net/bnxt: fix RSS table sizes
[dpdk.git] / drivers / net / cxgbe / cxgbe_main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 #include "clip_tbl.h"
41 #include "l2t.h"
42 #include "mps_tcam.h"
43
44 /**
45  * Allocate a chunk of memory. The allocated memory is cleared.
46  */
47 void *t4_alloc_mem(size_t size)
48 {
49         return rte_zmalloc(NULL, size, 0);
50 }
51
52 /**
53  * Free memory allocated through t4_alloc_mem().
54  */
55 void t4_free_mem(void *addr)
56 {
57         rte_free(addr);
58 }
59
60 /*
61  * Response queue handler for the FW event queue.
62  */
63 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
64                           __rte_unused const struct pkt_gl *gl)
65 {
66         u8 opcode = ((const struct rss_header *)rsp)->opcode;
67
68         rsp++;                                          /* skip RSS header */
69
70         /*
71          * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
72          */
73         if (unlikely(opcode == CPL_FW4_MSG &&
74                      ((const struct cpl_fw4_msg *)rsp)->type ==
75                       FW_TYPE_RSSCPL)) {
76                 rsp++;
77                 opcode = ((const struct rss_header *)rsp)->opcode;
78                 rsp++;
79                 if (opcode != CPL_SGE_EGR_UPDATE) {
80                         dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
81                                 opcode);
82                         goto out;
83                 }
84         }
85
86         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
87                 /* do nothing */
88         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
89                 const struct cpl_fw6_msg *msg = (const void *)rsp;
90
91                 t4_handle_fw_rpl(q->adapter, msg->data);
92         } else if (opcode == CPL_ABORT_RPL_RSS) {
93                 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
94
95                 hash_del_filter_rpl(q->adapter, p);
96         } else if (opcode == CPL_SET_TCB_RPL) {
97                 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
98
99                 filter_rpl(q->adapter, p);
100         } else if (opcode == CPL_ACT_OPEN_RPL) {
101                 const struct cpl_act_open_rpl *p = (const void *)rsp;
102
103                 hash_filter_rpl(q->adapter, p);
104         } else if (opcode == CPL_L2T_WRITE_RPL) {
105                 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
106
107                 do_l2t_write_rpl(q->adapter, p);
108         } else {
109                 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
110                         opcode);
111         }
112 out:
113         return 0;
114 }
115
116 /**
117  * Setup sge control queues to pass control information.
118  */
119 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
120 {
121         struct sge *s = &adapter->sge;
122         int err = 0, i = 0;
123
124         for_each_port(adapter, i) {
125                 struct port_info *pi = adap2pinfo(adapter, i);
126                 char name[RTE_ETH_NAME_MAX_LEN];
127                 struct sge_ctrl_txq *q = &s->ctrlq[i];
128
129                 q->q.size = 1024;
130                 err = t4_sge_alloc_ctrl_txq(adapter, q,
131                                             adapter->eth_dev,  i,
132                                             s->fw_evtq.cntxt_id,
133                                             rte_socket_id());
134                 if (err) {
135                         dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
136                                 err);
137                         goto out;
138                 }
139                 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
140                          pi->eth_dev->device->driver->name,
141                          pi->eth_dev->data->port_id);
142                 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
143                                                      RTE_CACHE_LINE_SIZE,
144                                                      RTE_MBUF_PRIV_ALIGN,
145                                                      RTE_MBUF_DEFAULT_BUF_SIZE,
146                                                      SOCKET_ID_ANY);
147                 if (!q->mb_pool) {
148                         err = -rte_errno;
149                         dev_err(adapter,
150                                 "Can't create ctrl pool for port %d. Err: %d\n",
151                                 pi->eth_dev->data->port_id, err);
152                         goto out;
153                 }
154         }
155         return 0;
156 out:
157         t4_free_sge_resources(adapter);
158         return err;
159 }
160
161 /**
162  * cxgbe_poll_for_completion: Poll rxq for completion
163  * @q: rxq to poll
164  * @ms: milliseconds to delay
165  * @cnt: number of times to poll
166  * @c: completion to check for 'done' status
167  *
168  * Polls the rxq for reples until completion is done or the count
169  * expires.
