net/cnxk: fix uninitialized variables
[dpdk.git] / drivers / net / cxgbe / base / t4vf_hw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <ethdev_driver.h>
7 #include <rte_ether.h>
8
9 #include "common.h"
10 #include "t4_regs.h"
11
12 /**
13  * t4vf_wait_dev_ready - wait till to reads of registers work
14  *
15  * Wait for the device to become ready (signified by our "who am I" register
16  * returning a value other than all 1's).  Return an error if it doesn't
17  * become ready ...
18  */
19 static int t4vf_wait_dev_ready(struct adapter *adapter)
20 {
21         const u32 whoami = T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI;
22         const u32 notready1 = 0xffffffff;
23         const u32 notready2 = 0xeeeeeeee;
24         u32 val;
25
26         val = t4_read_reg(adapter, whoami);
27         if (val != notready1 && val != notready2)
28                 return 0;
29
30         msleep(500);
31         val = t4_read_reg(adapter, whoami);
32         if (val != notready1 && val != notready2)
33                 return 0;
34
35         dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
36                 val);
37         return -EIO;
38 }
39
40 /*
41  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
42  */
43 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
44                          u32 mbox_addr)
45 {
46         for ( ; nflit; nflit--, mbox_addr += 8)
47                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
48 }
49
50 /**
51  * t4vf_wr_mbox_core - send a command to FW through the mailbox
52  * @adapter: the adapter
53  * @cmd: the command to write
54  * @size: command length in bytes
55  * @rpl: where to optionally store the reply
56  * @sleep_ok: if true we may sleep while awaiting command completion
57  *
58  * Sends the given command to FW through the mailbox and waits for the
59  * FW to execute the command.  If @rpl is not %NULL it is used to store
60  * the FW's reply to the command.  The command and its optional reply
61  * are of the same length.  FW can take up to 500 ms to respond.
62  * @sleep_ok determines whether we may sleep while awaiting the response.
63  * If sleeping is allowed we use progressive backoff otherwise we spin.
64  *
65  * The return value is 0 on success or a negative errno on failure.  A
66  * failure can happen either because we are not able to execute the
67  * command or FW executes it but signals an error.  In the latter case
68  * the return value is the error code indicated by FW (negated).
69  */
70 int t4vf_wr_mbox_core(struct adapter *adapter,
71                       const void __attribute__((__may_alias__)) *cmd,
72                       int size, void *rpl, bool sleep_ok)
73 {
74         /*
75          * We delay in small increments at first in an effort to maintain
76          * responsiveness for simple, fast executing commands but then back
77          * off to larger delays to a maximum retry delay.
78          */
79         static const int delay[] = {
80                 1, 1, 3, 5, 10, 10, 20, 50, 100
81         };
82
83
84         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + A_CIM_VF_EXT_MAILBOX_CTRL;
85         __be64 cmd_rpl[MBOX_LEN / 8];
86         struct mbox_entry *entry;
87         unsigned int delay_idx;
88         u32 v, mbox_data;
89         const __be64 *p;
90         int i, ret;
91         int ms;
92
93         /* In T6, mailbox size is changed to 128 bytes to avoid
94          * invalidating the entire prefetch buffer.
95          */
96         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
97                 mbox_data = T4VF_MBDATA_BASE_ADDR;
98         else
99                 mbox_data = T6VF_MBDATA_BASE_ADDR;
100
101         /*
102          * Commands must be multiples of 16 bytes in length and may not be
103          * larger than the size of the Mailbox Data register array.
104          */
105         if ((size % 16) != 0 ||
106                         size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
107                 return -EINVAL;
108
109         entry = t4_os_alloc(sizeof(*entry));
110         if (entry == NULL)
111                 return -ENOMEM;
112
113         /*
114          * Queue ourselves onto the mailbox access list.  When our entry is at
115          * the front of the list, we have rights to access the mailbox.  So we
116          * wait [for a while] till we're at the front [or bail out with an
117          * EBUSY] ...
