4044         }
4045
4046         return ret;
4047 }
4048
4049 /**
4050  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
4051  *      @adap: the adapter
4052  *      @viid: the VI id
4053  *      @addr: the MAC address
4054  *      @mask: the mask
4055  *      @idx: index of the entry in mps tcam
4056  *      @lookup_type: MAC address for inner (1) or outer (0) header
4057  *      @port_id: the port index
4058  *      @sleep_ok: call is allowed to sleep
4059  *
4060  *      Removes the mac entry at the specified index using raw mac interface.
4061  *
4062  *      Returns a negative error number on failure.
4063  */
4064 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
4065                          const u8 *addr, const u8 *mask, unsigned int idx,
4066                          u8 lookup_type, u8 port_id, bool sleep_ok)
4067 {
4068         struct fw_vi_mac_cmd c;
4069         struct fw_vi_mac_raw *p = &c.u.raw;
4070         u32 raw;
4071
4072         memset(&c, 0, sizeof(c));
4073         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4074                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4075                                    V_FW_CMD_EXEC(0) |
4076                                    V_FW_VI_MAC_CMD_VIID(viid));
4077         raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
4078         c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0U) |
4079                                           raw |
4080                                           V_FW_CMD_LEN16(1));
4081
4082         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
4083                                      FW_VI_MAC_ID_BASED_FREE);
4084
4085         /* Lookup Type. Outer header: 0, Inner header: 1 */
4086         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
4087                                    V_DATAPORTNUM(port_id));
4088         /* Lookup mask and port mask */
4089         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4090                                     V_DATAPORTNUM(M_DATAPORTNUM));
4091
4092         /* Copy the address and the mask */
4093         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4094         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4095
4096         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4097 }
4098
4099 /**
4100  * t4_change_mac - modifies the exact-match filter for a MAC address
4101  * @adap: the adapter
4102  * @mbox: mailbox to use for the FW command
4103  * @viid: the VI id
4104  * @idx: index of existing filter for old value of MAC address, or -1
4105  * @addr: the new MAC address value
4106  * @persist: whether a new MAC allocation should be persistent
4107  * @add_smt: if true also add the address to the HW SMT
4108  *
4109  * Modifies an exact-match filter and sets it to the new MAC address if
4110  * @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
4111  * latter case the address is added persistently if @persist is %true.
4112  *
4113  * Note that in general it is not possible to modify the value of a given
4114  * filter so the generic way to modify an address filter is to free the one
4115  * being used by the old address value and allocate a new filter for the
4116  * new address value.
4117  *
4118  * Returns a negative error number or the index of the filter with the new
4119  * MAC value.  Note that this index may differ from @idx.
4120  */
4121 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
4122                   int idx, const u8 *addr, bool persist, bool add_smt)
4123 {
4124         int ret, mode;
4125         struct fw_vi_mac_cmd c;
4126         struct fw_vi_mac_exact *p = c.u.exact;
4127         int max_mac_addr = adap->params.arch.mps_tcam_size;
4128
4129         if (idx < 0)                             /* new allocation */
4130                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
4131         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
4132
4133         memset(&c, 0, sizeof(c));
4134         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4135                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4136                                    V_FW_VI_MAC_CMD_VIID(viid));
4137         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
4138         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
4139                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
4140                                       V_FW_VI_MAC_CMD_IDX(idx));
4141         memcpy(p->macaddr, addr, sizeof(p->macaddr));
4142
4143         if (is_pf4(adap))
4144                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4145         else
4146                 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
4147         if (ret == 0) {
4148                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
4149                 if (ret >= max_mac_addr)
4150                         ret = -ENOMEM;
4151         }
4152         return ret;
4153 }
4154
4155 /**
4156  * t4_enable_vi_params - enable/disable a virtual interface
4157  * @adap: the adapter
4158  * @mbox: mailbox to use for the FW command
4159  * @viid: the VI id
4160  * @rx_en: 1=enable Rx, 0=disable Rx
4161  * @tx_en: 1=enable Tx, 0=disable Tx
4162  * @dcb_en: 1=enable delivery of Data Center Bridging messages.
4163  *
4164  * Enables/disables a virtual interface.  Note that setting DCB Enable
4165  * only makes sense when enabling a Virtual Interface ...
4166  */
4167 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
4168                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
4169 {
4170         struct fw_vi_enable_cmd c;
4171
4172         memset(&c, 0, sizeof(c));
4173         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
4174                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4175                                    V_FW_VI_ENABLE_CMD_VIID(viid));
4176         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
4177                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
4178                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
4179                                      FW_LEN16(c));
4180         if (is_pf4(adap))
4181                 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4182         else
4183                 return t4vf_wr_mbox_ns(adap, &c, sizeof(c), NULL);
4184 }
4185
4186 /**
4187  * t4_enable_vi - enable/disable a virtual interface
4188  * @adap: the adapter
4189  * @mbox: mailbox to use for the FW command
4190  * @viid: the VI id
4191  * @rx_en: 1=enable Rx, 0=disable Rx
4192  * @tx_en: 1=enable Tx, 0=disable Tx
4193  *
4194  * Enables/disables a virtual interface.  Note that setting DCB Enable
4195  * only makes sense when enabling a Virtual Interface ...
4196  */
4197 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
4198                  bool rx_en, bool tx_en)
4199 {
4200         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
4201 }
4202
4203 /**
4204  * t4_iq_start_stop - enable/disable an ingress queue and its FLs
4205  * @adap: the adapter
4206  * @mbox: mailbox to use for the FW command
4207  * @start: %true to enable the queues, %false to disable them
4208  * @pf: the PF owning the queues
4209  * @vf: the VF owning the queues
4210  * @iqid: ingress queue id
4211  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4212  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4213  *
4214  * Starts or stops an ingress queue and its associated FLs, if any.
4215  */
4216 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
4217                      unsigned int pf, unsigned int vf, unsigned int iqid,
4218                      unsigned int fl0id, unsigned int fl1id)
4219 {
4220         struct fw_iq_cmd c;
4221
4222         memset(&c, 0, sizeof(c));
4223         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4224                                   F_FW_CMD_EXEC);
4225         c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
4226                                        V_FW_IQ_CMD_IQSTOP(!start) |
4227                                        FW_LEN16(c));
4228         c.iqid = cpu_to_be16(iqid);
4229         c.fl0id = cpu_to_be16(fl0id);
4230         c.fl1id = cpu_to_be16(fl1id);
4231         if (is_pf4(adap)) {
4232                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4233                                            V_FW_IQ_CMD_VFN(vf));
4234                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4235         } else {
4236                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4237         }
4238 }
4239
4240 /**
4241  * t4_iq_free - free an ingress queue and its FLs
4242  * @adap: the adapter
4243  * @mbox: mailbox to use for the FW command
4244  * @pf: the PF owning the queues
4245  * @vf: the VF owning the queues
4246  * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
4247  * @iqid: ingress queue id
4248  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4249  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4250  *
4251  * Frees an ingress queue and its associated FLs, if any.