170  */
171 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
172                               unsigned int cnt, struct t4_completion *c)
173 {
174         unsigned int i;
175         unsigned int work_done, budget = 32;
176
177         if (!c)
178                 return -EINVAL;
179
180         for (i = 0; i < cnt; i++) {
181                 cxgbe_poll(q, NULL, budget, &work_done);
182                 t4_os_lock(&c->lock);
183                 if (c->done) {
184                         t4_os_unlock(&c->lock);
185                         return 0;
186                 }
187                 t4_os_unlock(&c->lock);
188                 rte_delay_ms(ms);
189         }
190         return -ETIMEDOUT;
191 }
192
193 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
194 {
195         struct sge *s = &adapter->sge;
196         int err = 0;
197         int msi_idx = 0;
198
199         err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
200                                msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
201                                rte_socket_id());
202         return err;
203 }
204
205 static int closest_timer(const struct sge *s, int time)
206 {
207         unsigned int i, match = 0;
208         int delta, min_delta = INT_MAX;
209
210         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
211                 delta = time - s->timer_val[i];
212                 if (delta < 0)
213                         delta = -delta;
214                 if (delta < min_delta) {
215                         min_delta = delta;
216                         match = i;
217                 }
218         }
219         return match;
220 }
221
222 static int closest_thres(const struct sge *s, int thres)
223 {
224         unsigned int i, match = 0;
225         int delta, min_delta = INT_MAX;
226
227         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
228                 delta = thres - s->counter_val[i];
229                 if (delta < 0)
230                         delta = -delta;
231                 if (delta < min_delta) {
232                         min_delta = delta;
233                         match = i;
234                 }
235         }
236         return match;
237 }
238
239 /**
240  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
241  * @q: the Rx queue
242  * @us: the hold-off time in us, or 0 to disable timer
243  * @cnt: the hold-off packet count, or 0 to disable counter
244  *
245  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
246  * one of the two needs to be enabled for the queue to generate interrupts.
247  */
248 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
249                                unsigned int cnt)
250 {
251         struct adapter *adap = q->adapter;
252         unsigned int timer_val;
253
254         if (cnt) {
255                 int err;
256                 u32 v, new_idx;
257
258                 new_idx = closest_thres(&adap->sge, cnt);
259                 if (q->desc && q->pktcnt_idx != new_idx) {
260                         /* the queue has already been created, update it */
261                         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
262                             V_FW_PARAMS_PARAM_X(
263                             FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
264                             V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
265                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
266                                             &v, &new_idx);
267                         if (err)
268                                 return err;
269                 }
270                 q->pktcnt_idx = new_idx;
271         }
272
273         timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
274                                 closest_timer(&adap->sge, us);
275
276         if ((us | cnt) == 0)
277                 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
278         else
279                 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
280                                  V_QINTR_CNT_EN(cnt > 0);
281         return 0;
282 }
283
284 /**
285  * Allocate an active-open TID and set it to the supplied value.
286  */
287 int cxgbe_alloc_atid(struct tid_info *t, void *data)
288 {
289         int atid = -1;
290
291         t4_os_lock(&t->atid_lock);
292         if (t->afree) {
293                 union aopen_entry *p = t->afree;
294
295                 atid = p - t->atid_tab;
296                 t->afree = p->next;
297                 p->data = data;
298                 t->atids_in_use++;
299         }
300         t4_os_unlock(&t->atid_lock);
301         return atid;
302 }
303
304 /**
305  * Release an active-open TID.
