common/cnxk: use computed value for WQE skip
[dpdk.git] / drivers / net / cxgbe / cxgbe_main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <sys/queue.h>
7 #include <sys/stat.h>
8 #include <stdio.h>
9 #include <errno.h>
10 #include <stdint.h>
11 #include <string.h>
12 #include <unistd.h>
13 #include <stdarg.h>
14 #include <inttypes.h>
15 #include <fcntl.h>
16 #include <netinet/in.h>
17
18 #include <rte_byteorder.h>
19 #include <rte_common.h>
20 #include <rte_cycles.h>
21 #include <rte_interrupts.h>
22 #include <rte_log.h>
23 #include <rte_debug.h>
24 #include <rte_pci.h>
25 #include <rte_branch_prediction.h>
26 #include <rte_memory.h>
27 #include <rte_tailq.h>
28 #include <rte_eal.h>
29 #include <rte_alarm.h>
30 #include <rte_ether.h>
31 #include <ethdev_driver.h>
32 #include <ethdev_pci.h>
33 #include <rte_random.h>
34 #include <rte_dev.h>
35 #include <rte_kvargs.h>
36
37 #include "base/common.h"
38 #include "base/t4_regs.h"
39 #include "base/t4_msg.h"
40 #include "cxgbe.h"
41 #include "cxgbe_pfvf.h"
42 #include "clip_tbl.h"
43 #include "l2t.h"
44 #include "smt.h"
45 #include "mps_tcam.h"
46
47 static const u16 cxgbe_filter_mode_features[] = {
48         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
49          F_PROTOCOL | F_PORT),
50         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
51          F_PROTOCOL | F_FCOE),
52         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
53          F_PORT),
54         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
55          F_FCOE),
56         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
57          F_FCOE),
58         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
59          F_PORT | F_FCOE),
60         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
61          F_FCOE),
62         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
63          F_FCOE),
64         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
65          F_FCOE),
66         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
67          F_FCOE),
68         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
69          F_FCOE),
70         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
71          F_FCOE),
72         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
73          F_PORT | F_FCOE),
74         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
75         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
76         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
77         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
78         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
79         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
80         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
81          F_PORT),
82         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
83          F_FCOE),
84         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
85          F_FCOE),
86         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
87          F_FCOE),
88         (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
89         (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
90         (F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
91         (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
92          F_FCOE),
93         (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
94         (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
95         (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
96          F_FCOE),
97         (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
98         (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
99         (F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
100         (F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
101         (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
102         (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
103         (F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
104         (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
105          F_FCOE),
106         (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
107         (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
108         (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
109         (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
110         (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
111         (F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
112         (F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
113         (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
114         (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
115         (F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
116 };
117
118 /**
119  * Allocate a chunk of memory. The allocated memory is cleared.
120  */
121 void *t4_alloc_mem(size_t size)
122 {
123         return rte_zmalloc(NULL, size, 0);
124 }
125
126 /**
127  * Free memory allocated through t4_alloc_mem().
128  */
129 void t4_free_mem(void *addr)
130 {
131         rte_free(addr);
132 }
133
134 /*
135  * Response queue handler for the FW event queue.
136  */
137 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
138                           __rte_unused const struct pkt_gl *gl)
139 {
140         u8 opcode = ((const struct rss_header *)rsp)->opcode;
141
142         rsp++;                                          /* skip RSS header */
143
144         /*
145          * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
146          */
147         if (unlikely(opcode == CPL_FW4_MSG &&
148                      ((const struct cpl_fw4_msg *)rsp)->type ==
149                       FW_TYPE_RSSCPL)) {
150                 rsp++;
151                 opcode = ((const struct rss_header *)rsp)->opcode;
152                 rsp++;
153                 if (opcode != CPL_SGE_EGR_UPDATE) {
154                         dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
155                                 opcode);
156                         goto out;
157                 }
158         }
159
160         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
161                 /* do nothing */
162         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
163                 const struct cpl_fw6_msg *msg = (const void *)rsp;
164
165                 t4_handle_fw_rpl(q->adapter, msg->data);
166         } else if (opcode == CPL_ABORT_RPL_RSS) {
167                 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
168
169                 cxgbe_hash_del_filter_rpl(q->adapter, p);
170         } else if (opcode == CPL_SET_TCB_RPL) {
171                 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
172
173                 cxgbe_filter_rpl(q->adapter, p);
174         } else if (opcode == CPL_ACT_OPEN_RPL) {
175                 const struct cpl_act_open_rpl *p = (const void *)rsp;
176
177                 cxgbe_hash_filter_rpl(q->adapter, p);
178         } else if (opcode == CPL_L2T_WRITE_RPL) {
179                 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
180
181                 cxgbe_do_l2t_write_rpl(q->adapter, p);
182         } else if (opcode == CPL_SMT_WRITE_RPL) {
183                 const struct cpl_smt_write_rpl *p = (const void *)rsp;
184
185                 cxgbe_do_smt_write_rpl(q->adapter, p);
186         } else {
187                 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
188                         opcode);
189         }
190 out:
191         return 0;
192 }
193
194 /**
195  * Setup sge control queues to pass control information.
196  */
197 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
198 {
199         struct sge *s = &adapter->sge;
200         int err = 0, i = 0;
201
202         for_each_port(adapter, i) {
203                 struct port_info *pi = adap2pinfo(adapter, i);
204                 char name[RTE_ETH_NAME_MAX_LEN];
205                 struct sge_ctrl_txq *q = &s->ctrlq[i];
206
207                 q->q.size = 1024;
208                 err = t4_sge_alloc_ctrl_txq(adapter, q,
209                                             adapter->eth_dev,  i,
210                                             s->fw_evtq.cntxt_id,
211                                             rte_socket_id());
212                 if (err) {
213                         dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
214                                 err);
215                         goto out;
216                 }
217                 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
218                          pi->eth_dev->device->driver->name,
219                          pi->eth_dev->data->port_id);
220                 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
221                                                      RTE_CACHE_LINE_SIZE,
222                                                      RTE_MBUF_PRIV_ALIGN,
223                                                      RTE_MBUF_DEFAULT_BUF_SIZE,
224                                                      SOCKET_ID_ANY);
225                 if (!q->mb_pool) {
226                         err = -rte_errno;
227                         dev_err(adapter,
228                                 "Can't create ctrl pool for port %d. Err: %d\n",
229                                 pi->eth_dev->data->port_id, err);
230                         goto out;
231                 }
232         }
233         return 0;
234 out:
235         t4_free_sge_resources(adapter);
236         return err;
237 }
238
239 /**
240  * cxgbe_poll_for_completion: Poll rxq for completion
241  * @q: rxq to poll
242  * @ms: milliseconds to delay
243  * @cnt: number of times to poll
244  * @c: completion to check for 'done' status
245  *
246  * Polls the rxq for reples until completion is done or the count
247  * expires.
248  */
249 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
250                               unsigned int cnt, struct t4_completion *c)
251 {
252         unsigned int i;
253         unsigned int work_done, budget = 32;
254
255         if (!c)
256                 return -EINVAL;
257
258         for (i = 0; i < cnt; i++) {
259                 cxgbe_poll(q, NULL, budget, &work_done);
260                 t4_os_lock(&c->lock);
261                 if (c->done) {
262                         t4_os_unlock(&c->lock);
263                         return 0;
264                 }
265                 t4_os_unlock(&c->lock);
266                 rte_delay_ms(ms);
267         }
268         return -ETIMEDOUT;
269 }
270
271 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
272 {
273         struct sge *s = &adapter->sge;
274         int err = 0;
275         int msi_idx = 0;
276
277         err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
278                                msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
279                                rte_socket_id());
280         return err;
281 }
282
283 static int closest_timer(const struct sge *s, int time)
284 {
285         unsigned int i, match = 0;
286         int delta, min_delta = INT_MAX;
287
288         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
289                 delta = time - s->timer_val[i];
290                 if (delta < 0)
291                         delta = -delta;
292                 if (delta < min_delta) {
293                         min_delta = delta;
294                         match = i;
295                 }
296         }
297         return match;
298 }
299
300 static int closest_thres(const struct sge *s, int thres)
301 {
302         unsigned int i, match = 0;
303         int delta, min_delta = INT_MAX;
304
305         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
306                 delta = thres - s->counter_val[i];
307                 if (delta < 0)
308                         delta = -delta;
309                 if (delta < min_delta) {
310                         min_delta = delta;
311                         match = i;
312                 }
313         }
314         return match;
315 }
316
317 /**
318  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
319  * @q: the Rx queue
320  * @us: the hold-off time in us, or 0 to disable timer
321  * @cnt: the hold-off packet count, or 0 to disable counter
322  *
323  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
324  * one of the two needs to be enabled for the queue to generate interrupts.