4252  */
4253 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4254                unsigned int vf, unsigned int iqtype, unsigned int iqid,
4255                unsigned int fl0id, unsigned int fl1id)
4256 {
4257         struct fw_iq_cmd c;
4258
4259         memset(&c, 0, sizeof(c));
4260         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4261                                   F_FW_CMD_EXEC);
4262         if (is_pf4(adap))
4263                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4264                                            V_FW_IQ_CMD_VFN(vf));
4265         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
4266         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
4267         c.iqid = cpu_to_be16(iqid);
4268         c.fl0id = cpu_to_be16(fl0id);
4269         c.fl1id = cpu_to_be16(fl1id);
4270         if (is_pf4(adap))
4271                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4272         else
4273                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4274 }
4275
4276 /**
4277  * t4_eth_eq_free - free an Ethernet egress queue
4278  * @adap: the adapter
4279  * @mbox: mailbox to use for the FW command
4280  * @pf: the PF owning the queue
4281  * @vf: the VF owning the queue
4282  * @eqid: egress queue id
4283  *
4284  * Frees an Ethernet egress queue.
4285  */
4286 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4287                    unsigned int vf, unsigned int eqid)
4288 {
4289         struct fw_eq_eth_cmd c;
4290
4291         memset(&c, 0, sizeof(c));
4292         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
4293                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC);
4294         if (is_pf4(adap))
4295                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4296                                            V_FW_IQ_CMD_VFN(vf));
4297         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
4298         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
4299         if (is_pf4(adap))
4300                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4301         else
4302                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4303 }
4304
4305 /**
4306  * t4_link_down_rc_str - return a string for a Link Down Reason Code
4307  * @link_down_rc: Link Down Reason Code
4308  *
4309  * Returns a string representation of the Link Down Reason Code.
4310  */
4311 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
4312 {
4313         static const char * const reason[] = {
4314                 "Link Down",
4315                 "Remote Fault",
4316                 "Auto-negotiation Failure",
4317                 "Reserved",
4318                 "Insufficient Airflow",
4319                 "Unable To Determine Reason",
4320                 "No RX Signal Detected",
4321                 "Reserved",
4322         };
4323
4324         if (link_down_rc >= ARRAY_SIZE(reason))
4325                 return "Bad Reason Code";
4326
4327         return reason[link_down_rc];
4328 }
4329
4330 static u32 t4_speed_to_fwcap(u32 speed)
4331 {
4332         switch (speed) {
4333         case 100000:
4334                 return FW_PORT_CAP32_SPEED_100G;
4335         case 50000:
4336                 return FW_PORT_CAP32_SPEED_50G;
4337         case 40000:
4338                 return FW_PORT_CAP32_SPEED_40G;
4339         case 25000:
4340                 return FW_PORT_CAP32_SPEED_25G;
4341         case 10000:
4342                 return FW_PORT_CAP32_SPEED_10G;
4343         case 1000:
4344                 return FW_PORT_CAP32_SPEED_1G;
4345         case 100:
4346                 return FW_PORT_CAP32_SPEED_100M;
4347         default:
4348                 break;
4349         }
4350
4351         return 0;
4352 }
4353
4354 /* Return the highest speed set in the port capabilities, in Mb/s. */
4355 unsigned int t4_fwcap_to_speed(u32 caps)
4356 {
4357 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
4358         do { \
4359                 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
4360                         return __speed; \
4361         } while (0)
4362
4363         TEST_SPEED_RETURN(100G, 100000);
4364         TEST_SPEED_RETURN(50G,   50000);
4365         TEST_SPEED_RETURN(40G,   40000);
4366         TEST_SPEED_RETURN(25G,   25000);
4367         TEST_SPEED_RETURN(10G,   10000);
4368         TEST_SPEED_RETURN(1G,     1000);
4369         TEST_SPEED_RETURN(100M,    100);
4370
4371 #undef TEST_SPEED_RETURN
4372
4373         return 0;
4374 }
4375
4376 static void t4_set_link_autoneg_speed(struct port_info *pi, u32 *new_caps)
4377 {
4378         struct link_config *lc = &pi->link_cfg;
4379         u32 caps = *new_caps;
4380
4381         caps &= ~V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4382         caps |= G_FW_PORT_CAP32_SPEED(lc->acaps);
4383
4384         *new_caps = caps;
4385 }
4386
4387 int t4_set_link_speed(struct port_info *pi, u32 speed, u32 *new_caps)
4388 {
4389         u32 fw_speed_cap = t4_speed_to_fwcap(speed);
4390         struct link_config *lc = &pi->link_cfg;
4391         u32 caps = *new_caps;
4392
4393         if (!(lc->pcaps & fw_speed_cap))
4394                 return -EOPNOTSUPP;
4395
4396         caps &= ~V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4397         caps |= fw_speed_cap;
4398
4399         *new_caps = caps;
4400
4401         return 0;
4402 }
4403
4404 int t4_set_link_pause(struct port_info *pi, u8 autoneg, u8 pause_tx,
4405                       u8 pause_rx, u32 *new_caps)
4406 {
4407         struct link_config *lc = &pi->link_cfg;
4408         u32 caps = *new_caps;
4409         u32 max_speed;
4410
4411         max_speed = t4_fwcap_to_speed(lc->link_caps);
4412
4413         if (autoneg) {
4414                 if (!(lc->pcaps & FW_PORT_CAP32_ANEG))
4415                         return -EINVAL;
4416
4417                 caps |= FW_PORT_CAP32_ANEG;
4418                 t4_set_link_autoneg_speed(pi, &caps);
4419         } else {
4420                 if (!max_speed)
4421                         max_speed = t4_fwcap_to_speed(lc->acaps);
4422
4423                 caps &= ~FW_PORT_CAP32_ANEG;
4424                 t4_set_link_speed(pi, max_speed, &caps);
4425         }
4426
4427         if (lc->pcaps & FW_PORT_CAP32_MDIAUTO)
4428                 caps |= V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4429
4430         caps &= ~V_FW_PORT_CAP32_FC(M_FW_PORT_CAP32_FC);
4431         caps &= ~V_FW_PORT_CAP32_802_3(M_FW_PORT_CAP32_802_3);
4432         if (pause_tx && pause_rx) {
4433                 caps |= FW_PORT_CAP32_FC_TX | FW_PORT_CAP32_FC_RX;
4434                 if (lc->pcaps & FW_PORT_CAP32_802_3_PAUSE)
4435                         caps |= FW_PORT_CAP32_802_3_PAUSE;
4436         } else if (pause_tx) {
4437                 caps |= FW_PORT_CAP32_FC_TX;
4438                 if (lc->pcaps & FW_PORT_CAP32_802_3_ASM_DIR)
4439                         caps |= FW_PORT_CAP32_802_3_ASM_DIR;
4440         } else if (pause_rx) {
4441                 caps |= FW_PORT_CAP32_FC_RX;
4442                 if (lc->pcaps & FW_PORT_CAP32_802_3_PAUSE)
4443                         caps |= FW_PORT_CAP32_802_3_PAUSE;
4444
4445                 if (lc->pcaps & FW_PORT_CAP32_802_3_ASM_DIR)
4446                         caps |= FW_PORT_CAP32_802_3_ASM_DIR;
4447         }
4448
4449         *new_caps = caps;
4450
4451         return 0;
4452 }
4453
4454 int t4_set_link_fec(struct port_info *pi, u8 fec_rs, u8 fec_baser,
4455                     u8 fec_none, u32 *new_caps)
4456 {
4457         struct link_config *lc = &pi->link_cfg;
4458         u32 max_speed, caps = *new_caps;
4459
4460         if (!(lc->pcaps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)))
4461                 return -EOPNOTSUPP;
4462
4463         /* Link might be down. In that case consider the max
4464          * speed advertised
4465          */
4466         max_speed = t4_fwcap_to_speed(lc->link_caps);
4467         if (!max_speed)
4468                 max_speed = t4_fwcap_to_speed(lc->acaps);
4469
4470         caps &= ~V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
4471         if (fec_rs) {
4472                 switch (max_speed) {
4473                 case 100000:
4474                 case 25000:
4475                         caps |= FW_PORT_CAP32_FEC_RS;
4476                         break;
4477                 default:
4478                         return -EOPNOTSUPP;
4479                 }
4480         }
4481
4482         if (fec_baser) {
4483                 switch (max_speed) {
4484                 case 50000:
4485                 case 25000:
4486                         caps |= FW_PORT_CAP32_FEC_BASER_RS;
4487                         break;
4488                 default:
4489                         return -EOPNOTSUPP;
4490                 }
4491         }
4492
4493         if (fec_none)
4494                 caps |= FW_PORT_CAP32_FEC_NO_FEC;
4495
4496         if (!(caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC))) {
4497                 /* No explicit encoding is requested.
