net/cxgbe: simplify Rx payload buffer size posting
[dpdk.git] / drivers / net / cxgbe / base / t4_hw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <netinet/in.h>
7
8 #include <rte_interrupts.h>
9 #include <rte_log.h>
10 #include <rte_debug.h>
11 #include <rte_pci.h>
12 #include <rte_branch_prediction.h>
13 #include <rte_memory.h>
14 #include <rte_tailq.h>
15 #include <rte_eal.h>
16 #include <rte_alarm.h>
17 #include <rte_ether.h>
18 #include <ethdev_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_random.h>
21 #include <rte_dev.h>
22 #include <rte_byteorder.h>
23
24 #include "common.h"
25 #include "t4_regs.h"
26 #include "t4_regs_values.h"
27 #include "t4fw_interface.h"
28
29 /**
30  * t4_read_mtu_tbl - returns the values in the HW path MTU table
31  * @adap: the adapter
32  * @mtus: where to store the MTU values
33  * @mtu_log: where to store the MTU base-2 log (may be %NULL)
34  *
35  * Reads the HW path MTU table.
36  */
37 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
38 {
39         u32 v;
40         int i;
41
42         for (i = 0; i < NMTUS; ++i) {
43                 t4_write_reg(adap, A_TP_MTU_TABLE,
44                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
45                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
46                 mtus[i] = G_MTUVALUE(v);
47                 if (mtu_log)
48                         mtu_log[i] = G_MTUWIDTH(v);
49         }
50 }
51
52 /**
53  * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
54  * @adap: the adapter
55  * @addr: the indirect TP register address
56  * @mask: specifies the field within the register to modify
57  * @val: new value for the field
58  *
59  * Sets a field of an indirect TP register to the given value.
60  */
61 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
62                             unsigned int mask, unsigned int val)
63 {
64         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
65         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
66         t4_write_reg(adap, A_TP_PIO_DATA, val);
67 }
68
69 /* The minimum additive increment value for the congestion control table */
70 #define CC_MIN_INCR 2U
71
72 /**
73  * t4_load_mtus - write the MTU and congestion control HW tables
74  * @adap: the adapter
75  * @mtus: the values for the MTU table
76  * @alpha: the values for the congestion control alpha parameter
77  * @beta: the values for the congestion control beta parameter
78  *
79  * Write the HW MTU table with the supplied MTUs and the high-speed
80  * congestion control table with the supplied alpha, beta, and MTUs.
81  * We write the two tables together because the additive increments
82  * depend on the MTUs.
83  */
84 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
85                   const unsigned short *alpha, const unsigned short *beta)
86 {
87         static const unsigned int avg_pkts[NCCTRL_WIN] = {
88                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
89                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
90                 28672, 40960, 57344, 81920, 114688, 163840, 229376
91         };
92
93         unsigned int i, w;
94
95         for (i = 0; i < NMTUS; ++i) {
96                 unsigned int mtu = mtus[i];
97                 unsigned int log2 = cxgbe_fls(mtu);
98
99                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
100                         log2--;
101                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
102                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
103
104                 for (w = 0; w < NCCTRL_WIN; ++w) {
105                         unsigned int inc;
106
107                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
108                                   CC_MIN_INCR);
109
110                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
111                                      (w << 16) | (beta[w] << 13) | inc);
112                 }
113         }
114 }
115
116 /**
117  * t4_wait_op_done_val - wait until an operation is completed
118  * @adapter: the adapter performing the operation
119  * @reg: the register to check for completion
120  * @mask: a single-bit field within @reg that indicates completion
121  * @polarity: the value of the field when the operation is completed
122  * @attempts: number of check iterations
123  * @delay: delay in usecs between iterations
124  * @valp: where to store the value of the register at completion time
125  *
126  * Wait until an operation is completed by checking a bit in a register
127  * up to @attempts times.  If @valp is not NULL the value of the register
128  * at the time it indicated completion is stored there.  Returns 0 if the
129  * operation completes and -EAGAIN otherwise.
130  */
131 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
132                         int polarity, int attempts, int delay, u32 *valp)
133 {
134         while (1) {
135                 u32 val = t4_read_reg(adapter, reg);
136
137                 if (!!(val & mask) == polarity) {
138                         if (valp)
139                                 *valp = val;
140                         return 0;
141                 }
142                 if (--attempts == 0)
143                         return -EAGAIN;
144                 if (delay)
145                         udelay(delay);
146         }
147 }
148
149 /**
150  * t4_set_reg_field - set a register field to a value
151  * @adapter: the adapter to program
152  * @addr: the register address
153  * @mask: specifies the portion of the register to modify
154  * @val: the new value for the register field
155  *
156  * Sets a register field specified by the supplied mask to the
157  * given value.
158  */
159 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
160                       u32 val)
161 {
162         u32 v = t4_read_reg(adapter, addr) & ~mask;
163
164         t4_write_reg(adapter, addr, v | val);
165         (void)t4_read_reg(adapter, addr);      /* flush */
166 }
167
168 /**
169  * t4_read_indirect - read indirectly addressed registers
170  * @adap: the adapter
171  * @addr_reg: register holding the indirect address
172  * @data_reg: register holding the value of the indirect register
173  * @vals: where the read register values are stored
174  * @nregs: how many indirect registers to read
175  * @start_idx: index of first indirect register to read
176  *
177  * Reads registers that are accessed indirectly through an address/data
178  * register pair.
179  */
180 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
181                       unsigned int data_reg, u32 *vals, unsigned int nregs,
182                       unsigned int start_idx)
183 {
184         while (nregs--) {
185                 t4_write_reg(adap, addr_reg, start_idx);
186                 *vals++ = t4_read_reg(adap, data_reg);
187                 start_idx++;
188         }
189 }
190
191 /**
192  * t4_write_indirect - write indirectly addressed registers
193  * @adap: the adapter
194  * @addr_reg: register holding the indirect addresses
195  * @data_reg: register holding the value for the indirect registers
196  * @vals: values to write
197  * @nregs: how many indirect registers to write
198  * @start_idx: address of first indirect register to write
199  *
200  * Writes a sequential block of registers that are accessed indirectly
201  * through an address/data register pair.
202  */
203 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
204                        unsigned int data_reg, const u32 *vals,
205                        unsigned int nregs, unsigned int start_idx)
206 {
207         while (nregs--) {
208                 t4_write_reg(adap, addr_reg, start_idx++);
209                 t4_write_reg(adap, data_reg, *vals++);
210         }
211 }
212
213 /**
214  * t4_report_fw_error - report firmware error
215  * @adap: the adapter
216  *
217  * The adapter firmware can indicate error conditions to the host.
218  * If the firmware has indicated an error, print out the reason for
219  * the firmware error.
220  */
221 static void t4_report_fw_error(struct adapter *adap)
222 {
223         static const char * const reason[] = {
224                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
225                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
226                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
227                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
228                 "Unexpected Event",     /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
229                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
230                 "Device Shutdown",      /* PCIE_FW_EVAL_DEVICESHUTDOWN */
231                 "Reserved",                     /* reserved */
232         };
233         u32 pcie_fw;
234
235         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
236         if (pcie_fw & F_PCIE_FW_ERR)
237                 pr_err("%s: Firmware reports adapter error: %s\n",
238                        __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
239 }
240
241 /*
242  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
243  */
244 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
245                          u32 mbox_addr)
246 {
247         for ( ; nflit; nflit--, mbox_addr += 8)
248                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
249 }
250
251 /*
252  * Handle a FW assertion reported in a mailbox.
253  */
254 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
255 {
256         struct fw_debug_cmd asrt;
257
258         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
259         pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
260                 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
261                 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
262 }
263
264 #define X_CIM_PF_NOACCESS 0xeeeeeeee
265
266 /**
267  * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
268  * @adap: the adapter
269  * @mbox: index of the mailbox to use
270  * @cmd: the command to write
271  * @size: command length in bytes
272  * @rpl: where to optionally store the reply
273  * @sleep_ok: if true we may sleep while awaiting command completion
274  * @timeout: time to wait for command to finish before timing out
275  *           (negative implies @sleep_ok=false)
276  *
277  * Sends the given command to FW through the selected mailbox and waits
278  * for the FW to execute the command.  If @rpl is not %NULL it is used to
279  * store the FW's reply to the command.  The command and its optional
280  * reply are of the same length.  Some FW commands like RESET and
281  * INITIALIZE can take a considerable amount of time to execute.
282  * @sleep_ok determines whether we may sleep while awaiting the response.
283  * If sleeping is allowed we use progressive backoff otherwise we spin.
284  * Note that passing in a negative @timeout is an alternate mechanism
285  * for specifying @sleep_ok=false.  This is useful when a higher level
286  * interface allows for specification of @timeout but not @sleep_ok ...
287  *
288  * Returns 0 on success or a negative errno on failure.  A
289  * failure can happen either because we are not able to execute the
290  * command or FW executes it but signals an error.  In the latter case
291  * the return value is the error code indicated by FW (negated).
292  */
293 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
294                             const void __attribute__((__may_alias__)) *cmd,
295                             int size, void *rpl, bool sleep_ok, int timeout)
296 {
297         /*
298          * We delay in small increments at first in an effort to maintain
299          * responsiveness for simple, fast executing commands but then back
300          * off to larger delays to a maximum retry delay.
301          */
302         static const int delay[] = {
303                 1, 1, 3, 5, 10, 10, 20, 50, 100
304         };
305
306         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
307         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
308         struct mbox_entry *entry;
309         u32 v, ctl, pcie_fw = 0;
310         unsigned int delay_idx;
311         const __be64 *p;
312         int i, ms, ret;
313         u64 res;
314
315         if ((size & 15) != 0 || size > MBOX_LEN)
316                 return -EINVAL;
317
318         /*
319          * If we have a negative timeout, that implies that we can't sleep.
320          */
321         if (timeout < 0) {
322                 sleep_ok = false;
323                 timeout = -timeout;
324         }
325
326         entry = t4_os_alloc(sizeof(*entry));
327         if (entry == NULL)
328                 return -ENOMEM;
329
330         /*
331          * Queue ourselves onto the mailbox access list.  When our entry is at
332          * the front of the list, we have rights to access the mailbox.  So we
333          * wait [for a while] till we're at the front [or bail out with an
334          * EBUSY] ...
335          */
336         t4_os_atomic_add_tail(entry, &adap->mbox_list, &adap->mbox_lock);
337
338         delay_idx = 0;
339         ms = delay[0];
340
341         for (i = 0; ; i += ms) {
342                 /*
343                  * If we've waited too long, return a busy indication.  This
344                  * really ought to be based on our initial position in the
345                  * mailbox access list but this is a start.  We very rarely
346                  * contend on access to the mailbox ...  Also check for a
347                  * firmware error which we'll report as a device error.
348                  */
349                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
350                 if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
351                         t4_os_atomic_list_del(entry, &adap->mbox_list,
352                                               &adap->mbox_lock);
353                         t4_report_fw_error(adap);
354                         ret = ((pcie_fw & F_PCIE_FW_ERR) != 0) ? -ENXIO : -EBUSY;
355                         goto out_free;
356                 }
357
358                 /*
359                  * If we're at the head, break out and start the mailbox
360                  * protocol.
361                  */
362                 if (t4_os_list_first_entry(&adap->mbox_list) == entry)
363                         break;
364
365                 /*
366                  * Delay for a bit before checking again ...
367                  */
368                 if (sleep_ok) {
369                         ms = delay[delay_idx];  /* last element may repeat */
370                         if (delay_idx < ARRAY_SIZE(delay) - 1)
371                                 delay_idx++;
372                         msleep(ms);
373                 } else {
374                         rte_delay_ms(ms);
375                 }
376         }
377
378         /*
379          * Attempt to gain access to the mailbox.
380          */
381         for (i = 0; i < 4; i++) {
382                 ctl = t4_read_reg(adap, ctl_reg);
383                 v = G_MBOWNER(ctl);
384                 if (v != X_MBOWNER_NONE)
385                         break;
386         }
387
388         /*
389          * If we were unable to gain access, dequeue ourselves from the
390          * mailbox atomic access list and report the error to our caller.
391          */
392         if (v != X_MBOWNER_PL) {
393                 t4_os_atomic_list_del(entry, &adap->mbox_list,
394                                       &adap->mbox_lock);
395                 t4_report_fw_error(adap);
396                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
397                 goto out_free;
398         }
399
400         /*
401          * If we gain ownership of the mailbox and there's a "valid" message
402          * in it, this is likely an asynchronous error message from the
403          * firmware.  So we'll report that and then proceed on with attempting
404          * to issue our own command ... which may well fail if the error
405          * presaged the firmware crashing ...
406          */
407         if (ctl & F_MBMSGVALID) {
408                 dev_err(adap, "found VALID command in mbox %u: "
409                         "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
410                         (unsigned long long)t4_read_reg64(adap, data_reg),
411                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
412                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
413                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
414                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
415                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
416                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
417                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
418         }
419
420         /*
421          * Copy in the new mailbox command and send it on its way ...
422          */
423         for (i = 0, p = cmd; i < size; i += 8, p++)
424                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
425
426         CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
427                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
428                         (unsigned long long)t4_read_reg64(adap, data_reg),
429                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
430                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
431                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
432                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
433                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
434                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
435                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
436
437         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
438         t4_read_reg(adap, ctl_reg);          /* flush write */
439
440         delay_idx = 0;
441         ms = delay[0];
442
443         /*
444          * Loop waiting for the reply; bail out if we time out or the firmware
445          * reports an error.
446          */
447         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
448         for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
449                 if (sleep_ok) {
450                         ms = delay[delay_idx];  /* last element may repeat */
451                         if (delay_idx < ARRAY_SIZE(delay) - 1)
452                                 delay_idx++;
453                         msleep(ms);
454                 } else {
455                         msleep(ms);
456                 }
457
458                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
459                 v = t4_read_reg(adap, ctl_reg);
460                 if (v == X_CIM_PF_NOACCESS)
461                         continue;
462                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
463                         if (!(v & F_MBMSGVALID)) {
464                                 t4_write_reg(adap, ctl_reg,
465                                              V_MBOWNER(X_MBOWNER_NONE));
466                                 continue;
467                         }
468
469                         CXGBE_DEBUG_MBOX(adap,
470                         "%s: mbox %u: %016llx %016llx %016llx %016llx "
471                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
472                         (unsigned long long)t4_read_reg64(adap, data_reg),
473                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
474                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
475                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
476                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
477                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
478                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
479                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
480
481                         CXGBE_DEBUG_MBOX(adap,
482                                 "command %#x completed in %d ms (%ssleeping)\n",
483                                 *(const u8 *)cmd,
484                                 i + ms, sleep_ok ? "" : "non-");
485
486                         res = t4_read_reg64(adap, data_reg);
487                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
488                                 fw_asrt(adap, data_reg);
489                                 res = V_FW_CMD_RETVAL(EIO);
490                         } else if (rpl) {
491                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
492                         }
493                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
494                         t4_os_atomic_list_del(entry, &adap->mbox_list,
495                                               &adap->mbox_lock);
496                         ret = -G_FW_CMD_RETVAL((int)res);
497                         goto out_free;
498                 }
499         }
500
501         /*
502          * We timed out waiting for a reply to our mailbox command.  Report
503          * the error and also check to see if the firmware reported any
504          * errors ...
505          */
506         dev_err(adap, "command %#x in mailbox %d timed out\n",
507                 *(const u8 *)cmd, mbox);
508         t4_os_atomic_list_del(entry, &adap->mbox_list, &adap->mbox_lock);
509         t4_report_fw_error(adap);
510         ret = ((pcie_fw & F_PCIE_FW_ERR) != 0) ? -ENXIO : -ETIMEDOUT;
511
512 out_free:
513         t4_os_free(entry);
514         return ret;
515 }
516
517 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
518                     void *rpl, bool sleep_ok)
519 {
520         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
521                                        FW_CMD_MAX_TIMEOUT);
522 }
523
524 /**
525  * t4_get_regs_len - return the size of the chips register set
526  * @adapter: the adapter
527  *
528  * Returns the size of the chip's BAR0 register space.
529  */
530 unsigned int t4_get_regs_len(struct adapter *adapter)
531 {
532         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
533
534         switch (chip_version) {
535         case CHELSIO_T5:
536         case CHELSIO_T6:
537                 return T5_REGMAP_SIZE;
538         }
539
540         dev_err(adapter,
541                 "Unsupported chip version %d\n", chip_version);
542         return 0;
543 }
544
545 /**
546  * t4_get_regs - read chip registers into provided buffer
547  * @adap: the adapter
548  * @buf: register buffer
549  * @buf_size: size (in bytes) of register buffer
550  *
551  * If the provided register buffer isn't large enough for the chip's
552  * full register range, the register dump will be truncated to the
553  * register buffer's size.
554  */
555 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
556 {
557         static const unsigned int t5_reg_ranges[] = {
558                 0x1008, 0x10c0,
559                 0x10cc, 0x10f8,
560                 0x1100, 0x1100,
561                 0x110c, 0x1148,
562                 0x1180, 0x1184,
563                 0x1190, 0x1194,
564                 0x11a0, 0x11a4,
565                 0x11b0, 0x11b4,
566                 0x11fc, 0x123c,
567                 0x1280, 0x173c,
568                 0x1800, 0x18fc,
569                 0x3000, 0x3028,
570                 0x3060, 0x30b0,
571                 0x30b8, 0x30d8,
572                 0x30e0, 0x30fc,
573                 0x3140, 0x357c,
574                 0x35a8, 0x35cc,
575                 0x35ec, 0x35ec,
576                 0x3600, 0x5624,
577                 0x56cc, 0x56ec,
578                 0x56f4, 0x5720,
579                 0x5728, 0x575c,
580                 0x580c, 0x5814,
581                 0x5890, 0x589c,
582                 0x58a4, 0x58ac,
583                 0x58b8, 0x58bc,
584                 0x5940, 0x59c8,
585                 0x59d0, 0x59dc,
586                 0x59fc, 0x5a18,
587                 0x5a60, 0x5a70,
588                 0x5a80, 0x5a9c,
589                 0x5b94, 0x5bfc,
590                 0x6000, 0x6020,
591                 0x6028, 0x6040,
592                 0x6058, 0x609c,
593                 0x60a8, 0x614c,
594                 0x7700, 0x7798,
595                 0x77c0, 0x78fc,
596                 0x7b00, 0x7b58,
597                 0x7b60, 0x7b84,
598                 0x7b8c, 0x7c54,
599                 0x7d00, 0x7d38,
600                 0x7d40, 0x7d80,
601                 0x7d8c, 0x7ddc,
602                 0x7de4, 0x7e04,
603                 0x7e10, 0x7e1c,
604                 0x7e24, 0x7e38,