306  */
307 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
308 {
309         union aopen_entry *p = &t->atid_tab[atid];
310
311         t4_os_lock(&t->atid_lock);
312         p->next = t->afree;
313         t->afree = p;
314         t->atids_in_use--;
315         t4_os_unlock(&t->atid_lock);
316 }
317
318 /**
319  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
320  */
321 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
322 {
323         struct cpl_tid_release *req;
324
325         req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
326         INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
327 }
328
329 /**
330  * Release a TID and inform HW.  If we are unable to allocate the release
331  * message we defer to a work queue.
332  */
333 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
334                       unsigned short family)
335 {
336         struct rte_mbuf *mbuf;
337         struct adapter *adap = container_of(t, struct adapter, tids);
338
339         WARN_ON(tid >= t->ntids);
340
341         if (t->tid_tab[tid]) {
342                 t->tid_tab[tid] = NULL;
343                 rte_atomic32_dec(&t->conns_in_use);
344                 if (t->hash_base && tid >= t->hash_base) {
345                         if (family == FILTER_TYPE_IPV4)
346                                 rte_atomic32_dec(&t->hash_tids_in_use);
347                 } else {
348                         if (family == FILTER_TYPE_IPV4)
349                                 rte_atomic32_dec(&t->tids_in_use);
350                 }
351         }
352
353         mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
354         if (mbuf) {
355                 mbuf->data_len = sizeof(struct cpl_tid_release);
356                 mbuf->pkt_len = mbuf->data_len;
357                 mk_tid_release(mbuf, tid);
358                 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
359         }
360 }
361
362 /**
363  * Insert a TID.
364  */
365 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
366                       unsigned short family)
367 {
368         t->tid_tab[tid] = data;
369         if (t->hash_base && tid >= t->hash_base) {
370                 if (family == FILTER_TYPE_IPV4)
371                         rte_atomic32_inc(&t->hash_tids_in_use);
372         } else {
373                 if (family == FILTER_TYPE_IPV4)
374                         rte_atomic32_inc(&t->tids_in_use);
375         }
376
377         rte_atomic32_inc(&t->conns_in_use);
378 }
379
380 /**
381  * Free TID tables.
382  */
383 static void tid_free(struct tid_info *t)
384 {
385         if (t->tid_tab) {
386                 if (t->ftid_bmap)
387                         rte_bitmap_free(t->ftid_bmap);
388
389                 if (t->ftid_bmap_array)
390                         t4_os_free(t->ftid_bmap_array);
391
392                 t4_os_free(t->tid_tab);
393         }
394
395         memset(t, 0, sizeof(struct tid_info));
396 }
397
398 /**
399  * Allocate and initialize the TID tables.  Returns 0 on success.
400  */
401 static int tid_init(struct tid_info *t)
402 {
403         size_t size;
404         unsigned int ftid_bmap_size;
405         unsigned int natids = t->natids;
406         unsigned int max_ftids = t->nftids;
407
408         ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
409         size = t->ntids * sizeof(*t->tid_tab) +
410                 max_ftids * sizeof(*t->ftid_tab) +
411                 natids * sizeof(*t->atid_tab);
412
413         t->tid_tab = t4_os_alloc(size);
414         if (!t->tid_tab)
415                 return -ENOMEM;
416
417         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
418         t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
419         t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
420         if (!t->ftid_bmap_array) {
421                 tid_free(t);
422                 return -ENOMEM;
423         }
424
425         t4_os_lock_init(&t->atid_lock);
426         t4_os_lock_init(&t->ftid_lock);
427
428         t->afree = NULL;
429         t->atids_in_use = 0;
430         rte_atomic32_init(&t->tids_in_use);
431         rte_atomic32_set(&t->tids_in_use, 0);
432         rte_atomic32_init(&t->conns_in_use);
433         rte_atomic32_set(&t->conns_in_use, 0);
434
435         /* Setup the free list for atid_tab and clear the stid bitmap. */
436         if (natids) {
437                 while (--natids)
438                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
439                 t->afree = t->atid_tab;
440         }
441
442         t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
443                                        ftid_bmap_size);
444         if (!t->ftid_bmap) {
445                 tid_free(t);
446                 return -ENOMEM;
447         }
448
449         return 0;
450 }
451
452 static inline bool is_x_1g_port(const struct link_config *lc)
453 {
454         return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
455 }
456