4498                  * So, default back to AUTO.
4499                  */
4500                 switch (max_speed) {
4501                 case 100000:
4502                         caps |= FW_PORT_CAP32_FEC_RS |
4503                                 FW_PORT_CAP32_FEC_NO_FEC;
4504                         break;
4505                 case 50000:
4506                         caps |= FW_PORT_CAP32_FEC_BASER_RS |
4507                                 FW_PORT_CAP32_FEC_NO_FEC;
4508                         break;
4509                 case 25000:
4510                         caps |= FW_PORT_CAP32_FEC_RS |
4511                                 FW_PORT_CAP32_FEC_BASER_RS |
4512                                 FW_PORT_CAP32_FEC_NO_FEC;
4513                         break;
4514                 default:
4515                         return -EOPNOTSUPP;
4516                 }
4517         }
4518
4519         *new_caps = caps;
4520
4521         return 0;
4522 }
4523
4524 /**
4525  * t4_handle_get_port_info - process a FW reply message
4526  * @pi: the port info
4527  * @rpl: start of the FW message
4528  *
4529  * Processes a GET_PORT_INFO FW reply message.
4530  */
4531 static void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
4532 {
4533         const struct fw_port_cmd *cmd = (const void *)rpl;
4534         u8 link_ok, link_down_rc, mod_type, port_type;
4535         u32 action, pcaps, acaps, link_caps, lstatus;
4536         struct link_config *lc = &pi->link_cfg;
4537         struct adapter *adapter = pi->adapter;
4538         u8 mod_changed = 0;
4539
4540         /* Extract the various fields from the Port Information message.
4541          */
4542         action = be32_to_cpu(cmd->action_to_len16);
4543         if (G_FW_PORT_CMD_ACTION(action) != FW_PORT_ACTION_GET_PORT_INFO32) {
4544                 dev_warn(adapter, "Handle Port Information: Bad Command/Action %#x\n",
4545                          action);
4546                 return;
4547         }
4548
4549         lstatus = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
4550         link_ok = (lstatus & F_FW_PORT_CMD_LSTATUS32) ? 1 : 0;
4551         link_down_rc = G_FW_PORT_CMD_LINKDNRC32(lstatus);
4552         port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus);
4553         mod_type = G_FW_PORT_CMD_MODTYPE32(lstatus);
4554
4555         pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
4556         acaps = be32_to_cpu(cmd->u.info32.acaps32);
4557         link_caps = be32_to_cpu(cmd->u.info32.linkattr32);
4558
4559         if (mod_type != lc->mod_type) {
4560                 t4_init_link_config(pi, pcaps, acaps, lc->mdio_addr,
4561                                     port_type, mod_type);
4562                 t4_os_portmod_changed(adapter, pi->pidx);
4563                 mod_changed = 1;
4564         }
4565         if (link_ok != lc->link_ok || acaps != lc->acaps ||
4566             link_caps != lc->link_caps) { /* something changed */
4567                 if (!link_ok && lc->link_ok) {
4568                         lc->link_down_rc = link_down_rc;
4569                         dev_warn(adap, "Port %d link down, reason: %s\n",
4570                                  pi->port_id,
4571                                  t4_link_down_rc_str(link_down_rc));
4572                 }
4573                 lc->link_ok = link_ok;
4574                 lc->acaps = acaps;
4575                 lc->link_caps = link_caps;
4576                 t4_os_link_changed(adapter, pi->pidx);
4577         }
4578
4579         if (mod_changed != 0 && is_pf4(adapter) != 0) {
4580                 u32 mod_caps = lc->admin_caps;
4581                 int ret;
4582
4583                 ret = t4_link_l1cfg_ns(pi, mod_caps);
4584                 if (ret != FW_SUCCESS)
4585                         dev_warn(adapter,
4586                                  "Attempt to update new Transceiver Module settings %#x failed with error: %d\n",
4587                                  mod_caps, ret);
4588         }
4589 }
4590
4591 /**
4592  * t4_ctrl_eq_free - free a control egress queue
4593  * @adap: the adapter
4594  * @mbox: mailbox to use for the FW command
4595  * @pf: the PF owning the queue
4596  * @vf: the VF owning the queue
4597  * @eqid: egress queue id
4598  *
4599  * Frees a control egress queue.
4600  */
4601 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4602                     unsigned int vf, unsigned int eqid)
4603 {
4604         struct fw_eq_ctrl_cmd c;
4605
4606         memset(&c, 0, sizeof(c));
4607         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
4608                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4609                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
4610                                   V_FW_EQ_CTRL_CMD_VFN(vf));
4611         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
4612         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
4613         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4614 }
4615
4616 /**
4617  * t4_handle_fw_rpl - process a FW reply message
4618  * @adap: the adapter
4619  * @rpl: start of the FW message
4620  *
4621  * Processes a FW message, such as link state change messages.