605                 0x7e40, 0x7e44,
606                 0x7e4c, 0x7e78,
607                 0x7e80, 0x7edc,
608                 0x7ee8, 0x7efc,
609                 0x8dc0, 0x8de0,
610                 0x8df8, 0x8e04,
611                 0x8e10, 0x8e84,
612                 0x8ea0, 0x8f84,
613                 0x8fc0, 0x9058,
614                 0x9060, 0x9060,
615                 0x9068, 0x90f8,
616                 0x9400, 0x9408,
617                 0x9410, 0x9470,
618                 0x9600, 0x9600,
619                 0x9608, 0x9638,
620                 0x9640, 0x96f4,
621                 0x9800, 0x9808,
622                 0x9820, 0x983c,
623                 0x9850, 0x9864,
624                 0x9c00, 0x9c6c,
625                 0x9c80, 0x9cec,
626                 0x9d00, 0x9d6c,
627                 0x9d80, 0x9dec,
628                 0x9e00, 0x9e6c,
629                 0x9e80, 0x9eec,
630                 0x9f00, 0x9f6c,
631                 0x9f80, 0xa020,
632                 0xd004, 0xd004,
633                 0xd010, 0xd03c,
634                 0xdfc0, 0xdfe0,
635                 0xe000, 0x1106c,
636                 0x11074, 0x11088,
637                 0x1109c, 0x1117c,
638                 0x11190, 0x11204,
639                 0x19040, 0x1906c,
640                 0x19078, 0x19080,
641                 0x1908c, 0x190e8,
642                 0x190f0, 0x190f8,
643                 0x19100, 0x19110,
644                 0x19120, 0x19124,
645                 0x19150, 0x19194,
646                 0x1919c, 0x191b0,
647                 0x191d0, 0x191e8,
648                 0x19238, 0x19290,
649                 0x193f8, 0x19428,
650                 0x19430, 0x19444,
651                 0x1944c, 0x1946c,
652                 0x19474, 0x19474,
653                 0x19490, 0x194cc,
654                 0x194f0, 0x194f8,
655                 0x19c00, 0x19c08,
656                 0x19c10, 0x19c60,
657                 0x19c94, 0x19ce4,
658                 0x19cf0, 0x19d40,
659                 0x19d50, 0x19d94,
660                 0x19da0, 0x19de8,
661                 0x19df0, 0x19e10,
662                 0x19e50, 0x19e90,
663                 0x19ea0, 0x19f24,
664                 0x19f34, 0x19f34,
665                 0x19f40, 0x19f50,
666                 0x19f90, 0x19fb4,
667                 0x19fc4, 0x19fe4,
668                 0x1a000, 0x1a004,
669                 0x1a010, 0x1a06c,
670                 0x1a0b0, 0x1a0e4,
671                 0x1a0ec, 0x1a0f8,
672                 0x1a100, 0x1a108,
673                 0x1a114, 0x1a120,
674                 0x1a128, 0x1a130,
675                 0x1a138, 0x1a138,
676                 0x1a190, 0x1a1c4,
677                 0x1a1fc, 0x1a1fc,
678                 0x1e008, 0x1e00c,
679                 0x1e040, 0x1e044,
680                 0x1e04c, 0x1e04c,
681                 0x1e284, 0x1e290,
682                 0x1e2c0, 0x1e2c0,
683                 0x1e2e0, 0x1e2e0,
684                 0x1e300, 0x1e384,
685                 0x1e3c0, 0x1e3c8,
686                 0x1e408, 0x1e40c,
687                 0x1e440, 0x1e444,
688                 0x1e44c, 0x1e44c,
689                 0x1e684, 0x1e690,
690                 0x1e6c0, 0x1e6c0,
691                 0x1e6e0, 0x1e6e0,
692                 0x1e700, 0x1e784,
693                 0x1e7c0, 0x1e7c8,
694                 0x1e808, 0x1e80c,
695                 0x1e840, 0x1e844,
696                 0x1e84c, 0x1e84c,
697                 0x1ea84, 0x1ea90,
698                 0x1eac0, 0x1eac0,
699                 0x1eae0, 0x1eae0,
700                 0x1eb00, 0x1eb84,
701                 0x1ebc0, 0x1ebc8,
702                 0x1ec08, 0x1ec0c,
703                 0x1ec40, 0x1ec44,
704                 0x1ec4c, 0x1ec4c,
705                 0x1ee84, 0x1ee90,
706                 0x1eec0, 0x1eec0,
707                 0x1eee0, 0x1eee0,
708                 0x1ef00, 0x1ef84,
709                 0x1efc0, 0x1efc8,
710                 0x1f008, 0x1f00c,
711                 0x1f040, 0x1f044,
712                 0x1f04c, 0x1f04c,
713                 0x1f284, 0x1f290,
714                 0x1f2c0, 0x1f2c0,
715                 0x1f2e0, 0x1f2e0,
716                 0x1f300, 0x1f384,
717                 0x1f3c0, 0x1f3c8,
718                 0x1f408, 0x1f40c,
719                 0x1f440, 0x1f444,
720                 0x1f44c, 0x1f44c,
721                 0x1f684, 0x1f690,
722                 0x1f6c0, 0x1f6c0,
723                 0x1f6e0, 0x1f6e0,
724                 0x1f700, 0x1f784,
725                 0x1f7c0, 0x1f7c8,
726                 0x1f808, 0x1f80c,
727                 0x1f840, 0x1f844,
728                 0x1f84c, 0x1f84c,
729                 0x1fa84, 0x1fa90,
730                 0x1fac0, 0x1fac0,
731                 0x1fae0, 0x1fae0,
732                 0x1fb00, 0x1fb84,
733                 0x1fbc0, 0x1fbc8,
734                 0x1fc08, 0x1fc0c,
735                 0x1fc40, 0x1fc44,
736                 0x1fc4c, 0x1fc4c,
737                 0x1fe84, 0x1fe90,
738                 0x1fec0, 0x1fec0,
739                 0x1fee0, 0x1fee0,
740                 0x1ff00, 0x1ff84,
741                 0x1ffc0, 0x1ffc8,
742                 0x30000, 0x30030,
743                 0x30038, 0x30038,
744                 0x30040, 0x30040,
745                 0x30100, 0x30144,
746                 0x30190, 0x301a0,
747                 0x301a8, 0x301b8,
748                 0x301c4, 0x301c8,
749                 0x301d0, 0x301d0,
750                 0x30200, 0x30318,
751                 0x30400, 0x304b4,
752                 0x304c0, 0x3052c,
753                 0x30540, 0x3061c,
754                 0x30800, 0x30828,
755                 0x30834, 0x30834,
756                 0x308c0, 0x30908,
757                 0x30910, 0x309ac,
758                 0x30a00, 0x30a14,
759                 0x30a1c, 0x30a2c,
760                 0x30a44, 0x30a50,
761                 0x30a74, 0x30a74,
762                 0x30a7c, 0x30afc,
763                 0x30b08, 0x30c24,
764                 0x30d00, 0x30d00,
765                 0x30d08, 0x30d14,
766                 0x30d1c, 0x30d20,
767                 0x30d3c, 0x30d3c,
768                 0x30d48, 0x30d50,
769                 0x31200, 0x3120c,
770                 0x31220, 0x31220,
771                 0x31240, 0x31240,
772                 0x31600, 0x3160c,
773                 0x31a00, 0x31a1c,
774                 0x31e00, 0x31e20,
775                 0x31e38, 0x31e3c,
776                 0x31e80, 0x31e80,
777                 0x31e88, 0x31ea8,
778                 0x31eb0, 0x31eb4,
779                 0x31ec8, 0x31ed4,
780                 0x31fb8, 0x32004,
781                 0x32200, 0x32200,
782                 0x32208, 0x32240,
783                 0x32248, 0x32280,
784                 0x32288, 0x322c0,
785                 0x322c8, 0x322fc,
786                 0x32600, 0x32630,
787                 0x32a00, 0x32abc,
788                 0x32b00, 0x32b10,
789                 0x32b20, 0x32b30,
790                 0x32b40, 0x32b50,
791                 0x32b60, 0x32b70,
792                 0x33000, 0x33028,
793                 0x33030, 0x33048,
794                 0x33060, 0x33068,
795                 0x33070, 0x3309c,
796                 0x330f0, 0x33128,
797                 0x33130, 0x33148,
798                 0x33160, 0x33168,
799                 0x33170, 0x3319c,
800                 0x331f0, 0x33238,
801                 0x33240, 0x33240,
802                 0x33248, 0x33250,
803                 0x3325c, 0x33264,
804                 0x33270, 0x332b8,
805                 0x332c0, 0x332e4,
806                 0x332f8, 0x33338,
807                 0x33340, 0x33340,
808                 0x33348, 0x33350,
809                 0x3335c, 0x33364,
810                 0x33370, 0x333b8,
811                 0x333c0, 0x333e4,
812                 0x333f8, 0x33428,
813                 0x33430, 0x33448,
814                 0x33460, 0x33468,
815                 0x33470, 0x3349c,
816                 0x334f0, 0x33528,
817                 0x33530, 0x33548,
818                 0x33560, 0x33568,
819                 0x33570, 0x3359c,
820                 0x335f0, 0x33638,
821                 0x33640, 0x33640,
822                 0x33648, 0x33650,
823                 0x3365c, 0x33664,
824                 0x33670, 0x336b8,
825                 0x336c0, 0x336e4,
826                 0x336f8, 0x33738,
827                 0x33740, 0x33740,
828                 0x33748, 0x33750,
829                 0x3375c, 0x33764,
830                 0x33770, 0x337b8,
831                 0x337c0, 0x337e4,
832                 0x337f8, 0x337fc,
833                 0x33814, 0x33814,
834                 0x3382c, 0x3382c,
835                 0x33880, 0x3388c,
836                 0x338e8, 0x338ec,
837                 0x33900, 0x33928,
838                 0x33930, 0x33948,
839                 0x33960, 0x33968,
840                 0x33970, 0x3399c,
841                 0x339f0, 0x33a38,
842                 0x33a40, 0x33a40,
843                 0x33a48, 0x33a50,
844                 0x33a5c, 0x33a64,
845                 0x33a70, 0x33ab8,
846                 0x33ac0, 0x33ae4,
847                 0x33af8, 0x33b10,
848                 0x33b28, 0x33b28,
849                 0x33b3c, 0x33b50,
850                 0x33bf0, 0x33c10,
851                 0x33c28, 0x33c28,
852                 0x33c3c, 0x33c50,
853                 0x33cf0, 0x33cfc,
854                 0x34000, 0x34030,
855                 0x34038, 0x34038,
856                 0x34040, 0x34040,
857                 0x34100, 0x34144,
858                 0x34190, 0x341a0,
859                 0x341a8, 0x341b8,
860                 0x341c4, 0x341c8,
861                 0x341d0, 0x341d0,
862                 0x34200, 0x34318,
863                 0x34400, 0x344b4,
864                 0x344c0, 0x3452c,
865                 0x34540, 0x3461c,
866                 0x34800, 0x34828,
867                 0x34834, 0x34834,
868                 0x348c0, 0x34908,
869                 0x34910, 0x349ac,
870                 0x34a00, 0x34a14,
871                 0x34a1c, 0x34a2c,
872                 0x34a44, 0x34a50,
873                 0x34a74, 0x34a74,
874                 0x34a7c, 0x34afc,
875                 0x34b08, 0x34c24,
876                 0x34d00, 0x34d00,
877                 0x34d08, 0x34d14,
878                 0x34d1c, 0x34d20,
879                 0x34d3c, 0x34d3c,
880                 0x34d48, 0x34d50,
881                 0x35200, 0x3520c,
882                 0x35220, 0x35220,
883                 0x35240, 0x35240,
884                 0x35600, 0x3560c,
885                 0x35a00, 0x35a1c,
886                 0x35e00, 0x35e20,
887                 0x35e38, 0x35e3c,
888                 0x35e80, 0x35e80,
889                 0x35e88, 0x35ea8,
890                 0x35eb0, 0x35eb4,
891                 0x35ec8, 0x35ed4,
892                 0x35fb8, 0x36004,
893                 0x36200, 0x36200,
894                 0x36208, 0x36240,
895                 0x36248, 0x36280,
896                 0x36288, 0x362c0,
897                 0x362c8, 0x362fc,
898                 0x36600, 0x36630,
899                 0x36a00, 0x36abc,
900                 0x36b00, 0x36b10,
901                 0x36b20, 0x36b30,
902                 0x36b40, 0x36b50,
903                 0x36b60, 0x36b70,
904                 0x37000, 0x37028,
905                 0x37030, 0x37048,
906                 0x37060, 0x37068,
907                 0x37070, 0x3709c,
908                 0x370f0, 0x37128,
909                 0x37130, 0x37148,
910                 0x37160, 0x37168,
911                 0x37170, 0x3719c,
912                 0x371f0, 0x37238,
913                 0x37240, 0x37240,
914                 0x37248, 0x37250,
915                 0x3725c, 0x37264,
916                 0x37270, 0x372b8,
917                 0x372c0, 0x372e4,
918                 0x372f8, 0x37338,
919                 0x37340, 0x37340,
920                 0x37348, 0x37350,
921                 0x3735c, 0x37364,
922                 0x37370, 0x373b8,
923                 0x373c0, 0x373e4,
924                 0x373f8, 0x37428,
925                 0x37430, 0x37448,
926                 0x37460, 0x37468,
927                 0x37470, 0x3749c,
928                 0x374f0, 0x37528,
929                 0x37530, 0x37548,
930                 0x37560, 0x37568,
931                 0x37570, 0x3759c,
932                 0x375f0, 0x37638,
933                 0x37640, 0x37640,
934                 0x37648, 0x37650,
935                 0x3765c, 0x37664,
936                 0x37670, 0x376b8,
937                 0x376c0, 0x376e4,
938                 0x376f8, 0x37738,
939                 0x37740, 0x37740,
940                 0x37748, 0x37750,
941                 0x3775c, 0x37764,
942                 0x37770, 0x377b8,
943                 0x377c0, 0x377e4,
944                 0x377f8, 0x377fc,
945                 0x37814, 0x37814,
946                 0x3782c, 0x3782c,
947                 0x37880, 0x3788c,
948                 0x378e8, 0x378ec,
949                 0x37900, 0x37928,
950                 0x37930, 0x37948,
951                 0x37960, 0x37968,
952                 0x37970, 0x3799c,
953                 0x379f0, 0x37a38,
954                 0x37a40, 0x37a40,
955                 0x37a48, 0x37a50,
956                 0x37a5c, 0x37a64,
957                 0x37a70, 0x37ab8,
958                 0x37ac0, 0x37ae4,
959                 0x37af8, 0x37b10,
960                 0x37b28, 0x37b28,
961                 0x37b3c, 0x37b50,
962                 0x37bf0, 0x37c10,
963                 0x37c28, 0x37c28,
964                 0x37c3c, 0x37c50,
965                 0x37cf0, 0x37cfc,
966                 0x38000, 0x38030,
967                 0x38038, 0x38038,
968                 0x38040, 0x38040,
969                 0x38100, 0x38144,
970                 0x38190, 0x381a0,
971                 0x381a8, 0x381b8,
972                 0x381c4, 0x381c8,
973                 0x381d0, 0x381d0,
974                 0x38200, 0x38318,
975                 0x38400, 0x384b4,
976                 0x384c0, 0x3852c,
977                 0x38540, 0x3861c,
978                 0x38800, 0x38828,
979                 0x38834, 0x38834,
980                 0x388c0, 0x38908,
981                 0x38910, 0x389ac,
982                 0x38a00, 0x38a14,
983                 0x38a1c, 0x38a2c,
984                 0x38a44, 0x38a50,
985                 0x38a74, 0x38a74,
986                 0x38a7c, 0x38afc,
987                 0x38b08, 0x38c24,
988                 0x38d00, 0x38d00,
989                 0x38d08, 0x38d14,
990                 0x38d1c, 0x38d20,
991                 0x38d3c, 0x38d3c,
992                 0x38d48, 0x38d50,
993                 0x39200, 0x3920c,
994                 0x39220, 0x39220,
995                 0x39240, 0x39240,
996                 0x39600, 0x3960c,
997                 0x39a00, 0x39a1c,
998                 0x39e00, 0x39e20,
999                 0x39e38, 0x39e3c,
1000                 0x39e80, 0x39e80,
1001                 0x39e88, 0x39ea8,
1002                 0x39eb0, 0x39eb4,
1003                 0x39ec8, 0x39ed4,
1004                 0x39fb8, 0x3a004,
1005                 0x3a200, 0x3a200,
1006                 0x3a208, 0x3a240,
1007                 0x3a248, 0x3a280,
1008                 0x3a288, 0x3a2c0,
1009                 0x3a2c8, 0x3a2fc,
1010                 0x3a600, 0x3a630,
1011                 0x3aa00, 0x3aabc,
1012                 0x3ab00, 0x3ab10,
1013                 0x3ab20, 0x3ab30,
1014                 0x3ab40, 0x3ab50,
1015                 0x3ab60, 0x3ab70,
1016                 0x3b000, 0x3b028,
1017                 0x3b030, 0x3b048,
1018                 0x3b060, 0x3b068,
1019                 0x3b070, 0x3b09c,
1020                 0x3b0f0, 0x3b128,
1021                 0x3b130, 0x3b148,
1022                 0x3b160, 0x3b168,
1023                 0x3b170, 0x3b19c,
1024                 0x3b1f0, 0x3b238,
1025                 0x3b240, 0x3b240,
1026                 0x3b248, 0x3b250,
1027                 0x3b25c, 0x3b264,
1028                 0x3b270, 0x3b2b8,
1029                 0x3b2c0, 0x3b2e4,
1030                 0x3b2f8, 0x3b338,
1031                 0x3b340, 0x3b340,
1032                 0x3b348, 0x3b350,
1033                 0x3b35c, 0x3b364,
1034                 0x3b370, 0x3b3b8,
1035                 0x3b3c0, 0x3b3e4,
1036                 0x3b3f8, 0x3b428,
1037                 0x3b430, 0x3b448,
1038                 0x3b460, 0x3b468,
1039                 0x3b470, 0x3b49c,
1040                 0x3b4f0, 0x3b528,
1041                 0x3b530, 0x3b548,
1042                 0x3b560, 0x3b568,
1043                 0x3b570, 0x3b59c,
1044                 0x3b5f0, 0x3b638,
1045                 0x3b640, 0x3b640,
1046                 0x3b648, 0x3b650,
1047                 0x3b65c, 0x3b664,
1048                 0x3b670, 0x3b6b8,
1049                 0x3b6c0, 0x3b6e4,
1050                 0x3b6f8, 0x3b738,
1051                 0x3b740, 0x3b740,
1052                 0x3b748, 0x3b750,
1053                 0x3b75c, 0x3b764,
1054                 0x3b770, 0x3b7b8,
1055                 0x3b7c0, 0x3b7e4,
1056                 0x3b7f8, 0x3b7fc,
1057                 0x3b814, 0x3b814,
1058                 0x3b82c, 0x3b82c,
1059                 0x3b880, 0x3b88c,
1060                 0x3b8e8, 0x3b8ec,
1061                 0x3b900, 0x3b928,
1062                 0x3b930, 0x3b948,
1063                 0x3b960, 0x3b968,
1064                 0x3b970, 0x3b99c,
1065                 0x3b9f0, 0x3ba38,
1066                 0x3ba40, 0x3ba40,
1067                 0x3ba48, 0x3ba50,
1068                 0x3ba5c, 0x3ba64,
1069                 0x3ba70, 0x3bab8,
1070                 0x3bac0, 0x3bae4,
1071                 0x3baf8, 0x3bb10,
1072                 0x3bb28, 0x3bb28,
1073                 0x3bb3c, 0x3bb50,
1074                 0x3bbf0, 0x3bc10,
1075                 0x3bc28, 0x3bc28,
1076                 0x3bc3c, 0x3bc50,
1077                 0x3bcf0, 0x3bcfc,
1078                 0x3c000, 0x3c030,
1079                 0x3c038, 0x3c038,
1080                 0x3c040, 0x3c040,
1081                 0x3c100, 0x3c144,
1082                 0x3c190, 0x3c1a0,
1083                 0x3c1a8, 0x3c1b8,
1084                 0x3c1c4, 0x3c1c8,
1085                 0x3c1d0, 0x3c1d0,
1086                 0x3c200, 0x3c318,
1087                 0x3c400, 0x3c4b4,
1088                 0x3c4c0, 0x3c52c,
1089                 0x3c540, 0x3c61c,
1090                 0x3c800, 0x3c828,
1091                 0x3c834, 0x3c834,
1092                 0x3c8c0, 0x3c908,
1093                 0x3c910, 0x3c9ac,
1094                 0x3ca00, 0x3ca14,
1095                 0x3ca1c, 0x3ca2c,
1096                 0x3ca44, 0x3ca50,
1097                 0x3ca74, 0x3ca74,
1098                 0x3ca7c, 0x3cafc,
1099                 0x3cb08, 0x3cc24,
1100                 0x3cd00, 0x3cd00,
1101                 0x3cd08, 0x3cd14,
1102                 0x3cd1c, 0x3cd20,
1103                 0x3cd3c, 0x3cd3c,
1104                 0x3cd48, 0x3cd50,
1105                 0x3d200, 0x3d20c,
1106                 0x3d220, 0x3d220,
1107                 0x3d240, 0x3d240,
1108                 0x3d600, 0x3d60c,
1109                 0x3da00, 0x3da1c,
1110                 0x3de00, 0x3de20,
1111                 0x3de38, 0x3de3c,
1112                 0x3de80, 0x3de80,
1113                 0x3de88, 0x3dea8,
1114                 0x3deb0, 0x3deb4,
1115                 0x3dec8, 0x3ded4,
1116                 0x3dfb8, 0x3e004,
1117                 0x3e200, 0x3e200,
1118                 0x3e208, 0x3e240,
1119                 0x3e248, 0x3e280,
1120                 0x3e288, 0x3e2c0,
1121                 0x3e2c8, 0x3e2fc,
1122                 0x3e600, 0x3e630,
1123                 0x3ea00, 0x3eabc,
1124                 0x3eb00, 0x3eb10,
1125                 0x3eb20, 0x3eb30,
1126                 0x3eb40, 0x3eb50,
1127                 0x3eb60, 0x3eb70,
1128                 0x3f000, 0x3f028,
1129                 0x3f030, 0x3f048,
1130                 0x3f060, 0x3f068,
1131                 0x3f070, 0x3f09c,
1132                 0x3f0f0, 0x3f128,
1133                 0x3f130, 0x3f148,
1134                 0x3f160, 0x3f168,
1135                 0x3f170, 0x3f19c,
1136                 0x3f1f0, 0x3f238,
1137                 0x3f240, 0x3f240,
1138                 0x3f248, 0x3f250,
1139                 0x3f25c, 0x3f264,
1140                 0x3f270, 0x3f2b8,
1141                 0x3f2c0, 0x3f2e4,
1142                 0x3f2f8, 0x3f338,
1143                 0x3f340, 0x3f340,
1144                 0x3f348, 0x3f350,
1145                 0x3f35c, 0x3f364,
1146                 0x3f370, 0x3f3b8,
1147                 0x3f3c0, 0x3f3e4,
1148                 0x3f3f8, 0x3f428,
1149                 0x3f430, 0x3f448,
1150                 0x3f460, 0x3f468,
1151                 0x3f470, 0x3f49c,
1152                 0x3f4f0, 0x3f528,
1153                 0x3f530, 0x3f548,
1154                 0x3f560, 0x3f568,
1155                 0x3f570, 0x3f59c,
1156                 0x3f5f0, 0x3f638,
1157                 0x3f640, 0x3f640,
1158                 0x3f648, 0x3f650,
1159                 0x3f65c, 0x3f664,
1160                 0x3f670, 0x3f6b8,
1161                 0x3f6c0, 0x3f6e4,
1162                 0x3f6f8, 0x3f738,
1163                 0x3f740, 0x3f740,
1164                 0x3f748, 0x3f750,
1165                 0x3f75c, 0x3f764,
1166                 0x3f770, 0x3f7b8,
1167                 0x3f7c0, 0x3f7e4,
1168                 0x3f7f8, 0x3f7fc,
1169                 0x3f814, 0x3f814,
1170                 0x3f82c, 0x3f82c,
1171                 0x3f880, 0x3f88c,
1172                 0x3f8e8, 0x3f8ec,
1173                 0x3f900, 0x3f928,
1174                 0x3f930, 0x3f948,
1175                 0x3f960, 0x3f968,
1176                 0x3f970, 0x3f99c,
1177                 0x3f9f0, 0x3fa38,
1178                 0x3fa40, 0x3fa40,
1179                 0x3fa48, 0x3fa50,
1180                 0x3fa5c, 0x3fa64,
1181                 0x3fa70, 0x3fab8,
1182                 0x3fac0, 0x3fae4,
1183                 0x3faf8, 0x3fb10,
1184                 0x3fb28, 0x3fb28,
1185                 0x3fb3c, 0x3fb50,
1186                 0x3fbf0, 0x3fc10,
1187                 0x3fc28, 0x3fc28,
1188                 0x3fc3c, 0x3fc50,
1189                 0x3fcf0, 0x3fcfc,
1190                 0x40000, 0x4000c,
1191                 0x40040, 0x40050,
1192                 0x40060, 0x40068,
1193                 0x4007c, 0x4008c,
1194                 0x40094, 0x400b0,
1195                 0x400c0, 0x40144,
1196                 0x40180, 0x4018c,
1197                 0x40200, 0x40254,
1198                 0x40260, 0x40264,
1199                 0x40270, 0x40288,
1200                 0x40290, 0x40298,
1201                 0x402ac, 0x402c8,
1202                 0x402d0, 0x402e0,
1203                 0x402f0, 0x402f0,
1204                 0x40300, 0x4033c,
1205                 0x403f8, 0x403fc,
1206                 0x41304, 0x413c4,
1207                 0x41400, 0x4140c,
1208                 0x41414, 0x4141c,
1209                 0x41480, 0x414d0,
1210                 0x44000, 0x44054,
1211                 0x4405c, 0x44078,
1212                 0x440c0, 0x44174,
1213                 0x44180, 0x441ac,
1214                 0x441b4, 0x441b8,
1215                 0x441c0, 0x44254,
1216                 0x4425c, 0x44278,
1217                 0x442c0, 0x44374,
1218                 0x44380, 0x443ac,
1219                 0x443b4, 0x443b8,
1220                 0x443c0, 0x44454,
1221                 0x4445c, 0x44478,
1222                 0x444c0, 0x44574,
1223                 0x44580, 0x445ac,
1224                 0x445b4, 0x445b8,
1225                 0x445c0, 0x44654,
1226                 0x4465c, 0x44678,
1227                 0x446c0, 0x44774,
1228                 0x44780, 0x447ac,
1229                 0x447b4, 0x447b8,
1230                 0x447c0, 0x44854,
1231                 0x4485c, 0x44878,
1232                 0x448c0, 0x44974,
1233                 0x44980, 0x449ac,
1234                 0x449b4, 0x449b8,
1235                 0x449c0, 0x449fc,
1236                 0x45000, 0x45004,
1237                 0x45010, 0x45030,
1238                 0x45040, 0x45060,
1239                 0x45068, 0x45068,
1240                 0x45080, 0x45084,
1241                 0x450a0, 0x450b0,
1242                 0x45200, 0x45204,
1243                 0x45210, 0x45230,
1244                 0x45240, 0x45260,
1245                 0x45268, 0x45268,
1246                 0x45280, 0x45284,
1247                 0x452a0, 0x452b0,
1248                 0x460c0, 0x460e4,
1249                 0x47000, 0x4703c,
1250                 0x47044, 0x4708c,
1251                 0x47200, 0x47250,
1252                 0x47400, 0x47408,
1253                 0x47414, 0x47420,
1254                 0x47600, 0x47618,