457 static inline bool is_x_10g_port(const struct link_config *lc)
458 {
459         unsigned int speeds, high_speeds;
460
461         speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
462         high_speeds = speeds &
463                       ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
464
465         return high_speeds != 0;
466 }
467
468 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
469                       unsigned int us, unsigned int cnt,
470                       unsigned int size, unsigned int iqe_size)
471 {
472         q->adapter = adap;
473         cxgb4_set_rspq_intr_params(q, us, cnt);
474         q->iqe_len = iqe_size;
475         q->size = size;
476 }
477
478 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
479 {
480         struct port_info *pi = eth_dev->data->dev_private;
481         struct adapter *adap = pi->adapter;
482         struct sge *s = &adap->sge;
483         unsigned int max_queues = s->max_ethqsets / adap->params.nports;
484
485         if ((eth_dev->data->nb_rx_queues < 1) ||
486             (eth_dev->data->nb_tx_queues < 1))
487                 return -EINVAL;
488
489         if ((eth_dev->data->nb_rx_queues > max_queues) ||
490             (eth_dev->data->nb_tx_queues > max_queues))
491                 return -EINVAL;
492
493         if (eth_dev->data->nb_rx_queues > pi->rss_size)
494                 return -EINVAL;
495
496         /* We must configure RSS, since config has changed*/
497         pi->flags &= ~PORT_RSS_DONE;
498
499         pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
500         pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
501
502         return 0;
503 }
504
505 void cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
506 {
507         struct port_info *pi = eth_dev->data->dev_private;
508         struct adapter *adap = pi->adapter;
509         struct sge *s = &adap->sge;
510         unsigned int i, nb_ports = 0, qidx = 0;
511         unsigned int q_per_port = 0;
512
513         if (!(adap->flags & CFG_QUEUES)) {
514                 for_each_port(adap, i) {
515                         struct port_info *tpi = adap2pinfo(adap, i);
516
517                         nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
518                                      is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
519                 }
520
521                 /*
522                  * We default up to # of cores queues per 1G/10G port.
523                  */
524                 if (nb_ports)
525                         q_per_port = (s->max_ethqsets -
526                                      (adap->params.nports - nb_ports)) /
527                                      nb_ports;
528
529                 if (q_per_port > rte_lcore_count())
530                         q_per_port = rte_lcore_count();
531
532                 for_each_port(adap, i) {
533                         struct port_info *pi = adap2pinfo(adap, i);
534
535                         pi->first_qset = qidx;
536
537                         /* Initially n_rx_qsets == n_tx_qsets */
538                         pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
539                                           is_x_1g_port(&pi->link_cfg)) ?
540                                           q_per_port : 1;
541                         pi->n_tx_qsets = pi->n_rx_qsets;
542
543                         if (pi->n_rx_qsets > pi->rss_size)
544                                 pi->n_rx_qsets = pi->rss_size;
545
546                         qidx += pi->n_rx_qsets;
547                 }
548
549                 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
550                         struct sge_eth_rxq *r = &s->ethrxq[i];
551
552                         init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
553                         r->usembufs = 1;
554                         r->fl.size = (r->usembufs ? 1024 : 72);
555                 }
556
557                 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
558                         s->ethtxq[i].q.size = 1024;
559
560                 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
561                 adap->flags |= CFG_QUEUES;
562         }
563 }
564
565 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
566 {
567         t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
568                                  &pi->stats_base);
569 }
570
571 void cxgbe_stats_reset(struct port_info *pi)
572 {
573         t4_clr_port_stats(pi->adapter, pi->tx_chan);
574 }
575
576 static void setup_memwin(struct adapter *adap)
577 {
578         u32 mem_win0_base;
579
580         /* For T5, only relative offset inside the PCIe BAR is passed */
581         mem_win0_base = MEMWIN0_BASE;
582
583         /*
584          * Set up memory window for accessing adapter memory ranges.  (Read
585          * back MA register to ensure that changes propagate before we attempt
586          * to use the new values.)