4622  */
4623 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
4624 {
4625         u8 opcode = *(const u8 *)rpl;
4626
4627         /*
4628          * This might be a port command ... this simplifies the following
4629          * conditionals ...  We can get away with pre-dereferencing
4630          * action_to_len16 because it's in the first 16 bytes and all messages
4631          * will be at least that long.
4632          */
4633         const struct fw_port_cmd *p = (const void *)rpl;
4634         unsigned int action =
4635                 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
4636
4637         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO32) {
4638                 /* link/module state change message */
4639                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
4640                 struct port_info *pi = NULL;
4641                 int i;
4642
4643                 for_each_port(adap, i) {
4644                         pi = adap2pinfo(adap, i);
4645                         if (pi->tx_chan == chan)
4646                                 break;
4647                 }
4648
4649                 t4_handle_get_port_info(pi, rpl);
4650         } else {
4651                 dev_warn(adap, "Unknown firmware reply %d\n", opcode);
4652                 return -EINVAL;
4653         }
4654         return 0;
4655 }
4656
4657 void t4_reset_link_config(struct adapter *adap, int idx)
4658 {
4659         struct port_info *pi = adap2pinfo(adap, idx);
4660         struct link_config *lc = &pi->link_cfg;
4661
4662         lc->link_ok = 0;
4663         lc->link_down_rc = 0;
4664         lc->link_caps = 0;
4665 }
4666
4667 /**
4668  * t4_init_link_config - initialize a link's SW state
4669  * @pi: the port info
4670  * @pcaps: link Port Capabilities
4671  * @acaps: link current Advertised Port Capabilities
4672  * @mdio_addr : address of the PHY
4673  * @port_type : firmware port type
4674  * @mod_type  : firmware module type
4675  *
4676  * Initializes the SW state maintained for each link, including the link's
4677  * capabilities and default speed/flow-control/autonegotiation settings.
4678  */
4679 void t4_init_link_config(struct port_info *pi, u32 pcaps, u32 acaps,
4680                          u8 mdio_addr, u8 port_type, u8 mod_type)
4681 {
4682         u8 fec_rs = 0, fec_baser = 0, fec_none = 0;
4683         struct link_config *lc = &pi->link_cfg;
4684
4685         lc->pcaps = pcaps;
4686         lc->acaps = acaps;
4687         lc->admin_caps = acaps;
4688         lc->link_caps = 0;
4689
4690         lc->mdio_addr = mdio_addr;
4691         lc->port_type = port_type;
4692         lc->mod_type = mod_type;
4693
4694         lc->link_ok = 0;
4695         lc->link_down_rc = 0;
4696
4697         /* Turn Tx and Rx pause off by default */
4698         lc->admin_caps &= ~V_FW_PORT_CAP32_FC(M_FW_PORT_CAP32_FC);
4699         lc->admin_caps &= ~V_FW_PORT_CAP32_802_3(M_FW_PORT_CAP32_802_3);
4700         if (lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)
4701                 lc->admin_caps &= ~FW_PORT_CAP32_FORCE_PAUSE;
4702
4703         /* Reset FEC caps to default values */
4704         if (lc->pcaps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) {
4705                 if (lc->acaps & FW_PORT_CAP32_FEC_RS)
4706                         fec_rs = 1;
4707                 else if (lc->acaps & FW_PORT_CAP32_FEC_BASER_RS)
4708                         fec_baser = 1;
4709                 else
4710                         fec_none = 1;
4711
4712                 lc->admin_caps &= ~V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
4713                 t4_set_link_fec(pi, fec_rs, fec_baser, fec_none,
4714                                 &lc->admin_caps);
4715         }
4716
4717         if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
4718                 lc->admin_caps &= ~FW_PORT_CAP32_FORCE_FEC;
4719
4720         /* Reset MDI to AUTO */
4721         if (lc->pcaps & FW_PORT_CAP32_MDIAUTO) {
4722                 lc->admin_caps &= ~V_FW_PORT_CAP32_MDI(M_FW_PORT_CAP32_MDI);
4723                 lc->admin_caps |= V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4724         }
4725 }
4726
4727 /**
4728  * t4_wait_dev_ready - wait till to reads of registers work
4729  *
4730  * Right after the device is RESET is can take a small amount of time
4731  * for it to respond to register reads.  Until then, all reads will
4732  * return either 0xff...ff or 0xee...ee.  Return an error if reads
4733  * don't work within a reasonable time frame.
4734  */
4735 static int t4_wait_dev_ready(struct adapter *adapter)
4736 {
4737         u32 whoami;
4738
4739         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4740
4741         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4742                 return 0;
4743
4744         msleep(500);
4745         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4746         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4747                 return 0;
4748
4749         dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
4750                 whoami);
4751         return -EIO;
4752 }
4753
4754 struct flash_desc {
4755         u32 vendor_and_model_id;
4756         u32 size_mb;
4757 };
4758
4759 int t4_get_flash_params(struct adapter *adapter)
4760 {
4761         /*
4762          * Table for non-standard supported Flash parts.  Note, all Flash
4763          * parts must have 64KB sectors.
4764          */
4765         static struct flash_desc supported_flash[] = {
4766                 { 0x00150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
4767         };
4768
4769         int ret;
4770         u32 flashid = 0;
4771         unsigned int part, manufacturer;
4772         unsigned int density, size = 0;
4773
4774         /**
4775          * Issue a Read ID Command to the Flash part.  We decode supported
4776          * Flash parts and their sizes from this.  There's a newer Query
4777          * Command which can retrieve detailed geometry information but
4778          * many Flash parts don't support it.
4779          */
4780         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
4781         if (!ret)
4782                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
4783         t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
4784         if (ret < 0)
4785                 return ret;
4786
4787         /**
4788          * Check to see if it's one of our non-standard supported Flash parts.
4789          */
4790         for (part = 0; part < ARRAY_SIZE(supported_flash); part++) {
4791                 if (supported_flash[part].vendor_and_model_id == flashid) {
4792                         adapter->params.sf_size =
4793                                 supported_flash[part].size_mb;
4794                         adapter->params.sf_nsec =
4795                                 adapter->params.sf_size / SF_SEC_SIZE;
4796                         goto found;
4797                 }
4798         }
4799
4800         /**
4801          * Decode Flash part size.  The code below looks repetative with
4802          * common encodings, but that's not guaranteed in the JEDEC
4803          * specification for the Read JADEC ID command.  The only thing that
4804          * we're guaranteed by the JADEC specification is where the
4805          * Manufacturer ID is in the returned result.  After that each
4806          * Manufacturer ~could~ encode things completely differently.
4807          * Note, all Flash parts must have 64KB sectors.
4808          */
4809         manufacturer = flashid & 0xff;
4810         switch (manufacturer) {
4811         case 0x20: { /* Micron/Numonix */
4812                 /**
4813                  * This Density -> Size decoding table is taken from Micron
4814                  * Data Sheets.