1255                 0x47800, 0x47814,
1256                 0x48000, 0x4800c,
1257                 0x48040, 0x48050,
1258                 0x48060, 0x48068,
1259                 0x4807c, 0x4808c,
1260                 0x48094, 0x480b0,
1261                 0x480c0, 0x48144,
1262                 0x48180, 0x4818c,
1263                 0x48200, 0x48254,
1264                 0x48260, 0x48264,
1265                 0x48270, 0x48288,
1266                 0x48290, 0x48298,
1267                 0x482ac, 0x482c8,
1268                 0x482d0, 0x482e0,
1269                 0x482f0, 0x482f0,
1270                 0x48300, 0x4833c,
1271                 0x483f8, 0x483fc,
1272                 0x49304, 0x493c4,
1273                 0x49400, 0x4940c,
1274                 0x49414, 0x4941c,
1275                 0x49480, 0x494d0,
1276                 0x4c000, 0x4c054,
1277                 0x4c05c, 0x4c078,
1278                 0x4c0c0, 0x4c174,
1279                 0x4c180, 0x4c1ac,
1280                 0x4c1b4, 0x4c1b8,
1281                 0x4c1c0, 0x4c254,
1282                 0x4c25c, 0x4c278,
1283                 0x4c2c0, 0x4c374,
1284                 0x4c380, 0x4c3ac,
1285                 0x4c3b4, 0x4c3b8,
1286                 0x4c3c0, 0x4c454,
1287                 0x4c45c, 0x4c478,
1288                 0x4c4c0, 0x4c574,
1289                 0x4c580, 0x4c5ac,
1290                 0x4c5b4, 0x4c5b8,
1291                 0x4c5c0, 0x4c654,
1292                 0x4c65c, 0x4c678,
1293                 0x4c6c0, 0x4c774,
1294                 0x4c780, 0x4c7ac,
1295                 0x4c7b4, 0x4c7b8,
1296                 0x4c7c0, 0x4c854,
1297                 0x4c85c, 0x4c878,
1298                 0x4c8c0, 0x4c974,
1299                 0x4c980, 0x4c9ac,
1300                 0x4c9b4, 0x4c9b8,
1301                 0x4c9c0, 0x4c9fc,
1302                 0x4d000, 0x4d004,
1303                 0x4d010, 0x4d030,
1304                 0x4d040, 0x4d060,
1305                 0x4d068, 0x4d068,
1306                 0x4d080, 0x4d084,
1307                 0x4d0a0, 0x4d0b0,
1308                 0x4d200, 0x4d204,
1309                 0x4d210, 0x4d230,
1310                 0x4d240, 0x4d260,
1311                 0x4d268, 0x4d268,
1312                 0x4d280, 0x4d284,
1313                 0x4d2a0, 0x4d2b0,
1314                 0x4e0c0, 0x4e0e4,
1315                 0x4f000, 0x4f03c,
1316                 0x4f044, 0x4f08c,
1317                 0x4f200, 0x4f250,
1318                 0x4f400, 0x4f408,
1319                 0x4f414, 0x4f420,
1320                 0x4f600, 0x4f618,
1321                 0x4f800, 0x4f814,
1322                 0x50000, 0x50084,
1323                 0x50090, 0x500cc,
1324                 0x50400, 0x50400,
1325                 0x50800, 0x50884,
1326                 0x50890, 0x508cc,
1327                 0x50c00, 0x50c00,
1328                 0x51000, 0x5101c,
1329                 0x51300, 0x51308,
1330         };
1331
1332         static const unsigned int t6_reg_ranges[] = {
1333                 0x1008, 0x101c,
1334                 0x1024, 0x10a8,
1335                 0x10b4, 0x10f8,
1336                 0x1100, 0x1114,
1337                 0x111c, 0x112c,
1338                 0x1138, 0x113c,
1339                 0x1144, 0x114c,
1340                 0x1180, 0x1184,
1341                 0x1190, 0x1194,
1342                 0x11a0, 0x11a4,
1343                 0x11b0, 0x11b4,
1344                 0x11fc, 0x1274,
1345                 0x1280, 0x133c,
1346                 0x1800, 0x18fc,
1347                 0x3000, 0x302c,
1348                 0x3060, 0x30b0,
1349                 0x30b8, 0x30d8,
1350                 0x30e0, 0x30fc,
1351                 0x3140, 0x357c,
1352                 0x35a8, 0x35cc,
1353                 0x35ec, 0x35ec,
1354                 0x3600, 0x5624,
1355                 0x56cc, 0x56ec,
1356                 0x56f4, 0x5720,
1357                 0x5728, 0x575c,
1358                 0x580c, 0x5814,
1359                 0x5890, 0x589c,
1360                 0x58a4, 0x58ac,
1361                 0x58b8, 0x58bc,
1362                 0x5940, 0x595c,
1363                 0x5980, 0x598c,
1364                 0x59b0, 0x59c8,
1365                 0x59d0, 0x59dc,
1366                 0x59fc, 0x5a18,
1367                 0x5a60, 0x5a6c,
1368                 0x5a80, 0x5a8c,
1369                 0x5a94, 0x5a9c,
1370                 0x5b94, 0x5bfc,
1371                 0x5c10, 0x5e48,
1372                 0x5e50, 0x5e94,
1373                 0x5ea0, 0x5eb0,
1374                 0x5ec0, 0x5ec0,
1375                 0x5ec8, 0x5ed0,
1376                 0x5ee0, 0x5ee0,
1377                 0x5ef0, 0x5ef0,
1378                 0x5f00, 0x5f00,
1379                 0x6000, 0x6020,
1380                 0x6028, 0x6040,
1381                 0x6058, 0x609c,
1382                 0x60a8, 0x619c,
1383                 0x7700, 0x7798,
1384                 0x77c0, 0x7880,
1385                 0x78cc, 0x78fc,
1386                 0x7b00, 0x7b58,
1387                 0x7b60, 0x7b84,
1388                 0x7b8c, 0x7c54,
1389                 0x7d00, 0x7d38,
1390                 0x7d40, 0x7d84,
1391                 0x7d8c, 0x7ddc,
1392                 0x7de4, 0x7e04,
1393                 0x7e10, 0x7e1c,
1394                 0x7e24, 0x7e38,
1395                 0x7e40, 0x7e44,
1396                 0x7e4c, 0x7e78,
1397                 0x7e80, 0x7edc,
1398                 0x7ee8, 0x7efc,
1399                 0x8dc0, 0x8de4,
1400                 0x8df8, 0x8e04,
1401                 0x8e10, 0x8e84,
1402                 0x8ea0, 0x8f88,
1403                 0x8fb8, 0x9058,
1404                 0x9060, 0x9060,
1405                 0x9068, 0x90f8,
1406                 0x9100, 0x9124,
1407                 0x9400, 0x9470,
1408                 0x9600, 0x9600,
1409                 0x9608, 0x9638,
1410                 0x9640, 0x9704,
1411                 0x9710, 0x971c,
1412                 0x9800, 0x9808,
1413                 0x9820, 0x983c,
1414                 0x9850, 0x9864,
1415                 0x9c00, 0x9c6c,
1416                 0x9c80, 0x9cec,
1417                 0x9d00, 0x9d6c,
1418                 0x9d80, 0x9dec,
1419                 0x9e00, 0x9e6c,
1420                 0x9e80, 0x9eec,
1421                 0x9f00, 0x9f6c,
1422                 0x9f80, 0xa020,
1423                 0xd004, 0xd03c,
1424                 0xd100, 0xd118,
1425                 0xd200, 0xd214,
1426                 0xd220, 0xd234,
1427                 0xd240, 0xd254,
1428                 0xd260, 0xd274,
1429                 0xd280, 0xd294,
1430                 0xd2a0, 0xd2b4,
1431                 0xd2c0, 0xd2d4,
1432                 0xd2e0, 0xd2f4,
1433                 0xd300, 0xd31c,
1434                 0xdfc0, 0xdfe0,
1435                 0xe000, 0xf008,
1436                 0xf010, 0xf018,
1437                 0xf020, 0xf028,
1438                 0x11000, 0x11014,
1439                 0x11048, 0x1106c,
1440                 0x11074, 0x11088,
1441                 0x11098, 0x11120,
1442                 0x1112c, 0x1117c,
1443                 0x11190, 0x112e0,
1444                 0x11300, 0x1130c,
1445                 0x12000, 0x1206c,
1446                 0x19040, 0x1906c,
1447                 0x19078, 0x19080,
1448                 0x1908c, 0x190e8,
1449                 0x190f0, 0x190f8,
1450                 0x19100, 0x19110,
1451                 0x19120, 0x19124,
1452                 0x19150, 0x19194,
1453                 0x1919c, 0x191b0,
1454                 0x191d0, 0x191e8,
1455                 0x19238, 0x19290,
1456                 0x192a4, 0x192b0,
1457                 0x192bc, 0x192bc,
1458                 0x19348, 0x1934c,
1459                 0x193f8, 0x19418,
1460                 0x19420, 0x19428,
1461                 0x19430, 0x19444,
1462                 0x1944c, 0x1946c,
1463                 0x19474, 0x19474,
1464                 0x19490, 0x194cc,
1465                 0x194f0, 0x194f8,
1466                 0x19c00, 0x19c48,
1467                 0x19c50, 0x19c80,
1468                 0x19c94, 0x19c98,
1469                 0x19ca0, 0x19cbc,
1470                 0x19ce4, 0x19ce4,
1471                 0x19cf0, 0x19cf8,
1472                 0x19d00, 0x19d28,
1473                 0x19d50, 0x19d78,
1474                 0x19d94, 0x19d98,
1475                 0x19da0, 0x19dc8,
1476                 0x19df0, 0x19e10,
1477                 0x19e50, 0x19e6c,
1478                 0x19ea0, 0x19ebc,
1479                 0x19ec4, 0x19ef4,
1480                 0x19f04, 0x19f2c,
1481                 0x19f34, 0x19f34,
1482                 0x19f40, 0x19f50,
1483                 0x19f90, 0x19fac,
1484                 0x19fc4, 0x19fc8,
1485                 0x19fd0, 0x19fe4,
1486                 0x1a000, 0x1a004,
1487                 0x1a010, 0x1a06c,
1488                 0x1a0b0, 0x1a0e4,
1489                 0x1a0ec, 0x1a0f8,
1490                 0x1a100, 0x1a108,
1491                 0x1a114, 0x1a120,
1492                 0x1a128, 0x1a130,
1493                 0x1a138, 0x1a138,
1494                 0x1a190, 0x1a1c4,
1495                 0x1a1fc, 0x1a1fc,
1496                 0x1e008, 0x1e00c,
1497                 0x1e040, 0x1e044,
1498                 0x1e04c, 0x1e04c,
1499                 0x1e284, 0x1e290,
1500                 0x1e2c0, 0x1e2c0,
1501                 0x1e2e0, 0x1e2e0,
1502                 0x1e300, 0x1e384,
1503                 0x1e3c0, 0x1e3c8,
1504                 0x1e408, 0x1e40c,
1505                 0x1e440, 0x1e444,
1506                 0x1e44c, 0x1e44c,
1507                 0x1e684, 0x1e690,
1508                 0x1e6c0, 0x1e6c0,
1509                 0x1e6e0, 0x1e6e0,
1510                 0x1e700, 0x1e784,
1511                 0x1e7c0, 0x1e7c8,
1512                 0x1e808, 0x1e80c,
1513                 0x1e840, 0x1e844,
1514                 0x1e84c, 0x1e84c,
1515                 0x1ea84, 0x1ea90,
1516                 0x1eac0, 0x1eac0,
1517                 0x1eae0, 0x1eae0,
1518                 0x1eb00, 0x1eb84,
1519                 0x1ebc0, 0x1ebc8,
1520                 0x1ec08, 0x1ec0c,
1521                 0x1ec40, 0x1ec44,
1522                 0x1ec4c, 0x1ec4c,
1523                 0x1ee84, 0x1ee90,
1524                 0x1eec0, 0x1eec0,
1525                 0x1eee0, 0x1eee0,
1526                 0x1ef00, 0x1ef84,
1527                 0x1efc0, 0x1efc8,
1528                 0x1f008, 0x1f00c,
1529                 0x1f040, 0x1f044,
1530                 0x1f04c, 0x1f04c,
1531                 0x1f284, 0x1f290,
1532                 0x1f2c0, 0x1f2c0,
1533                 0x1f2e0, 0x1f2e0,
1534                 0x1f300, 0x1f384,
1535                 0x1f3c0, 0x1f3c8,
1536                 0x1f408, 0x1f40c,
1537                 0x1f440, 0x1f444,
1538                 0x1f44c, 0x1f44c,
1539                 0x1f684, 0x1f690,
1540                 0x1f6c0, 0x1f6c0,
1541                 0x1f6e0, 0x1f6e0,
1542                 0x1f700, 0x1f784,
1543                 0x1f7c0, 0x1f7c8,
1544                 0x1f808, 0x1f80c,
1545                 0x1f840, 0x1f844,
1546                 0x1f84c, 0x1f84c,
1547                 0x1fa84, 0x1fa90,
1548                 0x1fac0, 0x1fac0,
1549                 0x1fae0, 0x1fae0,
1550                 0x1fb00, 0x1fb84,
1551                 0x1fbc0, 0x1fbc8,
1552                 0x1fc08, 0x1fc0c,
1553                 0x1fc40, 0x1fc44,
1554                 0x1fc4c, 0x1fc4c,
1555                 0x1fe84, 0x1fe90,
1556                 0x1fec0, 0x1fec0,
1557                 0x1fee0, 0x1fee0,
1558                 0x1ff00, 0x1ff84,
1559                 0x1ffc0, 0x1ffc8,
1560                 0x30000, 0x30030,
1561                 0x30100, 0x30168,
1562                 0x30190, 0x301a0,
1563                 0x301a8, 0x301b8,
1564                 0x301c4, 0x301c8,
1565                 0x301d0, 0x301d0,
1566                 0x30200, 0x30320,
1567                 0x30400, 0x304b4,
1568                 0x304c0, 0x3052c,
1569                 0x30540, 0x3061c,
1570                 0x30800, 0x308a0,
1571                 0x308c0, 0x30908,
1572                 0x30910, 0x309b8,
1573                 0x30a00, 0x30a04,
1574                 0x30a0c, 0x30a14,
1575                 0x30a1c, 0x30a2c,
1576                 0x30a44, 0x30a50,
1577                 0x30a74, 0x30a74,
1578                 0x30a7c, 0x30afc,
1579                 0x30b08, 0x30c24,
1580                 0x30d00, 0x30d14,
1581                 0x30d1c, 0x30d3c,
1582                 0x30d44, 0x30d4c,
1583                 0x30d54, 0x30d74,
1584                 0x30d7c, 0x30d7c,
1585                 0x30de0, 0x30de0,
1586                 0x30e00, 0x30ed4,
1587                 0x30f00, 0x30fa4,
1588                 0x30fc0, 0x30fc4,
1589                 0x31000, 0x31004,
1590                 0x31080, 0x310fc,
1591                 0x31208, 0x31220,
1592                 0x3123c, 0x31254,
1593                 0x31300, 0x31300,
1594                 0x31308, 0x3131c,
1595                 0x31338, 0x3133c,
1596                 0x31380, 0x31380,
1597                 0x31388, 0x313a8,
1598                 0x313b4, 0x313b4,
1599                 0x31400, 0x31420,
1600                 0x31438, 0x3143c,
1601                 0x31480, 0x31480,
1602                 0x314a8, 0x314a8,
1603                 0x314b0, 0x314b4,
1604                 0x314c8, 0x314d4,
1605                 0x31a40, 0x31a4c,
1606                 0x31af0, 0x31b20,
1607                 0x31b38, 0x31b3c,
1608                 0x31b80, 0x31b80,
1609                 0x31ba8, 0x31ba8,
1610                 0x31bb0, 0x31bb4,
1611                 0x31bc8, 0x31bd4,
1612                 0x32140, 0x3218c,
1613                 0x321f0, 0x321f4,
1614                 0x32200, 0x32200,
1615                 0x32218, 0x32218,
1616                 0x32400, 0x32400,
1617                 0x32408, 0x3241c,
1618                 0x32618, 0x32620,
1619                 0x32664, 0x32664,
1620                 0x326a8, 0x326a8,
1621                 0x326ec, 0x326ec,
1622                 0x32a00, 0x32abc,
1623                 0x32b00, 0x32b38,
1624                 0x32b20, 0x32b38,
1625                 0x32b40, 0x32b58,
1626                 0x32b60, 0x32b78,
1627                 0x32c00, 0x32c00,
1628                 0x32c08, 0x32c3c,
1629                 0x33000, 0x3302c,
1630                 0x33034, 0x33050,
1631                 0x33058, 0x33058,
1632                 0x33060, 0x3308c,
1633                 0x3309c, 0x330ac,
1634                 0x330c0, 0x330c0,
1635                 0x330c8, 0x330d0,
1636                 0x330d8, 0x330e0,
1637                 0x330ec, 0x3312c,
1638                 0x33134, 0x33150,
1639                 0x33158, 0x33158,
1640                 0x33160, 0x3318c,
1641                 0x3319c, 0x331ac,
1642                 0x331c0, 0x331c0,
1643                 0x331c8, 0x331d0,
1644                 0x331d8, 0x331e0,
1645                 0x331ec, 0x33290,
1646                 0x33298, 0x332c4,
1647                 0x332e4, 0x33390,
1648                 0x33398, 0x333c4,
1649                 0x333e4, 0x3342c,
1650                 0x33434, 0x33450,
1651                 0x33458, 0x33458,
1652                 0x33460, 0x3348c,
1653                 0x3349c, 0x334ac,
1654                 0x334c0, 0x334c0,
1655                 0x334c8, 0x334d0,
1656                 0x334d8, 0x334e0,
1657                 0x334ec, 0x3352c,
1658                 0x33534, 0x33550,
1659                 0x33558, 0x33558,
1660                 0x33560, 0x3358c,
1661                 0x3359c, 0x335ac,
1662                 0x335c0, 0x335c0,
1663                 0x335c8, 0x335d0,
1664                 0x335d8, 0x335e0,
1665                 0x335ec, 0x33690,
1666                 0x33698, 0x336c4,
1667                 0x336e4, 0x33790,
1668                 0x33798, 0x337c4,
1669                 0x337e4, 0x337fc,
1670                 0x33814, 0x33814,
1671                 0x33854, 0x33868,
1672                 0x33880, 0x3388c,
1673                 0x338c0, 0x338d0,
1674                 0x338e8, 0x338ec,
1675                 0x33900, 0x3392c,
1676                 0x33934, 0x33950,
1677                 0x33958, 0x33958,
1678                 0x33960, 0x3398c,
1679                 0x3399c, 0x339ac,
1680                 0x339c0, 0x339c0,
1681                 0x339c8, 0x339d0,
1682                 0x339d8, 0x339e0,
1683                 0x339ec, 0x33a90,
1684                 0x33a98, 0x33ac4,
1685                 0x33ae4, 0x33b10,
1686                 0x33b24, 0x33b28,
1687                 0x33b38, 0x33b50,
1688                 0x33bf0, 0x33c10,
1689                 0x33c24, 0x33c28,
1690                 0x33c38, 0x33c50,
1691                 0x33cf0, 0x33cfc,
1692                 0x34000, 0x34030,
1693                 0x34100, 0x34168,
1694                 0x34190, 0x341a0,
1695                 0x341a8, 0x341b8,
1696                 0x341c4, 0x341c8,
1697                 0x341d0, 0x341d0,
1698                 0x34200, 0x34320,
1699                 0x34400, 0x344b4,
1700                 0x344c0, 0x3452c,
1701                 0x34540, 0x3461c,
1702                 0x34800, 0x348a0,
1703                 0x348c0, 0x34908,
1704                 0x34910, 0x349b8,
1705                 0x34a00, 0x34a04,
1706                 0x34a0c, 0x34a14,
1707                 0x34a1c, 0x34a2c,
1708                 0x34a44, 0x34a50,
1709                 0x34a74, 0x34a74,
1710                 0x34a7c, 0x34afc,
1711                 0x34b08, 0x34c24,
1712                 0x34d00, 0x34d14,
1713                 0x34d1c, 0x34d3c,
1714                 0x34d44, 0x34d4c,
1715                 0x34d54, 0x34d74,
1716                 0x34d7c, 0x34d7c,
1717                 0x34de0, 0x34de0,
1718                 0x34e00, 0x34ed4,
1719                 0x34f00, 0x34fa4,
1720                 0x34fc0, 0x34fc4,
1721                 0x35000, 0x35004,
1722                 0x35080, 0x350fc,
1723                 0x35208, 0x35220,
1724                 0x3523c, 0x35254,
1725                 0x35300, 0x35300,
1726                 0x35308, 0x3531c,
1727                 0x35338, 0x3533c,
1728                 0x35380, 0x35380,
1729                 0x35388, 0x353a8,
1730                 0x353b4, 0x353b4,
1731                 0x35400, 0x35420,
1732                 0x35438, 0x3543c,
1733                 0x35480, 0x35480,
1734                 0x354a8, 0x354a8,
1735                 0x354b0, 0x354b4,
1736                 0x354c8, 0x354d4,
1737                 0x35a40, 0x35a4c,
1738                 0x35af0, 0x35b20,
1739                 0x35b38, 0x35b3c,
1740                 0x35b80, 0x35b80,
1741                 0x35ba8, 0x35ba8,
1742                 0x35bb0, 0x35bb4,
1743                 0x35bc8, 0x35bd4,
1744                 0x36140, 0x3618c,
1745                 0x361f0, 0x361f4,
1746                 0x36200, 0x36200,
1747                 0x36218, 0x36218,
1748                 0x36400, 0x36400,
1749                 0x36408, 0x3641c,
1750                 0x36618, 0x36620,
1751                 0x36664, 0x36664,
1752                 0x366a8, 0x366a8,
1753                 0x366ec, 0x366ec,
1754                 0x36a00, 0x36abc,
1755                 0x36b00, 0x36b38,
1756                 0x36b20, 0x36b38,
1757                 0x36b40, 0x36b58,
1758                 0x36b60, 0x36b78,
1759                 0x36c00, 0x36c00,
1760                 0x36c08, 0x36c3c,
1761                 0x37000, 0x3702c,
1762                 0x37034, 0x37050,
1763                 0x37058, 0x37058,
1764                 0x37060, 0x3708c,
1765                 0x3709c, 0x370ac,
1766                 0x370c0, 0x370c0,
1767                 0x370c8, 0x370d0,
1768                 0x370d8, 0x370e0,
1769                 0x370ec, 0x3712c,
1770                 0x37134, 0x37150,
1771                 0x37158, 0x37158,
1772                 0x37160, 0x3718c,
1773                 0x3719c, 0x371ac,
1774                 0x371c0, 0x371c0,
1775                 0x371c8, 0x371d0,
1776                 0x371d8, 0x371e0,
1777                 0x371ec, 0x37290,
1778                 0x37298, 0x372c4,
1779                 0x372e4, 0x37390,
1780                 0x37398, 0x373c4,
1781                 0x373e4, 0x3742c,
1782                 0x37434, 0x37450,
1783                 0x37458, 0x37458,
1784                 0x37460, 0x3748c,
1785                 0x3749c, 0x374ac,
1786                 0x374c0, 0x374c0,
1787                 0x374c8, 0x374d0,
1788                 0x374d8, 0x374e0,
1789                 0x374ec, 0x3752c,
1790                 0x37534, 0x37550,
1791                 0x37558, 0x37558,
1792                 0x37560, 0x3758c,
1793                 0x3759c, 0x375ac,
1794                 0x375c0, 0x375c0,
1795                 0x375c8, 0x375d0,
1796                 0x375d8, 0x375e0,
1797                 0x375ec, 0x37690,
1798                 0x37698, 0x376c4,
1799                 0x376e4, 0x37790,
1800                 0x37798, 0x377c4,
1801                 0x377e4, 0x377fc,
1802                 0x37814, 0x37814,
1803                 0x37854, 0x37868,
1804                 0x37880, 0x3788c,
1805                 0x378c0, 0x378d0,
1806                 0x378e8, 0x378ec,
1807                 0x37900, 0x3792c,
1808                 0x37934, 0x37950,
1809                 0x37958, 0x37958,
1810                 0x37960, 0x3798c,
1811                 0x3799c, 0x379ac,
1812                 0x379c0, 0x379c0,
1813                 0x379c8, 0x379d0,
1814                 0x379d8, 0x379e0,
1815                 0x379ec, 0x37a90,
1816                 0x37a98, 0x37ac4,
1817                 0x37ae4, 0x37b10,
1818                 0x37b24, 0x37b28,
1819                 0x37b38, 0x37b50,
1820                 0x37bf0, 0x37c10,
1821                 0x37c24, 0x37c28,
1822                 0x37c38, 0x37c50,
1823                 0x37cf0, 0x37cfc,
1824                 0x40040, 0x40040,
1825                 0x40080, 0x40084,
1826                 0x40100, 0x40100,
1827                 0x40140, 0x401bc,
1828                 0x40200, 0x40214,
1829                 0x40228, 0x40228,
1830                 0x40240, 0x40258,
1831                 0x40280, 0x40280,
1832                 0x40304, 0x40304,
1833                 0x40330, 0x4033c,
1834                 0x41304, 0x413c8,
1835                 0x413d0, 0x413dc,
1836                 0x413f0, 0x413f0,
1837                 0x41400, 0x4140c,
1838                 0x41414, 0x4141c,
1839                 0x41480, 0x414d0,
1840                 0x44000, 0x4407c,
1841                 0x440c0, 0x441ac,
1842                 0x441b4, 0x4427c,
1843                 0x442c0, 0x443ac,
1844                 0x443b4, 0x4447c,
1845                 0x444c0, 0x445ac,
1846                 0x445b4, 0x4467c,
1847                 0x446c0, 0x447ac,
1848                 0x447b4, 0x4487c,
1849                 0x448c0, 0x449ac,
1850                 0x449b4, 0x44a7c,
1851                 0x44ac0, 0x44bac,
1852                 0x44bb4, 0x44c7c,
1853                 0x44cc0, 0x44dac,
1854                 0x44db4, 0x44e7c,
1855                 0x44ec0, 0x44fac,
1856                 0x44fb4, 0x4507c,
1857                 0x450c0, 0x451ac,
1858                 0x451b4, 0x451fc,
1859                 0x45800, 0x45804,
1860                 0x45810, 0x45830,
1861                 0x45840, 0x45860,
1862                 0x45868, 0x45868,
1863                 0x45880, 0x45884,
1864                 0x458a0, 0x458b0,
1865                 0x45a00, 0x45a04,
1866                 0x45a10, 0x45a30,
1867                 0x45a40, 0x45a60,
1868                 0x45a68, 0x45a68,
1869                 0x45a80, 0x45a84,
1870                 0x45aa0, 0x45ab0,
1871                 0x460c0, 0x460e4,
1872                 0x47000, 0x4703c,
1873                 0x47044, 0x4708c,
1874                 0x47200, 0x47250,
1875                 0x47400, 0x47408,
1876                 0x47414, 0x47420,
1877                 0x47600, 0x47618,
1878                 0x47800, 0x47814,
1879                 0x47820, 0x4782c,
1880                 0x50000, 0x50084,
1881                 0x50090, 0x500cc,
1882                 0x50300, 0x50384,
1883                 0x50400, 0x50400,
1884                 0x50800, 0x50884,
1885                 0x50890, 0x508cc,
1886                 0x50b00, 0x50b84,
1887                 0x50c00, 0x50c00,
1888                 0x51000, 0x51020,
1889                 0x51028, 0x510b0,
1890                 0x51300, 0x51324,
1891         };
1892
1893         u32 *buf_end = (u32 *)((char *)buf + buf_size);
1894         const unsigned int *reg_ranges;
1895         int reg_ranges_size, range;
1896         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1897
1898         /* Select the right set of register ranges to dump depending on the
1899          * adapter chip type.