118          */
119         t4_os_atomic_add_tail(entry, &adapter->mbox_list, &adapter->mbox_lock);
120
121         delay_idx = 0;
122         ms = delay[0];
123
124         for (i = 0; ; i += ms) {
125                 /*
126                  * If we've waited too long, return a busy indication.  This
127                  * really ought to be based on our initial position in the
128                  * mailbox access list but this is a start.  We very rarely
129                  * contend on access to the mailbox ...
130                  */
131                 if (i > (2 * FW_CMD_MAX_TIMEOUT)) {
132                         t4_os_atomic_list_del(entry, &adapter->mbox_list,
133                                               &adapter->mbox_lock);
134                         ret = -EBUSY;
135                         goto out_free;
136                 }
137
138                 /*
139                  * If we're at the head, break out and start the mailbox
140                  * protocol.
141                  */
142                 if (t4_os_list_first_entry(&adapter->mbox_list) == entry)
143                         break;
144
145                 /*
146                  * Delay for a bit before checking again ...
147                  */
148                 if (sleep_ok) {
149                         ms = delay[delay_idx];  /* last element may repeat */
150                         if (delay_idx < ARRAY_SIZE(delay) - 1)
151                                 delay_idx++;
152                         msleep(ms);
153                 } else {
154                         rte_delay_ms(ms);
155                 }
156         }
157
158         /*
159          * Loop trying to get ownership of the mailbox.  Return an error
160          * if we can't gain ownership.
161          */
162         v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl));
163         for (i = 0; v == X_MBOWNER_NONE && i < 3; i++)
164                 v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl));
165
166         if (v != X_MBOWNER_PL) {
167                 t4_os_atomic_list_del(entry, &adapter->mbox_list,
168                                       &adapter->mbox_lock);
169                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
170                 goto out_free;
171         }
172
173         /*
174          * Write the command array into the Mailbox Data register array and
175          * transfer ownership of the mailbox to the firmware.
176          */
177         for (i = 0, p = cmd; i < size; i += 8)
178                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
179
180         t4_read_reg(adapter, mbox_data);          /* flush write */
181         t4_write_reg(adapter, mbox_ctl,
182                         F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
183         t4_read_reg(adapter, mbox_ctl);          /* flush write */
184         delay_idx = 0;
185         ms = delay[0];
186
187         /*
188          * Spin waiting for firmware to acknowledge processing our command.
189          */
190         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i++) {
191                 if (sleep_ok) {
192                         ms = delay[delay_idx];  /* last element may repeat */
193                         if (delay_idx < ARRAY_SIZE(delay) - 1)
194                                 delay_idx++;
195                         msleep(ms);
196                 } else {
197                         rte_delay_ms(ms);
198                 }
199
200                 /*
201                  * If we're the owner, see if this is the reply we wanted.
202                  */
203                 v = t4_read_reg(adapter, mbox_ctl);
204                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
205                         /*
206                          * If the Message Valid bit isn't on, revoke ownership
207                          * of the mailbox and continue waiting for our reply.
208                          */
209                         if ((v & F_MBMSGVALID) == 0) {
210                                 t4_write_reg(adapter, mbox_ctl,
211                                              V_MBOWNER(X_MBOWNER_NONE));
212                                 continue;
213                         }
214
215                         /*
216                          * We now have our reply.  Extract the command return
217                          * value, copy the reply back to our caller's buffer
218                          * (if specified) and revoke ownership of the mailbox.
219                          * We return the (negated) firmware command return
220                          * code (this depends on FW_SUCCESS == 0).  (Again we
221                          * avoid clogging the log with FW_VI_STATS_CMD
222                          * reply results.)
223                          */
224
225                         /*
226                          * Retrieve the command reply and release the mailbox.