4815                  */
4816                 density = (flashid >> 16) & 0xff;
4817                 switch (density) {
4818                 case 0x14:
4819                         size = 1 << 20; /* 1MB */
4820                         break;
4821                 case 0x15:
4822                         size = 1 << 21; /* 2MB */
4823                         break;
4824                 case 0x16:
4825                         size = 1 << 22; /* 4MB */
4826                         break;
4827                 case 0x17:
4828                         size = 1 << 23; /* 8MB */
4829                         break;
4830                 case 0x18:
4831                         size = 1 << 24; /* 16MB */
4832                         break;
4833                 case 0x19:
4834                         size = 1 << 25; /* 32MB */
4835                         break;
4836                 case 0x20:
4837                         size = 1 << 26; /* 64MB */
4838                         break;
4839                 case 0x21:
4840                         size = 1 << 27; /* 128MB */
4841                         break;
4842                 case 0x22:
4843                         size = 1 << 28; /* 256MB */
4844                         break;
4845                 }
4846                 break;
4847         }
4848
4849         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
4850                 /**
4851                  * This Density -> Size decoding table is taken from ISSI
4852                  * Data Sheets.
4853                  */
4854                 density = (flashid >> 16) & 0xff;
4855                 switch (density) {
4856                 case 0x16:
4857                         size = 1 << 25; /* 32MB */
4858                         break;
4859                 case 0x17:
4860                         size = 1 << 26; /* 64MB */
4861                         break;
4862                 }
4863                 break;
4864         }
4865
4866         case 0xc2: { /* Macronix */
4867                 /**
4868                  * This Density -> Size decoding table is taken from Macronix
4869                  * Data Sheets.
4870                  */
4871                 density = (flashid >> 16) & 0xff;
4872                 switch (density) {
4873                 case 0x17:
4874                         size = 1 << 23; /* 8MB */
4875                         break;
4876                 case 0x18:
4877                         size = 1 << 24; /* 16MB */
4878                         break;
4879                 }
4880                 break;
4881         }
4882
4883         case 0xef: { /* Winbond */
4884                 /**
4885                  * This Density -> Size decoding table is taken from Winbond
4886                  * Data Sheets.
4887                  */
4888                 density = (flashid >> 16) & 0xff;
4889                 switch (density) {
4890                 case 0x17:
4891                         size = 1 << 23; /* 8MB */
4892                         break;
4893                 case 0x18:
4894                         size = 1 << 24; /* 16MB */
4895                         break;
4896                 }
4897                 break;
4898         }
4899         }
4900
4901         /* If we didn't recognize the FLASH part, that's no real issue: the
4902          * Hardware/Software contract says that Hardware will _*ALWAYS*_
4903          * use a FLASH part which is at least 4MB in size and has 64KB
4904          * sectors.  The unrecognized FLASH part is likely to be much larger
4905          * than 4MB, but that's all we really need.
4906          */
4907         if (size == 0) {
4908                 dev_warn(adapter,
4909                          "Unknown Flash Part, ID = %#x, assuming 4MB\n",
4910                          flashid);
4911                 size = 1 << 22;
4912         }
4913
4914         /**
4915          * Store decoded Flash size and fall through into vetting code.
4916          */
4917         adapter->params.sf_size = size;
4918         adapter->params.sf_nsec = size / SF_SEC_SIZE;
4919
4920 found:
4921         /*
4922          * We should reject adapters with FLASHes which are too small. So, emit
4923          * a warning.
4924          */
4925         if (adapter->params.sf_size < FLASH_MIN_SIZE)
4926                 dev_warn(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
4927                          flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
4928
4929         return 0;
4930 }
4931
4932 static void set_pcie_completion_timeout(struct adapter *adapter,
4933                                         u8 range)
4934 {
4935         u32 pcie_cap;
4936         u16 val;
4937
4938         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
4939         if (pcie_cap) {
4940                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
4941                 val &= 0xfff0;
4942                 val |= range;
4943                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
4944         }
4945 }
4946
4947 /**
4948  * t4_get_chip_type - Determine chip type from device ID
4949  * @adap: the adapter
4950  * @ver: adapter version
4951  */
4952 int t4_get_chip_type(struct adapter *adap, int ver)
4953 {
4954         enum chip_type chip = 0;
4955         u32 pl_rev = G_REV(t4_read_reg(adap, A_PL_REV));
4956
4957         /* Retrieve adapter's device ID */
4958         switch (ver) {
4959         case CHELSIO_T5:
4960                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4961                 break;
4962         case CHELSIO_T6:
4963                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4964                 break;
4965         default:
4966                 dev_err(adap, "Device %d is not supported\n",
4967                         adap->params.pci.device_id);
4968                 return -EINVAL;
4969         }
4970
4971         return chip;
4972 }
4973
4974 /**
4975  * t4_prep_adapter - prepare SW and HW for operation
4976  * @adapter: the adapter
4977  *
4978  * Initialize adapter SW state for the various HW modules, set initial
4979  * values for some adapter tunables, take PHYs out of reset, and
4980  * initialize the MDIO interface.
4981  */
4982 int t4_prep_adapter(struct adapter *adapter)
4983 {
4984         int ret, ver;
4985         u32 pl_rev;
4986
4987         ret = t4_wait_dev_ready(adapter);
4988         if (ret < 0)
4989                 return ret;
4990
4991         pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
4992         adapter->params.pci.device_id = adapter->pdev->id.device_id;
4993         adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
4994
4995         /*
4996          * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
4997          * ADAPTER (VERSION << 4 | REVISION)
4998          */
4999         ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
5000         adapter->params.chip = 0;
5001         switch (ver) {
5002         case CHELSIO_T5:
5003                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5004                 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
5005                 adapter->params.arch.mps_tcam_size =
5006                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5007                 adapter->params.arch.mps_rplc_size = 128;
5008                 adapter->params.arch.nchan = NCHAN;
5009                 adapter->params.arch.vfcount = 128;
5010                 /* Congestion map is for 4 channels so that
5011                  * MPS can have 4 priority per port.
5012                  */
5013                 adapter->params.arch.cng_ch_bits_log = 2;
5014                 break;
5015         case CHELSIO_T6:
5016                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5017                 adapter->params.arch.sge_fl_db = 0;
5018                 adapter->params.arch.mps_tcam_size =
5019                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5020                 adapter->params.arch.mps_rplc_size = 256;
5021                 adapter->params.arch.nchan = 2;
5022                 adapter->params.arch.vfcount = 256;
5023                 /* Congestion map is for 2 channels so that
5024                  * MPS can have 8 priority per port.
5025                  */
5026                 adapter->params.arch.cng_ch_bits_log = 3;
5027                 break;
5028         default:
5029                 dev_err(adapter, "%s: Device %d is not supported\n",
5030                         __func__, adapter->params.pci.device_id);
5031                 return -EINVAL;
5032         }
5033
5034         adapter->params.pci.vpd_cap_addr =
5035                 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
5036
5037         ret = t4_get_flash_params(adapter);
5038         if (ret < 0) {
5039                 dev_err(adapter, "Unable to retrieve Flash Parameters, ret = %d\n",
5040                         -ret);
5041                 return ret;
5042         }
5043
5044         adapter->params.cim_la_size = CIMLA_SIZE;
5045
5046         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5047
5048         /*
5049          * Default port and clock for debugging in case we can't reach FW.