1900          */
1901         switch (chip_version) {
1902         case CHELSIO_T5:
1903                 reg_ranges = t5_reg_ranges;
1904                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1905                 break;
1906
1907         case CHELSIO_T6:
1908                 reg_ranges = t6_reg_ranges;
1909                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1910                 break;
1911
1912         default:
1913                 dev_err(adap,
1914                         "Unsupported chip version %d\n", chip_version);
1915                 return;
1916         }
1917
1918         /* Clear the register buffer and insert the appropriate register
1919          * values selected by the above register ranges.
1920          */
1921         memset(buf, 0, buf_size);
1922         for (range = 0; range < reg_ranges_size; range += 2) {
1923                 unsigned int reg = reg_ranges[range];
1924                 unsigned int last_reg = reg_ranges[range + 1];
1925                 u32 *bufp = (u32 *)((char *)buf + reg);
1926
1927                 /* Iterate across the register range filling in the register
1928                  * buffer but don't write past the end of the register buffer.
1929                  */
1930                 while (reg <= last_reg && bufp < buf_end) {
1931                         *bufp++ = t4_read_reg(adap, reg);
1932                         reg += sizeof(u32);
1933                 }
1934         }
1935 }
1936
1937 /* EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */
1938 #define EEPROM_DELAY            10              /* 10us per poll spin */
1939 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
1940
1941 #define EEPROM_STAT_ADDR        0x7bfc
1942
1943 /**
1944  * Small utility function to wait till any outstanding VPD Access is complete.
1945  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
1946  * VPD Access in flight.  This allows us to handle the problem of having a
1947  * previous VPD Access time out and prevent an attempt to inject a new VPD
1948  * Request before any in-flight VPD request has completed.
1949  */
1950 static int t4_seeprom_wait(struct adapter *adapter)
1951 {
1952         unsigned int base = adapter->params.pci.vpd_cap_addr;
1953         int max_poll;
1954
1955         /* If no VPD Access is in flight, we can just return success right
1956          * away.
1957          */
1958         if (!adapter->vpd_busy)
1959                 return 0;
1960
1961         /* Poll the VPD Capability Address/Flag register waiting for it
1962          * to indicate that the operation is complete.
1963          */
1964         max_poll = EEPROM_MAX_POLL;
1965         do {
1966                 u16 val;
1967
1968                 udelay(EEPROM_DELAY);
1969                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
1970
1971                 /* If the operation is complete, mark the VPD as no longer
1972                  * busy and return success.
1973                  */
1974                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
1975                         adapter->vpd_busy = 0;
1976                         return 0;
1977                 }
1978         } while (--max_poll);
1979
1980         /* Failure!  Note that we leave the VPD Busy status set in order to
1981          * avoid pushing a new VPD Access request into the VPD Capability till
1982          * the current operation eventually succeeds.  It's a bug to issue a
1983          * new request when an existing request is in flight and will result
1984          * in corrupt hardware state.
1985          */
1986         return -ETIMEDOUT;
1987 }
1988
1989 /**
1990  * t4_seeprom_read - read a serial EEPROM location
1991  * @adapter: adapter to read
1992  * @addr: EEPROM virtual address
1993  * @data: where to store the read data
1994  *
1995  * Read a 32-bit word from a location in serial EEPROM using the card's PCI
1996  * VPD capability.  Note that this function must be called with a virtual
1997  * address.
1998  */
1999 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2000 {
2001         unsigned int base = adapter->params.pci.vpd_cap_addr;
2002         int ret;
2003
2004         /* VPD Accesses must alway be 4-byte aligned!
2005          */
2006         if (addr >= EEPROMVSIZE || (addr & 3))
2007                 return -EINVAL;
2008
2009         /* Wait for any previous operation which may still be in flight to
2010          * complete.
2011          */
2012         ret = t4_seeprom_wait(adapter);
2013         if (ret) {
2014                 dev_err(adapter, "VPD still busy from previous operation\n");
2015                 return ret;
2016         }
2017
2018         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2019          * for our request to complete.  If it doesn't complete, note the
2020          * error and return it to our caller.  Note that we do not reset the
2021          * VPD Busy status!
2022          */
2023         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2024         adapter->vpd_busy = 1;
2025         adapter->vpd_flag = PCI_VPD_ADDR_F;
2026         ret = t4_seeprom_wait(adapter);
2027         if (ret) {
2028                 dev_err(adapter, "VPD read of address %#x failed\n", addr);
2029                 return ret;
2030         }
2031
2032         /* Grab the returned data, swizzle it into our endianness and
2033          * return success.
2034          */
2035         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2036         *data = le32_to_cpu(*data);
2037         return 0;
2038 }
2039
2040 /**
2041  * t4_seeprom_write - write a serial EEPROM location
2042  * @adapter: adapter to write
2043  * @addr: virtual EEPROM address
2044  * @data: value to write
2045  *
2046  * Write a 32-bit word to a location in serial EEPROM using the card's PCI
2047  * VPD capability.  Note that this function must be called with a virtual
2048  * address.
2049  */
2050 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2051 {
2052         unsigned int base = adapter->params.pci.vpd_cap_addr;
2053         int ret;
2054         u32 stats_reg = 0;
2055         int max_poll;
2056
2057         /* VPD Accesses must alway be 4-byte aligned!
2058          */
2059         if (addr >= EEPROMVSIZE || (addr & 3))
2060                 return -EINVAL;
2061
2062         /* Wait for any previous operation which may still be in flight to
2063          * complete.
2064          */
2065         ret = t4_seeprom_wait(adapter);
2066         if (ret) {
2067                 dev_err(adapter, "VPD still busy from previous operation\n");
2068                 return ret;
2069         }
2070
2071         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2072          * for our request to complete.  If it doesn't complete, note the
2073          * error and return it to our caller.  Note that we do not reset the
2074          * VPD Busy status!
2075          */
2076         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2077                              cpu_to_le32(data));
2078         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2079                              (u16)addr | PCI_VPD_ADDR_F);
2080         adapter->vpd_busy = 1;
2081         adapter->vpd_flag = 0;
2082         ret = t4_seeprom_wait(adapter);
2083         if (ret) {
2084                 dev_err(adapter, "VPD write of address %#x failed\n", addr);
2085                 return ret;
2086         }
2087
2088         /* Reset PCI_VPD_DATA register after a transaction and wait for our
2089          * request to complete. If it doesn't complete, return error.
2090          */
2091         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2092         max_poll = EEPROM_MAX_POLL;
2093         do {
2094                 udelay(EEPROM_DELAY);
2095                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2096         } while ((stats_reg & 0x1) && --max_poll);
2097         if (!max_poll)
2098                 return -ETIMEDOUT;
2099
2100         /* Return success! */
2101         return 0;
2102 }
2103
2104 /**
2105  * t4_seeprom_wp - enable/disable EEPROM write protection
2106  * @adapter: the adapter
2107  * @enable: whether to enable or disable write protection
2108  *
2109  * Enables or disables write protection on the serial EEPROM.
2110  */
2111 int t4_seeprom_wp(struct adapter *adapter, int enable)
2112 {
2113         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2114 }
2115
2116 /**
2117  * t4_fw_tp_pio_rw - Access TP PIO through LDST
2118  * @adap: the adapter
2119  * @vals: where the indirect register values are stored/written
2120  * @nregs: how many indirect registers to read/write
2121  * @start_idx: index of first indirect register to read/write
2122  * @rw: Read (1) or Write (0)
2123  *
2124  * Access TP PIO registers through LDST
2125  */
2126 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
2127                      unsigned int start_index, unsigned int rw)
2128 {
2129         int cmd = FW_LDST_ADDRSPC_TP_PIO;
2130         struct fw_ldst_cmd c;
2131         unsigned int i;
2132         int ret;
2133
2134         for (i = 0 ; i < nregs; i++) {
2135                 memset(&c, 0, sizeof(c));
2136                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
2137                                                 F_FW_CMD_REQUEST |
2138                                                 (rw ? F_FW_CMD_READ :
2139                                                       F_FW_CMD_WRITE) |
2140                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
2141                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
2142
2143                 c.u.addrval.addr = cpu_to_be32(start_index + i);
2144                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
2145                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2146                 if (ret == 0) {
2147                         if (rw)
2148                                 vals[i] = be32_to_cpu(c.u.addrval.val);
2149                 }
2150         }
2151 }
2152
2153 /**
2154  * t4_read_rss_key - read the global RSS key
2155  * @adap: the adapter
2156  * @key: 10-entry array holding the 320-bit RSS key
2157  *
2158  * Reads the global 320-bit RSS key.
2159  */
2160 void t4_read_rss_key(struct adapter *adap, u32 *key)
2161 {
2162         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
2163 }
2164
2165 /**
2166  * t4_write_rss_key - program one of the RSS keys
2167  * @adap: the adapter
2168  * @key: 10-entry array holding the 320-bit RSS key
2169  * @idx: which RSS key to write
2170  *
2171  * Writes one of the RSS keys with the given 320-bit value.  If @idx is
2172  * 0..15 the corresponding entry in the RSS key table is written,
2173  * otherwise the global RSS key is written.
2174  */
2175 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
2176 {
2177         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
2178         u8 rss_key_addr_cnt = 16;
2179
2180         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
2181          * allows access to key addresses 16-63 by using KeyWrAddrX
2182          * as index[5:4](upper 2) into key table
2183          */
2184         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
2185             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
2186                 rss_key_addr_cnt = 32;
2187
2188         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
2189
2190         if (idx >= 0 && idx < rss_key_addr_cnt) {
2191                 if (rss_key_addr_cnt > 16)
2192                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2193                                      V_KEYWRADDRX(idx >> 4) |
2194                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
2195                 else
2196                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2197                                      V_KEYWRADDR(idx) | F_KEYWREN);
2198         }
2199 }
2200
2201 /**
2202  * t4_config_rss_range - configure a portion of the RSS mapping table
2203  * @adapter: the adapter
2204  * @mbox: mbox to use for the FW command
2205  * @viid: virtual interface whose RSS subtable is to be written
2206  * @start: start entry in the table to write
2207  * @n: how many table entries to write
2208  * @rspq: values for the "response queue" (Ingress Queue) lookup table
2209  * @nrspq: number of values in @rspq
2210  *
2211  * Programs the selected part of the VI's RSS mapping table with the
2212  * provided values.  If @nrspq < @n the supplied values are used repeatedly
2213  * until the full table range is populated.
2214  *
2215  * The caller must ensure the values in @rspq are in the range allowed for
2216  * @viid.
2217  */
2218 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2219                         int start, int n, const u16 *rspq, unsigned int nrspq)
2220 {
2221         int ret;
2222         const u16 *rsp = rspq;
2223         const u16 *rsp_end = rspq + nrspq;
2224         struct fw_rss_ind_tbl_cmd cmd;
2225
2226         memset(&cmd, 0, sizeof(cmd));
2227         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2228                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2229                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
2230         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2231
2232         /*
2233          * Each firmware RSS command can accommodate up to 32 RSS Ingress
2234          * Queue Identifiers.  These Ingress Queue IDs are packed three to
2235          * a 32-bit word as 10-bit values with the upper remaining 2 bits
2236          * reserved.
2237          */
2238         while (n > 0) {
2239                 int nq = min(n, 32);
2240                 int nq_packed = 0;
2241                 __be32 *qp = &cmd.iq0_to_iq2;
2242
2243                 /*
2244                  * Set up the firmware RSS command header to send the next
2245                  * "nq" Ingress Queue IDs to the firmware.
2246                  */
2247                 cmd.niqid = cpu_to_be16(nq);
2248                 cmd.startidx = cpu_to_be16(start);
2249
2250                 /*
2251                  * "nq" more done for the start of the next loop.
2252                  */
2253                 start += nq;
2254                 n -= nq;
2255
2256                 /*
2257                  * While there are still Ingress Queue IDs to stuff into the
2258                  * current firmware RSS command, retrieve them from the
2259                  * Ingress Queue ID array and insert them into the command.
2260                  */
2261                 while (nq > 0) {
2262                         /*
2263                          * Grab up to the next 3 Ingress Queue IDs (wrapping
2264                          * around the Ingress Queue ID array if necessary) and
2265                          * insert them into the firmware RSS command at the
2266                          * current 3-tuple position within the commad.
2267                          */
2268                         u16 qbuf[3];
2269                         u16 *qbp = qbuf;
2270                         int nqbuf = min(3, nq);
2271
2272                         nq -= nqbuf;
2273                         qbuf[0] = 0;
2274                         qbuf[1] = 0;
2275                         qbuf[2] = 0;
2276                         while (nqbuf && nq_packed < 32) {
2277                                 nqbuf--;
2278                                 nq_packed++;
2279                                 *qbp++ = *rsp++;
2280                                 if (rsp >= rsp_end)
2281                                         rsp = rspq;
2282                         }
2283                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2284                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2285                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2286                 }
2287
2288                 /*
2289                  * Send this portion of the RRS table update to the firmware;
2290                  * bail out on any errors.
2291                  */
2292                 if (is_pf4(adapter))
2293                         ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd),
2294                                          NULL);
2295                 else
2296                         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
2297                 if (ret)
2298                         return ret;
2299         }
2300
2301         return 0;
2302 }
2303
2304 /**
2305  * t4_config_vi_rss - configure per VI RSS settings
2306  * @adapter: the adapter
2307  * @mbox: mbox to use for the FW command
2308  * @viid: the VI id
2309  * @flags: RSS flags
2310  * @defq: id of the default RSS queue for the VI.
2311  *
2312  * Configures VI-specific RSS properties.
2313  */
2314 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2315                      unsigned int flags, unsigned int defq)
2316 {
2317         struct fw_rss_vi_config_cmd c;
2318
2319         memset(&c, 0, sizeof(c));
2320         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2321                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2322                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2323         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2324         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
2325                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2326         if (is_pf4(adapter))
2327                 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2328         else
2329                 return t4vf_wr_mbox(adapter, &c, sizeof(c), NULL);
2330 }
2331
2332 /**
2333  * t4_read_config_vi_rss - read the configured per VI RSS settings
2334  * @adapter: the adapter
2335  * @mbox: mbox to use for the FW command
2336  * @viid: the VI id
2337  * @flags: where to place the configured flags
2338  * @defq: where to place the id of the default RSS queue for the VI.
2339  *
2340  * Read configured VI-specific RSS properties.
2341  */
2342 int t4_read_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2343                           u64 *flags, unsigned int *defq)
2344 {
2345         struct fw_rss_vi_config_cmd c;
2346         unsigned int result;
2347         int ret;
2348
2349         memset(&c, 0, sizeof(c));
2350         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2351                                    F_FW_CMD_REQUEST | F_FW_CMD_READ |
2352                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2353         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2354         ret = t4_wr_mbox(adapter, mbox, &c, sizeof(c), &c);
2355         if (!ret) {
2356                 result = be32_to_cpu(c.u.basicvirtual.defaultq_to_udpen);
2357                 if (defq)
2358                         *defq = G_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(result);
2359                 if (flags)
2360                         *flags = result & M_FW_RSS_VI_CONFIG_CMD_DEFAULTQ;
2361         }
2362
2363         return ret;
2364 }
2365
2366 /**
2367  * init_cong_ctrl - initialize congestion control parameters
2368  * @a: the alpha values for congestion control
2369  * @b: the beta values for congestion control
2370  *
2371  * Initialize the congestion control parameters.
2372  */
2373 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2374 {
2375         int i;
2376
2377         for (i = 0; i < 9; i++) {
2378                 a[i] = 1;
2379                 b[i] = 0;
2380         }
2381
2382         a[9] = 2;
2383         a[10] = 3;
2384         a[11] = 4;
2385         a[12] = 5;
2386         a[13] = 6;
2387         a[14] = 7;
2388         a[15] = 8;
2389         a[16] = 9;
2390         a[17] = 10;
2391         a[18] = 14;
2392         a[19] = 17;
2393         a[20] = 21;
2394         a[21] = 25;
2395         a[22] = 30;
2396         a[23] = 35;
2397         a[24] = 45;
2398         a[25] = 60;
2399         a[26] = 80;
2400         a[27] = 100;
2401         a[28] = 200;
2402         a[29] = 300;
2403         a[30] = 400;
2404         a[31] = 500;
2405
2406         b[9] = 1;
2407         b[10] = 1;
2408         b[11] = 2;
2409         b[12] = 2;
2410         b[13] = 3;
2411         b[14] = 3;
2412         b[15] = 3;
2413         b[16] = 3;
2414         b[17] = 4;
2415         b[18] = 4;
2416         b[19] = 4;
2417         b[20] = 4;
2418         b[21] = 4;
2419         b[22] = 5;
2420         b[23] = 5;
2421         b[24] = 5;
2422         b[25] = 5;
2423         b[26] = 5;
2424         b[27] = 5;
2425         b[28] = 6;
2426         b[29] = 6;
2427         b[30] = 7;
2428         b[31] = 7;
2429 }
2430
2431 #define INIT_CMD(var, cmd, rd_wr) do { \
2432         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
2433                         F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
2434         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
2435 } while (0)
2436
2437 int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
2438 {
2439         u32 cclk_param, cclk_val;
2440         int ret;
2441
2442         /*
2443          * Ask firmware for the Core Clock since it knows how to translate the
2444          * Reference Clock ('V2') VPD field into a Core Clock value ...
2445          */
2446         cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2447                       V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
2448         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2449                               1, &cclk_param, &cclk_val);
2450         if (ret) {
2451                 dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
2452                         __func__, ret);
2453                 return ret;
2454         }
2455
2456         p->cclk = cclk_val;
2457         dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
2458         return 0;
2459 }
2460
2461 /**
2462  * t4_get_pfres - retrieve VF resource limits
2463  * @adapter: the adapter
2464  *
2465  * Retrieves configured resource limits and capabilities for a physical
2466  * function.  The results are stored in @adapter->pfres.
2467  */
2468 int t4_get_pfres(struct adapter *adapter)
2469 {
2470         struct pf_resources *pfres = &adapter->params.pfres;
2471         struct fw_pfvf_cmd cmd, rpl;
2472         u32 word;
2473         int v;
2474
2475         /*
2476          * Execute PFVF Read command to get VF resource limits; bail out early
2477          * with error on command failure.
2478          */
2479         memset(&cmd, 0, sizeof(cmd));
2480         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
2481                                     F_FW_CMD_REQUEST |
2482                                     F_FW_CMD_READ |
2483                                     V_FW_PFVF_CMD_PFN(adapter->pf) |
2484                                     V_FW_PFVF_CMD_VFN(0));
2485         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2486         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2487         if (v != FW_SUCCESS)
2488                 return v;
2489
2490         /*
2491          * Extract PF resource limits and return success.
2492          */
2493         word = be32_to_cpu(rpl.niqflint_niq);
2494         pfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
2495
2496         word = be32_to_cpu(rpl.type_to_neq);
2497         pfres->neq = G_FW_PFVF_CMD_NEQ(word);
2498
2499         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2500         pfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
2501
2502         return 0;
2503 }
2504
2505 /* serial flash and firmware constants and flash config file constants */
2506 enum {
2507         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2508
2509         /* flash command opcodes */
2510         SF_PROG_PAGE    = 2,          /* program page */
2511         SF_WR_DISABLE   = 4,          /* disable writes */
2512         SF_RD_STATUS    = 5,          /* read status register */
2513         SF_WR_ENABLE    = 6,          /* enable writes */
2514         SF_RD_DATA_FAST = 0xb,        /* read flash */
2515         SF_RD_ID        = 0x9f,       /* read ID */
2516         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2517 };
2518
2519 /**
2520  * sf1_read - read data from the serial flash
2521  * @adapter: the adapter
2522  * @byte_cnt: number of bytes to read
2523  * @cont: whether another operation will be chained
2524  * @lock: whether to lock SF for PL access only
2525  * @valp: where to store the read data
2526  *
2527  * Reads up to 4 bytes of data from the serial flash.  The location of
2528  * the read needs to be specified prior to calling this by issuing the
2529  * appropriate commands to the serial flash.
2530  */
2531 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2532                     int lock, u32 *valp)
2533 {
2534         int ret;
2535
2536         if (!byte_cnt || byte_cnt > 4)
2537                 return -EINVAL;
2538         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2539                 return -EBUSY;
2540         t4_write_reg(adapter, A_SF_OP,
2541                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
2542         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2543         if (!ret)
2544                 *valp = t4_read_reg(adapter, A_SF_DATA);
2545         return ret;
2546 }
2547
2548 /**
2549  * sf1_write - write data to the serial flash
2550  * @adapter: the adapter
2551  * @byte_cnt: number of bytes to write
2552  * @cont: whether another operation will be chained
2553  * @lock: whether to lock SF for PL access only
2554  * @val: value to write
2555  *
2556  * Writes up to 4 bytes of data to the serial flash.  The location of
2557  * the write needs to be specified prior to calling this by issuing the
2558  * appropriate commands to the serial flash.
2559  */
2560 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2561                      int lock, u32 val)
2562 {
2563         if (!byte_cnt || byte_cnt > 4)
2564                 return -EINVAL;
2565         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2566                 return -EBUSY;
2567         t4_write_reg(adapter, A_SF_DATA, val);
2568         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
2569                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
2570         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2571 }
2572
2573 /**
2574  * t4_read_flash - read words from serial flash
2575  * @adapter: the adapter
2576  * @addr: the start address for the read
2577  * @nwords: how many 32-bit words to read
2578  * @data: where to store the read data
2579  * @byte_oriented: whether to store data as bytes or as words
2580  *
2581  * Read the specified number of 32-bit words from the serial flash.
2582  * If @byte_oriented is set the read data is stored as a byte array
2583  * (i.e., big-endian), otherwise as 32-bit words in the platform's
2584  * natural endianness.
2585  */
2586 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2587                   unsigned int nwords, u32 *data, int byte_oriented)
2588 {
2589         int ret;
2590
2591         if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
2592             (addr & 3))
2593                 return -EINVAL;
2594
2595         addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;
2596
2597         ret = sf1_write(adapter, 4, 1, 0, addr);
2598         if (ret != 0)
2599                 return ret;
2600
2601         ret = sf1_read(adapter, 1, 1, 0, data);
2602         if (ret != 0)
2603                 return ret;
2604
2605         for ( ; nwords; nwords--, data++) {
2606                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2607                 if (nwords == 1)
2608                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
2609                 if (ret)
2610                         return ret;
2611                 if (byte_oriented)
2612                         *data = cpu_to_be32(*data);
2613         }
2614         return 0;
2615 }
2616
2617 /**
2618  * t4_get_exprom_version - return the Expansion ROM version (if any)
2619  * @adapter: the adapter
2620  * @vers: where to place the version
2621  *
2622  * Reads the Expansion ROM header from FLASH and returns the version
2623  * number (if present) through the @vers return value pointer.  We return
2624  * this in the Firmware Version Format since it's convenient.  Return
2625  * 0 on success, -ENOENT if no Expansion ROM is present.