325  */
326 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
327                                unsigned int cnt)
328 {
329         struct adapter *adap = q->adapter;
330         unsigned int timer_val;
331
332         if (cnt) {
333                 int err;
334                 u32 v, new_idx;
335
336                 new_idx = closest_thres(&adap->sge, cnt);
337                 if (q->desc && q->pktcnt_idx != new_idx) {
338                         /* the queue has already been created, update it */
339                         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
340                             V_FW_PARAMS_PARAM_X(
341                             FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
342                             V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
343                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
344                                             &v, &new_idx);
345                         if (err)
346                                 return err;
347                 }
348                 q->pktcnt_idx = new_idx;
349         }
350
351         timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
352                                 closest_timer(&adap->sge, us);
353
354         if ((us | cnt) == 0)
355                 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
356         else
357                 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
358                                  V_QINTR_CNT_EN(cnt > 0);
359         return 0;
360 }
361
362 /**
363  * Allocate an active-open TID and set it to the supplied value.
364  */
365 int cxgbe_alloc_atid(struct tid_info *t, void *data)
366 {
367         int atid = -1;
368
369         t4_os_lock(&t->atid_lock);
370         if (t->afree) {
371                 union aopen_entry *p = t->afree;
372
373                 atid = p - t->atid_tab;
374                 t->afree = p->next;
375                 p->data = data;
376                 t->atids_in_use++;
377         }
378         t4_os_unlock(&t->atid_lock);
379         return atid;
380 }
381
382 /**
383  * Release an active-open TID.
384  */
385 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
386 {
387         union aopen_entry *p = &t->atid_tab[atid];
388
389         t4_os_lock(&t->atid_lock);
390         p->next = t->afree;
391         t->afree = p;
392         t->atids_in_use--;
393         t4_os_unlock(&t->atid_lock);
394 }
395
396 /**
397  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
398  */
399 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
400 {
401         struct cpl_tid_release *req;
402
403         req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
404         INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
405 }
406
407 /**
408  * Release a TID and inform HW.  If we are unable to allocate the release
409  * message we defer to a work queue.
410  */
411 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
412                       unsigned short family)
413 {
414         struct rte_mbuf *mbuf;
415         struct adapter *adap = container_of(t, struct adapter, tids);
416
417         WARN_ON(tid >= t->ntids);
418
419         if (t->tid_tab[tid]) {
420                 t->tid_tab[tid] = NULL;
421                 __atomic_sub_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
422                 if (t->hash_base && tid >= t->hash_base) {
423                         if (family == FILTER_TYPE_IPV4)
424                                 __atomic_sub_fetch(&t->hash_tids_in_use, 1,
425                                                    __ATOMIC_RELAXED);
426                 } else {
427                         if (family == FILTER_TYPE_IPV4)
428                                 __atomic_sub_fetch(&t->tids_in_use, 1,
429                                                    __ATOMIC_RELAXED);
430                 }
431         }
432
433         mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
434         if (mbuf) {
435                 mbuf->data_len = sizeof(struct cpl_tid_release);
436                 mbuf->pkt_len = mbuf->data_len;
437                 mk_tid_release(mbuf, tid);
438                 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
439         }
440 }
441
442 /**
443  * Insert a TID.
444  */
445 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
446                       unsigned short family)
447 {
448         t->tid_tab[tid] = data;
449         if (t->hash_base && tid >= t->hash_base) {
450                 if (family == FILTER_TYPE_IPV4)
451                         __atomic_add_fetch(&t->hash_tids_in_use, 1,
452                                            __ATOMIC_RELAXED);
453         } else {
454                 if (family == FILTER_TYPE_IPV4)
455                         __atomic_add_fetch(&t->tids_in_use, 1,
456                                            __ATOMIC_RELAXED);
457         }
458
459         __atomic_add_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
460 }
461
462 /**
463  * Free TID tables.
464  */
465 static void tid_free(struct tid_info *t)
466 {
467         if (t->tid_tab) {
468                 rte_bitmap_free(t->ftid_bmap);
469
470                 if (t->ftid_bmap_array)
471                         t4_os_free(t->ftid_bmap_array);
472
473                 t4_os_free(t->tid_tab);
474         }
475
476         memset(t, 0, sizeof(struct tid_info));
477 }
478
479 /**
480  * Allocate and initialize the TID tables.  Returns 0 on success.
481  */
482 static int tid_init(struct tid_info *t)
483 {
484         size_t size;
485         unsigned int ftid_bmap_size;
486         unsigned int natids = t->natids;
487         unsigned int max_ftids = t->nftids;
488
489         ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
490         size = t->ntids * sizeof(*t->tid_tab) +
491                 max_ftids * sizeof(*t->ftid_tab) +
492                 natids * sizeof(*t->atid_tab);
493
494         t->tid_tab = t4_os_alloc(size);
495         if (!t->tid_tab)
496                 return -ENOMEM;
497
498         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
499         t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
500         t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
501         if (!t->ftid_bmap_array) {
502                 tid_free(t);
503                 return -ENOMEM;
504         }
505
506         t4_os_lock_init(&t->atid_lock);
507         t4_os_lock_init(&t->ftid_lock);
508
509         t->afree = NULL;
510         t->atids_in_use = 0;
511         t->tids_in_use = 0;
512         t->conns_in_use = 0;
513
514         /* Setup the free list for atid_tab and clear the stid bitmap. */
515         if (natids) {
516                 while (--natids)
517                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
518                 t->afree = t->atid_tab;
519         }
520
521         t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
522                                        ftid_bmap_size);
523         if (!t->ftid_bmap) {
524                 tid_free(t);
525                 return -ENOMEM;
526         }
527
528         return 0;
529 }
530
531 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
532                       unsigned int us, unsigned int cnt,
533                       unsigned int size, unsigned int iqe_size)
534 {
535         q->adapter = adap;
536         cxgb4_set_rspq_intr_params(q, us, cnt);
537         q->iqe_len = iqe_size;
538         q->size = size;
539 }
540
541 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
542 {
543         struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
544         struct adapter *adap = pi->adapter;
545         u16 first_txq = 0, first_rxq = 0;
546         struct sge *s = &adap->sge;
547         u16 i, max_rxqs, max_txqs;
548
549         max_rxqs = s->max_ethqsets;
550         max_txqs = s->max_ethqsets;
551         for_each_port(adap, i) {
552                 temp_pi = adap2pinfo(adap, i);
553                 if (i == pi->port_id)
554                         break;
555
556                 if (max_rxqs <= temp_pi->n_rx_qsets ||
557                     max_txqs <= temp_pi->n_tx_qsets)
558                         return -ENOMEM;
559
560                 first_rxq += temp_pi->n_rx_qsets;
561                 first_txq += temp_pi->n_tx_qsets;
562                 max_rxqs -= temp_pi->n_rx_qsets;
563                 max_txqs -= temp_pi->n_tx_qsets;
564         }
565
566         if ((eth_dev->data->nb_rx_queues < 1) ||
567             (eth_dev->data->nb_tx_queues < 1))
568                 return -EINVAL;
569
570         if (eth_dev->data->nb_rx_queues > max_rxqs ||
571             eth_dev->data->nb_tx_queues > max_txqs)
572                 return -EINVAL;
573
574         /* We must configure RSS, since config has changed*/
575         pi->flags &= ~PORT_RSS_DONE;
576
577         pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
578         pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
579         pi->first_rxqset = first_rxq;
580         pi->first_txqset = first_txq;
581
582         return 0;
583 }
584
585 void cxgbe_cfg_queues_free(struct adapter *adap)
586 {
587         if (adap->sge.ethtxq) {
588                 rte_free(adap->sge.ethtxq);
589                 adap->sge.ethtxq = NULL;
590         }
591
592         if (adap->sge.ethrxq) {
593                 rte_free(adap->sge.ethrxq);
594                 adap->sge.ethrxq = NULL;
595         }
596
597         adap->flags &= ~CFG_QUEUES;
598 }
599
600 int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
601 {
602         struct port_info *pi = eth_dev->data->dev_private;
603         struct adapter *adap = pi->adapter;
604         struct sge *s = &adap->sge;
605         u16 i;
606
607         if (!(adap->flags & CFG_QUEUES)) {
608                 s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
609                                               sizeof(struct sge_eth_rxq), 0,
610                                               rte_socket_id());
611                 if (!s->ethrxq)
612                         return -ENOMEM;
613
614                 s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
615                                               sizeof(struct sge_eth_txq), 0,
616                                               rte_socket_id());
617                 if (!s->ethtxq) {
618                         rte_free(s->ethrxq);
619                         s->ethrxq = NULL;
620                         return -ENOMEM;
621                 }
622
623                 for (i = 0; i < s->max_ethqsets; i++) {
624                         struct sge_eth_rxq *r = &s->ethrxq[i];
625                         struct sge_eth_txq *t = &s->ethtxq[i];
626
627                         init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
628                         r->fl.size = 1024;
629
630                         t->q.size = 1024;
631                 }
632
633                 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
634                 adap->flags |= CFG_QUEUES;
635         }
636
637         return 0;
638 }
639
640 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
641 {
642         t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
643                                  &pi->stats_base);
644 }
645
646 void cxgbe_stats_reset(struct port_info *pi)
647 {
648         t4_clr_port_stats(pi->adapter, pi->tx_chan);
649 }
650
651 static void setup_memwin(struct adapter *adap)
652 {
653         u32 mem_win0_base;
654
655         /* For T5, only relative offset inside the PCIe BAR is passed */
656         mem_win0_base = MEMWIN0_BASE;
657
658         /*
659          * Set up memory window for accessing adapter memory ranges.  (Read
660          * back MA register to ensure that changes propagate before we attempt
661          * to use the new values.)