5050          */
5051         adapter->params.nports = 1;
5052         adapter->params.portvec = 1;
5053         adapter->params.vpd.cclk = 50000;
5054
5055         /* Set pci completion timeout value to 4 seconds. */
5056         set_pcie_completion_timeout(adapter, 0xd);
5057         return 0;
5058 }
5059
5060 /**
5061  * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
5062  * @adapter: the adapter
5063  * @qid: the Queue ID
5064  * @qtype: the Ingress or Egress type for @qid
5065  * @pbar2_qoffset: BAR2 Queue Offset
5066  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
5067  *
5068  * Returns the BAR2 SGE Queue Registers information associated with the
5069  * indicated Absolute Queue ID.  These are passed back in return value
5070  * pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
5071  * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
5072  *
5073  * This may return an error which indicates that BAR2 SGE Queue
5074  * registers aren't available.  If an error is not returned, then the
5075  * following values are returned:
5076  *
5077  *   *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
5078  *   *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
5079  *
5080  * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
5081  * require the "Inferred Queue ID" ability may be used.  E.g. the
5082  * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
5083  * then these "Inferred Queue ID" register may not be used.
5084  */
5085 int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
5086                       enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
5087                       unsigned int *pbar2_qid)
5088 {
5089         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
5090         u64 bar2_page_offset, bar2_qoffset;
5091         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
5092
5093         /*
5094          * T4 doesn't support BAR2 SGE Queue registers.
5095          */
5096         if (is_t4(adapter->params.chip))
5097                 return -EINVAL;
5098
5099         /*
5100          * Get our SGE Page Size parameters.
5101          */
5102         page_shift = adapter->params.sge.hps + 10;
5103         page_size = 1 << page_shift;
5104
5105         /*
5106          * Get the right Queues per Page parameters for our Queue.
5107          */
5108         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
5109                               adapter->params.sge.eq_qpp :
5110                               adapter->params.sge.iq_qpp);
5111         qpp_mask = (1 << qpp_shift) - 1;
5112
5113         /*
5114          * Calculate the basics of the BAR2 SGE Queue register area:
5115          *  o The BAR2 page the Queue registers will be in.
5116          *  o The BAR2 Queue ID.
5117          *  o The BAR2 Queue ID Offset into the BAR2 page.
5118          */
5119         bar2_page_offset = ((qid >> qpp_shift) << page_shift);
5120         bar2_qid = qid & qpp_mask;
5121         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
5122
5123         /*
5124          * If the BAR2 Queue ID Offset is less than the Page Size, then the
5125          * hardware will infer the Absolute Queue ID simply from the writes to
5126          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
5127          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
5128          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
5129          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
5130          * from the BAR2 Page and BAR2 Queue ID.
5131          *
5132          * One important censequence of this is that some BAR2 SGE registers
5133          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
5134          * there.  But other registers synthesize the SGE Queue ID purely
5135          * from the writes to the registers -- the Write Combined Doorbell
5136          * Buffer is a good example.  These BAR2 SGE Registers are only
5137          * available for those BAR2 SGE Register areas where the SGE Absolute
5138          * Queue ID can be inferred from simple writes.
5139          */
5140         bar2_qoffset = bar2_page_offset;
5141         bar2_qinferred = (bar2_qid_offset < page_size);
5142         if (bar2_qinferred) {
5143                 bar2_qoffset += bar2_qid_offset;
5144                 bar2_qid = 0;
5145         }
5146
5147         *pbar2_qoffset = bar2_qoffset;
5148         *pbar2_qid = bar2_qid;
5149         return 0;
5150 }
5151
5152 /**
5153  * t4_init_sge_params - initialize adap->params.sge
5154  * @adapter: the adapter
5155  *
5156  * Initialize various fields of the adapter's SGE Parameters structure.
5157  */
5158 int t4_init_sge_params(struct adapter *adapter)
5159 {
5160         struct sge_params *sge_params = &adapter->params.sge;
5161         u32 hps, qpp;
5162         unsigned int s_hps, s_qpp;
5163
5164         /*
5165          * Extract the SGE Page Size for our PF.
5166          */
5167         hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
5168         s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
5169                  adapter->pf);
5170         sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);
5171
5172         /*
5173          * Extract the SGE Egress and Ingess Queues Per Page for our PF.
5174          */
5175         s_qpp = (S_QUEUESPERPAGEPF0 +
5176                  (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
5177         qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
5178         sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5179         qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
5180         sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5181
5182         return 0;
5183 }
5184
5185 /**
5186  * t4_init_tp_params - initialize adap->params.tp
5187  * @adap: the adapter
5188  *
5189  * Initialize various fields of the adapter's TP Parameters structure.
5190  */
5191 int t4_init_tp_params(struct adapter *adap)
5192 {
5193         int chan, ret;
5194         u32 param, v;
5195
5196         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5197         adap->params.tp.tre = G_TIMERRESOLUTION(v);
5198         adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5199
5200         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5201         for (chan = 0; chan < NCHAN; chan++)
5202                 adap->params.tp.tx_modq[chan] = chan;
5203
5204         /*
5205          * Cache the adapter's Compressed Filter Mode/Mask and global Ingress
5206          * Configuration.
5207          */
5208         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5209                  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
5210                  V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK));
5211
5212         /* Read current value */
5213         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5214                               1, &param, &v);
5215         if (!ret) {
5216                 dev_info(adap, "Current filter mode/mask 0x%x:0x%x\n",
5217                          G_FW_PARAMS_PARAM_FILTER_MODE(v),
5218                          G_FW_PARAMS_PARAM_FILTER_MASK(v));
5219                 adap->params.tp.vlan_pri_map =
5220                         G_FW_PARAMS_PARAM_FILTER_MODE(v);
5221                 adap->params.tp.filter_mask =
5222                         G_FW_PARAMS_PARAM_FILTER_MASK(v);
5223         } else {
5224                 dev_info(adap,
5225                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
5226
5227                 /* In case of older-fw (which doesn't expose the api
5228                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
5229                  * the fw api) combination, fall-back to older method of reading
5230                  * the filter mode from indirect-register
5231                  */
5232                 t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5233                                  &adap->params.tp.vlan_pri_map, 1,
5234                                  A_TP_VLAN_PRI_MAP);
5235
5236                 /* With the older-fw and newer-driver combination we might run
5237                  * into an issue when user wants to use hash filter region but
5238                  * the filter_mask is zero, in this case filter_mask validation
5239                  * is tough. To avoid that we set the filter_mask same as filter
5240                  * mode, which will behave exactly as the older way of ignoring
5241                  * the filter mask validation.