2626  */
2627 static int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
2628 {
2629         struct exprom_header {
2630                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2631                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2632         } *hdr;
2633         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2634                                            sizeof(u32))];
2635         int ret;
2636
2637         ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
2638                             ARRAY_SIZE(exprom_header_buf),
2639                             exprom_header_buf, 0);
2640         if (ret)
2641                 return ret;
2642
2643         hdr = (struct exprom_header *)exprom_header_buf;
2644         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2645                 return -ENOENT;
2646
2647         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
2648                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
2649                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
2650                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
2651         return 0;
2652 }
2653
2654 /**
2655  * t4_get_fw_version - read the firmware version
2656  * @adapter: the adapter
2657  * @vers: where to place the version
2658  *
2659  * Reads the FW version from flash.
2660  */
2661 static int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2662 {
2663         return t4_read_flash(adapter, FLASH_FW_START +
2664                              offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
2665 }
2666
2667 /**
2668  *     t4_get_bs_version - read the firmware bootstrap version
2669  *     @adapter: the adapter
2670  *     @vers: where to place the version
2671  *
2672  *     Reads the FW Bootstrap version from flash.
2673  */
2674 static int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2675 {
2676         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2677                              offsetof(struct fw_hdr, fw_ver), 1,
2678                              vers, 0);
2679 }
2680
2681 /**
2682  * t4_get_tp_version - read the TP microcode version
2683  * @adapter: the adapter
2684  * @vers: where to place the version
2685  *
2686  * Reads the TP microcode version from flash.
2687  */
2688 static int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2689 {
2690         return t4_read_flash(adapter, FLASH_FW_START +
2691                              offsetof(struct fw_hdr, tp_microcode_ver),
2692                              1, vers, 0);
2693 }
2694
2695 /**
2696  * t4_get_version_info - extract various chip/firmware version information
2697  * @adapter: the adapter
2698  *
2699  * Reads various chip/firmware version numbers and stores them into the
2700  * adapter Adapter Parameters structure.  If any of the efforts fails
2701  * the first failure will be returned, but all of the version numbers
2702  * will be read.
2703  */
2704 int t4_get_version_info(struct adapter *adapter)
2705 {
2706         int ret = 0;
2707
2708 #define FIRST_RET(__getvinfo) \
2709         do { \
2710                 int __ret = __getvinfo; \
2711                 if (__ret && !ret) \
2712                         ret = __ret; \
2713         } while (0)
2714
2715         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
2716         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
2717         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
2718         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
2719
2720 #undef FIRST_RET
2721
2722         return ret;
2723 }
2724
2725 /**
2726  * t4_dump_version_info - dump all of the adapter configuration IDs
2727  * @adapter: the adapter
2728  *
2729  * Dumps all of the various bits of adapter configuration version/revision
2730  * IDs information.  This is typically called at some point after
2731  * t4_get_version_info() has been called.
2732  */
2733 void t4_dump_version_info(struct adapter *adapter)
2734 {
2735         /**
2736          * Device information.
2737          */
2738         dev_info(adapter, "Chelsio rev %d\n",
2739                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
2740
2741         /**
2742          * Firmware Version.
2743          */
2744         if (!adapter->params.fw_vers)
2745                 dev_warn(adapter, "No firmware loaded\n");
2746         else
2747                 dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
2748                          G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
2749                          G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
2750                          G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
2751                          G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
2752
2753         /**
2754          * Bootstrap Firmware Version.
2755          */
2756         if (!adapter->params.bs_vers)
2757                 dev_warn(adapter, "No bootstrap loaded\n");
2758         else
2759                 dev_info(adapter, "Bootstrap version: %u.%u.%u.%u\n",
2760                          G_FW_HDR_FW_VER_MAJOR(adapter->params.bs_vers),
2761                          G_FW_HDR_FW_VER_MINOR(adapter->params.bs_vers),
2762                          G_FW_HDR_FW_VER_MICRO(adapter->params.bs_vers),
2763                          G_FW_HDR_FW_VER_BUILD(adapter->params.bs_vers));
2764
2765         /**
2766          * TP Microcode Version.
2767          */
2768         if (!adapter->params.tp_vers)
2769                 dev_warn(adapter, "No TP Microcode loaded\n");
2770         else
2771                 dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
2772                          G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
2773                          G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
2774                          G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
2775                          G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
2776
2777         /**
2778          * Expansion ROM version.
2779          */
2780         if (!adapter->params.er_vers)
2781                 dev_info(adapter, "No Expansion ROM loaded\n");
2782         else
2783                 dev_info(adapter, "Expansion ROM version: %u.%u.%u.%u\n",
2784                          G_FW_HDR_FW_VER_MAJOR(adapter->params.er_vers),
2785                          G_FW_HDR_FW_VER_MINOR(adapter->params.er_vers),
2786                          G_FW_HDR_FW_VER_MICRO(adapter->params.er_vers),
2787                          G_FW_HDR_FW_VER_BUILD(adapter->params.er_vers));
2788 }
2789
2790 /**
2791  * t4_link_l1cfg_core - apply link configuration to MAC/PHY
2792  * @pi: the port info
2793  * @caps: link capabilities to configure
2794  * @sleep_ok: if true we may sleep while awaiting command completion
2795  *
2796  * Set up a port's MAC and PHY according to a desired link configuration.
2797  * - If the PHY can auto-negotiate first decide what to advertise, then
2798  *   enable/disable auto-negotiation as desired, and reset.
2799  * - If the PHY does not auto-negotiate just reset it.
2800  * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2801  *   otherwise do it later based on the outcome of auto-negotiation.
2802  */
2803 int t4_link_l1cfg_core(struct port_info *pi, u32 caps, u8 sleep_ok)
2804 {
2805         struct link_config *lc = &pi->link_cfg;
2806         struct adapter *adap = pi->adapter;
2807         struct fw_port_cmd cmd;
2808         int ret;
2809
2810         memset(&cmd, 0, sizeof(cmd));
2811         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
2812                                        F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
2813                                        V_FW_PORT_CMD_PORTID(pi->port_id));
2814         cmd.action_to_len16 =
2815                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
2816                             FW_LEN16(cmd));
2817
2818         cmd.u.l1cfg32.rcap32 = cpu_to_be32(caps);
2819
2820         if (sleep_ok)
2821                 ret = t4_wr_mbox(adap, adap->mbox, &cmd, sizeof(cmd), NULL);
2822         else
2823                 ret = t4_wr_mbox_ns(adap, adap->mbox, &cmd, sizeof(cmd), NULL);
2824
2825         if (ret == FW_SUCCESS)
2826                 lc->link_caps = caps;
2827         else
2828                 dev_err(adap,
2829                         "Requested Port Capabilities %#x rejected, error %d\n",
2830                         caps, ret);
2831
2832         return ret;
2833 }
2834
2835 /**
2836  * t4_flash_cfg_addr - return the address of the flash configuration file
2837  * @adapter: the adapter
2838  *
2839  * Return the address within the flash where the Firmware Configuration
2840  * File is stored, or an error if the device FLASH is too small to contain
2841  * a Firmware Configuration File.
2842  */
2843 int t4_flash_cfg_addr(struct adapter *adapter)
2844 {
2845         /*
2846          * If the device FLASH isn't large enough to hold a Firmware
2847          * Configuration File, return an error.
2848          */
2849         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
2850                 return -ENOSPC;
2851
2852         return FLASH_CFG_START;
2853 }
2854
2855 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2856
2857 /**
2858  * t4_intr_enable - enable interrupts
2859  * @adapter: the adapter whose interrupts should be enabled
2860  *
2861  * Enable PF-specific interrupts for the calling function and the top-level
2862  * interrupt concentrator for global interrupts.  Interrupts are already
2863  * enabled at each module, here we just enable the roots of the interrupt
2864  * hierarchies.
2865  *
2866  * Note: this function should be called only when the driver manages
2867  * non PF-specific interrupts from the various HW modules.  Only one PCI
2868  * function at a time should be doing this.
2869  */
2870 void t4_intr_enable(struct adapter *adapter)
2871 {
2872         u32 val = 0;
2873         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2874         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2875                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2876
2877         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2878                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
2879         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2880                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2881                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
2882                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2883                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2884                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2885                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
2886         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2887         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2888 }
2889
2890 /**
2891  * t4_intr_disable - disable interrupts
2892  * @adapter: the adapter whose interrupts should be disabled
2893  *
2894  * Disable interrupts.  We only disable the top-level interrupt
2895  * concentrators.  The caller must be a PCI function managing global
2896  * interrupts.
2897  */
2898 void t4_intr_disable(struct adapter *adapter)
2899 {
2900         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2901         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2902                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2903
2904         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2905         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2906 }
2907
2908 /**
2909  * t4_get_port_type_description - return Port Type string description
2910  * @port_type: firmware Port Type enumeration
2911  */
2912 const char *t4_get_port_type_description(enum fw_port_type port_type)
2913 {
2914         static const char * const port_type_description[] = {
2915                 "Fiber_XFI",
2916                 "Fiber_XAUI",
2917                 "BT_SGMII",
2918                 "BT_XFI",
2919                 "BT_XAUI",
2920                 "KX4",
2921                 "CX4",
2922                 "KX",
2923                 "KR",
2924                 "SFP",
2925                 "BP_AP",
2926                 "BP4_AP",
2927                 "QSFP_10G",
2928                 "QSA",
2929                 "QSFP",
2930                 "BP40_BA",
2931                 "KR4_100G",
2932                 "CR4_QSFP",
2933                 "CR_QSFP",
2934                 "CR2_QSFP",
2935                 "SFP28",
2936                 "KR_SFP28",
2937         };
2938
2939         if (port_type < ARRAY_SIZE(port_type_description))
2940                 return port_type_description[port_type];
2941         return "UNKNOWN";
2942 }
2943
2944 /**
2945  * t4_get_mps_bg_map - return the buffer groups associated with a port
2946  * @adap: the adapter
2947  * @pidx: the port index
2948  *
2949  * Returns a bitmap indicating which MPS buffer groups are associated
2950  * with the given port.  Bit i is set if buffer group i is used by the
2951  * port.
2952  */
2953 unsigned int t4_get_mps_bg_map(struct adapter *adap, unsigned int pidx)
2954 {
2955         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2956         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adap,
2957                                                           A_MPS_CMN_CTL));
2958
2959         if (pidx >= nports) {
2960                 dev_warn(adap, "MPS Port Index %d >= Nports %d\n",
2961                          pidx, nports);
2962                 return 0;
2963         }
2964
2965         switch (chip_version) {
2966         case CHELSIO_T4:
2967         case CHELSIO_T5:
2968                 switch (nports) {
2969                 case 1: return 0xf;
2970                 case 2: return 3 << (2 * pidx);
2971                 case 4: return 1 << pidx;
2972                 }
2973                 break;
2974
2975         case CHELSIO_T6:
2976                 switch (nports) {
2977                 case 2: return 1 << (2 * pidx);
2978                 }
2979                 break;
2980         }
2981
2982         dev_err(adap, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
2983                 chip_version, nports);
2984         return 0;
2985 }
2986
2987 /**
2988  * t4_get_tp_ch_map - return TP ingress channels associated with a port
2989  * @adapter: the adapter
2990  * @pidx: the port index
2991  *
2992  * Returns a bitmap indicating which TP Ingress Channels are associated with
2993  * a given Port.  Bit i is set if TP Ingress Channel i is used by the Port.
2994  */
2995 unsigned int t4_get_tp_ch_map(struct adapter *adapter, unsigned int pidx)
2996 {
2997         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
2998         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adapter,
2999                                                           A_MPS_CMN_CTL));
3000
3001         if (pidx >= nports) {
3002                 dev_warn(adap, "TP Port Index %d >= Nports %d\n",
3003                          pidx, nports);
3004                 return 0;
3005         }
3006
3007         switch (chip_version) {
3008         case CHELSIO_T4:
3009         case CHELSIO_T5:
3010                 /* Note that this happens to be the same values as the MPS
3011                  * Buffer Group Map for these Chips.  But we replicate the code
3012                  * here because they're really separate concepts.
3013                  */
3014                 switch (nports) {
3015                 case 1: return 0xf;
3016                 case 2: return 3 << (2 * pidx);
3017                 case 4: return 1 << pidx;
3018                 }
3019                 break;
3020
3021         case CHELSIO_T6:
3022                 switch (nports) {
3023                 case 2: return 1 << pidx;
3024                 }
3025                 break;
3026         }
3027
3028         dev_err(adapter, "Need TP Channel Map for Chip %0x, Nports %d\n",
3029                 chip_version, nports);
3030         return 0;
3031 }
3032
3033 /**
3034  * t4_get_port_stats - collect port statistics
3035  * @adap: the adapter
3036  * @idx: the port index
3037  * @p: the stats structure to fill
3038  *
3039  * Collect statistics related to the given port from HW.
3040  */
3041 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3042 {
3043         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3044         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
3045
3046 #define GET_STAT(name) \
3047         t4_read_reg64(adap, \
3048                       (is_t4(adap->params.chip) ? \
3049                        PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
3050                        T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3051 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3052
3053         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3054         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3055         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3056         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3057         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3058         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3059         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3060         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3061         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3062         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3063         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3064         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3065         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3066         p->tx_drop             = GET_STAT(TX_PORT_DROP);
3067         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3068         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3069         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3070         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3071         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3072         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3073         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3074         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3075         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3076
3077         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3078                 if (stat_ctl & F_COUNTPAUSESTATTX) {
3079                         p->tx_frames -= p->tx_pause;
3080                         p->tx_octets -= p->tx_pause * 64;
3081                 }
3082                 if (stat_ctl & F_COUNTPAUSEMCTX)
3083                         p->tx_mcast_frames -= p->tx_pause;
3084         }
3085
3086         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3087         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3088         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3089         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3090         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3091         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3092         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3093         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3094         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3095         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3096         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3097         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3098         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3099         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3100         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3101         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3102         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3103         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3104         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3105         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3106         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3107         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3108         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3109         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3110         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3111         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3112         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3113
3114         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3115                 if (stat_ctl & F_COUNTPAUSESTATRX) {
3116                         p->rx_frames -= p->rx_pause;
3117                         p->rx_octets -= p->rx_pause * 64;
3118                 }
3119                 if (stat_ctl & F_COUNTPAUSEMCRX)
3120                         p->rx_mcast_frames -= p->rx_pause;
3121         }
3122
3123         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3124         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3125         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3126         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3127         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3128         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3129         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3130         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3131
3132 #undef GET_STAT
3133 #undef GET_STAT_COM
3134 }
3135
3136 /**
3137  * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
3138  * @adap: The adapter
3139  * @idx: The port
3140  * @stats: Current stats to fill
3141  * @offset: Previous stats snapshot
3142  */
3143 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3144                               struct port_stats *stats,
3145                               struct port_stats *offset)
3146 {
3147         u64 *s, *o;
3148         unsigned int i;
3149
3150         t4_get_port_stats(adap, idx, stats);
3151         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
3152              i < (sizeof(struct port_stats) / sizeof(u64));
3153              i++, s++, o++)
3154                 *s -= *o;
3155 }
3156
3157 /**
3158  * t4_clr_port_stats - clear port statistics
3159  * @adap: the adapter
3160  * @idx: the port index
3161  *
3162  * Clear HW statistics for the given port.
3163  */
3164 void t4_clr_port_stats(struct adapter *adap, int idx)
3165 {
3166         unsigned int i;
3167         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3168         u32 port_base_addr;
3169
3170         if (is_t4(adap->params.chip))
3171                 port_base_addr = PORT_BASE(idx);
3172         else
3173                 port_base_addr = T5_PORT_BASE(idx);
3174
3175         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3176              i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3177                 t4_write_reg(adap, port_base_addr + i, 0);
3178         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3179              i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3180                 t4_write_reg(adap, port_base_addr + i, 0);
3181         for (i = 0; i < 4; i++)
3182                 if (bgmap & (1 << i)) {
3183                         t4_write_reg(adap,
3184                                      A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
3185                                      i * 8, 0);
3186                         t4_write_reg(adap,
3187                                      A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
3188                                      i * 8, 0);
3189                 }
3190 }
3191
3192 /**
3193  * t4_fw_hello - establish communication with FW
3194  * @adap: the adapter
3195  * @mbox: mailbox to use for the FW command
3196  * @evt_mbox: mailbox to receive async FW events
3197  * @master: specifies the caller's willingness to be the device master
3198  * @state: returns the current device state (if non-NULL)
3199  *
3200  * Issues a command to establish communication with FW.  Returns either
3201  * an error (negative integer) or the mailbox of the Master PF.
3202  */
3203 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
3204                 enum dev_master master, enum dev_state *state)
3205 {
3206         int ret;
3207         struct fw_hello_cmd c;
3208         u32 v;
3209         unsigned int master_mbox;
3210         int retries = FW_CMD_HELLO_RETRIES;
3211
3212 retry:
3213         memset(&c, 0, sizeof(c));
3214         INIT_CMD(c, HELLO, WRITE);
3215         c.err_to_clearinit = cpu_to_be32(
3216                         V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
3217                         V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
3218                         V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
3219                                                 M_FW_HELLO_CMD_MBMASTER) |
3220                         V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
3221                         V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
3222                         F_FW_HELLO_CMD_CLEARINIT);
3223
3224         /*
3225          * Issue the HELLO command to the firmware.  If it's not successful
3226          * but indicates that we got a "busy" or "timeout" condition, retry
3227          * the HELLO until we exhaust our retry limit.  If we do exceed our
3228          * retry limit, check to see if the firmware left us any error
3229          * information and report that if so ...
3230          */
3231         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3232         if (ret != FW_SUCCESS) {
3233                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
3234                         goto retry;
3235                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
3236                         t4_report_fw_error(adap);
3237                 return ret;
3238         }
3239
3240         v = be32_to_cpu(c.err_to_clearinit);
3241         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
3242         if (state) {
3243                 if (v & F_FW_HELLO_CMD_ERR)
3244                         *state = DEV_STATE_ERR;
3245                 else if (v & F_FW_HELLO_CMD_INIT)
3246                         *state = DEV_STATE_INIT;
3247                 else
3248                         *state = DEV_STATE_UNINIT;
3249         }
3250
3251         /*
3252          * If we're not the Master PF then we need to wait around for the
3253          * Master PF Driver to finish setting up the adapter.
3254          *
3255          * Note that we also do this wait if we're a non-Master-capable PF and
3256          * there is no current Master PF; a Master PF may show up momentarily
3257          * and we wouldn't want to fail pointlessly.  (This can happen when an
3258          * OS loads lots of different drivers rapidly at the same time).  In
3259          * this case, the Master PF returned by the firmware will be
3260          * M_PCIE_FW_MASTER so the test below will work ...
3261          */
3262         if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
3263             master_mbox != mbox) {
3264                 int waiting = FW_CMD_HELLO_TIMEOUT;
3265
3266                 /*
3267                  * Wait for the firmware to either indicate an error or
3268                  * initialized state.  If we see either of these we bail out
3269                  * and report the issue to the caller.  If we exhaust the
3270                  * "hello timeout" and we haven't exhausted our retries, try
3271                  * again.  Otherwise bail with a timeout error.
3272                  */
3273                 for (;;) {
3274                         u32 pcie_fw;
3275
3276                         msleep(50);
3277                         waiting -= 50;
3278
3279                         /*
3280                          * If neither Error nor Initialialized are indicated
3281                          * by the firmware keep waiting till we exaust our
3282                          * timeout ... and then retry if we haven't exhausted
3283                          * our retries ...
3284                          */
3285                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
3286                         if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
3287                                 if (waiting <= 0) {
3288                                         if (retries-- > 0)
3289                                                 goto retry;
3290
3291                                         return -ETIMEDOUT;
3292                                 }
3293                                 continue;
3294                         }
3295
3296                         /*
3297                          * We either have an Error or Initialized condition
3298                          * report errors preferentially.
3299                          */
3300                         if (state) {
3301                                 if (pcie_fw & F_PCIE_FW_ERR)
3302                                         *state = DEV_STATE_ERR;
3303                                 else if (pcie_fw & F_PCIE_FW_INIT)
3304                                         *state = DEV_STATE_INIT;
3305                         }
3306
3307                         /*
3308                          * If we arrived before a Master PF was selected and
3309                          * there's not a valid Master PF, grab its identity
3310                          * for our caller.
3311                          */
3312                         if (master_mbox == M_PCIE_FW_MASTER &&
3313                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
3314                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
3315                         break;
3316                 }
3317         }
3318
3319         return master_mbox;
3320 }
3321
3322 /**
3323  * t4_fw_bye - end communication with FW
3324  * @adap: the adapter
3325  * @mbox: mailbox to use for the FW command
3326  *
3327  * Issues a command to terminate communication with FW.
3328  */
3329 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
3330 {
3331         struct fw_bye_cmd c;
3332
3333         memset(&c, 0, sizeof(c));
3334         INIT_CMD(c, BYE, WRITE);
3335         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3336 }
3337
3338 /**
3339  * t4_fw_reset - issue a reset to FW
3340  * @adap: the adapter
3341  * @mbox: mailbox to use for the FW command
3342  * @reset: specifies the type of reset to perform
3343  *
3344  * Issues a reset command of the specified type to FW.
3345  */
3346 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
3347 {
3348         struct fw_reset_cmd c;
3349
3350         memset(&c, 0, sizeof(c));
3351         INIT_CMD(c, RESET, WRITE);
3352         c.val = cpu_to_be32(reset);
3353         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3354 }
3355
3356 /**
3357  * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
3358  * @adap: the adapter
3359  * @mbox: mailbox to use for the FW RESET command (if desired)
3360  * @force: force uP into RESET even if FW RESET command fails
3361  *
3362  * Issues a RESET command to firmware (if desired) with a HALT indication
3363  * and then puts the microprocessor into RESET state.  The RESET command
3364  * will only be issued if a legitimate mailbox is provided (mbox <=
3365  * M_PCIE_FW_MASTER).
3366  *
3367  * This is generally used in order for the host to safely manipulate the
3368  * adapter without fear of conflicting with whatever the firmware might
3369  * be doing.  The only way out of this state is to RESTART the firmware
3370  * ...
3371  */
3372 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
3373 {
3374         int ret = 0;
3375
3376         /*
3377          * If a legitimate mailbox is provided, issue a RESET command
3378          * with a HALT indication.
3379          */
3380         if (mbox <= M_PCIE_FW_MASTER) {
3381                 struct fw_reset_cmd c;
3382
3383                 memset(&c, 0, sizeof(c));
3384                 INIT_CMD(c, RESET, WRITE);
3385                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
3386                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
3387                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3388         }
3389
3390         /*
3391          * Normally we won't complete the operation if the firmware RESET
3392          * command fails but if our caller insists we'll go ahead and put the
3393          * uP into RESET.  This can be useful if the firmware is hung or even
3394          * missing ...  We'll have to take the risk of putting the uP into
3395          * RESET without the cooperation of firmware in that case.
3396          *
3397          * We also force the firmware's HALT flag to be on in case we bypassed
3398          * the firmware RESET command above or we're dealing with old firmware
3399          * which doesn't have the HALT capability.  This will serve as a flag
3400          * for the incoming firmware to know that it's coming out of a HALT
3401          * rather than a RESET ... if it's new enough to understand that ...
3402          */
3403         if (ret == 0 || force) {
3404                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
3405                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
3406                                  F_PCIE_FW_HALT);
3407         }
3408
3409         /*
3410          * And we always return the result of the firmware RESET command
3411          * even when we force the uP into RESET ...
3412          */
3413         return ret;
3414 }
3415
3416 /**
3417  * t4_fw_restart - restart the firmware by taking the uP out of RESET
3418  * @adap: the adapter
3419  * @mbox: mailbox to use for the FW RESET command (if desired)
3420  * @reset: if we want to do a RESET to restart things
3421  *
3422  * Restart firmware previously halted by t4_fw_halt().  On successful
3423  * return the previous PF Master remains as the new PF Master and there
3424  * is no need to issue a new HELLO command, etc.
3425  *
3426  * We do this in two ways:
3427  *
3428  * 1. If we're dealing with newer firmware we'll simply want to take
3429  *    the chip's microprocessor out of RESET.  This will cause the
3430  *    firmware to start up from its start vector.  And then we'll loop
3431  *    until the firmware indicates it's started again (PCIE_FW.HALT
3432  *    reset to 0) or we timeout.
3433  *
3434  * 2. If we're dealing with older firmware then we'll need to RESET
3435  *    the chip since older firmware won't recognize the PCIE_FW.HALT
3436  *    flag and automatically RESET itself on startup.