227                          */
228                         get_mbox_rpl(adapter, cmd_rpl, size / 8, mbox_data);
229                         t4_write_reg(adapter, mbox_ctl,
230                                      V_MBOWNER(X_MBOWNER_NONE));
231                         t4_os_atomic_list_del(entry, &adapter->mbox_list,
232                                               &adapter->mbox_lock);
233
234                         /* return value in high-order host-endian word */
235                         v = be64_to_cpu(cmd_rpl[0]);
236
237                         if (rpl) {
238                                 /* request bit in high-order BE word */
239                                 WARN_ON((be32_to_cpu(*(const u32 *)cmd)
240                                          & F_FW_CMD_REQUEST) == 0);
241                                 memcpy(rpl, cmd_rpl, size);
242                         }
243                         ret = -((int)G_FW_CMD_RETVAL(v));
244                         goto out_free;
245                 }
246         }
247
248         /*
249          * We timed out.  Return the error ...
250          */
251         dev_err(adapter, "command %#x timed out\n",
252                 *(const u8 *)cmd);
253         dev_err(adapter, "    Control = %#x\n", t4_read_reg(adapter, mbox_ctl));
254         t4_os_atomic_list_del(entry, &adapter->mbox_list, &adapter->mbox_lock);
255         ret = -ETIMEDOUT;
256
257 out_free:
258         t4_os_free(entry);
259         return ret;
260 }
261
262 /**
263  * t4vf_fw_reset - issue a reset to FW
264  * @adapter: the adapter
265  *
266  * Issues a reset command to FW.  For a Physical Function this would
267  * result in the Firmware resetting all of its state.  For a Virtual
268  * Function this just resets the state associated with the VF.
269  */
270 int t4vf_fw_reset(struct adapter *adapter)
271 {
272         struct fw_reset_cmd cmd;
273
274         memset(&cmd, 0, sizeof(cmd));
275         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RESET_CMD) |
276                                       F_FW_CMD_WRITE);
277         cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(FW_LEN16(cmd)));
278         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
279 }
280
281 /**
282  * t4vf_prep_adapter - prepare SW and HW for operation
283  * @adapter: the adapter
284  *
285  * Initialize adapter SW state for the various HW modules, set initial
286  * values for some adapter tunables, take PHYs out of reset, and
287  * initialize the MDIO interface.
288  */
289 int t4vf_prep_adapter(struct adapter *adapter)
290 {
291         u32 pl_vf_rev;
292         int ret, ver;
293
294         ret = t4vf_wait_dev_ready(adapter);
295         if (ret < 0)
296                 return ret;
297
298         /*
299          * Default port and clock for debugging in case we can't reach
300          * firmware.
301          */
302         adapter->params.nports = 1;
303         adapter->params.vfres.pmask = 1;
304         adapter->params.vpd.cclk = 50000;
305
306         pl_vf_rev = G_REV(t4_read_reg(adapter, A_PL_VF_REV));
307         adapter->params.pci.device_id = adapter->pdev->id.device_id;
308         adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
309
310         /*
311          * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
312          * ADAPTER (VERSION << 4 | REVISION)
313          */
314         ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
315         adapter->params.chip = 0;
316         switch (ver) {
317         case CHELSIO_T5:
318                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5,
319                                                           pl_vf_rev);
320                 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
321                 adapter->params.arch.mps_tcam_size =
322                         NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
323                 break;
324         case CHELSIO_T6:
325                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6,
326                                                           pl_vf_rev);
327                 adapter->params.arch.sge_fl_db = 0;
328                 adapter->params.arch.mps_tcam_size =
329                         NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
330                 break;
331         default:
332                 dev_err(adapter, "%s: Device %d is not supported\n",
333                         __func__, adapter->params.pci.device_id);
334                 return -EINVAL;
335         }
336         return 0;
337 }
338
339 /**
340  * t4vf_query_params - query FW or device parameters
341  * @adapter: the adapter
342  * @nparams: the number of parameters
343  * @params: the parameter names
344  * @vals: the parameter values
345  *
346  * Reads the values of firmware or device parameters.  Up to 7 parameters
347  * can be queried at once.