5242                  */
5243                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
5244         }
5245
5246         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5247                          &adap->params.tp.ingress_config, 1,
5248                          A_TP_INGRESS_CONFIG);
5249
5250         /* For T6, cache the adapter's compressed error vector
5251          * and passing outer header info for encapsulated packets.
5252          */
5253         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
5254                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
5255                 adap->params.tp.rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
5256         }
5257
5258         /*
5259          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5260          * shift positions of several elements of the Compressed Filter Tuple
5261          * for this adapter which we need frequently ...
5262          */
5263         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
5264         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
5265         adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
5266         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
5267                                                                F_PROTOCOL);
5268         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
5269                                                                 F_ETHERTYPE);
5270         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
5271                                                                F_MACMATCH);
5272         adap->params.tp.tos_shift = t4_filter_field_shift(adap, F_TOS);
5273
5274         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
5275         adap->params.tp.hash_filter_mask = v;
5276         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
5277         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
5278
5279         return 0;
5280 }
5281
5282 /**
5283  * t4_filter_field_shift - calculate filter field shift
5284  * @adap: the adapter
5285  * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5286  *
5287  * Return the shift position of a filter field within the Compressed
5288  * Filter Tuple.  The filter field is specified via its selection bit
5289  * within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5290  */
5291 int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
5292 {
5293         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5294         unsigned int sel;
5295         int field_shift;
5296
5297         if ((filter_mode & filter_sel) == 0)
5298                 return -1;
5299
5300         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5301                 switch (filter_mode & sel) {
5302                 case F_FCOE:
5303                         field_shift += W_FT_FCOE;
5304                         break;
5305                 case F_PORT:
5306                         field_shift += W_FT_PORT;
5307                         break;
5308                 case F_VNIC_ID:
5309                         field_shift += W_FT_VNIC_ID;
5310                         break;
5311                 case F_VLAN:
5312                         field_shift += W_FT_VLAN;
5313                         break;
5314                 case F_TOS:
5315                         field_shift += W_FT_TOS;
5316                         break;
5317                 case F_PROTOCOL:
5318                         field_shift += W_FT_PROTOCOL;
5319                         break;
5320                 case F_ETHERTYPE:
5321                         field_shift += W_FT_ETHERTYPE;
5322                         break;
5323                 case F_MACMATCH:
5324                         field_shift += W_FT_MACMATCH;
5325                         break;
5326                 case F_MPSHITTYPE:
5327                         field_shift += W_FT_MPSHITTYPE;
5328                         break;
5329                 case F_FRAGMENTATION:
5330                         field_shift += W_FT_FRAGMENTATION;
5331                         break;
5332                 }
5333         }
5334         return field_shift;
5335 }
5336
5337 int t4_init_rss_mode(struct adapter *adap, int mbox)
5338 {
5339         int i, ret;
5340         struct fw_rss_vi_config_cmd rvc;
5341
5342         memset(&rvc, 0, sizeof(rvc));
5343
5344         for_each_port(adap, i) {
5345                 struct port_info *p = adap2pinfo(adap, i);
5346
5347                 rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5348                                        F_FW_CMD_REQUEST | F_FW_CMD_READ |
5349                                        V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
5350                 rvc.retval_len16 = htonl(FW_LEN16(rvc));
5351                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
5352                 if (ret)
5353                         return ret;
5354                 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
5355         }
5356         return 0;
5357 }
5358
5359 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
5360 {
5361         u32 param, val, pcaps, acaps;
5362         enum fw_port_type port_type;
5363         struct fw_port_cmd cmd;
5364         u8 vivld = 0, vin = 0;
5365         int ret, i, j = 0;
5366         int mdio_addr;
5367         u8 addr[6];
5368
5369         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
5370                  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
5371         val = 1;
5372         ret = t4_set_params(adap, mbox, pf, vf, 1, &param, &val);
5373         if (ret < 0)
5374                 return ret;
5375
5376         memset(&cmd, 0, sizeof(cmd));
5377
5378         for_each_port(adap, i) {
5379                 struct port_info *pi = adap2pinfo(adap, i);
5380                 unsigned int rss_size = 0;
5381                 u32 lstatus32;
5382
5383                 while ((adap->params.portvec & (1 << j)) == 0)
5384                         j++;
5385
5386                 memset(&cmd, 0, sizeof(cmd));
5387                 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
5388                                                F_FW_CMD_REQUEST |
5389                                                F_FW_CMD_READ |
5390                                                V_FW_PORT_CMD_PORTID(j));
5391                 val = FW_PORT_ACTION_GET_PORT_INFO32;
5392                 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(val) |
5393                                                   FW_LEN16(cmd));
5394                 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
5395                 if (ret)
5396                         return ret;
5397
5398                 /* Extract the various fields from the Port Information
5399                  * message.
5400                  */
5401                 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
5402
5403                 port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
5404                 mdio_addr = (lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ?
5405                             (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) : -1;
5406                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
5407                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
5408
5409                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size,
5410                                   &vivld, &vin);
5411                 if (ret < 0)
5412                         return ret;
5413
5414                 pi->viid = ret;
5415                 pi->tx_chan = j;
5416                 pi->rss_size = rss_size;
5417                 t4_os_set_hw_addr(adap, i, addr);
5418
5419                 /* If fw supports returning the VIN as part of FW_VI_CMD,
5420                  * save the returned values.
5421                  */
5422                 if (adap->params.viid_smt_extn_support) {
5423                         pi->vivld = vivld;
5424                         pi->vin = vin;
5425                 } else {
5426                         /* Retrieve the values from VIID */
5427                         pi->vivld = G_FW_VIID_VIVLD(pi->viid);
5428                         pi->vin =  G_FW_VIID_VIN(pi->viid);
5429                 }
5430
5431                 t4_init_link_config(pi, pcaps, acaps, mdio_addr, port_type,
5432                                     FW_PORT_MOD_TYPE_NA);
5433                 j++;
5434         }
5435         return 0;
5436 }
5437
5438 /**
5439  * t4_memory_rw_addr - read/write adapter memory via PCIE memory window
5440  * @adap: the adapter
5441  * @win: PCI-E Memory Window to use
5442  * @addr: address within adapter memory
5443  * @len: amount of memory to transfer
5444  * @hbuf: host memory buffer
5445  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5446  *
5447  * Reads/writes an [almost] arbitrary memory region in the firmware: the
5448  * firmware memory address and host buffer must be aligned on 32-bit
5449  * boudaries; the length may be arbitrary.
5450  *
5451  * NOTES:
5452  *  1. The memory is transferred as a raw byte sequence from/to the
5453  *     firmware's memory.  If this memory contains data structures which
5454  *     contain multi-byte integers, it's the caller's responsibility to
5455  *     perform appropriate byte order conversions.
5456  *
5457  *  2. It is the Caller's responsibility to ensure that no other code
5458  *     uses the specified PCI-E Memory Window while this routine is
5459  *     using it.  This is typically done via the use of OS-specific
5460  *     locks, etc.