3437  */
3438 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
3439 {
3440         if (reset) {
3441                 /*
3442                  * Since we're directing the RESET instead of the firmware
3443                  * doing it automatically, we need to clear the PCIE_FW.HALT
3444                  * bit.
3445                  */
3446                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
3447
3448                 /*
3449                  * If we've been given a valid mailbox, first try to get the
3450                  * firmware to do the RESET.  If that works, great and we can
3451                  * return success.  Otherwise, if we haven't been given a
3452                  * valid mailbox or the RESET command failed, fall back to
3453                  * hitting the chip with a hammer.
3454                  */
3455                 if (mbox <= M_PCIE_FW_MASTER) {
3456                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3457                         msleep(100);
3458                         if (t4_fw_reset(adap, mbox,
3459                                         F_PIORST | F_PIORSTMODE) == 0)
3460                                 return 0;
3461                 }
3462
3463                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
3464                 msleep(2000);
3465         } else {
3466                 int ms;
3467
3468                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3469                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
3470                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
3471                                 return FW_SUCCESS;
3472                         msleep(100);
3473                         ms += 100;
3474                 }
3475                 return -ETIMEDOUT;
3476         }
3477         return 0;
3478 }
3479
3480 /**
3481  * t4_fixup_host_params_compat - fix up host-dependent parameters
3482  * @adap: the adapter
3483  * @page_size: the host's Base Page Size
3484  * @cache_line_size: the host's Cache Line Size
3485  * @chip_compat: maintain compatibility with designated chip
3486  *
3487  * Various registers in the chip contain values which are dependent on the
3488  * host's Base Page and Cache Line Sizes.  This function will fix all of
3489  * those registers with the appropriate values as passed in ...
3490  *
3491  * @chip_compat is used to limit the set of changes that are made
3492  * to be compatible with the indicated chip release.  This is used by
3493  * drivers to maintain compatibility with chip register settings when
3494  * the drivers haven't [yet] been updated with new chip support.
3495  */
3496 int t4_fixup_host_params_compat(struct adapter *adap,
3497                                 unsigned int page_size,
3498                                 unsigned int cache_line_size,
3499                                 enum chip_type chip_compat)
3500 {
3501         unsigned int page_shift = cxgbe_fls(page_size) - 1;
3502         unsigned int sge_hps = page_shift - 10;
3503         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
3504         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
3505         unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;
3506
3507         t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
3508                      V_HOSTPAGESIZEPF0(sge_hps) |
3509                      V_HOSTPAGESIZEPF1(sge_hps) |
3510                      V_HOSTPAGESIZEPF2(sge_hps) |
3511                      V_HOSTPAGESIZEPF3(sge_hps) |
3512                      V_HOSTPAGESIZEPF4(sge_hps) |
3513                      V_HOSTPAGESIZEPF5(sge_hps) |
3514                      V_HOSTPAGESIZEPF6(sge_hps) |
3515                      V_HOSTPAGESIZEPF7(sge_hps));
3516
3517         if (is_t4(adap->params.chip) || is_t4(chip_compat))
3518                 t4_set_reg_field(adap, A_SGE_CONTROL,
3519                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3520                                  F_EGRSTATUSPAGESIZE,
3521                                  V_INGPADBOUNDARY(fl_align_log -
3522                                                   X_INGPADBOUNDARY_SHIFT) |
3523                                 V_EGRSTATUSPAGESIZE(stat_len != 64));
3524         else {
3525                 unsigned int pack_align;
3526                 unsigned int ingpad, ingpack;
3527                 unsigned int pcie_cap;
3528
3529                 /*
3530                  * T5 introduced the separation of the Free List Padding and
3531                  * Packing Boundaries.  Thus, we can select a smaller Padding
3532                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
3533                  * Bandwidth, and use a Packing Boundary which is large enough
3534                  * to avoid false sharing between CPUs, etc.
3535                  *
3536                  * For the PCI Link, the smaller the Padding Boundary the
3537                  * better.  For the Memory Controller, a smaller Padding
3538                  * Boundary is better until we cross under the Memory Line
3539                  * Size (the minimum unit of transfer to/from Memory).  If we
3540                  * have a Padding Boundary which is smaller than the Memory
3541                  * Line Size, that'll involve a Read-Modify-Write cycle on the
3542                  * Memory Controller which is never good.
3543                  */
3544
3545                 /* We want the Packing Boundary to be based on the Cache Line
3546                  * Size in order to help avoid False Sharing performance
3547                  * issues between CPUs, etc.  We also want the Packing
3548                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
3549                  * get best performance when the Packing Boundary is a
3550                  * multiple of the Maximum Payload Size.
3551                  */
3552                 pack_align = fl_align;
3553                 pcie_cap = t4_os_find_pci_capability(adap, PCI_CAP_ID_EXP);
3554                 if (pcie_cap) {
3555                         unsigned int mps, mps_log;
3556                         u16 devctl;
3557
3558                         /* The PCIe Device Control Maximum Payload Size field
3559                          * [bits 7:5] encodes sizes as powers of 2 starting at
3560                          * 128 bytes.
3561                          */
3562                         t4_os_pci_read_cfg2(adap, pcie_cap + PCI_EXP_DEVCTL,
3563                                             &devctl);
3564                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
3565                         mps = 1 << mps_log;
3566                         if (mps > pack_align)
3567                                 pack_align = mps;
3568                 }
3569
3570                 /*
3571                  * N.B. T5 has a different interpretation of the "0" value for
3572                  * the Packing Boundary.  This corresponds to 16 bytes instead
3573                  * of the expected 32 bytes.  We never have a Packing Boundary
3574                  * less than 32 bytes so we can't use that special value but
3575                  * on the other hand, if we wanted 32 bytes, the best we can
3576                  * really do is 64 bytes ...
3577                  */
3578                 if (pack_align <= 16) {
3579                         ingpack = X_INGPACKBOUNDARY_16B;
3580                         fl_align = 16;
3581                 } else if (pack_align == 32) {
3582                         ingpack = X_INGPACKBOUNDARY_64B;
3583                         fl_align = 64;
3584                 } else {
3585                         unsigned int pack_align_log = cxgbe_fls(pack_align) - 1;
3586
3587                         ingpack = pack_align_log - X_INGPACKBOUNDARY_SHIFT;
3588                         fl_align = pack_align;
3589                 }
3590
3591                 /* Use the smallest Ingress Padding which isn't smaller than
3592                  * the Memory Controller Read/Write Size.  We'll take that as
3593                  * being 8 bytes since we don't know of any system with a
3594                  * wider Memory Controller Bus Width.
3595                  */
3596                 if (is_t5(adap->params.chip))
3597                         ingpad = X_INGPADBOUNDARY_32B;
3598                 else
3599                         ingpad = X_T6_INGPADBOUNDARY_8B;
3600                 t4_set_reg_field(adap, A_SGE_CONTROL,
3601                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3602                                  F_EGRSTATUSPAGESIZE,
3603                                  V_INGPADBOUNDARY(ingpad) |
3604                                  V_EGRSTATUSPAGESIZE(stat_len != 64));
3605                 t4_set_reg_field(adap, A_SGE_CONTROL2,
3606                                  V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
3607                                  V_INGPACKBOUNDARY(ingpack));
3608         }
3609
3610         /*
3611          * Adjust various SGE Free List Host Buffer Sizes.
3612          *
3613          * The first four entries are:
3614          *
3615          *   0: Host Page Size
3616          *   1: 64KB
3617          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3618          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3619          *
3620          * For the single-MTU buffers in unpacked mode we need to include
3621          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3622          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3623          * Padding boundary.  All of these are accommodated in the Factory
3624          * Default Firmware Configuration File but we need to adjust it for
3625          * this host's cache line size.
3626          */
3627         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
3628         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
3629                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
3630                      & ~(fl_align - 1));
3631         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
3632                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
3633                      & ~(fl_align - 1));
3634
3635         t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));
3636
3637         return 0;
3638 }
3639
3640 /**
3641  * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
3642  * @adap: the adapter
3643  * @page_size: the host's Base Page Size
3644  * @cache_line_size: the host's Cache Line Size
3645  *
3646  * Various registers in T4 contain values which are dependent on the
3647  * host's Base Page and Cache Line Sizes.  This function will fix all of
3648  * those registers with the appropriate values as passed in ...
3649  *
3650  * This routine makes changes which are compatible with T4 chips.
3651  */
3652 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
3653                          unsigned int cache_line_size)
3654 {
3655         return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
3656                                            T4_LAST_REV);
3657 }
3658
3659 /**
3660  * t4_fw_initialize - ask FW to initialize the device
3661  * @adap: the adapter
3662  * @mbox: mailbox to use for the FW command
3663  *
3664  * Issues a command to FW to partially initialize the device.  This
3665  * performs initialization that generally doesn't depend on user input.
3666  */
3667 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3668 {
3669         struct fw_initialize_cmd c;
3670
3671         memset(&c, 0, sizeof(c));
3672         INIT_CMD(c, INITIALIZE, WRITE);
3673         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3674 }
3675
3676 /**
3677  * t4_query_params_rw - query FW or device parameters
3678  * @adap: the adapter
3679  * @mbox: mailbox to use for the FW command
3680  * @pf: the PF
3681  * @vf: the VF
3682  * @nparams: the number of parameters
3683  * @params: the parameter names
3684  * @val: the parameter values
3685  * @rw: Write and read flag
3686  *
3687  * Reads the value of FW or device parameters.  Up to 7 parameters can be
3688  * queried at once.
3689  */
3690 static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
3691                               unsigned int pf, unsigned int vf,
3692                               unsigned int nparams, const u32 *params,
3693                               u32 *val, int rw)
3694 {
3695         unsigned int i;
3696         int ret;
3697         struct fw_params_cmd c;
3698         __be32 *p = &c.param[0].mnem;
3699
3700         if (nparams > 7)
3701                 return -EINVAL;
3702
3703         memset(&c, 0, sizeof(c));
3704         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3705                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
3706                                   V_FW_PARAMS_CMD_PFN(pf) |
3707                                   V_FW_PARAMS_CMD_VFN(vf));
3708         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3709
3710         for (i = 0; i < nparams; i++) {
3711                 *p++ = cpu_to_be32(*params++);
3712                 if (rw)
3713                         *p = cpu_to_be32(*(val + i));
3714                 p++;
3715         }
3716
3717         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3718         if (ret == 0)
3719                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3720                         *val++ = be32_to_cpu(*p);
3721         return ret;
3722 }
3723
3724 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3725                     unsigned int vf, unsigned int nparams, const u32 *params,
3726                     u32 *val)
3727 {
3728         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
3729 }
3730
3731 /**
3732  * t4_set_params_timeout - sets FW or device parameters
3733  * @adap: the adapter
3734  * @mbox: mailbox to use for the FW command
3735  * @pf: the PF
3736  * @vf: the VF
3737  * @nparams: the number of parameters
3738  * @params: the parameter names
3739  * @val: the parameter values
3740  * @timeout: the timeout time
3741  *
3742  * Sets the value of FW or device parameters.  Up to 7 parameters can be
3743  * specified at once.
3744  */
3745 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
3746                           unsigned int pf, unsigned int vf,
3747                           unsigned int nparams, const u32 *params,
3748                           const u32 *val, int timeout)
3749 {
3750         struct fw_params_cmd c;
3751         __be32 *p = &c.param[0].mnem;
3752
3753         if (nparams > 7)
3754                 return -EINVAL;
3755
3756         memset(&c, 0, sizeof(c));
3757         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3758                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3759                                   V_FW_PARAMS_CMD_PFN(pf) |
3760                                   V_FW_PARAMS_CMD_VFN(vf));
3761         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3762
3763         while (nparams--) {
3764                 *p++ = cpu_to_be32(*params++);
3765                 *p++ = cpu_to_be32(*val++);
3766         }
3767
3768         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
3769 }
3770
3771 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3772                   unsigned int vf, unsigned int nparams, const u32 *params,
3773                   const u32 *val)
3774 {
3775         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
3776                                      FW_CMD_MAX_TIMEOUT);
3777 }
3778
3779 /**
3780  * t4_alloc_vi_func - allocate a virtual interface
3781  * @adap: the adapter
3782  * @mbox: mailbox to use for the FW command
3783  * @port: physical port associated with the VI
3784  * @pf: the PF owning the VI
3785  * @vf: the VF owning the VI
3786  * @nmac: number of MAC addresses needed (1 to 5)
3787  * @mac: the MAC addresses of the VI
3788  * @rss_size: size of RSS table slice associated with this VI
3789  * @portfunc: which Port Application Function MAC Address is desired
3790  * @idstype: Intrusion Detection Type
3791  *
3792  * Allocates a virtual interface for the given physical port.  If @mac is
3793  * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3794  * @mac should be large enough to hold @nmac Ethernet addresses, they are
3795  * stored consecutively so the space needed is @nmac * 6 bytes.
3796  * Returns a negative error number or the non-negative VI id.
3797  */
3798 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
3799                      unsigned int port, unsigned int pf, unsigned int vf,
3800                      unsigned int nmac, u8 *mac, unsigned int *rss_size,
3801                      unsigned int portfunc, unsigned int idstype,
3802                      u8 *vivld, u8 *vin)
3803 {
3804         int ret;
3805         struct fw_vi_cmd c;
3806
3807         memset(&c, 0, sizeof(c));
3808         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3809                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
3810                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
3811         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
3812         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
3813                                      V_FW_VI_CMD_FUNC(portfunc));
3814         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
3815         c.nmac = nmac - 1;
3816
3817         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3818         if (ret)
3819                 return ret;
3820
3821         if (mac) {
3822                 memcpy(mac, c.mac, sizeof(c.mac));
3823                 switch (nmac) {
3824                 case 5:
3825                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3826                         /* FALLTHROUGH */
3827                 case 4:
3828                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3829                         /* FALLTHROUGH */
3830                 case 3:
3831                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3832                         /* FALLTHROUGH */
3833                 case 2:
3834                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
3835                         /* FALLTHROUGH */
3836                 }
3837         }
3838         if (rss_size)
3839                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
3840         if (vivld)
3841                 *vivld = G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16));
3842         if (vin)
3843                 *vin = G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16));
3844         return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
3845 }
3846
3847 /**
3848  * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
3849  * @adap: the adapter
3850  * @mbox: mailbox to use for the FW command
3851  * @port: physical port associated with the VI
3852  * @pf: the PF owning the VI
3853  * @vf: the VF owning the VI
3854  * @nmac: number of MAC addresses needed (1 to 5)
3855  * @mac: the MAC addresses of the VI
3856  * @rss_size: size of RSS table slice associated with this VI
3857  *
3858  * Backwards compatible and convieniance routine to allocate a Virtual
3859  * Interface with a Ethernet Port Application Function and Intrustion
3860  * Detection System disabled.
3861  */
3862 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
3863                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
3864                 unsigned int *rss_size, u8 *vivld, u8 *vin)
3865 {
3866         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
3867                                 FW_VI_FUNC_ETH, 0, vivld, vin);
3868 }
3869
3870 /**
3871  * t4_free_vi - free a virtual interface
3872  * @adap: the adapter
3873  * @mbox: mailbox to use for the FW command
3874  * @pf: the PF owning the VI
3875  * @vf: the VF owning the VI
3876  * @viid: virtual interface identifiler
3877  *
3878  * Free a previously allocated virtual interface.
3879  */
3880 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
3881                unsigned int vf, unsigned int viid)
3882 {
3883         struct fw_vi_cmd c;
3884
3885         memset(&c, 0, sizeof(c));
3886         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3887                                   F_FW_CMD_EXEC);
3888         if (is_pf4(adap))
3889                 c.op_to_vfn |= cpu_to_be32(V_FW_VI_CMD_PFN(pf) |
3890                                            V_FW_VI_CMD_VFN(vf));
3891         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
3892         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
3893
3894         if (is_pf4(adap))
3895                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3896         else
3897                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
3898 }
3899
3900 /**
3901  * t4_set_rxmode - set Rx properties of a virtual interface
3902  * @adap: the adapter
3903  * @mbox: mailbox to use for the FW command
3904  * @viid: the VI id
3905  * @mtu: the new MTU or -1
3906  * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3907  * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3908  * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
3909  * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
3910  *          -1 no change
3911  * @sleep_ok: if true we may sleep while awaiting command completion
3912  *
3913  * Sets Rx properties of a virtual interface.
3914  */
3915 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
3916                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
3917                   bool sleep_ok)
3918 {
3919         struct fw_vi_rxmode_cmd c;
3920
3921         /* convert to FW values */
3922         if (mtu < 0)
3923                 mtu = M_FW_VI_RXMODE_CMD_MTU;
3924         if (promisc < 0)
3925                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
3926         if (all_multi < 0)
3927                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
3928         if (bcast < 0)
3929                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
3930         if (vlanex < 0)
3931                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
3932
3933         memset(&c, 0, sizeof(c));
3934         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
3935                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3936                                    V_FW_VI_RXMODE_CMD_VIID(viid));
3937         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3938         c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
3939                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
3940                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
3941                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
3942                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
3943         if (is_pf4(adap))
3944                 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL,
3945                                        sleep_ok);
3946         else
3947                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
3948 }
3949
3950 /**
3951  *      t4_alloc_raw_mac_filt - Adds a raw mac entry in mps tcam
3952  *      @adap: the adapter
3953  *      @viid: the VI id
3954  *      @mac: the MAC address
3955  *      @mask: the mask
3956  *      @idx: index at which to add this entry
3957  *      @port_id: the port index
3958  *      @lookup_type: MAC address for inner (1) or outer (0) header
3959  *      @sleep_ok: call is allowed to sleep
3960  *
3961  *      Adds the mac entry at the specified index using raw mac interface.
3962  *
3963  *      Returns a negative error number or the allocated index for this mac.
3964  */
3965 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
3966                           const u8 *addr, const u8 *mask, unsigned int idx,
3967                           u8 lookup_type, u8 port_id, bool sleep_ok)
3968 {
3969         int ret = 0;
3970         struct fw_vi_mac_cmd c;
3971         struct fw_vi_mac_raw *p = &c.u.raw;
3972         u32 val;
3973
3974         memset(&c, 0, sizeof(c));
3975         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
3976                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3977                                    V_FW_VI_MAC_CMD_VIID(viid));
3978         val = V_FW_CMD_LEN16(1) |
3979               V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
3980         c.freemacs_to_len16 = cpu_to_be32(val);
3981
3982         /* Specify that this is an inner mac address */
3983         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
3984
3985         /* Lookup Type. Outer header: 0, Inner header: 1 */
3986         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
3987                                    V_DATAPORTNUM(port_id));
3988         /* Lookup mask and port mask */
3989         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
3990                                     V_DATAPORTNUM(M_DATAPORTNUM));
3991
3992         /* Copy the address and the mask */
3993         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
3994         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
3995
3996         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
3997         if (ret == 0) {
3998                 ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
3999                 if (ret != (int)idx)
4000                         ret = -ENOMEM;
4001         }
4002
4003         return ret;
4004 }
4005
4006 /**
4007  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
4008  *      @adap: the adapter
4009  *      @viid: the VI id
4010  *      @addr: the MAC address
4011  *      @mask: the mask
4012  *      @idx: index of the entry in mps tcam
4013  *      @lookup_type: MAC address for inner (1) or outer (0) header
4014  *      @port_id: the port index
4015  *      @sleep_ok: call is allowed to sleep
4016  *
4017  *      Removes the mac entry at the specified index using raw mac interface.
4018  *
4019  *      Returns a negative error number on failure.
4020  */
4021 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
4022                          const u8 *addr, const u8 *mask, unsigned int idx,
4023                          u8 lookup_type, u8 port_id, bool sleep_ok)
4024 {
4025         struct fw_vi_mac_cmd c;
4026         struct fw_vi_mac_raw *p = &c.u.raw;
4027         u32 raw;
4028
4029         memset(&c, 0, sizeof(c));
4030         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4031                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4032                                    V_FW_CMD_EXEC(0) |
4033                                    V_FW_VI_MAC_CMD_VIID(viid));
4034         raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
4035         c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0U) |
4036                                           raw |
4037                                           V_FW_CMD_LEN16(1));
4038
4039         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
4040                                      FW_VI_MAC_ID_BASED_FREE);
4041
4042         /* Lookup Type. Outer header: 0, Inner header: 1 */
4043         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
4044                                    V_DATAPORTNUM(port_id));
4045         /* Lookup mask and port mask */
4046         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4047                                     V_DATAPORTNUM(M_DATAPORTNUM));
4048
4049         /* Copy the address and the mask */
4050         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4051         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4052
4053         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4054 }
4055
4056 /**
4057  * t4_change_mac - modifies the exact-match filter for a MAC address
4058  * @adap: the adapter
4059  * @mbox: mailbox to use for the FW command
4060  * @viid: the VI id
4061  * @idx: index of existing filter for old value of MAC address, or -1
4062  * @addr: the new MAC address value
4063  * @persist: whether a new MAC allocation should be persistent
4064  * @add_smt: if true also add the address to the HW SMT
4065  *
4066  * Modifies an exact-match filter and sets it to the new MAC address if
4067  * @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
4068  * latter case the address is added persistently if @persist is %true.
4069  *
4070  * Note that in general it is not possible to modify the value of a given
4071  * filter so the generic way to modify an address filter is to free the one
4072  * being used by the old address value and allocate a new filter for the
4073  * new address value.
4074  *
4075  * Returns a negative error number or the index of the filter with the new
4076  * MAC value.  Note that this index may differ from @idx.
4077  */
4078 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
4079                   int idx, const u8 *addr, bool persist, bool add_smt)
4080 {
4081         int ret, mode;
4082         struct fw_vi_mac_cmd c;
4083         struct fw_vi_mac_exact *p = c.u.exact;
4084         int max_mac_addr = adap->params.arch.mps_tcam_size;
4085
4086         if (idx < 0)                             /* new allocation */
4087                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
4088         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
4089
4090         memset(&c, 0, sizeof(c));
4091         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4092                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4093                                    V_FW_VI_MAC_CMD_VIID(viid));
4094         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
4095         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
4096                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
4097                                       V_FW_VI_MAC_CMD_IDX(idx));
4098         memcpy(p->macaddr, addr, sizeof(p->macaddr));
4099
4100         if (is_pf4(adap))
4101                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4102         else
4103                 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
4104         if (ret == 0) {
4105                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
4106                 if (ret >= max_mac_addr)
4107                         ret = -ENOMEM;
4108         }
4109         return ret;
4110 }
4111
4112 /**
4113  * t4_enable_vi_params - enable/disable a virtual interface
4114  * @adap: the adapter
4115  * @mbox: mailbox to use for the FW command
4116  * @viid: the VI id
4117  * @rx_en: 1=enable Rx, 0=disable Rx
4118  * @tx_en: 1=enable Tx, 0=disable Tx
4119  * @dcb_en: 1=enable delivery of Data Center Bridging messages.
4120  *
4121  * Enables/disables a virtual interface.  Note that setting DCB Enable
4122  * only makes sense when enabling a Virtual Interface ...
4123  */
4124 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
4125                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
4126 {
4127         struct fw_vi_enable_cmd c;
4128
4129         memset(&c, 0, sizeof(c));
4130         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
4131                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4132                                    V_FW_VI_ENABLE_CMD_VIID(viid));
4133         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
4134                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
4135                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
4136                                      FW_LEN16(c));
4137         if (is_pf4(adap))
4138                 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4139         else
4140                 return t4vf_wr_mbox_ns(adap, &c, sizeof(c), NULL);
4141 }
4142
4143 /**
4144  * t4_enable_vi - enable/disable a virtual interface
4145  * @adap: the adapter
4146  * @mbox: mailbox to use for the FW command
4147  * @viid: the VI id
4148  * @rx_en: 1=enable Rx, 0=disable Rx
4149  * @tx_en: 1=enable Tx, 0=disable Tx
4150  *
4151  * Enables/disables a virtual interface.  Note that setting DCB Enable
4152  * only makes sense when enabling a Virtual Interface ...
4153  */
4154 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
4155                  bool rx_en, bool tx_en)
4156 {
4157         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
4158 }
4159
4160 /**
4161  * t4_iq_start_stop - enable/disable an ingress queue and its FLs
4162  * @adap: the adapter
4163  * @mbox: mailbox to use for the FW command
4164  * @start: %true to enable the queues, %false to disable them
4165  * @pf: the PF owning the queues
4166  * @vf: the VF owning the queues
4167  * @iqid: ingress queue id
4168  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4169  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4170  *
4171  * Starts or stops an ingress queue and its associated FLs, if any.