662          */
663         t4_write_reg(adap,
664                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
665                                          MEMWIN_NIC),
666                      mem_win0_base | V_BIR(0) |
667                      V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
668         t4_read_reg(adap,
669                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
670                                         MEMWIN_NIC));
671 }
672
673 int cxgbe_init_rss(struct adapter *adap)
674 {
675         unsigned int i;
676
677         if (is_pf4(adap)) {
678                 int err;
679
680                 err = t4_init_rss_mode(adap, adap->mbox);
681                 if (err)
682                         return err;
683         }
684
685         for_each_port(adap, i) {
686                 struct port_info *pi = adap2pinfo(adap, i);
687
688                 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
689                 if (!pi->rss)
690                         return -ENOMEM;
691
692                 pi->rss_hf = CXGBE_RSS_HF_ALL;
693         }
694         return 0;
695 }
696
697 /**
698  * Dump basic information about the adapter.
699  */
700 void cxgbe_print_adapter_info(struct adapter *adap)
701 {
702         /**
703          * Hardware/Firmware/etc. Version/Revision IDs.
704          */
705         t4_dump_version_info(adap);
706 }
707
708 void cxgbe_print_port_info(struct adapter *adap)
709 {
710         int i;
711         char buf[80];
712         struct rte_pci_addr *loc = &adap->pdev->addr;
713
714         for_each_port(adap, i) {
715                 const struct port_info *pi = adap2pinfo(adap, i);
716                 char *bufp = buf;
717
718                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
719                         bufp += sprintf(bufp, "100M/");
720                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
721                         bufp += sprintf(bufp, "1G/");
722                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
723                         bufp += sprintf(bufp, "10G/");
724                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
725                         bufp += sprintf(bufp, "25G/");
726                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
727                         bufp += sprintf(bufp, "40G/");
728                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
729                         bufp += sprintf(bufp, "50G/");
730                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
731                         bufp += sprintf(bufp, "100G/");
732                 if (bufp != buf)
733                         --bufp;
734                 sprintf(bufp, "BASE-%s",
735                         t4_get_port_type_description(
736                                 (enum fw_port_type)pi->link_cfg.port_type));
737
738                 dev_info(adap,
739                          " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
740                          loc->domain, loc->bus, loc->devid, loc->function,
741                          CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
742                          (adap->flags & USING_MSIX) ? " MSI-X" :
743                          (adap->flags & USING_MSI) ? " MSI" : "");
744         }
745 }
746
747 static int check_devargs_handler(const char *key, const char *value, void *p)
748 {
749         if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
750             !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
751             !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
752                 if (!strncmp(value, "1", 1)) {
753                         bool *dst_val = (bool *)p;
754
755                         *dst_val = true;
756                 }
757         }
758
759         if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
760             !strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
761                 u32 *dst_val = (u32 *)p;
762                 char *endptr = NULL;
763                 u32 arg_val;
764
765                 arg_val = strtoul(value, &endptr, 16);
766                 if (errno || endptr == value)
767                         return -EINVAL;
768
769                 *dst_val = arg_val;
770         }
771
772         return 0;
773 }
774
775 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
776                              void *p)
777 {
778         struct rte_kvargs *kvlist;
779         int ret = 0;
780
781         if (!devargs)
782                 return 0;
783
784         kvlist = rte_kvargs_parse(devargs->args, NULL);
785         if (!kvlist)
786                 return 0;
787
788         if (!rte_kvargs_count(kvlist, key))
789                 goto out;
790
791         ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
792
793 out:
794         rte_kvargs_free(kvlist);
795
796         return ret;
797 }
798
799 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
800                                   const char *key, bool default_value)
801 {
802         struct rte_pci_device *pdev = adap->pdev;
803         int ret;
804         bool devarg_value = default_value;
805
806         *dst = default_value;
807         if (!pdev)
808                 return;
809
810         ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
811         if (ret)
812                 return;
813
814         *dst = devarg_value;
815 }
816
817 static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
818                                   const char *key, u32 default_value)
819 {
820         struct rte_pci_device *pdev = adap->pdev;
821         u32 devarg_value = default_value;
822         int ret;
823
824         *dst = default_value;
825         if (!pdev)
826                 return;
827
828         ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
829         if (ret)
830                 return;
831
832         *dst = devarg_value;
833 }
834
835 void cxgbe_process_devargs(struct adapter *adap)
836 {
837         cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
838                               CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
839         cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
840                               CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
841         cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
842                               CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
843         cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
844                               CXGBE_DEVARG_PF_FILTER_MODE, 0);
845         cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
846                               CXGBE_DEVARG_PF_FILTER_MASK, 0);
847 }
848
849 static void configure_vlan_types(struct adapter *adapter)
850 {
851         int i;
852
853         for_each_port(adapter, i) {
854                 /* OVLAN Type 0x88a8 */
855                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
856                                  V_OVLAN_MASK(M_OVLAN_MASK) |
857                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
858                                  V_OVLAN_MASK(M_OVLAN_MASK) |
859                                  V_OVLAN_ETYPE(0x88a8));
860                 /* OVLAN Type 0x9100 */
861                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
862                                  V_OVLAN_MASK(M_OVLAN_MASK) |
863                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
864                                  V_OVLAN_MASK(M_OVLAN_MASK) |
865                                  V_OVLAN_ETYPE(0x9100));
866
867                 /* IVLAN 0X8100 */
868                 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
869                                  V_IVLAN_ETYPE(M_IVLAN_ETYPE),
870                                  V_IVLAN_ETYPE(0x8100));
871
872                 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
873                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
874                                  F_IVLAN_EN,
875                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
876                                  F_IVLAN_EN);
877         }
878
879         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
880                                V_RM_OVLAN(!adapter->devargs.keep_ovlan));
881 }
882
883 static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
884 {
885         u32 vnic_mode;
886
887         vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
888                            CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
889         if (vnic_mode) {
890                 switch (vnic_mode) {
891                 case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
892                         return CXGBE_FILTER_VNIC_MODE_OVLAN;
893                 case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
894                         return CXGBE_FILTER_VNIC_MODE_PFVF;
895                 default:
896                         return -EINVAL;
897                 }
898         }
899
900         return CXGBE_FILTER_VNIC_MODE_NONE;
901 }
902
903 static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
904 {
905         int vnic_mode, fmode = 0;
906         bool found = false;
907         u8 i;
908
909         if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
910                 pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
911                        CXGBE_DEVARGS_FILTER_MODE_MAX);
912                 return -ERANGE;
913         }
914
915         vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
916         if (vnic_mode < 0) {
917                 pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
918                 return vnic_mode;
919         }
920
921         if (vnic_mode)
922                 fmode |= F_VNIC_ID;
923         if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
924                 fmode |= F_PORT;
925         if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
926                 fmode |= F_MACMATCH;
927         if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
928                 fmode |= F_ETHERTYPE;
929         if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
930                 fmode |= F_VLAN;
931         if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
932                 fmode |= F_TOS;
933         if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
934                 fmode |= F_PROTOCOL;
935
936         for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
937                 if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
938                         found = true;
939                         break;
940                 }
941         }
942
943         if (!found)
944                 return -EINVAL;
945
946         return closest_match ? cxgbe_filter_mode_features[i] : fmode;
947 }
948
949 static int configure_filter_mode_mask(struct adapter *adap)
950 {
951         u32 params[2], val[2], nparams = 0;
952         int ret;
953
954         if (!adap->devargs.filtermode && !adap->devargs.filtermask)
955                 return 0;
956
957         if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
958                 pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
959                 return -EINVAL;
960         }
961
962         if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
963                 pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
964                        adap->devargs.filtermask, adap->devargs.filtermode);
965
966                 return -EINVAL;
967         }
968
969         params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
970                     V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
971
972         ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
973                                                  true);
974         if (ret < 0) {
975                 pr_err("Unsupported filtermode devargs combination:0x%x\n",
976                        adap->devargs.filtermode);
977                 return ret;
978         }
979
980         val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
981
982         ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
983                                                  false);
984         if (ret < 0) {
985                 pr_err("Unsupported filtermask devargs combination:0x%x\n",
986                        adap->devargs.filtermask);
987                 return ret;
988         }
989
990         val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
991
992         nparams++;
993
994         ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
995         if (ret < 0)
996                 return ret;
997
998         if (ret) {
999                 params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
1000                             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
1001
1002                 val[1] = ret - 1;
1003
1004                 nparams++;
1005         }
1006
1007         return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
1008                              params, val);
1009 }
1010
1011 #define CXGBE_FW_CONFIG_PATH_T5 "/lib/firmware/cxgb4/t5-config.txt"
1012 #define CXGBE_FW_CONFIG_PATH_T6 "/lib/firmware/cxgb4/t6-config.txt"
1013
1014 /*
1015  * Load firmware configuration from file in /lib/firmware/cxgb4/ path,
1016  * if it is present.