348  */
349 int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
350                       const u32 *params, u32 *vals)
351 {
352         struct fw_params_cmd cmd, rpl;
353         struct fw_params_param *p;
354         unsigned int i;
355         size_t len16;
356         int ret;
357
358         if (nparams > 7)
359                 return -EINVAL;
360
361         memset(&cmd, 0, sizeof(cmd));
362         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
363                                     F_FW_CMD_REQUEST |
364                                     F_FW_CMD_READ);
365         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
366                              param[nparams]), 16);
367         cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16));
368         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
369                 p->mnem = cpu_to_be32(*params++);
370         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
371         if (ret == 0)
372                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
373                         *vals++ = be32_to_cpu(p->val);
374         return ret;
375 }
376
377 /**
378  * t4vf_get_vpd_params - retrieve device VPD paremeters
379  * @adapter: the adapter
380  *
381  * Retrives various device Vital Product Data parameters.  The parameters
382  * are stored in @adapter->params.vpd.
383  */
384 int t4vf_get_vpd_params(struct adapter *adapter)
385 {
386         struct vpd_params *vpd_params = &adapter->params.vpd;
387         u32 params[7], vals[7];
388         int v;
389
390         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
391                      V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
392         v = t4vf_query_params(adapter, 1, params, vals);
393         if (v != FW_SUCCESS)
394                 return v;
395         vpd_params->cclk = vals[0];
396         dev_debug(adapter, "%s: vpd_params->cclk = %u\n",
397                   __func__, vpd_params->cclk);
398         return 0;
399 }
400
401 /**
402  * t4vf_get_dev_params - retrieve device paremeters
403  * @adapter: the adapter
404  *
405  * Retrives fw and tp version.
406  */
407 int t4vf_get_dev_params(struct adapter *adapter)
408 {
409         u32 params[7], vals[7];
410         int v;
411
412         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
413                      V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
414         params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
415                      V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
416         v = t4vf_query_params(adapter, 2, params, vals);
417         if (v != FW_SUCCESS)
418                 return v;
419         adapter->params.fw_vers = vals[0];
420         adapter->params.tp_vers = vals[1];
421
422         dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
423                  G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
424                  G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
425                  G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
426                  G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
427
428         dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
429                  G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
430                  G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
431                  G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
432                  G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
433         return 0;
434 }
435
436 /**
437  * t4vf_set_params - sets FW or device parameters
438  * @adapter: the adapter
439  * @nparams: the number of parameters
440  * @params: the parameter names
441  * @vals: the parameter values
442  *
443  * Sets the values of firmware or device parameters.  Up to 7 parameters
444  * can be specified at once.
445  */
446 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
447                     const u32 *params, const u32 *vals)
448 {
449         struct fw_params_param *p;
450         struct fw_params_cmd cmd;
451         unsigned int i;
452         size_t len16;
453
454         if (nparams > 7)
455                 return -EINVAL;
456
457         memset(&cmd, 0, sizeof(cmd));
458         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
459                                     F_FW_CMD_REQUEST |
460                                     F_FW_CMD_WRITE);
461         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
462                              param[nparams]), 16);
463         cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16));
464         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
465                 p->mnem = cpu_to_be32(*params++);
466                 p->val = cpu_to_be32(*vals++);
467         }
468         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
469 }
470
471 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
472 {
473         u32 whoami;
474
475         whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI);
476         return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
477                         G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami));
478 }
479
480 /**
481  * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
482  * @adapter: the adapter
483  *
484  * Retrieves global RSS mode and parameters with which we have to live
485  * and stores them in the @adapter's RSS parameters.
486  */
487 int t4vf_get_rss_glb_config(struct adapter *adapter)
488 {
489         struct rss_params *rss = &adapter->params.rss;
490         struct fw_rss_glb_config_cmd cmd, rpl;
491         int v;
492
493         /*
494          * Execute an RSS Global Configuration read command to retrieve
495          * our RSS configuration.