5461  */
5462 int t4_memory_rw_addr(struct adapter *adap, int win, u32 addr,
5463                       u32 len, void *hbuf, int dir)
5464 {
5465         u32 pos, offset, resid;
5466         u32 win_pf, mem_reg, mem_aperture, mem_base;
5467         u32 *buf;
5468
5469         /* Argument sanity checks ...*/
5470         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5471                 return -EINVAL;
5472         buf = (u32 *)hbuf;
5473
5474         /* It's convenient to be able to handle lengths which aren't a
5475          * multiple of 32-bits because we often end up transferring files to
5476          * the firmware.  So we'll handle that by normalizing the length here
5477          * and then handling any residual transfer at the end.
5478          */
5479         resid = len & 0x3;
5480         len -= resid;
5481
5482         /* Each PCI-E Memory Window is programmed with a window size -- or
5483          * "aperture" -- which controls the granularity of its mapping onto
5484          * adapter memory.  We need to grab that aperture in order to know
5485          * how to use the specified window.  The window is also programmed
5486          * with the base address of the Memory Window in BAR0's address
5487          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
5488          * the address is relative to BAR0.
5489          */
5490         mem_reg = t4_read_reg(adap,
5491                               PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
5492                                                   win));
5493         mem_aperture = 1 << (G_WINDOW(mem_reg) + X_WINDOW_SHIFT);
5494         mem_base = G_PCIEOFST(mem_reg) << X_PCIEOFST_SHIFT;
5495
5496         win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->pf);
5497
5498         /* Calculate our initial PCI-E Memory Window Position and Offset into
5499          * that Window.
5500          */
5501         pos = addr & ~(mem_aperture - 1);
5502         offset = addr - pos;
5503
5504         /* Set up initial PCI-E Memory Window to cover the start of our
5505          * transfer.  (Read it back to ensure that changes propagate before we
5506          * attempt to use the new value.)
5507          */
5508         t4_write_reg(adap,
5509                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win),
5510                      pos | win_pf);
5511         t4_read_reg(adap,
5512                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win));
5513
5514         /* Transfer data to/from the adapter as long as there's an integral
5515          * number of 32-bit transfers to complete.
5516          *
5517          * A note on Endianness issues:
5518          *
5519          * The "register" reads and writes below from/to the PCI-E Memory
5520          * Window invoke the standard adapter Big-Endian to PCI-E Link
5521          * Little-Endian "swizzel."  As a result, if we have the following
5522          * data in adapter memory:
5523          *
5524          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
5525          *     Address:      i+0  i+1  i+2  i+3
5526          *
5527          * Then a read of the adapter memory via the PCI-E Memory Window
5528          * will yield:
5529          *
5530          *     x = readl(i)
5531          *         31                  0
5532          *         [ b3 | b2 | b1 | b0 ]
5533          *
5534          * If this value is stored into local memory on a Little-Endian system
5535          * it will show up correctly in local memory as:
5536          *
5537          *     ( ..., b0, b1, b2, b3, ... )
5538          *
5539          * But on a Big-Endian system, the store will show up in memory
5540          * incorrectly swizzled as:
5541          *
5542          *     ( ..., b3, b2, b1, b0, ... )
5543          *
5544          * So we need to account for this in the reads and writes to the
5545          * PCI-E Memory Window below by undoing the register read/write
5546          * swizzels.
5547          */
5548         while (len > 0) {
5549                 if (dir == T4_MEMORY_READ)
5550                         *buf++ = le32_to_cpu((__le32)t4_read_reg(adap,
5551                                                                  mem_base +
5552                                                                  offset));
5553                 else
5554                         t4_write_reg(adap, mem_base + offset,
5555                                      (u32)cpu_to_le32(*buf++));
5556                 offset += sizeof(__be32);
5557                 len -= sizeof(__be32);
5558
5559                 /* If we've reached the end of our current window aperture,
5560                  * move the PCI-E Memory Window on to the next.  Note that
5561                  * doing this here after "len" may be 0 allows us to set up
5562                  * the PCI-E Memory Window for a possible final residual
5563                  * transfer below ...
5564                  */
5565                 if (offset == mem_aperture) {
5566                         pos += mem_aperture;
5567                         offset = 0;
5568                         t4_write_reg(adap,
5569                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5570                                                     win), pos | win_pf);
5571                         t4_read_reg(adap,
5572                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5573                                                     win));
5574                 }
5575         }
5576
5577         /* If the original transfer had a length which wasn't a multiple of
5578          * 32-bits, now's where we need to finish off the transfer of the
5579          * residual amount.  The PCI-E Memory Window has already been moved
5580          * above (if necessary) to cover this final transfer.
5581          */
5582         if (resid) {
5583                 union {
5584                         u32 word;
5585                         char byte[4];
5586                 } last;
5587                 unsigned char *bp;
5588                 int i;
5589
5590                 if (dir == T4_MEMORY_READ) {
5591                         last.word = le32_to_cpu((__le32)t4_read_reg(adap,
5592                                                                     mem_base +
5593                                                                     offset));
5594                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
5595                                 bp[i] = last.byte[i];
5596                 } else {
5597                         last.word = *buf;
5598                         for (i = resid; i < 4; i++)
5599                                 last.byte[i] = 0;
5600                         t4_write_reg(adap, mem_base + offset,
5601                                      (u32)cpu_to_le32(last.word));
5602                 }
5603         }
5604
5605         return 0;
5606 }
5607
5608 /**
5609  * t4_memory_rw_mtype -read/write EDC 0, EDC 1 or MC via PCIE memory window
5610  * @adap: the adapter
5611  * @win: PCI-E Memory Window to use
5612  * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
5613  * @maddr: address within indicated memory type
5614  * @len: amount of memory to transfer
5615  * @hbuf: host memory buffer
5616  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5617  *
5618  * Reads/writes adapter memory using t4_memory_rw_addr().  This routine
5619  * provides an (memory type, address within memory type) interface.
5620  */
5621 int t4_memory_rw_mtype(struct adapter *adap, int win, int mtype, u32 maddr,
5622                        u32 len, void *hbuf, int dir)
5623 {
5624         u32 mtype_offset;
5625         u32 edc_size, mc_size;
5626
5627         /* Offset into the region of memory which is being accessed
5628          * MEM_EDC0 = 0
5629          * MEM_EDC1 = 1
5630          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
5631          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
5632          */
5633         edc_size  = G_EDRAM0_SIZE(t4_read_reg(adap, A_MA_EDRAM0_BAR));
5634         if (mtype != MEM_MC1) {
5635                 mtype_offset = (mtype * (edc_size * 1024 * 1024));
5636         } else {
5637                 mc_size = G_EXT_MEM0_SIZE(t4_read_reg(adap,
5638                                                       A_MA_EXT_MEMORY0_BAR));
5639                 mtype_offset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
5640         }
5641
5642         return t4_memory_rw_addr(adap, win,
5643                                  mtype_offset + maddr, len,
5644                                  hbuf, dir);
5645 }