4172  */
4173 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
4174                      unsigned int pf, unsigned int vf, unsigned int iqid,
4175                      unsigned int fl0id, unsigned int fl1id)
4176 {
4177         struct fw_iq_cmd c;
4178
4179         memset(&c, 0, sizeof(c));
4180         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4181                                   F_FW_CMD_EXEC);
4182         c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
4183                                        V_FW_IQ_CMD_IQSTOP(!start) |
4184                                        FW_LEN16(c));
4185         c.iqid = cpu_to_be16(iqid);
4186         c.fl0id = cpu_to_be16(fl0id);
4187         c.fl1id = cpu_to_be16(fl1id);
4188         if (is_pf4(adap)) {
4189                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4190                                            V_FW_IQ_CMD_VFN(vf));
4191                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4192         } else {
4193                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4194         }
4195 }
4196
4197 /**
4198  * t4_iq_free - free an ingress queue and its FLs
4199  * @adap: the adapter
4200  * @mbox: mailbox to use for the FW command
4201  * @pf: the PF owning the queues
4202  * @vf: the VF owning the queues
4203  * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
4204  * @iqid: ingress queue id
4205  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4206  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4207  *
4208  * Frees an ingress queue and its associated FLs, if any.
4209  */
4210 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4211                unsigned int vf, unsigned int iqtype, unsigned int iqid,
4212                unsigned int fl0id, unsigned int fl1id)
4213 {
4214         struct fw_iq_cmd c;
4215
4216         memset(&c, 0, sizeof(c));
4217         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4218                                   F_FW_CMD_EXEC);
4219         if (is_pf4(adap))
4220                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4221                                            V_FW_IQ_CMD_VFN(vf));
4222         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
4223         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
4224         c.iqid = cpu_to_be16(iqid);
4225         c.fl0id = cpu_to_be16(fl0id);
4226         c.fl1id = cpu_to_be16(fl1id);
4227         if (is_pf4(adap))
4228                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4229         else
4230                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4231 }
4232
4233 /**
4234  * t4_eth_eq_free - free an Ethernet egress queue
4235  * @adap: the adapter
4236  * @mbox: mailbox to use for the FW command
4237  * @pf: the PF owning the queue
4238  * @vf: the VF owning the queue
4239  * @eqid: egress queue id
4240  *
4241  * Frees an Ethernet egress queue.
4242  */
4243 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4244                    unsigned int vf, unsigned int eqid)
4245 {
4246         struct fw_eq_eth_cmd c;
4247
4248         memset(&c, 0, sizeof(c));
4249         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
4250                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC);
4251         if (is_pf4(adap))
4252                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4253                                            V_FW_IQ_CMD_VFN(vf));
4254         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
4255         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
4256         if (is_pf4(adap))
4257                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4258         else
4259                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4260 }
4261
4262 /**
4263  * t4_link_down_rc_str - return a string for a Link Down Reason Code
4264  * @link_down_rc: Link Down Reason Code
4265  *
4266  * Returns a string representation of the Link Down Reason Code.
4267  */
4268 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
4269 {
4270         static const char * const reason[] = {
4271                 "Link Down",
4272                 "Remote Fault",
4273                 "Auto-negotiation Failure",
4274                 "Reserved",
4275                 "Insufficient Airflow",
4276                 "Unable To Determine Reason",
4277                 "No RX Signal Detected",
4278                 "Reserved",
4279         };
4280
4281         if (link_down_rc >= ARRAY_SIZE(reason))
4282                 return "Bad Reason Code";
4283
4284         return reason[link_down_rc];
4285 }
4286
4287 static u32 t4_speed_to_fwcap(u32 speed)
4288 {
4289         switch (speed) {
4290         case 100000:
4291                 return FW_PORT_CAP32_SPEED_100G;
4292         case 50000:
4293                 return FW_PORT_CAP32_SPEED_50G;
4294         case 40000:
4295                 return FW_PORT_CAP32_SPEED_40G;
4296         case 25000:
4297                 return FW_PORT_CAP32_SPEED_25G;
4298         case 10000:
4299                 return FW_PORT_CAP32_SPEED_10G;
4300         case 1000:
4301                 return FW_PORT_CAP32_SPEED_1G;
4302         case 100:
4303                 return FW_PORT_CAP32_SPEED_100M;
4304         default:
4305                 break;
4306         }
4307
4308         return 0;
4309 }
4310
4311 /* Return the highest speed set in the port capabilities, in Mb/s. */
4312 unsigned int t4_fwcap_to_speed(u32 caps)
4313 {
4314 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
4315         do { \
4316                 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
4317                         return __speed; \
4318         } while (0)
4319
4320         TEST_SPEED_RETURN(100G, 100000);
4321         TEST_SPEED_RETURN(50G,   50000);
4322         TEST_SPEED_RETURN(40G,   40000);
4323         TEST_SPEED_RETURN(25G,   25000);
4324         TEST_SPEED_RETURN(10G,   10000);
4325         TEST_SPEED_RETURN(1G,     1000);
4326         TEST_SPEED_RETURN(100M,    100);
4327
4328 #undef TEST_SPEED_RETURN
4329
4330         return 0;
4331 }
4332
4333 static void t4_set_link_autoneg_speed(struct port_info *pi, u32 *new_caps)
4334 {
4335         struct link_config *lc = &pi->link_cfg;
4336         u32 caps = *new_caps;
4337
4338         caps &= ~V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4339         caps |= G_FW_PORT_CAP32_SPEED(lc->acaps);
4340
4341         *new_caps = caps;
4342 }
4343
4344 int t4_set_link_speed(struct port_info *pi, u32 speed, u32 *new_caps)
4345 {
4346         u32 fw_speed_cap = t4_speed_to_fwcap(speed);
4347         struct link_config *lc = &pi->link_cfg;
4348         u32 caps = *new_caps;
4349
4350         if (!(lc->pcaps & fw_speed_cap))
4351                 return -EOPNOTSUPP;
4352
4353         caps &= ~V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4354         caps |= fw_speed_cap;
4355
4356         *new_caps = caps;
4357
4358         return 0;
4359 }
4360
4361 int t4_set_link_pause(struct port_info *pi, u8 autoneg, u8 pause_tx,
4362                       u8 pause_rx, u32 *new_caps)
4363 {
4364         struct link_config *lc = &pi->link_cfg;
4365         u32 caps = *new_caps;
4366         u32 max_speed;
4367
4368         max_speed = t4_fwcap_to_speed(lc->link_caps);
4369
4370         if (autoneg) {
4371                 if (!(lc->pcaps & FW_PORT_CAP32_ANEG))
4372                         return -EINVAL;
4373
4374                 caps |= FW_PORT_CAP32_ANEG;
4375                 t4_set_link_autoneg_speed(pi, &caps);
4376         } else {
4377                 if (!max_speed)
4378                         max_speed = t4_fwcap_to_speed(lc->acaps);
4379
4380                 caps &= ~FW_PORT_CAP32_ANEG;
4381                 t4_set_link_speed(pi, max_speed, &caps);
4382         }
4383
4384         if (lc->pcaps & FW_PORT_CAP32_MDIAUTO)
4385                 caps |= V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4386
4387         caps &= ~V_FW_PORT_CAP32_FC(M_FW_PORT_CAP32_FC);
4388         caps &= ~V_FW_PORT_CAP32_802_3(M_FW_PORT_CAP32_802_3);
4389         if (pause_tx && pause_rx) {
4390                 caps |= FW_PORT_CAP32_FC_TX | FW_PORT_CAP32_FC_RX;
4391                 if (lc->pcaps & FW_PORT_CAP32_802_3_PAUSE)
4392                         caps |= FW_PORT_CAP32_802_3_PAUSE;
4393         } else if (pause_tx) {
4394                 caps |= FW_PORT_CAP32_FC_TX;
4395                 if (lc->pcaps & FW_PORT_CAP32_802_3_ASM_DIR)
4396                         caps |= FW_PORT_CAP32_802_3_ASM_DIR;
4397         } else if (pause_rx) {
4398                 caps |= FW_PORT_CAP32_FC_RX;
4399                 if (lc->pcaps & FW_PORT_CAP32_802_3_PAUSE)
4400                         caps |= FW_PORT_CAP32_802_3_PAUSE;
4401
4402                 if (lc->pcaps & FW_PORT_CAP32_802_3_ASM_DIR)
4403                         caps |= FW_PORT_CAP32_802_3_ASM_DIR;
4404         }
4405
4406         *new_caps = caps;
4407
4408         return 0;
4409 }
4410
4411 int t4_set_link_fec(struct port_info *pi, u8 fec_rs, u8 fec_baser,
4412                     u8 fec_none, u32 *new_caps)
4413 {
4414         struct link_config *lc = &pi->link_cfg;
4415         u32 max_speed, caps = *new_caps;
4416
4417         if (!(lc->pcaps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)))
4418                 return -EOPNOTSUPP;
4419
4420         /* Link might be down. In that case consider the max
4421          * speed advertised
4422          */
4423         max_speed = t4_fwcap_to_speed(lc->link_caps);
4424         if (!max_speed)
4425                 max_speed = t4_fwcap_to_speed(lc->acaps);
4426
4427         caps &= ~V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
4428         if (fec_rs) {
4429                 switch (max_speed) {
4430                 case 100000:
4431                 case 25000:
4432                         caps |= FW_PORT_CAP32_FEC_RS;
4433                         break;
4434                 default:
4435                         return -EOPNOTSUPP;
4436                 }
4437         }
4438
4439         if (fec_baser) {
4440                 switch (max_speed) {
4441                 case 50000:
4442                 case 25000:
4443                         caps |= FW_PORT_CAP32_FEC_BASER_RS;
4444                         break;
4445                 default:
4446                         return -EOPNOTSUPP;
4447                 }
4448         }
4449
4450         if (fec_none)
4451                 caps |= FW_PORT_CAP32_FEC_NO_FEC;
4452
4453         if (!(caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC))) {
4454                 /* No explicit encoding is requested.
4455                  * So, default back to AUTO.
4456                  */
4457                 switch (max_speed) {
4458                 case 100000:
4459                         caps |= FW_PORT_CAP32_FEC_RS |
4460                                 FW_PORT_CAP32_FEC_NO_FEC;
4461                         break;
4462                 case 50000:
4463                         caps |= FW_PORT_CAP32_FEC_BASER_RS |
4464                                 FW_PORT_CAP32_FEC_NO_FEC;
4465                         break;
4466                 case 25000:
4467                         caps |= FW_PORT_CAP32_FEC_RS |
4468                                 FW_PORT_CAP32_FEC_BASER_RS |
4469                                 FW_PORT_CAP32_FEC_NO_FEC;
4470                         break;
4471                 default:
4472                         return -EOPNOTSUPP;
4473                 }
4474         }
4475
4476         *new_caps = caps;
4477
4478         return 0;
4479 }
4480
4481 /**
4482  * t4_handle_get_port_info - process a FW reply message
4483  * @pi: the port info
4484  * @rpl: start of the FW message
4485  *
4486  * Processes a GET_PORT_INFO FW reply message.
4487  */
4488 static void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
4489 {
4490         const struct fw_port_cmd *cmd = (const void *)rpl;
4491         u8 link_ok, link_down_rc, mod_type, port_type;
4492         u32 action, pcaps, acaps, link_caps, lstatus;
4493         struct link_config *lc = &pi->link_cfg;
4494         struct adapter *adapter = pi->adapter;
4495         u8 mod_changed = 0;
4496
4497         /* Extract the various fields from the Port Information message.
4498          */
4499         action = be32_to_cpu(cmd->action_to_len16);
4500         if (G_FW_PORT_CMD_ACTION(action) != FW_PORT_ACTION_GET_PORT_INFO32) {
4501                 dev_warn(adapter, "Handle Port Information: Bad Command/Action %#x\n",
4502                          action);
4503                 return;
4504         }
4505
4506         lstatus = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
4507         link_ok = (lstatus & F_FW_PORT_CMD_LSTATUS32) ? 1 : 0;
4508         link_down_rc = G_FW_PORT_CMD_LINKDNRC32(lstatus);
4509         port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus);
4510         mod_type = G_FW_PORT_CMD_MODTYPE32(lstatus);
4511
4512         pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
4513         acaps = be32_to_cpu(cmd->u.info32.acaps32);
4514         link_caps = be32_to_cpu(cmd->u.info32.linkattr32);
4515
4516         if (mod_type != lc->mod_type) {
4517                 t4_init_link_config(pi, pcaps, acaps, lc->mdio_addr,
4518                                     port_type, mod_type);
4519                 t4_os_portmod_changed(adapter, pi->pidx);
4520                 mod_changed = 1;
4521         }
4522         if (link_ok != lc->link_ok || acaps != lc->acaps ||
4523             link_caps != lc->link_caps) { /* something changed */
4524                 if (!link_ok && lc->link_ok) {
4525                         lc->link_down_rc = link_down_rc;
4526                         dev_warn(adap, "Port %d link down, reason: %s\n",
4527                                  pi->port_id,
4528                                  t4_link_down_rc_str(link_down_rc));
4529                 }
4530                 lc->link_ok = link_ok;
4531                 lc->acaps = acaps;
4532                 lc->link_caps = link_caps;
4533                 t4_os_link_changed(adapter, pi->pidx);
4534         }
4535
4536         if (mod_changed != 0 && is_pf4(adapter) != 0) {
4537                 u32 mod_caps = lc->admin_caps;
4538                 int ret;
4539
4540                 ret = t4_link_l1cfg_ns(pi, mod_caps);
4541                 if (ret != FW_SUCCESS)
4542                         dev_warn(adapter,
4543                                  "Attempt to update new Transceiver Module settings %#x failed with error: %d\n",
4544                                  mod_caps, ret);
4545         }
4546 }
4547
4548 /**
4549  * t4_ctrl_eq_free - free a control egress queue
4550  * @adap: the adapter
4551  * @mbox: mailbox to use for the FW command
4552  * @pf: the PF owning the queue
4553  * @vf: the VF owning the queue
4554  * @eqid: egress queue id
4555  *
4556  * Frees a control egress queue.
4557  */
4558 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4559                     unsigned int vf, unsigned int eqid)
4560 {
4561         struct fw_eq_ctrl_cmd c;
4562
4563         memset(&c, 0, sizeof(c));
4564         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
4565                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4566                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
4567                                   V_FW_EQ_CTRL_CMD_VFN(vf));
4568         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
4569         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
4570         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4571 }
4572
4573 /**
4574  * t4_handle_fw_rpl - process a FW reply message
4575  * @adap: the adapter
4576  * @rpl: start of the FW message
4577  *
4578  * Processes a FW message, such as link state change messages.
4579  */
4580 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
4581 {
4582         u8 opcode = *(const u8 *)rpl;
4583
4584         /*
4585          * This might be a port command ... this simplifies the following
4586          * conditionals ...  We can get away with pre-dereferencing
4587          * action_to_len16 because it's in the first 16 bytes and all messages
4588          * will be at least that long.
4589          */
4590         const struct fw_port_cmd *p = (const void *)rpl;
4591         unsigned int action =
4592                 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
4593
4594         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO32) {
4595                 /* link/module state change message */
4596                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
4597                 struct port_info *pi = NULL;
4598                 int i;
4599
4600                 for_each_port(adap, i) {
4601                         pi = adap2pinfo(adap, i);
4602                         if (pi->tx_chan == chan)
4603                                 break;
4604                 }
4605
4606                 t4_handle_get_port_info(pi, rpl);
4607         } else {
4608                 dev_warn(adap, "Unknown firmware reply %d\n", opcode);
4609                 return -EINVAL;
4610         }
4611         return 0;
4612 }
4613
4614 void t4_reset_link_config(struct adapter *adap, int idx)
4615 {
4616         struct port_info *pi = adap2pinfo(adap, idx);
4617         struct link_config *lc = &pi->link_cfg;
4618
4619         lc->link_ok = 0;
4620         lc->link_down_rc = 0;
4621         lc->link_caps = 0;
4622 }
4623
4624 /**
4625  * t4_init_link_config - initialize a link's SW state
4626  * @pi: the port info
4627  * @pcaps: link Port Capabilities
4628  * @acaps: link current Advertised Port Capabilities
4629  * @mdio_addr : address of the PHY
4630  * @port_type : firmware port type
4631  * @mod_type  : firmware module type
4632  *
4633  * Initializes the SW state maintained for each link, including the link's
4634  * capabilities and default speed/flow-control/autonegotiation settings.
4635  */
4636 void t4_init_link_config(struct port_info *pi, u32 pcaps, u32 acaps,
4637                          u8 mdio_addr, u8 port_type, u8 mod_type)
4638 {
4639         u8 fec_rs = 0, fec_baser = 0, fec_none = 0;
4640         struct link_config *lc = &pi->link_cfg;
4641
4642         lc->pcaps = pcaps;
4643         lc->acaps = acaps;
4644         lc->admin_caps = acaps;
4645         lc->link_caps = 0;
4646
4647         lc->mdio_addr = mdio_addr;
4648         lc->port_type = port_type;
4649         lc->mod_type = mod_type;
4650
4651         lc->link_ok = 0;
4652         lc->link_down_rc = 0;
4653
4654         /* Turn Tx and Rx pause off by default */
4655         lc->admin_caps &= ~V_FW_PORT_CAP32_FC(M_FW_PORT_CAP32_FC);
4656         lc->admin_caps &= ~V_FW_PORT_CAP32_802_3(M_FW_PORT_CAP32_802_3);
4657         if (lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)
4658                 lc->admin_caps &= ~FW_PORT_CAP32_FORCE_PAUSE;
4659
4660         /* Reset FEC caps to default values */
4661         if (lc->pcaps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) {
4662                 if (lc->acaps & FW_PORT_CAP32_FEC_RS)
4663                         fec_rs = 1;
4664                 else if (lc->acaps & FW_PORT_CAP32_FEC_BASER_RS)
4665                         fec_baser = 1;
4666                 else
4667                         fec_none = 1;
4668
4669                 lc->admin_caps &= ~V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
4670                 t4_set_link_fec(pi, fec_rs, fec_baser, fec_none,
4671                                 &lc->admin_caps);
4672         }
4673
4674         if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
4675                 lc->admin_caps &= ~FW_PORT_CAP32_FORCE_FEC;
4676
4677         /* Reset MDI to AUTO */
4678         if (lc->pcaps & FW_PORT_CAP32_MDIAUTO) {
4679                 lc->admin_caps &= ~V_FW_PORT_CAP32_MDI(M_FW_PORT_CAP32_MDI);
4680                 lc->admin_caps |= V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4681         }
4682 }
4683
4684 /**
4685  * t4_wait_dev_ready - wait till to reads of registers work
4686  *
4687  * Right after the device is RESET is can take a small amount of time
4688  * for it to respond to register reads.  Until then, all reads will
4689  * return either 0xff...ff or 0xee...ee.  Return an error if reads
4690  * don't work within a reasonable time frame.
4691  */
4692 static int t4_wait_dev_ready(struct adapter *adapter)
4693 {
4694         u32 whoami;
4695
4696         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4697
4698         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4699                 return 0;
4700
4701         msleep(500);
4702         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4703         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4704                 return 0;
4705
4706         dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
4707                 whoami);
4708         return -EIO;
4709 }
4710
4711 struct flash_desc {
4712         u32 vendor_and_model_id;
4713         u32 size_mb;
4714 };
4715
4716 int t4_get_flash_params(struct adapter *adapter)
4717 {
4718         /*
4719          * Table for non-standard supported Flash parts.  Note, all Flash
4720          * parts must have 64KB sectors.
4721          */
4722         static struct flash_desc supported_flash[] = {
4723                 { 0x00150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
4724         };
4725
4726         int ret;
4727         u32 flashid = 0;
4728         unsigned int part, manufacturer;
4729         unsigned int density, size = 0;
4730
4731         /**
4732          * Issue a Read ID Command to the Flash part.  We decode supported
4733          * Flash parts and their sizes from this.  There's a newer Query
4734          * Command which can retrieve detailed geometry information but
4735          * many Flash parts don't support it.
4736          */
4737         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
4738         if (!ret)
4739                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
4740         t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
4741         if (ret < 0)
4742                 return ret;
4743
4744         /**
4745          * Check to see if it's one of our non-standard supported Flash parts.
4746          */
4747         for (part = 0; part < ARRAY_SIZE(supported_flash); part++) {
4748                 if (supported_flash[part].vendor_and_model_id == flashid) {
4749                         adapter->params.sf_size =
4750                                 supported_flash[part].size_mb;
4751                         adapter->params.sf_nsec =
4752                                 adapter->params.sf_size / SF_SEC_SIZE;
4753                         goto found;
4754                 }
4755         }
4756
4757         /**
4758          * Decode Flash part size.  The code below looks repetative with
4759          * common encodings, but that's not guaranteed in the JEDEC
4760          * specification for the Read JADEC ID command.  The only thing that
4761          * we're guaranteed by the JADEC specification is where the
4762          * Manufacturer ID is in the returned result.  After that each
4763          * Manufacturer ~could~ encode things completely differently.
4764          * Note, all Flash parts must have 64KB sectors.
4765          */
4766         manufacturer = flashid & 0xff;
4767         switch (manufacturer) {
4768         case 0x20: { /* Micron/Numonix */
4769                 /**
4770                  * This Density -> Size decoding table is taken from Micron
4771                  * Data Sheets.
4772                  */
4773                 density = (flashid >> 16) & 0xff;
4774                 switch (density) {
4775                 case 0x14:
4776                         size = 1 << 20; /* 1MB */
4777                         break;
4778                 case 0x15:
4779                         size = 1 << 21; /* 2MB */
4780                         break;
4781                 case 0x16:
4782                         size = 1 << 22; /* 4MB */
4783                         break;
4784                 case 0x17:
4785                         size = 1 << 23; /* 8MB */
4786                         break;
4787                 case 0x18:
4788                         size = 1 << 24; /* 16MB */
4789                         break;
4790                 case 0x19:
4791                         size = 1 << 25; /* 32MB */
4792                         break;
4793                 case 0x20:
4794                         size = 1 << 26; /* 64MB */
4795                         break;
4796                 case 0x21:
4797                         size = 1 << 27; /* 128MB */
4798                         break;
4799                 case 0x22:
4800                         size = 1 << 28; /* 256MB */
4801                         break;
4802                 }
4803                 break;
4804         }
4805
4806         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
4807                 /**
4808                  * This Density -> Size decoding table is taken from ISSI
4809                  * Data Sheets.
4810                  */
4811                 density = (flashid >> 16) & 0xff;
4812                 switch (density) {
4813                 case 0x16:
4814                         size = 1 << 25; /* 32MB */
4815                         break;
4816                 case 0x17:
4817                         size = 1 << 26; /* 64MB */
4818                         break;
4819                 }
4820                 break;
4821         }
4822
4823         case 0xc2: { /* Macronix */
4824                 /**
4825                  * This Density -> Size decoding table is taken from Macronix
4826                  * Data Sheets.
4827                  */
4828                 density = (flashid >> 16) & 0xff;
4829                 switch (density) {
4830                 case 0x17:
4831                         size = 1 << 23; /* 8MB */
4832                         break;
4833                 case 0x18:
4834                         size = 1 << 24; /* 16MB */
4835                         break;
4836                 }
4837                 break;
4838         }
4839
4840         case 0xef: { /* Winbond */
4841                 /**
4842                  * This Density -> Size decoding table is taken from Winbond
4843                  * Data Sheets.
4844                  */
4845                 density = (flashid >> 16) & 0xff;
4846                 switch (density) {
4847                 case 0x17:
4848                         size = 1 << 23; /* 8MB */
4849                         break;
4850                 case 0x18:
4851                         size = 1 << 24; /* 16MB */
4852                         break;
4853                 }
4854                 break;
4855         }
4856         }
4857
4858         /* If we didn't recognize the FLASH part, that's no real issue: the
4859          * Hardware/Software contract says that Hardware will _*ALWAYS*_
4860          * use a FLASH part which is at least 4MB in size and has 64KB
4861          * sectors.  The unrecognized FLASH part is likely to be much larger
4862          * than 4MB, but that's all we really need.