496          */
497         memset(&cmd, 0, sizeof(cmd));
498         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
499                                       F_FW_CMD_REQUEST |
500                                       F_FW_CMD_READ);
501         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
502         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
503         if (v != FW_SUCCESS)
504                 return v;
505
506         /*
507          * Translate the big-endian RSS Global Configuration into our
508          * cpu-endian format based on the RSS mode.  We also do first level
509          * filtering at this point to weed out modes which don't support
510          * VF Drivers ...
511          */
512         rss->mode = G_FW_RSS_GLB_CONFIG_CMD_MODE
513                         (be32_to_cpu(rpl.u.manual.mode_pkd));
514         switch (rss->mode) {
515         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
516                 u32 word = be32_to_cpu
517                                 (rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
518
519                 rss->u.basicvirtual.synmapen =
520                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
521                 rss->u.basicvirtual.syn4tupenipv6 =
522                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
523                 rss->u.basicvirtual.syn2tupenipv6 =
524                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
525                 rss->u.basicvirtual.syn4tupenipv4 =
526                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
527                 rss->u.basicvirtual.syn2tupenipv4 =
528                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
529                 rss->u.basicvirtual.ofdmapen =
530                         ((word & F_FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
531                 rss->u.basicvirtual.tnlmapen =
532                         ((word & F_FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
533                 rss->u.basicvirtual.tnlalllookup =
534                         ((word  & F_FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
535                 rss->u.basicvirtual.hashtoeplitz =
536                         ((word & F_FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
537
538                 /* we need at least Tunnel Map Enable to be set */
539                 if (!rss->u.basicvirtual.tnlmapen)
540                         return -EINVAL;
541                 break;
542         }
543
544         default:
545                 /* all unknown/unsupported RSS modes result in an error */
546                 return -EINVAL;
547         }
548         return 0;
549 }
550
551 /**
552  * t4vf_get_vfres - retrieve VF resource limits
553  * @adapter: the adapter
554  *
555  * Retrieves configured resource limits and capabilities for a virtual
556  * function.  The results are stored in @adapter->vfres.
557  */
558 int t4vf_get_vfres(struct adapter *adapter)
559 {
560         struct vf_resources *vfres = &adapter->params.vfres;
561         struct fw_pfvf_cmd cmd, rpl;
562         u32 word;
563         int v;
564
565         /*
566          * Execute PFVF Read command to get VF resource limits; bail out early
567          * with error on command failure.
568          */
569         memset(&cmd, 0, sizeof(cmd));
570         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
571                                     F_FW_CMD_REQUEST |
572                                     F_FW_CMD_READ);
573         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
574         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
575         if (v != FW_SUCCESS)
576                 return v;
577
578         /*
579          * Extract VF resource limits and return success.
580          */
581         word = be32_to_cpu(rpl.niqflint_niq);
582         vfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
583         vfres->niq = G_FW_PFVF_CMD_NIQ(word);
584
585         word = be32_to_cpu(rpl.type_to_neq);
586         vfres->neq = G_FW_PFVF_CMD_NEQ(word);
587         vfres->pmask = G_FW_PFVF_CMD_PMASK(word);
588
589         word = be32_to_cpu(rpl.tc_to_nexactf);
590         vfres->tc = G_FW_PFVF_CMD_TC(word);
591         vfres->nvi = G_FW_PFVF_CMD_NVI(word);
592         vfres->nexactf = G_FW_PFVF_CMD_NEXACTF(word);
593
594         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
595         vfres->r_caps = G_FW_PFVF_CMD_R_CAPS(word);
596         vfres->wx_caps = G_FW_PFVF_CMD_WX_CAPS(word);
597         vfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
598         return 0;
599 }
600
601 /**
602  * t4vf_get_port_stats_fw - collect "port" statistics via Firmware
603  * @adapter: the adapter
604  * @pidx: the port index
605  * @s: the stats structure to fill
606  *
607  * Collect statistics for the "port"'s Virtual Interface via Firmware
608  * commands.