1017  */
1018 static int cxgbe_load_fw_config_from_filesystem(struct adapter *adap,
1019                                                 const char **config_name,
1020                                                 u32 *mem_type, u32 *mem_addr)
1021 {
1022         u32 param, val, mtype, maddr;
1023         const char *fw_cfg_path;
1024         char *fw_cfg = NULL;
1025         struct stat st;
1026         int ret, fd;
1027
1028         switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
1029         case CHELSIO_T5:
1030                 fw_cfg_path = CXGBE_FW_CONFIG_PATH_T5;
1031                 break;
1032         case CHELSIO_T6:
1033                 fw_cfg_path = CXGBE_FW_CONFIG_PATH_T6;
1034                 break;
1035         default:
1036                 return -ENOENT;
1037         }
1038
1039         ret = open(fw_cfg_path, O_RDONLY);
1040         if (ret < 0) {
1041                 dev_debug(adap, "Couldn't open FW config file\n");
1042                 return ret;
1043         }
1044
1045         fd = ret;
1046
1047         ret = fstat(fd, &st);
1048         if (ret < 0) {
1049                 dev_debug(adap, "Couldn't get FW config file size\n");
1050                 goto out_err;
1051         }
1052
1053         if (st.st_size >= FLASH_CFG_MAX_SIZE) {
1054                 dev_debug(adap, "FW config file size >= max(%u)\n",
1055                           FLASH_CFG_MAX_SIZE);
1056                 ret = -ENOMEM;
1057                 goto out_err;
1058         }
1059
1060         fw_cfg = rte_zmalloc(NULL, st.st_size, 0);
1061         if (fw_cfg == NULL) {
1062                 ret = -ENOMEM;
1063                 goto out_err;
1064         }
1065
1066         if (read(fd, fw_cfg, st.st_size) != st.st_size) {
1067                 dev_debug(adap, "Couldn't read FW config file data\n");
1068                 ret = -EIO;
1069                 goto out_err;
1070         }
1071
1072         close(fd);
1073
1074         /* Send it to FW to verify and update to new configuration */
1075         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1076                 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF);
1077         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
1078         if (ret < 0) {
1079                 dev_debug(adap, "FW config param query failed: %d\n", ret);
1080                 goto out_free;
1081         }
1082
1083         mtype = val >> 8;
1084         maddr = (val & 0xff) << 16;
1085
1086         t4_os_lock(&adap->win0_lock);
1087         ret = t4_memory_rw(adap, MEMWIN_NIC, mtype, maddr, st.st_size,
1088                            fw_cfg, T4_MEMORY_WRITE);
1089         t4_os_unlock(&adap->win0_lock);
1090         if (ret < 0) {
1091                 dev_debug(adap, "FW config file update failed: %d\n", ret);
1092                 goto out_free;
1093         }
1094
1095         rte_free(fw_cfg);
1096
1097         *mem_type = mtype;
1098         *mem_addr = maddr;
1099         *config_name = fw_cfg_path;
1100         return 0;
1101
1102 out_err:
1103         close(fd);
1104 out_free:
1105         rte_free(fw_cfg);
1106         return ret;
1107 }
1108
1109 static int cxgbe_load_fw_config(struct adapter *adap)
1110 {
1111         struct fw_caps_config_cmd caps_cmd = { 0 };
1112         u32 finiver, finicsum, cfcsum, param, val;
1113         const char *config_name = NULL;
1114         u32 mtype = 0, maddr = 0;
1115         int ret;
1116
1117         ret = cxgbe_load_fw_config_from_filesystem(adap, &config_name,
1118                                                    &mtype, &maddr);
1119         if (ret < 0) {
1120                 config_name = "On Flash";
1121
1122                 ret = t4_flash_cfg_addr(adap);
1123                 if (ret < 0) {
1124                         dev_warn(adap,
1125                                  "Finding address for FW config file in flash failed: %d\n",
1126                                  ret);
1127                         goto out_default_config;
1128                 }
1129
1130                 mtype = FW_MEMTYPE_CF_FLASH;
1131                 maddr = ret;
1132         }
1133
1134         /* Enable HASH filter region when support is available. */
1135         val = 1;
1136         param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
1137         t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
1138
1139         /*
1140          * Issue a Capability Configuration command to the firmware to get it
1141          * to parse the Configuration File.
1142          */
1143         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1144                                            F_FW_CMD_REQUEST | F_FW_CMD_READ);
1145         caps_cmd.cfvalid_to_len16 =
1146                 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
1147                             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1148                             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1149                             FW_LEN16(caps_cmd));
1150         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1151                          &caps_cmd);
1152
1153 out_default_config:
1154         /*
1155          * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1156          * Configuration File in filesystem or FLASH), our last gasp
1157          * effort is to use the Firmware Configuration File which is
1158          * embedded in the firmware.
1159          */
1160         if (ret == -ENOENT) {
1161                 config_name = "Firmware Default";
1162
1163                 memset(&caps_cmd, 0, sizeof(caps_cmd));
1164                 caps_cmd.op_to_write =
1165                         cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1166                                     F_FW_CMD_REQUEST | F_FW_CMD_READ);
1167                 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
1168                 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1169                                  &caps_cmd);
1170         }
1171
1172         if (ret < 0) {
1173                 dev_info(adap,
1174                          "Failed to configure using %s Firmware Configuration file: %d\n",
1175                          config_name, ret);
1176                 return ret;
1177         }
1178
1179         finiver = be32_to_cpu(caps_cmd.finiver);
1180         finicsum = be32_to_cpu(caps_cmd.finicsum);
1181         cfcsum = be32_to_cpu(caps_cmd.cfcsum);
1182         if (finicsum != cfcsum)
1183                 dev_warn(adap,
1184                          "Configuration File checksum mismatch: [fini] csum=0x%x, computed csum=0x%x\n",
1185                          finicsum, cfcsum);
1186
1187         /*
1188          * If we're a pure NIC driver then disable all offloading facilities.
1189          * This will allow the firmware to optimize aspects of the hardware
1190          * configuration which will result in improved performance.
1191          */
1192         caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
1193         caps_cmd.toecaps = 0;
1194         caps_cmd.iscsicaps = 0;
1195         caps_cmd.rdmacaps = 0;
1196         caps_cmd.fcoecaps = 0;
1197         caps_cmd.cryptocaps = 0;
1198
1199         /*
1200          * And now tell the firmware to use the configuration we just loaded.
1201          */
1202         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1203                                            F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
1204         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1205         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1206                          NULL);
1207         if (ret < 0) {
1208                 dev_warn(adap, "Unable to finalize Firmware Capabilities %d\n",
1209                          ret);
1210                 return ret;
1211         }
1212
1213         /*
1214          * Return successfully and note that we're operating with parameters
1215          * not supplied by the driver, rather than from hard-wired
1216          * initialization constants buried in the driver.
1217          */
1218         dev_info(adap,
1219                  "Successfully configured using Firmware Configuration File \"%s\", version: 0x%x, computed csum: 0x%x\n",
1220                  config_name, finiver, cfcsum);
1221         return 0;
1222 }
1223
1224 static void configure_pcie_ext_tag(struct adapter *adapter)
1225 {
1226         u16 v;
1227         int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
1228
1229         if (!pos)
1230                 return;
1231
1232         if (pos > 0) {
1233                 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
1234                 v |= PCI_EXP_DEVCTL_EXT_TAG;
1235                 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
1236                 if (is_t6(adapter->params.chip)) {
1237                         t4_set_reg_field(adapter, A_PCIE_CFG2,
1238                                          V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
1239                                          V_T6_TOTMAXTAG(7));
1240                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1241                                          V_T6_MINTAG(M_T6_MINTAG),
1242                                          V_T6_MINTAG(8));
1243                 } else {
1244                         t4_set_reg_field(adapter, A_PCIE_CFG2,
1245                                          V_TOTMAXTAG(M_TOTMAXTAG),
1246                                          V_TOTMAXTAG(3));
1247                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1248                                          V_MINTAG(M_MINTAG),
1249                                          V_MINTAG(8));
1250                 }
1251         }
1252 }
1253
1254 /* Figure out how many Queue Sets we can support */
1255 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
1256 {
1257         unsigned int ethqsets, reserved;
1258
1259         /* We need to reserve an Ingress Queue for the Asynchronous Firmware
1260          * Event Queue and 1 Control Queue per port.
1261          *
1262          * For each Queue Set, we'll need the ability to allocate two Egress
1263          * Contexts -- one for the Ingress Queue Free List and one for the TX
1264          * Ethernet Queue.