587          */
588         t4_write_reg(adap,
589                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
590                                          MEMWIN_NIC),
591                      mem_win0_base | V_BIR(0) |
592                      V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
593         t4_read_reg(adap,
594                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
595                                         MEMWIN_NIC));
596 }
597
598 int cxgbe_init_rss(struct adapter *adap)
599 {
600         unsigned int i;
601
602         if (is_pf4(adap)) {
603                 int err;
604
605                 err = t4_init_rss_mode(adap, adap->mbox);
606                 if (err)
607                         return err;
608         }
609
610         for_each_port(adap, i) {
611                 struct port_info *pi = adap2pinfo(adap, i);
612
613                 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
614                 if (!pi->rss)
615                         return -ENOMEM;
616
617                 pi->rss_hf = CXGBE_RSS_HF_ALL;
618         }
619         return 0;
620 }
621
622 /**
623  * Dump basic information about the adapter.
624  */
625 void cxgbe_print_adapter_info(struct adapter *adap)
626 {
627         /**
628          * Hardware/Firmware/etc. Version/Revision IDs.
629          */
630         t4_dump_version_info(adap);
631 }
632
633 void cxgbe_print_port_info(struct adapter *adap)
634 {
635         int i;
636         char buf[80];
637         struct rte_pci_addr *loc = &adap->pdev->addr;
638
639         for_each_port(adap, i) {
640                 const struct port_info *pi = adap2pinfo(adap, i);
641                 char *bufp = buf;
642
643                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
644                         bufp += sprintf(bufp, "100M/");
645                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
646                         bufp += sprintf(bufp, "1G/");
647                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
648                         bufp += sprintf(bufp, "10G/");
649                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
650                         bufp += sprintf(bufp, "25G/");
651                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
652                         bufp += sprintf(bufp, "40G/");
653                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
654                         bufp += sprintf(bufp, "50G/");
655                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
656                         bufp += sprintf(bufp, "100G/");
657                 if (bufp != buf)
658                         --bufp;
659                 sprintf(bufp, "BASE-%s",
660                         t4_get_port_type_description(
661                                         (enum fw_port_type)pi->port_type));
662
663                 dev_info(adap,
664                          " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
665                          loc->domain, loc->bus, loc->devid, loc->function,
666                          CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
667                          (adap->flags & USING_MSIX) ? " MSI-X" :
668                          (adap->flags & USING_MSI) ? " MSI" : "");
669         }
670 }
671
672 static int
673 check_devargs_handler(__rte_unused const char *key, const char *value,
674                       __rte_unused void *opaque)
675 {
676         if (strcmp(value, "1"))
677                 return -1;
678
679         return 0;
680 }
681
682 int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key)
683 {
684         struct rte_kvargs *kvlist;
685
686         if (!devargs)
687                 return 0;
688
689         kvlist = rte_kvargs_parse(devargs->args, NULL);
690         if (!kvlist)
691                 return 0;
692
693         if (!rte_kvargs_count(kvlist, key)) {
694                 rte_kvargs_free(kvlist);
695                 return 0;
696         }
697
698         if (rte_kvargs_process(kvlist, key,
699                                check_devargs_handler, NULL) < 0) {
700                 rte_kvargs_free(kvlist);
701                 return 0;
702         }
703         rte_kvargs_free(kvlist);
704
705         return 1;
706 }
707
708 static void configure_vlan_types(struct adapter *adapter)
709 {
710         struct rte_pci_device *pdev = adapter->pdev;
711         int i;
712
713         for_each_port(adapter, i) {
714                 /* OVLAN Type 0x88a8 */
715                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
716                                  V_OVLAN_MASK(M_OVLAN_MASK) |
717                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
718                                  V_OVLAN_MASK(M_OVLAN_MASK) |