609  */
610 static int t4vf_get_port_stats_fw(struct adapter *adapter, int pidx,
611                                   struct port_stats *p)
612 {
613         struct port_info *pi = adap2pinfo(adapter, pidx);
614         unsigned int rem = VI_VF_NUM_STATS;
615         struct fw_vi_stats_vf fwstats;
616         __be64 *fwsp = (__be64 *)&fwstats;
617
618         /*
619          * Grab the Virtual Interface statistics a chunk at a time via mailbox
620          * commands.  We could use a Work Request and get all of them at once
621          * but that's an asynchronous interface which is awkward to use.
622          */
623         while (rem) {
624                 unsigned int ix = VI_VF_NUM_STATS - rem;
625                 unsigned int nstats = min(6U, rem);
626                 struct fw_vi_stats_cmd cmd, rpl;
627                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
628                               sizeof(struct fw_vi_stats_ctl));
629                 size_t len16 = DIV_ROUND_UP(len, 16);
630                 int ret;
631
632                 memset(&cmd, 0, sizeof(cmd));
633                 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_STATS_CMD) |
634                                              V_FW_VI_STATS_CMD_VIID(pi->viid) |
635                                              F_FW_CMD_REQUEST |
636                                              F_FW_CMD_READ);
637                 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16));
638                 cmd.u.ctl.nstats_ix =
639                         cpu_to_be16(V_FW_VI_STATS_CMD_IX(ix) |
640                                     V_FW_VI_STATS_CMD_NSTATS(nstats));
641                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
642                 if (ret != FW_SUCCESS)
643                         return ret;
644
645                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
646
647                 rem -= nstats;
648                 fwsp += nstats;
649         }
650
651         /*
652          * Translate firmware statistics into host native statistics.
653          */
654         p->tx_octets = be64_to_cpu(fwstats.tx_bcast_bytes) +
655                        be64_to_cpu(fwstats.tx_mcast_bytes) +
656                        be64_to_cpu(fwstats.tx_ucast_bytes);
657         p->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
658         p->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
659         p->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
660         p->tx_drop = be64_to_cpu(fwstats.tx_drop_frames);
661
662         p->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
663         p->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
664         p->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
665         p->rx_len_err = be64_to_cpu(fwstats.rx_err_frames);
666
667         return 0;
668 }
669
670 /**
671  *      t4vf_get_port_stats - collect "port" statistics
672  *      @adapter: the adapter
673  *      @pidx: the port index
674  *      @s: the stats structure to fill
675  *
676  *      Collect statistics for the "port"'s Virtual Interface.
677  */
678 void t4vf_get_port_stats(struct adapter *adapter, int pidx,
679                          struct port_stats *p)
680 {
681         /*
682          * If this is not the first Virtual Interface for our Virtual
683          * Function, we need to use Firmware commands to retrieve its
684          * MPS statistics.
685          */
686         if (pidx != 0)
687                 t4vf_get_port_stats_fw(adapter, pidx, p);
688
689         /*
690          * But for the first VI, we can grab its statistics via the MPS
691          * register mapped into the VF register space.
692          */
693 #define GET_STAT(name) \
694         t4_read_reg64(adapter, \
695                         T4VF_MPS_BASE_ADDR + A_MPS_VF_STAT_##name##_L)
696         p->tx_octets = GET_STAT(TX_VF_BCAST_BYTES) +
697                        GET_STAT(TX_VF_MCAST_BYTES) +
698                        GET_STAT(TX_VF_UCAST_BYTES);
699         p->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
700         p->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
701         p->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
702         p->tx_drop = GET_STAT(TX_VF_DROP_FRAMES);
703
704         p->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
705         p->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
706         p->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
707
708         p->rx_len_err = GET_STAT(RX_VF_ERR_FRAMES);
709 #undef GET_STAT
710 }
711
712 static int t4vf_alloc_vi(struct adapter *adapter, int port_id)
713 {
714         struct fw_vi_cmd cmd, rpl;
715         int v;
716
717         /*
718          * Execute a VI command to allocate Virtual Interface and return its
719          * VIID.