1265          */
1266         reserved = max(adapter->params.nports, 1);
1267         if (is_pf4(adapter)) {
1268                 struct pf_resources *pfres = &adapter->params.pfres;
1269
1270                 ethqsets = min(pfres->niqflint, pfres->nethctrl);
1271                 if (ethqsets > (pfres->neq / 2))
1272                         ethqsets = pfres->neq / 2;
1273         } else {
1274                 struct vf_resources *vfres = &adapter->params.vfres;
1275
1276                 ethqsets = min(vfres->niqflint, vfres->nethctrl);
1277                 if (ethqsets > (vfres->neq / 2))
1278                         ethqsets = vfres->neq / 2;
1279         }
1280
1281         ethqsets -= reserved;
1282         adapter->sge.max_ethqsets = ethqsets;
1283 }
1284
1285 /*
1286  * Tweak configuration based on system architecture, etc.  Most of these have
1287  * defaults assigned to them by Firmware Configuration Files (if we're using
1288  * them) but need to be explicitly set if we're using hard-coded
1289  * initialization. So these are essentially common tweaks/settings for
1290  * Configuration Files and hard-coded initialization ...
1291  */
1292 static int adap_init0_tweaks(struct adapter *adapter)
1293 {
1294         u8 rx_dma_offset;
1295
1296         /*
1297          * Fix up various Host-Dependent Parameters like Page Size, Cache
1298          * Line Size, etc.  The firmware default is for a 4KB Page Size and
1299          * 64B Cache Line Size ...
1300          */
1301         t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
1302                                     T5_LAST_REV);
1303
1304         /*
1305          * Keep the chip default offset to deliver Ingress packets into our
1306          * DMA buffers to zero
1307          */
1308         rx_dma_offset = 0;
1309         t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
1310                          V_PKTSHIFT(rx_dma_offset));
1311
1312         t4_set_reg_field(adapter, A_SGE_FLM_CFG,
1313                          V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
1314                          V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
1315
1316         t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
1317                          V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
1318
1319         t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
1320                          V_IDMAARBROUNDROBIN(1U));
1321
1322         /*
1323          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
1324          * adds the pseudo header itself.
1325          */
1326         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
1327                                F_CSUM_HAS_PSEUDO_HDR, 0);
1328
1329         return 0;
1330 }
1331
1332 /*
1333  * Attempt to initialize the adapter via a Firmware Configuration File.
1334  */
1335 static int adap_init0_config(struct adapter *adapter, int reset)
1336 {
1337         int ret;
1338
1339         /*
1340          * Reset device if necessary.
1341          */
1342         if (reset) {
1343                 ret = t4_fw_reset(adapter, adapter->mbox,
1344                                   F_PIORSTMODE | F_PIORST);
1345                 if (ret < 0) {
1346                         dev_warn(adapter, "Firmware reset failed, error %d\n",
1347                                  -ret);
1348                         goto bye;
1349                 }
1350         }
1351
1352         ret = cxgbe_load_fw_config(adapter);
1353         if (ret < 0)
1354                 goto bye;
1355
1356         /*
1357          * Tweak configuration based on system architecture, etc.
1358          */
1359         ret = adap_init0_tweaks(adapter);
1360         if (ret < 0) {
1361                 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1362                 goto bye;
1363         }
1364
1365         /*
1366          * And finally tell the firmware to initialize itself using the
1367          * parameters from the Configuration File.
1368          */
1369         ret = t4_fw_initialize(adapter, adapter->mbox);
1370         if (ret < 0) {
1371                 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1372                          -ret);
1373                 goto bye;
1374         }
1375
1376         return 0;
1377
1378 bye:
1379         dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1380         return ret;
1381 }
1382
1383 static int adap_init0(struct adapter *adap)
1384 {
1385         struct fw_caps_config_cmd caps_cmd;
1386         int ret = 0;
1387         u32 v, port_vec;
1388         enum dev_state state;
1389         u32 params[7], val[7];
1390         int reset = 1;
1391         int mbox = adap->mbox;
1392
1393         /*
1394          * Contact FW, advertising Master capability.
1395          */
1396         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1397         if (ret < 0) {
1398                 dev_err(adap, "%s: could not connect to FW, error %d\n",
1399                         __func__, -ret);
1400                 goto bye;
1401         }
1402
1403         CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1404                          adap->mbox, ret);
1405
1406         if (ret == mbox)
1407                 adap->flags |= MASTER_PF;
1408
1409         if (state == DEV_STATE_INIT) {
1410                 /*
1411                  * Force halt and reset FW because a previous instance may have
1412                  * exited abnormally without properly shutting down
1413                  */
1414                 ret = t4_fw_halt(adap, adap->mbox, reset);
1415                 if (ret < 0) {
1416                         dev_err(adap, "Failed to halt. Exit.\n");
1417                         goto bye;
1418                 }
1419
1420                 ret = t4_fw_restart(adap, adap->mbox, reset);
1421                 if (ret < 0) {
1422                         dev_err(adap, "Failed to restart. Exit.\n");
1423                         goto bye;
1424                 }
1425                 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1426         }
1427
1428         t4_get_version_info(adap);
1429
1430         ret = t4_get_core_clock(adap, &adap->params.vpd);
1431         if (ret < 0) {
1432                 dev_err(adap, "%s: could not get core clock, error %d\n",
1433                         __func__, -ret);
1434                 goto bye;
1435         }
1436
1437         /*
1438          * If the firmware is initialized already (and we're not forcing a
1439          * master initialization), note that we're living with existing
1440          * adapter parameters.  Otherwise, it's time to try initializing the
1441          * adapter ...
1442          */
1443         if (state == DEV_STATE_INIT) {
1444                 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1445                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1446         } else {
1447                 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1448
1449                 ret = adap_init0_config(adap, reset);
1450                 if (ret == -ENOENT) {
1451                         dev_err(adap,
1452                                 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1453                         goto bye;
1454                 }
1455         }
1456         if (ret < 0) {
1457                 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1458                 goto bye;
1459         }
1460
1461         /* Now that we've successfully configured and initialized the adapter
1462          * (or found it already initialized), we can ask the Firmware what
1463          * resources it has provisioned for us.
1464          */
1465         ret = t4_get_pfres(adap);
1466         if (ret) {
1467                 dev_err(adap->pdev_dev,
1468                         "Unable to retrieve resource provisioning info\n");
1469                 goto bye;
1470         }
1471
1472         /* Find out what ports are available to us. */
1473         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1474             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1475         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1476         if (ret < 0) {
1477                 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1478                         __func__, ret);
1479                 goto bye;
1480         }
1481
1482         adap->params.nports = hweight32(port_vec);
1483         adap->params.portvec = port_vec;
1484
1485         dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1486                   adap->params.nports);
1487
1488         /*
1489          * Give the SGE code a chance to pull in anything that it needs ...
1490          * Note that this must be called after we retrieve our VPD parameters
1491          * in order to know how to convert core ticks to seconds, etc.
1492          */
1493         ret = t4_sge_init(adap);
1494         if (ret < 0) {
1495                 dev_err(adap, "t4_sge_init failed with error %d\n",
1496                         -ret);
1497                 goto bye;
1498         }
1499
1500         /*
1501          * Grab some of our basic fundamental operating parameters.
1502          */
1503         params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1504         params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1505         params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1506         params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1507         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1508         if (ret < 0)
1509                 goto bye;
1510         adap->l2t_start = val[0];
1511         adap->l2t_end = val[1];
1512         adap->tids.ftid_base = val[2];
1513         adap->tids.nftids = val[3] - val[2] + 1;
1514
1515         params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1516         params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1517         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1518         if (ret < 0)
1519                 goto bye;
1520         adap->clipt_start = val[0];
1521         adap->clipt_end = val[1];
1522
1523         /*
1524          * Get device capabilities so we can determine what resources we need
1525          * to manage.
1526          */
1527         memset(&caps_cmd, 0, sizeof(caps_cmd));
1528         caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1529                                      F_FW_CMD_REQUEST | F_FW_CMD_READ);
1530         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1531         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1532                          &caps_cmd);
1533         if (ret < 0)
1534                 goto bye;
1535
1536         if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1537             is_t6(adap->params.chip)) {
1538                 if (cxgbe_init_hash_filter(adap) < 0)
1539                         goto bye;
1540         }
1541
1542         /* See if FW supports FW_FILTER2 work request */
1543         if (is_t4(adap->params.chip)) {
1544                 adap->params.filter2_wr_support = 0;
1545         } else {
1546                 params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1547                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1548                                       1, params, val);
1549                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1550         }
1551
1552         /* Check if FW supports returning vin.
1553          * If this is not supported, driver will interpret
1554          * these values from viid.
1555          */
1556         params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
1557         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1558                               1, params, val);
1559         adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
1560
1561         /* query tid-related parameters */
1562         params[0] = CXGBE_FW_PARAM_DEV(NTID);
1563         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1564                               params, val);
1565         if (ret < 0)
1566                 goto bye;
1567         adap->tids.ntids = val[0];
1568         adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1569
1570         /* If we're running on newer firmware, let it know that we're
1571          * prepared to deal with encapsulated CPL messages.  Older
1572          * firmware won't understand this and we'll just get
1573          * unencapsulated messages ...
1574          */
1575         params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1576         val[0] = 1;
1577         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1578
1579         /*
1580          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1581          * capability.  Earlier versions of the firmware didn't have the
1582          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1583          * permission to use ULPTX MEMWRITE DSGL.