4863          */
4864         if (size == 0) {
4865                 dev_warn(adapter,
4866                          "Unknown Flash Part, ID = %#x, assuming 4MB\n",
4867                          flashid);
4868                 size = 1 << 22;
4869         }
4870
4871         /**
4872          * Store decoded Flash size and fall through into vetting code.
4873          */
4874         adapter->params.sf_size = size;
4875         adapter->params.sf_nsec = size / SF_SEC_SIZE;
4876
4877 found:
4878         /*
4879          * We should reject adapters with FLASHes which are too small. So, emit
4880          * a warning.
4881          */
4882         if (adapter->params.sf_size < FLASH_MIN_SIZE)
4883                 dev_warn(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
4884                          flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
4885
4886         return 0;
4887 }
4888
4889 static void set_pcie_completion_timeout(struct adapter *adapter,
4890                                         u8 range)
4891 {
4892         u32 pcie_cap;
4893         u16 val;
4894
4895         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
4896         if (pcie_cap) {
4897                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
4898                 val &= 0xfff0;
4899                 val |= range;
4900                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
4901         }
4902 }
4903
4904 /**
4905  * t4_get_chip_type - Determine chip type from device ID
4906  * @adap: the adapter
4907  * @ver: adapter version
4908  */
4909 int t4_get_chip_type(struct adapter *adap, int ver)
4910 {
4911         enum chip_type chip = 0;
4912         u32 pl_rev = G_REV(t4_read_reg(adap, A_PL_REV));
4913
4914         /* Retrieve adapter's device ID */
4915         switch (ver) {
4916         case CHELSIO_T5:
4917                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4918                 break;
4919         case CHELSIO_T6:
4920                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4921                 break;
4922         default:
4923                 dev_err(adap, "Device %d is not supported\n",
4924                         adap->params.pci.device_id);
4925                 return -EINVAL;
4926         }
4927
4928         return chip;
4929 }
4930
4931 /**
4932  * t4_prep_adapter - prepare SW and HW for operation
4933  * @adapter: the adapter
4934  *
4935  * Initialize adapter SW state for the various HW modules, set initial
4936  * values for some adapter tunables, take PHYs out of reset, and
4937  * initialize the MDIO interface.
4938  */
4939 int t4_prep_adapter(struct adapter *adapter)
4940 {
4941         int ret, ver;
4942         u32 pl_rev;
4943
4944         ret = t4_wait_dev_ready(adapter);
4945         if (ret < 0)
4946                 return ret;
4947
4948         pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
4949         adapter->params.pci.device_id = adapter->pdev->id.device_id;
4950         adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
4951
4952         /*
4953          * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
4954          * ADAPTER (VERSION << 4 | REVISION)
4955          */
4956         ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
4957         adapter->params.chip = 0;
4958         switch (ver) {
4959         case CHELSIO_T5:
4960                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4961                 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
4962                 adapter->params.arch.mps_tcam_size =
4963                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4964                 adapter->params.arch.mps_rplc_size = 128;
4965                 adapter->params.arch.nchan = NCHAN;
4966                 adapter->params.arch.vfcount = 128;
4967                 /* Congestion map is for 4 channels so that
4968                  * MPS can have 4 priority per port.
4969                  */
4970                 adapter->params.arch.cng_ch_bits_log = 2;
4971                 break;
4972         case CHELSIO_T6:
4973                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4974                 adapter->params.arch.sge_fl_db = 0;
4975                 adapter->params.arch.mps_tcam_size =
4976                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4977                 adapter->params.arch.mps_rplc_size = 256;
4978                 adapter->params.arch.nchan = 2;
4979                 adapter->params.arch.vfcount = 256;
4980                 /* Congestion map is for 2 channels so that
4981                  * MPS can have 8 priority per port.
4982                  */
4983                 adapter->params.arch.cng_ch_bits_log = 3;
4984                 break;
4985         default:
4986                 dev_err(adapter, "%s: Device %d is not supported\n",
4987                         __func__, adapter->params.pci.device_id);
4988                 return -EINVAL;
4989         }
4990
4991         adapter->params.pci.vpd_cap_addr =
4992                 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
4993
4994         ret = t4_get_flash_params(adapter);
4995         if (ret < 0) {
4996                 dev_err(adapter, "Unable to retrieve Flash Parameters, ret = %d\n",
4997                         -ret);
4998                 return ret;
4999         }
5000
5001         adapter->params.cim_la_size = CIMLA_SIZE;
5002
5003         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5004
5005         /*
5006          * Default port and clock for debugging in case we can't reach FW.
5007          */
5008         adapter->params.nports = 1;
5009         adapter->params.portvec = 1;
5010         adapter->params.vpd.cclk = 50000;
5011
5012         /* Set pci completion timeout value to 4 seconds. */
5013         set_pcie_completion_timeout(adapter, 0xd);
5014         return 0;
5015 }
5016
5017 /**
5018  * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
5019  * @adapter: the adapter
5020  * @qid: the Queue ID
5021  * @qtype: the Ingress or Egress type for @qid
5022  * @pbar2_qoffset: BAR2 Queue Offset
5023  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
5024  *
5025  * Returns the BAR2 SGE Queue Registers information associated with the
5026  * indicated Absolute Queue ID.  These are passed back in return value
5027  * pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
5028  * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
5029  *
5030  * This may return an error which indicates that BAR2 SGE Queue
5031  * registers aren't available.  If an error is not returned, then the
5032  * following values are returned:
5033  *
5034  *   *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
5035  *   *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
5036  *
5037  * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
5038  * require the "Inferred Queue ID" ability may be used.  E.g. the
5039  * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
5040  * then these "Inferred Queue ID" register may not be used.
5041  */
5042 int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
5043                       enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
5044                       unsigned int *pbar2_qid)
5045 {
5046         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
5047         u64 bar2_page_offset, bar2_qoffset;
5048         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
5049
5050         /*
5051          * T4 doesn't support BAR2 SGE Queue registers.
5052          */
5053         if (is_t4(adapter->params.chip))
5054                 return -EINVAL;
5055
5056         /*
5057          * Get our SGE Page Size parameters.
5058          */
5059         page_shift = adapter->params.sge.hps + 10;
5060         page_size = 1 << page_shift;
5061
5062         /*
5063          * Get the right Queues per Page parameters for our Queue.
5064          */
5065         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
5066                               adapter->params.sge.eq_qpp :
5067                               adapter->params.sge.iq_qpp);
5068         qpp_mask = (1 << qpp_shift) - 1;
5069
5070         /*
5071          * Calculate the basics of the BAR2 SGE Queue register area:
5072          *  o The BAR2 page the Queue registers will be in.
5073          *  o The BAR2 Queue ID.
5074          *  o The BAR2 Queue ID Offset into the BAR2 page.
5075          */
5076         bar2_page_offset = ((qid >> qpp_shift) << page_shift);
5077         bar2_qid = qid & qpp_mask;
5078         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
5079
5080         /*
5081          * If the BAR2 Queue ID Offset is less than the Page Size, then the
5082          * hardware will infer the Absolute Queue ID simply from the writes to
5083          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
5084          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
5085          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
5086          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
5087          * from the BAR2 Page and BAR2 Queue ID.
5088          *
5089          * One important censequence of this is that some BAR2 SGE registers
5090          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
5091          * there.  But other registers synthesize the SGE Queue ID purely
5092          * from the writes to the registers -- the Write Combined Doorbell
5093          * Buffer is a good example.  These BAR2 SGE Registers are only
5094          * available for those BAR2 SGE Register areas where the SGE Absolute
5095          * Queue ID can be inferred from simple writes.
5096          */
5097         bar2_qoffset = bar2_page_offset;
5098         bar2_qinferred = (bar2_qid_offset < page_size);
5099         if (bar2_qinferred) {
5100                 bar2_qoffset += bar2_qid_offset;
5101                 bar2_qid = 0;
5102         }
5103
5104         *pbar2_qoffset = bar2_qoffset;
5105         *pbar2_qid = bar2_qid;
5106         return 0;
5107 }
5108
5109 /**
5110  * t4_init_sge_params - initialize adap->params.sge
5111  * @adapter: the adapter
5112  *
5113  * Initialize various fields of the adapter's SGE Parameters structure.
5114  */
5115 int t4_init_sge_params(struct adapter *adapter)
5116 {
5117         struct sge_params *sge_params = &adapter->params.sge;
5118         u32 hps, qpp;
5119         unsigned int s_hps, s_qpp;
5120
5121         /*
5122          * Extract the SGE Page Size for our PF.
5123          */
5124         hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
5125         s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
5126                  adapter->pf);
5127         sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);
5128
5129         /*
5130          * Extract the SGE Egress and Ingess Queues Per Page for our PF.
5131          */
5132         s_qpp = (S_QUEUESPERPAGEPF0 +
5133                  (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
5134         qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
5135         sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5136         qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
5137         sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5138
5139         return 0;
5140 }
5141
5142 /**
5143  * t4_init_tp_params - initialize adap->params.tp
5144  * @adap: the adapter
5145  *
5146  * Initialize various fields of the adapter's TP Parameters structure.
5147  */
5148 int t4_init_tp_params(struct adapter *adap)
5149 {
5150         int chan, ret;
5151         u32 param, v;
5152
5153         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5154         adap->params.tp.tre = G_TIMERRESOLUTION(v);
5155         adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5156
5157         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5158         for (chan = 0; chan < NCHAN; chan++)
5159                 adap->params.tp.tx_modq[chan] = chan;
5160
5161         /*
5162          * Cache the adapter's Compressed Filter Mode/Mask and global Ingress
5163          * Configuration.
5164          */
5165         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5166                  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
5167                  V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK));
5168
5169         /* Read current value */
5170         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5171                               1, &param, &v);
5172         if (!ret) {
5173                 dev_info(adap, "Current filter mode/mask 0x%x:0x%x\n",
5174                          G_FW_PARAMS_PARAM_FILTER_MODE(v),
5175                          G_FW_PARAMS_PARAM_FILTER_MASK(v));
5176                 adap->params.tp.vlan_pri_map =
5177                         G_FW_PARAMS_PARAM_FILTER_MODE(v);
5178                 adap->params.tp.filter_mask =
5179                         G_FW_PARAMS_PARAM_FILTER_MASK(v);
5180         } else {
5181                 dev_info(adap,
5182                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
5183
5184                 /* In case of older-fw (which doesn't expose the api
5185                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
5186                  * the fw api) combination, fall-back to older method of reading
5187                  * the filter mode from indirect-register
5188                  */
5189                 t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5190                                  &adap->params.tp.vlan_pri_map, 1,
5191                                  A_TP_VLAN_PRI_MAP);
5192
5193                 /* With the older-fw and newer-driver combination we might run
5194                  * into an issue when user wants to use hash filter region but
5195                  * the filter_mask is zero, in this case filter_mask validation
5196                  * is tough. To avoid that we set the filter_mask same as filter
5197                  * mode, which will behave exactly as the older way of ignoring
5198                  * the filter mask validation.
5199                  */
5200                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
5201         }
5202
5203         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5204                          &adap->params.tp.ingress_config, 1,
5205                          A_TP_INGRESS_CONFIG);
5206
5207         /* For T6, cache the adapter's compressed error vector
5208          * and passing outer header info for encapsulated packets.
5209          */
5210         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
5211                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
5212                 adap->params.tp.rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
5213         }
5214
5215         /*
5216          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5217          * shift positions of several elements of the Compressed Filter Tuple
5218          * for this adapter which we need frequently ...
5219          */
5220         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
5221         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
5222         adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
5223         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
5224                                                                F_PROTOCOL);
5225         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
5226                                                                 F_ETHERTYPE);
5227         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
5228                                                                F_MACMATCH);
5229         adap->params.tp.tos_shift = t4_filter_field_shift(adap, F_TOS);
5230
5231         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
5232         adap->params.tp.hash_filter_mask = v;
5233         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
5234         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
5235
5236         return 0;
5237 }
5238
5239 /**
5240  * t4_filter_field_shift - calculate filter field shift
5241  * @adap: the adapter
5242  * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5243  *
5244  * Return the shift position of a filter field within the Compressed
5245  * Filter Tuple.  The filter field is specified via its selection bit
5246  * within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5247  */
5248 int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
5249 {
5250         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5251         unsigned int sel;
5252         int field_shift;
5253
5254         if ((filter_mode & filter_sel) == 0)
5255                 return -1;
5256
5257         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5258                 switch (filter_mode & sel) {
5259                 case F_FCOE:
5260                         field_shift += W_FT_FCOE;
5261                         break;
5262                 case F_PORT:
5263                         field_shift += W_FT_PORT;
5264                         break;
5265                 case F_VNIC_ID:
5266                         field_shift += W_FT_VNIC_ID;
5267                         break;
5268                 case F_VLAN:
5269                         field_shift += W_FT_VLAN;
5270                         break;
5271                 case F_TOS:
5272                         field_shift += W_FT_TOS;
5273                         break;
5274                 case F_PROTOCOL:
5275                         field_shift += W_FT_PROTOCOL;
5276                         break;
5277                 case F_ETHERTYPE:
5278                         field_shift += W_FT_ETHERTYPE;
5279                         break;
5280                 case F_MACMATCH:
5281                         field_shift += W_FT_MACMATCH;
5282                         break;
5283                 case F_MPSHITTYPE:
5284                         field_shift += W_FT_MPSHITTYPE;
5285                         break;
5286                 case F_FRAGMENTATION:
5287                         field_shift += W_FT_FRAGMENTATION;
5288                         break;
5289                 }
5290         }
5291         return field_shift;
5292 }
5293
5294 int t4_init_rss_mode(struct adapter *adap, int mbox)
5295 {
5296         int i, ret;
5297         struct fw_rss_vi_config_cmd rvc;
5298
5299         memset(&rvc, 0, sizeof(rvc));
5300
5301         for_each_port(adap, i) {
5302                 struct port_info *p = adap2pinfo(adap, i);
5303
5304                 rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5305                                        F_FW_CMD_REQUEST | F_FW_CMD_READ |
5306                                        V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
5307                 rvc.retval_len16 = htonl(FW_LEN16(rvc));
5308                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
5309                 if (ret)
5310                         return ret;
5311                 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
5312         }
5313         return 0;
5314 }
5315
5316 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
5317 {
5318         u32 param, val, pcaps, acaps;
5319         enum fw_port_type port_type;
5320         struct fw_port_cmd cmd;
5321         u8 vivld = 0, vin = 0;
5322         int ret, i, j = 0;
5323         int mdio_addr;
5324         u8 addr[6];
5325
5326         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
5327                  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
5328         val = 1;
5329         ret = t4_set_params(adap, mbox, pf, vf, 1, &param, &val);
5330         if (ret < 0)
5331                 return ret;
5332
5333         memset(&cmd, 0, sizeof(cmd));
5334
5335         for_each_port(adap, i) {
5336                 struct port_info *pi = adap2pinfo(adap, i);
5337                 unsigned int rss_size = 0;
5338                 u32 lstatus32;
5339
5340                 while ((adap->params.portvec & (1 << j)) == 0)
5341                         j++;
5342
5343                 memset(&cmd, 0, sizeof(cmd));
5344                 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
5345                                                F_FW_CMD_REQUEST |
5346                                                F_FW_CMD_READ |
5347                                                V_FW_PORT_CMD_PORTID(j));
5348                 val = FW_PORT_ACTION_GET_PORT_INFO32;
5349                 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(val) |
5350                                                   FW_LEN16(cmd));
5351                 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
5352                 if (ret)
5353                         return ret;
5354
5355                 /* Extract the various fields from the Port Information
5356                  * message.
5357                  */
5358                 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
5359
5360                 port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
5361                 mdio_addr = (lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ?
5362                             (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) : -1;
5363                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
5364                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
5365
5366                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size,
5367                                   &vivld, &vin);
5368                 if (ret < 0)
5369                         return ret;
5370
5371                 pi->viid = ret;
5372                 pi->tx_chan = j;
5373                 pi->rss_size = rss_size;
5374                 t4_os_set_hw_addr(adap, i, addr);
5375
5376                 /* If fw supports returning the VIN as part of FW_VI_CMD,
5377                  * save the returned values.
5378                  */
5379                 if (adap->params.viid_smt_extn_support) {
5380                         pi->vivld = vivld;
5381                         pi->vin = vin;
5382                 } else {
5383                         /* Retrieve the values from VIID */
5384                         pi->vivld = G_FW_VIID_VIVLD(pi->viid);
5385                         pi->vin =  G_FW_VIID_VIN(pi->viid);
5386                 }
5387
5388                 t4_init_link_config(pi, pcaps, acaps, mdio_addr, port_type,
5389                                     FW_PORT_MOD_TYPE_NA);
5390                 j++;
5391         }
5392         return 0;
5393 }
5394
5395 /**
5396  * t4_memory_rw_addr - read/write adapter memory via PCIE memory window
5397  * @adap: the adapter
5398  * @win: PCI-E Memory Window to use
5399  * @addr: address within adapter memory
5400  * @len: amount of memory to transfer
5401  * @hbuf: host memory buffer
5402  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5403  *
5404  * Reads/writes an [almost] arbitrary memory region in the firmware: the
5405  * firmware memory address and host buffer must be aligned on 32-bit
5406  * boudaries; the length may be arbitrary.
5407  *
5408  * NOTES:
5409  *  1. The memory is transferred as a raw byte sequence from/to the
5410  *     firmware's memory.  If this memory contains data structures which
5411  *     contain multi-byte integers, it's the caller's responsibility to
5412  *     perform appropriate byte order conversions.
5413  *
5414  *  2. It is the Caller's responsibility to ensure that no other code
5415  *     uses the specified PCI-E Memory Window while this routine is
5416  *     using it.  This is typically done via the use of OS-specific
5417  *     locks, etc.
5418  */
5419 int t4_memory_rw_addr(struct adapter *adap, int win, u32 addr,
5420                       u32 len, void *hbuf, int dir)
5421 {
5422         u32 pos, offset, resid;
5423         u32 win_pf, mem_reg, mem_aperture, mem_base;
5424         u32 *buf;
5425
5426         /* Argument sanity checks ...*/
5427         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5428                 return -EINVAL;
5429         buf = (u32 *)hbuf;
5430
5431         /* It's convenient to be able to handle lengths which aren't a
5432          * multiple of 32-bits because we often end up transferring files to
5433          * the firmware.  So we'll handle that by normalizing the length here
5434          * and then handling any residual transfer at the end.
5435          */
5436         resid = len & 0x3;
5437         len -= resid;
5438
5439         /* Each PCI-E Memory Window is programmed with a window size -- or
5440          * "aperture" -- which controls the granularity of its mapping onto
5441          * adapter memory.  We need to grab that aperture in order to know
5442          * how to use the specified window.  The window is also programmed
5443          * with the base address of the Memory Window in BAR0's address
5444          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
5445          * the address is relative to BAR0.
5446          */
5447         mem_reg = t4_read_reg(adap,
5448                               PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
5449                                                   win));
5450         mem_aperture = 1 << (G_WINDOW(mem_reg) + X_WINDOW_SHIFT);
5451         mem_base = G_PCIEOFST(mem_reg) << X_PCIEOFST_SHIFT;
5452
5453         win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->pf);
5454
5455         /* Calculate our initial PCI-E Memory Window Position and Offset into
5456          * that Window.
5457          */
5458         pos = addr & ~(mem_aperture - 1);
5459         offset = addr - pos;
5460
5461         /* Set up initial PCI-E Memory Window to cover the start of our
5462          * transfer.  (Read it back to ensure that changes propagate before we
5463          * attempt to use the new value.)
5464          */
5465         t4_write_reg(adap,
5466                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win),
5467                      pos | win_pf);
5468         t4_read_reg(adap,
5469                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win));
5470
5471         /* Transfer data to/from the adapter as long as there's an integral
5472          * number of 32-bit transfers to complete.
5473          *
5474          * A note on Endianness issues:
5475          *
5476          * The "register" reads and writes below from/to the PCI-E Memory
5477          * Window invoke the standard adapter Big-Endian to PCI-E Link
5478          * Little-Endian "swizzel."  As a result, if we have the following
5479          * data in adapter memory:
5480          *
5481          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
5482          *     Address:      i+0  i+1  i+2  i+3
5483          *
5484          * Then a read of the adapter memory via the PCI-E Memory Window
5485          * will yield:
5486          *
5487          *     x = readl(i)
5488          *         31                  0
5489          *         [ b3 | b2 | b1 | b0 ]
5490          *
5491          * If this value is stored into local memory on a Little-Endian system
5492          * it will show up correctly in local memory as:
5493          *
5494          *     ( ..., b0, b1, b2, b3, ... )
5495          *
5496          * But on a Big-Endian system, the store will show up in memory
5497          * incorrectly swizzled as:
5498          *
5499          *     ( ..., b3, b2, b1, b0, ... )
5500          *
5501          * So we need to account for this in the reads and writes to the
5502          * PCI-E Memory Window below by undoing the register read/write
5503          * swizzels.
5504          */
5505         while (len > 0) {
5506                 if (dir == T4_MEMORY_READ)
5507                         *buf++ = le32_to_cpu((__le32)t4_read_reg(adap,
5508                                                                  mem_base +
5509                                                                  offset));
5510                 else
5511                         t4_write_reg(adap, mem_base + offset,
5512                                      (u32)cpu_to_le32(*buf++));
5513                 offset += sizeof(__be32);
5514                 len -= sizeof(__be32);
5515
5516                 /* If we've reached the end of our current window aperture,
5517                  * move the PCI-E Memory Window on to the next.  Note that
5518                  * doing this here after "len" may be 0 allows us to set up
5519                  * the PCI-E Memory Window for a possible final residual
5520                  * transfer below ...
5521                  */
5522                 if (offset == mem_aperture) {
5523                         pos += mem_aperture;
5524                         offset = 0;
5525                         t4_write_reg(adap,
5526                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5527                                                     win), pos | win_pf);
5528                         t4_read_reg(adap,
5529                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5530                                                     win));
5531                 }
5532         }
5533
5534         /* If the original transfer had a length which wasn't a multiple of
5535          * 32-bits, now's where we need to finish off the transfer of the
5536          * residual amount.  The PCI-E Memory Window has already been moved
5537          * above (if necessary) to cover this final transfer.
5538          */
5539         if (resid) {
5540                 union {
5541                         u32 word;
5542                         char byte[4];
5543                 } last;
5544                 unsigned char *bp;
5545                 int i;
5546
5547                 if (dir == T4_MEMORY_READ) {
5548                         last.word = le32_to_cpu((__le32)t4_read_reg(adap,
5549                                                                     mem_base +
5550                                                                     offset));
5551                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
5552                                 bp[i] = last.byte[i];
5553                 } else {
5554                         last.word = *buf;
5555                         for (i = resid; i < 4; i++)
5556                                 last.byte[i] = 0;
5557                         t4_write_reg(adap, mem_base + offset,
5558                                      (u32)cpu_to_le32(last.word));
5559                 }
5560         }
5561
5562         return 0;
5563 }
5564
5565 /**
5566  * t4_memory_rw_mtype -read/write EDC 0, EDC 1 or MC via PCIE memory window
5567  * @adap: the adapter
5568  * @win: PCI-E Memory Window to use
5569  * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
5570  * @maddr: address within indicated memory type
5571  * @len: amount of memory to transfer
5572  * @hbuf: host memory buffer
5573  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5574  *
5575  * Reads/writes adapter memory using t4_memory_rw_addr().  This routine
5576  * provides an (memory type, address within memory type) interface.
5577  */
5578 int t4_memory_rw_mtype(struct adapter *adap, int win, int mtype, u32 maddr,
5579                        u32 len, void *hbuf, int dir)
5580 {
5581         u32 mtype_offset;
5582         u32 edc_size, mc_size;
5583
5584         /* Offset into the region of memory which is being accessed
5585          * MEM_EDC0 = 0
5586          * MEM_EDC1 = 1
5587          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
5588          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
5589          */
5590         edc_size  = G_EDRAM0_SIZE(t4_read_reg(adap, A_MA_EDRAM0_BAR));
5591         if (mtype != MEM_MC1) {
5592                 mtype_offset = (mtype * (edc_size * 1024 * 1024));
5593         } else {
5594                 mc_size = G_EXT_MEM0_SIZE(t4_read_reg(adap,
5595                                                       A_MA_EXT_MEMORY0_BAR));
5596                 mtype_offset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
5597         }
5598
5599         return t4_memory_rw_addr(adap, win,
5600                                  mtype_offset + maddr, len,
5601                                  hbuf, dir);
5602 }