719                                  V_OVLAN_ETYPE(0x88a8));
720                 /* OVLAN Type 0x9100 */
721                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
722                                  V_OVLAN_MASK(M_OVLAN_MASK) |
723                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
724                                  V_OVLAN_MASK(M_OVLAN_MASK) |
725                                  V_OVLAN_ETYPE(0x9100));
726                 /* OVLAN Type 0x8100 */
727                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2),
728                                  V_OVLAN_MASK(M_OVLAN_MASK) |
729                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
730                                  V_OVLAN_MASK(M_OVLAN_MASK) |
731                                  V_OVLAN_ETYPE(0x8100));
732
733                 /* IVLAN 0X8100 */
734                 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
735                                  V_IVLAN_ETYPE(M_IVLAN_ETYPE),
736                                  V_IVLAN_ETYPE(0x8100));
737
738                 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
739                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
740                                  F_OVLAN_EN2 | F_IVLAN_EN,
741                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
742                                  F_OVLAN_EN2 | F_IVLAN_EN);
743         }
744
745         if (cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_KEEP_OVLAN))
746                 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
747                                        V_RM_OVLAN(1), V_RM_OVLAN(0));
748 }
749
750 static void configure_pcie_ext_tag(struct adapter *adapter)
751 {
752         u16 v;
753         int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
754
755         if (!pos)
756                 return;
757
758         if (pos > 0) {
759                 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
760                 v |= PCI_EXP_DEVCTL_EXT_TAG;
761                 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
762                 if (is_t6(adapter->params.chip)) {
763                         t4_set_reg_field(adapter, A_PCIE_CFG2,
764                                          V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
765                                          V_T6_TOTMAXTAG(7));
766                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
767                                          V_T6_MINTAG(M_T6_MINTAG),
768                                          V_T6_MINTAG(8));
769                 } else {
770                         t4_set_reg_field(adapter, A_PCIE_CFG2,
771                                          V_TOTMAXTAG(M_TOTMAXTAG),
772                                          V_TOTMAXTAG(3));
773                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
774                                          V_MINTAG(M_MINTAG),
775                                          V_MINTAG(8));
776                 }
777         }
778 }
779
780 /* Figure out how many Queue Sets we can support */
781 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
782 {
783         unsigned int ethqsets;
784
785         /*
786          * We need to reserve an Ingress Queue for the Asynchronous Firmware
787          * Event Queue.
788          *
789          * For each Queue Set, we'll need the ability to allocate two Egress
790          * Contexts -- one for the Ingress Queue Free List and one for the TX
791          * Ethernet Queue.
792          */
793         if (is_pf4(adapter)) {
794                 struct pf_resources *pfres = &adapter->params.pfres;
795
796                 ethqsets = pfres->niqflint - 1;
797                 if (pfres->neq < ethqsets * 2)
798                         ethqsets = pfres->neq / 2;
799         } else {
800                 struct vf_resources *vfres = &adapter->params.vfres;
801
802                 ethqsets = vfres->niqflint - 1;
803                 if (vfres->nethctrl != ethqsets)
804                         ethqsets = min(vfres->nethctrl, ethqsets);
805                 if (vfres->neq < ethqsets * 2)
806                         ethqsets = vfres->neq / 2;
807         }
808
809         if (ethqsets > MAX_ETH_QSETS)
810                 ethqsets = MAX_ETH_QSETS;
811         adapter->sge.max_ethqsets = ethqsets;
812 }
813
814 /*
815  * Tweak configuration based on system architecture, etc.  Most of these have
816  * defaults assigned to them by Firmware Configuration Files (if we're using
817  * them) but need to be explicitly set if we're using hard-coded
818  * initialization. So these are essentially common tweaks/settings for
819  * Configuration Files and hard-coded initialization ...