1584          */
1585         if (is_t4(adap->params.chip)) {
1586                 adap->params.ulptx_memwrite_dsgl = false;
1587         } else {
1588                 params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1589                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1590                                       1, params, val);
1591                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1592         }
1593
1594         /* Query for max number of packets that can be coalesced for Tx */
1595         params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1596         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1597         if (!ret && val[0] > 0)
1598                 adap->params.max_tx_coalesce_num = val[0];
1599         else
1600                 adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1601
1602         params[0] = CXGBE_FW_PARAM_DEV(VI_ENABLE_INGRESS_AFTER_LINKUP);
1603         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1604         adap->params.vi_enable_rx = (ret == 0 && val[0] != 0);
1605
1606         /* Read the RAW MPS entries. In T6, the last 2 TCAM entries
1607          * are reserved for RAW MAC addresses (rawf = 2, one per port).
1608          */
1609         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
1610                 params[0] = CXGBE_FW_PARAM_PFVF(RAWF_START);
1611                 params[1] = CXGBE_FW_PARAM_PFVF(RAWF_END);
1612                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1613                                       params, val);
1614                 if (ret == 0) {
1615                         adap->params.rawf_start = val[0];
1616                         adap->params.rawf_size = val[1] - val[0] + 1;
1617                 }
1618         }
1619
1620         /*
1621          * The MTU/MSS Table is initialized by now, so load their values.  If
1622          * we're initializing the adapter, then we'll make any modifications
1623          * we want to the MTU/MSS Table and also initialize the congestion
1624          * parameters.
1625          */
1626         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1627         if (state != DEV_STATE_INIT) {
1628                 int i;
1629
1630                 /*
1631                  * The default MTU Table contains values 1492 and 1500.
1632                  * However, for TCP, it's better to have two values which are
1633                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1634                  * This allows us to have a TCP Data Payload which is a
1635                  * multiple of 8 regardless of what combination of TCP Options
1636                  * are in use (always a multiple of 4 bytes) which is
1637                  * important for performance reasons.  For instance, if no
1638                  * options are in use, then we have a 20-byte IP header and a
1639                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
1640                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1641                  * which is not a multiple of 8.  So using an MSS of 1488 in
1642                  * this case results in a TCP Data Payload of 1448 bytes which
1643                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1644                  * Stamps have been negotiated, then an MTU of 1500 bytes
1645                  * results in a TCP Data Payload of 1448 bytes which, as
1646                  * above, is a multiple of 8 bytes ...
1647                  */
1648                 for (i = 0; i < NMTUS; i++)
1649                         if (adap->params.mtus[i] == 1492) {
1650                                 adap->params.mtus[i] = 1488;
1651                                 break;
1652                         }
1653
1654                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1655                              adap->params.b_wnd);
1656         }
1657         t4_init_sge_params(adap);
1658         ret = configure_filter_mode_mask(adap);
1659         if (ret < 0)
1660                 goto bye;
1661         t4_init_tp_params(adap);
1662         configure_pcie_ext_tag(adap);
1663         configure_vlan_types(adap);
1664         cxgbe_configure_max_ethqsets(adap);
1665
1666         adap->params.drv_memwin = MEMWIN_NIC;
1667         adap->flags |= FW_OK;
1668         dev_debug(adap, "%s: returning zero..\n", __func__);
1669         return 0;
1670
1671         /*
1672          * Something bad happened.  If a command timed out or failed with EIO
1673          * FW does not operate within its spec or something catastrophic
1674          * happened to HW/FW, stop issuing commands.
1675          */
1676 bye:
1677         if (ret != -ETIMEDOUT && ret != -EIO)
1678                 t4_fw_bye(adap, adap->mbox);
1679         return ret;
1680 }
1681
1682 /**
1683  * t4_os_portmod_changed - handle port module changes
1684  * @adap: the adapter associated with the module change
1685  * @port_id: the port index whose module status has changed
1686  *
1687  * This is the OS-dependent handler for port module changes.  It is
1688  * invoked when a port module is removed or inserted for any OS-specific
1689  * processing.
1690  */
1691 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1692 {
1693         static const char * const mod_str[] = {
1694                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1695         };
1696
1697         const struct port_info *pi = adap2pinfo(adap, port_id);
1698
1699         if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NONE)
1700                 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1701         else if (pi->link_cfg.mod_type < ARRAY_SIZE(mod_str))
1702                 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1703                          mod_str[pi->link_cfg.mod_type]);
1704         else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1705                 dev_info(adap, "Port%d: unsupported port module inserted\n",
1706                          pi->port_id);
1707         else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1708                 dev_info(adap, "Port%d: unknown port module inserted\n",
1709                          pi->port_id);
1710         else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_ERROR)
1711                 dev_info(adap, "Port%d: transceiver module error\n",
1712                          pi->port_id);
1713         else
1714                 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1715                          pi->port_id, pi->link_cfg.mod_type);
1716 }
1717
1718 void t4_os_link_changed(struct adapter *adap, int port_id)
1719 {
1720         struct port_info *pi = adap2pinfo(adap, port_id);
1721
1722         /* If link status has not changed or if firmware doesn't
1723          * support enabling/disabling VI's Rx path during runtime,
1724          * then return.
1725          */
1726         if (adap->params.vi_enable_rx == 0 ||
1727             pi->vi_en_rx == pi->link_cfg.link_ok)
1728                 return;
1729
1730         /* Don't enable VI Rx path, if link has been administratively
1731          * turned off.
1732          */
1733         if (pi->vi_en_tx == 0 && pi->vi_en_rx == 0)
1734                 return;
1735
1736         /* When link goes down, disable the port's Rx path to drop
1737          * Rx traffic closer to the wire, instead of processing it
1738          * further in the Rx pipeline. The Rx path will be re-enabled
1739          * once the link up message comes in firmware event queue.
1740          */
1741         pi->vi_en_rx = pi->link_cfg.link_ok;
1742         t4_enable_vi(adap, adap->mbox, pi->viid, pi->vi_en_rx, pi->vi_en_tx);
1743 }
1744
1745 bool cxgbe_force_linkup(struct adapter *adap)
1746 {
1747         if (is_pf4(adap))
1748                 return false;   /* force_linkup not required for pf driver */
1749
1750         return adap->devargs.force_link_up;
1751 }
1752
1753 /**
1754  * link_start - enable a port
1755  * @dev: the port to enable
1756  *
1757  * Performs the MAC and PHY actions needed to enable a port.
1758  */
1759 int cxgbe_link_start(struct port_info *pi)
1760 {
1761         struct adapter *adapter = pi->adapter;
1762         u64 conf_offloads;
1763         unsigned int mtu;
1764         int ret;
1765
1766         mtu = pi->eth_dev->data->mtu;
1767
1768         conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1769
1770         /*
1771          * We do not set address filters and promiscuity here, the stack does
1772          * that step explicitly.
1773          */
1774         ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1775                             !!(conf_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP),
1776                             true);
1777         if (ret == 0) {
1778                 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1779                                 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1780                 if (ret >= 0) {
1781                         pi->xact_addr_filt = ret;
1782                         ret = 0;
1783                 }
1784         }
1785         if (ret == 0 && is_pf4(adapter))
1786                 ret = t4_link_l1cfg(pi, pi->link_cfg.admin_caps);
1787         if (ret == 0) {
1788                 /* Disable VI Rx until link up message is received in
1789                  * firmware event queue, if firmware supports enabling/
1790                  * disabling VI Rx at runtime.
1791                  */
1792                 pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : 1;
1793                 pi->vi_en_tx = 1;
1794                 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1795                                           pi->vi_en_rx, pi->vi_en_tx, false);
1796         }
1797
1798         if (ret == 0 && cxgbe_force_linkup(adapter))
1799                 pi->eth_dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
1800         return ret;
1801 }
1802
1803 /**
1804  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1805  * @pi: the port
1806  * @rss_hf: Hash configuration to apply
1807  */
1808 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1809 {
1810         struct adapter *adapter = pi->adapter;
1811         const struct sge_eth_rxq *rxq;
1812         u64 flags = 0;
1813         u16 rss;
1814         int err;
1815
1816         /*  Should never be called before setting up sge eth rx queues */
1817         if (!(adapter->flags & FULL_INIT_DONE)) {
1818                 dev_err(adap, "%s No RXQs available on port %d\n",
1819                         __func__, pi->port_id);
1820                 return -EINVAL;
1821         }
1822
1823         /* Don't allow unsupported hash functions */
1824         if (rss_hf & ~CXGBE_RSS_HF_ALL)
1825                 return -EINVAL;
1826
1827         if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1828                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1829
1830         if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
1831                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1832
1833         if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
1834                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1835                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1836
1837         if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1838                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1839
1840         if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1841                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1842                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1843
1844         if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1845                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1846                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1847                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1848
1849         rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1850         rss = rxq[0].rspq.abs_id;
1851
1852         /* If Tunnel All Lookup isn't specified in the global RSS
1853          * Configuration, then we need to specify a default Ingress
1854          * Queue for any ingress packets which aren't hashed.  We'll
1855          * use our first ingress queue ...