720          */
721         memset(&cmd, 0, sizeof(cmd));
722         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
723                                     F_FW_CMD_REQUEST |
724                                     F_FW_CMD_WRITE |
725                                     F_FW_CMD_EXEC);
726         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
727                                          F_FW_VI_CMD_ALLOC);
728         cmd.portid_pkd = V_FW_VI_CMD_PORTID(port_id);
729         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
730         if (v != FW_SUCCESS)
731                 return v;
732         return G_FW_VI_CMD_VIID(be16_to_cpu(rpl.type_to_viid));
733 }
734
735 int t4vf_port_init(struct adapter *adapter)
736 {
737         struct fw_port_cmd port_cmd, port_rpl, rpl;
738         struct fw_vi_cmd vi_cmd, vi_rpl;
739         u32 param, val, pcaps, acaps;
740         enum fw_port_type port_type;
741         int mdio_addr;
742         int ret, i;
743
744         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
745                  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
746         val = 1;
747         ret = t4vf_set_params(adapter, 1, &param, &val);
748         if (ret < 0)
749                 return ret;
750
751         for_each_port(adapter, i) {
752                 struct port_info *p = adap2pinfo(adapter, i);
753                 u32 lstatus32;
754
755                 ret = t4vf_alloc_vi(adapter, p->port_id);
756                 if (ret < 0) {
757                         dev_err(&pdev->dev, "cannot allocate VI for port %d:"
758                                 " err=%d\n", p->port_id, ret);
759                         return ret;
760                 }
761                 p->viid = ret;
762
763                 /*
764                  * Execute a VI Read command to get our Virtual Interface
765                  * information like MAC address, etc.
766                  */
767                 memset(&vi_cmd, 0, sizeof(vi_cmd));
768                 vi_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
769                                                F_FW_CMD_REQUEST |
770                                                F_FW_CMD_READ);
771                 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
772                 vi_cmd.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(p->viid));
773                 ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
774                 if (ret != FW_SUCCESS)
775                         return ret;
776
777                 p->rss_size = G_FW_VI_CMD_RSSSIZE
778                                 (be16_to_cpu(vi_rpl.norss_rsssize));
779                 t4_os_set_hw_addr(adapter, i, vi_rpl.mac);
780
781                 /*
782                  * If we don't have read access to our port information, we're
783                  * done now.  Else, execute a PORT Read command to get it ...
784                  */
785                 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
786                         return 0;
787
788                 memset(&port_cmd, 0, sizeof(port_cmd));
789                 port_cmd.op_to_portid =
790                         cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
791                                     F_FW_CMD_REQUEST | F_FW_CMD_READ |
792                                     V_FW_PORT_CMD_PORTID(p->port_id));
793                 val = FW_PORT_ACTION_GET_PORT_INFO32;
794                 port_cmd.action_to_len16 =
795                         cpu_to_be32(V_FW_PORT_CMD_ACTION(val) |
796                                     FW_LEN16(port_cmd));
797                 ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd),
798                                    &port_rpl);
799                 if (ret != FW_SUCCESS)
800                         return ret;
801
802                 /*
803                  * Extract the various fields from the Port Information message.
804                  */
805                 rpl = port_rpl;
806                 lstatus32 = be32_to_cpu(rpl.u.info32.lstatus32_to_cbllen32);
807
808                 port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
809                 mdio_addr = (lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ?
810                             (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) : -1;
811                 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
812                 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
813
814                 t4_init_link_config(p, pcaps, acaps, mdio_addr, port_type,
815                                     FW_PORT_MOD_TYPE_NA);
816         }
817         return 0;
818 }