1856          */
1857         err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1858                                flags, rss);
1859         return err;
1860 }
1861
1862 /**
1863  * cxgbe_write_rss - write the RSS table for a given port
1864  * @pi: the port
1865  * @queues: array of queue indices for RSS
1866  *
1867  * Sets up the portion of the HW RSS table for the port's VI to distribute
1868  * packets to the Rx queues in @queues.
1869  */
1870 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1871 {
1872         u16 *rss;
1873         int i, err;
1874         struct adapter *adapter = pi->adapter;
1875         const struct sge_eth_rxq *rxq;
1876
1877         /*  Should never be called before setting up sge eth rx queues */
1878         BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1879
1880         rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1881         rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1882         if (!rss)
1883                 return -ENOMEM;
1884
1885         /* map the queue indices to queue ids */
1886         for (i = 0; i < pi->rss_size; i++, queues++)
1887                 rss[i] = rxq[*queues].rspq.abs_id;
1888
1889         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1890                                   pi->rss_size, rss, pi->rss_size);
1891         rte_free(rss);
1892         return err;
1893 }
1894
1895 /**
1896  * setup_rss - configure RSS
1897  * @adapter: the adapter
1898  *
1899  * Sets up RSS to distribute packets to multiple receive queues.  We
1900  * configure the RSS CPU lookup table to distribute to the number of HW
1901  * receive queues, and the response queue lookup table to narrow that
1902  * down to the response queues actually configured for each port.
1903  * We always configure the RSS mapping for all ports since the mapping
1904  * table has plenty of entries.
1905  */
1906 int cxgbe_setup_rss(struct port_info *pi)
1907 {
1908         int j, err;
1909         struct adapter *adapter = pi->adapter;
1910
1911         dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1912                   __func__, pi->rss_size, pi->n_rx_qsets);
1913
1914         if (!(pi->flags & PORT_RSS_DONE)) {
1915                 if (adapter->flags & FULL_INIT_DONE) {
1916                         /* Fill default values with equal distribution */
1917                         for (j = 0; j < pi->rss_size; j++)
1918                                 pi->rss[j] = j % pi->n_rx_qsets;
1919
1920                         err = cxgbe_write_rss(pi, pi->rss);
1921                         if (err)
1922                                 return err;
1923
1924                         err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1925                         if (err)
1926                                 return err;
1927                         pi->flags |= PORT_RSS_DONE;
1928                 }
1929         }
1930         return 0;
1931 }
1932
1933 /*
1934  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1935  */
1936 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1937 {
1938         /* 0-increment GTS to start the timer and enable interrupts */
1939         t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1940                                           T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1941                      V_SEINTARM(q->intr_params) |
1942                      V_INGRESSQID(q->cntxt_id));
1943 }
1944
1945 void cxgbe_enable_rx_queues(struct port_info *pi)
1946 {
1947         struct adapter *adap = pi->adapter;
1948         struct sge *s = &adap->sge;
1949         unsigned int i;
1950
1951         for (i = 0; i < pi->n_rx_qsets; i++)
1952                 enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
1953 }
1954
1955 /**
1956  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1957  * @port_type: Firmware Port Type
1958  * @fw_caps: Firmware Port Capabilities
1959  * @speed_caps: Device Info Speed Capabilities
1960  *
1961  * Translate a Firmware Port Capabilities specification to Device Info
1962  * Speed Capabilities.
1963  */
1964 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1965                                   unsigned int fw_caps,
1966                                   u32 *speed_caps)
1967 {
1968 #define SET_SPEED(__speed_name) \
1969         do { \
1970                 *speed_caps |= RTE_ETH_LINK_ ## __speed_name; \
1971         } while (0)
1972
1973 #define FW_CAPS_TO_SPEED(__fw_name) \
1974         do { \
1975                 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1976                         SET_SPEED(__fw_name); \
1977         } while (0)
1978
1979         switch (port_type) {
1980         case FW_PORT_TYPE_BT_SGMII:
1981         case FW_PORT_TYPE_BT_XFI:
1982         case FW_PORT_TYPE_BT_XAUI:
1983                 FW_CAPS_TO_SPEED(SPEED_100M);
1984                 FW_CAPS_TO_SPEED(SPEED_1G);
1985                 FW_CAPS_TO_SPEED(SPEED_10G);
1986                 break;
1987
1988         case FW_PORT_TYPE_KX4:
1989         case FW_PORT_TYPE_KX:
1990         case FW_PORT_TYPE_FIBER_XFI:
1991         case FW_PORT_TYPE_FIBER_XAUI:
1992         case FW_PORT_TYPE_SFP:
1993         case FW_PORT_TYPE_QSFP_10G:
1994         case FW_PORT_TYPE_QSA:
1995                 FW_CAPS_TO_SPEED(SPEED_1G);
1996                 FW_CAPS_TO_SPEED(SPEED_10G);
1997                 break;
1998
1999         case FW_PORT_TYPE_KR:
2000                 SET_SPEED(SPEED_10G);
2001                 break;
2002
2003         case FW_PORT_TYPE_BP_AP:
2004         case FW_PORT_TYPE_BP4_AP:
2005                 SET_SPEED(SPEED_1G);
2006                 SET_SPEED(SPEED_10G);
2007                 break;
2008
2009         case FW_PORT_TYPE_BP40_BA:
2010         case FW_PORT_TYPE_QSFP:
2011                 SET_SPEED(SPEED_40G);
2012                 break;
2013
2014         case FW_PORT_TYPE_CR_QSFP:
2015         case FW_PORT_TYPE_SFP28:
2016         case FW_PORT_TYPE_KR_SFP28:
2017                 FW_CAPS_TO_SPEED(SPEED_1G);
2018                 FW_CAPS_TO_SPEED(SPEED_10G);
2019                 FW_CAPS_TO_SPEED(SPEED_25G);
2020                 break;
2021
2022         case FW_PORT_TYPE_CR2_QSFP:
2023                 SET_SPEED(SPEED_50G);
2024                 break;
2025
2026         case FW_PORT_TYPE_KR4_100G:
2027         case FW_PORT_TYPE_CR4_QSFP:
2028                 FW_CAPS_TO_SPEED(SPEED_25G);
2029                 FW_CAPS_TO_SPEED(SPEED_40G);
2030                 FW_CAPS_TO_SPEED(SPEED_50G);
2031                 FW_CAPS_TO_SPEED(SPEED_100G);
2032                 break;
2033
2034         default:
2035                 break;
2036         }
2037
2038 #undef FW_CAPS_TO_SPEED
2039 #undef SET_SPEED
2040 }
2041
2042 /**
2043  * cxgbe_get_speed_caps - Fetch supported speed capabilities
2044  * @pi: Underlying port's info
2045  * @speed_caps: Device Info speed capabilities
2046  *
2047  * Fetch supported speed capabilities of the underlying port.
2048  */
2049 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
2050 {
2051         *speed_caps = 0;
2052
2053         fw_caps_to_speed_caps(pi->link_cfg.port_type, pi->link_cfg.pcaps,
2054                               speed_caps);
2055
2056         if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
2057                 *speed_caps |= RTE_ETH_LINK_SPEED_FIXED;
2058 }
2059
2060 /**
2061  * cxgbe_set_link_status - Set device link up or down.
2062  * @pi: Underlying port's info
2063  * @status: 0 - down, 1 - up
2064  *
2065  * Set the device link up or down.
2066  */
2067 int cxgbe_set_link_status(struct port_info *pi, bool status)
2068 {
2069         struct adapter *adapter = pi->adapter;
2070         int err = 0;
2071
2072         /* Wait for link up message from firmware to enable Rx path,
2073          * if firmware supports enabling/disabling VI Rx at runtime.
2074          */
2075         pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : status;
2076         pi->vi_en_tx = status;
2077         err = t4_enable_vi(adapter, adapter->mbox, pi->viid, pi->vi_en_rx,
2078                            pi->vi_en_tx);
2079         if (err) {
2080                 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
2081                 return err;
2082         }
2083
2084         if (!status)
2085                 t4_reset_link_config(adapter, pi->pidx);
2086
2087         return 0;
2088 }
2089
2090 /**
2091  * cxgb_up - enable the adapter
2092  * @adap: adapter being enabled
2093  *
2094  * Called when the first port is enabled, this function performs the
2095  * actions necessary to make an adapter operational, such as completing
2096  * the initialization of HW modules, and enabling interrupts.
2097  */
2098 int cxgbe_up(struct adapter *adap)
2099 {
2100         enable_rx(adap, &adap->sge.fw_evtq);
2101         t4_sge_tx_monitor_start(adap);
2102         if (is_pf4(adap))
2103                 t4_intr_enable(adap);
2104         adap->flags |= FULL_INIT_DONE;
2105
2106         /* TODO: deadman watchdog ?? */
2107         return 0;
2108 }
2109
2110 /*
2111  * Close the port
2112  */
2113 int cxgbe_down(struct port_info *pi)
2114 {
2115         return cxgbe_set_link_status(pi, false);
2116 }
2117
2118 /*
2119  * Release resources when all the ports have been stopped.
2120  */
2121 void cxgbe_close(struct adapter *adapter)
2122 {
2123         if (adapter->flags & FULL_INIT_DONE) {
2124                 tid_free(&adapter->tids);
2125                 t4_cleanup_mpstcam(adapter);
2126                 t4_cleanup_clip_tbl(adapter);
2127                 t4_cleanup_l2t(adapter);
2128                 t4_cleanup_smt(adapter);
2129                 if (is_pf4(adapter))
2130                         t4_intr_disable(adapter);
2131                 t4_sge_tx_monitor_stop(adapter);
2132                 t4_free_sge_resources(adapter);
2133                 adapter->flags &= ~FULL_INIT_DONE;
2134         }
2135
2136         cxgbe_cfg_queues_free(adapter);
2137
2138         if (is_pf4(adapter) && (adapter->flags & FW_OK))
2139                 t4_fw_bye(adapter, adapter->mbox);
2140 }
2141
2142 static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
2143                            u32 *smt_size)
2144 {
2145         u32 params[2], smt_val[2];
2146         int ret;
2147
2148         params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
2149         params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
2150
2151         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2152                               2, params, smt_val);
2153
2154         /* if FW doesn't recognize this command then set it to default setting
2155          * which is start index as 0 and size as 256.
2156          */
2157         if (ret < 0) {
2158                 *smt_start_idx = 0;
2159                 *smt_size = SMT_SIZE;
2160         } else {
2161                 *smt_start_idx = smt_val[0];
2162                 /* smt size can be zero, if nsmt is not yet configured in
2163                  * the config file or set as zero, then configure all the
2164                  * remaining entries to this PF itself.
2165                  */
2166                 if (!smt_val[1])
2167                         *smt_size = SMT_SIZE - *smt_start_idx;
2168                 else
2169                         *smt_size = smt_val[1];
2170         }
2171 }
2172
2173 int cxgbe_probe(struct adapter *adapter)
2174 {
2175         u32 smt_start_idx, smt_size;
2176         struct port_info *pi;
2177         int func, i;
2178         int err = 0;
2179         u32 whoami;
2180         int chip;
2181
2182         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2183         chip = t4_get_chip_type(adapter,
2184                         CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
2185         if (chip < 0)
2186                 return chip;
2187
2188         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
2189                G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2190
2191         adapter->mbox = func;
2192         adapter->pf = func;
2193
2194         t4_os_lock_init(&adapter->mbox_lock);
2195         TAILQ_INIT(&adapter->mbox_list);
2196         t4_os_lock_init(&adapter->win0_lock);
2197
2198         err = t4_prep_adapter(adapter);
2199         if (err)
2200                 return err;
2201
2202         setup_memwin(adapter);
2203         err = adap_init0(adapter);
2204         if (err) {
2205                 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
2206                         __func__, err);
2207                 goto out_free;
2208         }
2209
2210         if (!is_t4(adapter->params.chip)) {
2211                 /*
2212                  * The userspace doorbell BAR is split evenly into doorbell
2213                  * regions, each associated with an egress queue.  If this
2214                  * per-queue region is large enough (at least UDBS_SEG_SIZE)
2215                  * then it can be used to submit a tx work request with an
2216                  * implied doorbell.  Enable write combining on the BAR if
2217                  * there is room for such work requests.
2218                  */
2219                 int s_qpp, qpp, num_seg;
2220
2221                 s_qpp = (S_QUEUESPERPAGEPF0 +
2222                         (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
2223                         adapter->pf);
2224                 qpp = 1 << ((t4_read_reg(adapter,
2225                                 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
2226                                 & M_QUEUESPERPAGEPF0);
2227                 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
2228                 if (qpp > num_seg)
2229                         dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
2230
2231                 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
2232                 if (!adapter->bar2) {
2233                         dev_err(adapter, "cannot map device bar2 region\n");
2234                         err = -ENOMEM;
2235                         goto out_free;
2236                 }
2237                 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
2238                              V_STATMODE(0));
2239         }
2240
2241         for_each_port(adapter, i) {
2242                 const unsigned int numa_node = rte_socket_id();
2243                 char name[RTE_ETH_NAME_MAX_LEN];
2244                 struct rte_eth_dev *eth_dev;
2245
2246                 snprintf(name, sizeof(name), "%s_%d",
2247                          adapter->pdev->device.name, i);
2248
2249                 if (i == 0) {
2250                         /* First port is already allocated by DPDK */
2251                         eth_dev = adapter->eth_dev;
2252                         goto allocate_mac;
2253                 }
2254
2255                 /*
2256                  * now do all data allocation - for eth_dev structure,
2257                  * and internal (private) data for the remaining ports
2258                  */
2259
2260                 /* reserve an ethdev entry */
2261                 eth_dev = rte_eth_dev_allocate(name);
2262                 if (!eth_dev)
2263                         goto out_free;
2264
2265                 eth_dev->data->dev_private =
2266                         rte_zmalloc_socket(name, sizeof(struct port_info),
2267                                            RTE_CACHE_LINE_SIZE, numa_node);
2268                 if (!eth_dev->data->dev_private)
2269                         goto out_free;
2270
2271 allocate_mac:
2272                 pi = eth_dev->data->dev_private;
2273                 adapter->port[i] = pi;
2274                 pi->eth_dev = eth_dev;
2275                 pi->adapter = adapter;
2276                 pi->xact_addr_filt = -1;
2277                 pi->port_id = i;
2278                 pi->pidx = i;
2279
2280                 pi->eth_dev->device = &adapter->pdev->device;
2281                 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
2282                 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
2283                 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
2284
2285                 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
2286
2287                 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
2288                                                         RTE_ETHER_ADDR_LEN, 0);
2289                 if (!pi->eth_dev->data->mac_addrs) {
2290                         dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
2291                                 __func__);
2292                         err = -1;
2293                         goto out_free;
2294                 }
2295
2296                 if (i > 0) {
2297                         /* First port will be notified by upper layer */
2298                         rte_eth_dev_probing_finish(eth_dev);
2299                 }
2300         }
2301
2302         if (adapter->flags & FW_OK) {
2303                 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
2304                 if (err) {
2305                         dev_err(adapter, "%s: t4_port_init failed with err %d\n",
2306                                 __func__, err);
2307                         goto out_free;
2308                 }
2309         }
2310
2311         err = cxgbe_cfg_queues(adapter->eth_dev);
2312         if (err)
2313                 goto out_free;
2314
2315         cxgbe_print_adapter_info(adapter);
2316         cxgbe_print_port_info(adapter);
2317
2318         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
2319                                           adapter->clipt_end);
2320         if (!adapter->clipt) {
2321                 /* We tolerate a lack of clip_table, giving up some
2322                  * functionality
2323                  */
2324                 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
2325         }
2326
2327         adap_smt_index(adapter, &smt_start_idx, &smt_size);
2328         adapter->smt = t4_init_smt(smt_start_idx, smt_size);
2329         if (!adapter->smt)
2330                 dev_warn(adapter, "could not allocate SMT, continuing\n");
2331
2332         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
2333         if (!adapter->l2t) {
2334                 /* We tolerate a lack of L2T, giving up some functionality */
2335                 dev_warn(adapter, "could not allocate L2T. Continuing\n");
2336         }
2337
2338         if (tid_init(&adapter->tids) < 0) {
2339                 /* Disable filtering support */
2340                 dev_warn(adapter, "could not allocate TID table, "
2341                          "filter support disabled. Continuing\n");
2342         }
2343
2344         t4_os_lock_init(&adapter->flow_lock);
2345
2346         adapter->mpstcam = t4_init_mpstcam(adapter);
2347         if (!adapter->mpstcam)
2348                 dev_warn(adapter, "could not allocate mps tcam table."
2349                          " Continuing\n");
2350
2351         if (is_hashfilter(adapter)) {
2352                 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
2353                         u32 hash_base, hash_reg;
2354
2355                         hash_reg = A_LE_DB_TID_HASHBASE;
2356                         hash_base = t4_read_reg(adapter, hash_reg);
2357                         adapter->tids.hash_base = hash_base / 4;
2358                 }
2359         } else {
2360                 /* Disable hash filtering support */
2361                 dev_warn(adapter,
2362                          "Maskless filter support disabled. Continuing\n");
2363         }
2364
2365         err = cxgbe_init_rss(adapter);
2366         if (err)
2367                 goto out_free;
2368
2369         return 0;
2370
2371 out_free:
2372         cxgbe_cfg_queues_free(adapter);
2373
2374         for_each_port(adapter, i) {
2375                 pi = adap2pinfo(adapter, i);
2376                 if (pi->viid != 0)
2377                         t4_free_vi(adapter, adapter->mbox, adapter->pf,
2378                                    0, pi->viid);
2379                 rte_eth_dev_release_port(pi->eth_dev);
2380         }
2381
2382         if (adapter->flags & FW_OK)
2383                 t4_fw_bye(adapter, adapter->mbox);
2384         return -err;
2385 }