820  */
821 static int adap_init0_tweaks(struct adapter *adapter)
822 {
823         u8 rx_dma_offset;
824
825         /*
826          * Fix up various Host-Dependent Parameters like Page Size, Cache
827          * Line Size, etc.  The firmware default is for a 4KB Page Size and
828          * 64B Cache Line Size ...
829          */
830         t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
831                                     T5_LAST_REV);
832
833         /*
834          * Keep the chip default offset to deliver Ingress packets into our
835          * DMA buffers to zero
836          */
837         rx_dma_offset = 0;
838         t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
839                          V_PKTSHIFT(rx_dma_offset));
840
841         t4_set_reg_field(adapter, A_SGE_FLM_CFG,
842                          V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
843                          V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
844
845         t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
846                          V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
847
848         t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
849                          V_IDMAARBROUNDROBIN(1U));
850
851         /*
852          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
853          * adds the pseudo header itself.
854          */
855         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
856                                F_CSUM_HAS_PSEUDO_HDR, 0);
857
858         return 0;
859 }
860
861 /*
862  * Attempt to initialize the adapter via a Firmware Configuration File.
863  */
864 static int adap_init0_config(struct adapter *adapter, int reset)
865 {
866         struct fw_caps_config_cmd caps_cmd;
867         unsigned long mtype = 0, maddr = 0;
868         u32 finiver, finicsum, cfcsum;
869         int ret;
870         int config_issued = 0;
871         int cfg_addr;
872         char config_name[20];
873
874         /*
875          * Reset device if necessary.
876          */
877         if (reset) {
878                 ret = t4_fw_reset(adapter, adapter->mbox,
879                                   F_PIORSTMODE | F_PIORST);
880                 if (ret < 0) {
881                         dev_warn(adapter, "Firmware reset failed, error %d\n",
882                                  -ret);
883                         goto bye;
884                 }
885         }
886
887         cfg_addr = t4_flash_cfg_addr(adapter);
888         if (cfg_addr < 0) {
889                 ret = cfg_addr;
890                 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
891                          -ret);
892                 goto bye;
893         }
894
895         strcpy(config_name, "On Flash");
896         mtype = FW_MEMTYPE_CF_FLASH;
897         maddr = cfg_addr;
898
899         /*
900          * Issue a Capability Configuration command to the firmware to get it
901          * to parse the Configuration File.  We don't use t4_fw_config_file()
902          * because we want the ability to modify various features after we've
903          * processed the configuration file ...
904          */
905         memset(&caps_cmd, 0, sizeof(caps_cmd));
906         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
907                                            F_FW_CMD_REQUEST | F_FW_CMD_READ);
908         caps_cmd.cfvalid_to_len16 =
909                 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
910                             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
911                             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
912                             FW_LEN16(caps_cmd));
913         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
914                          &caps_cmd);
915         /*
916          * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
917          * Configuration File in FLASH), our last gasp effort is to use the
918          * Firmware Configuration File which is embedded in the firmware.  A
919          * very few early versions of the firmware didn't have one embedded
920          * but we can ignore those.
921          */
922         if (ret == -ENOENT) {
923                 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
924                          __func__);
925
926                 memset(&caps_cmd, 0, sizeof(caps_cmd));
927                 caps_cmd.op_to_write =
928                         cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
929                                     F_FW_CMD_REQUEST | F_FW_CMD_READ);
930                 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
931                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
932                                  sizeof(caps_cmd), &caps_cmd);
933                 strcpy(config_name, "Firmware Default");
934         }
935
936         config_issued = 1;
937         if (ret < 0)
938                 goto bye;
939
940         finiver = be32_to_cpu(caps_cmd.finiver);
941         finicsum = be32_to_cpu(caps_cmd.finicsum);
942         cfcsum = be32_to_cpu(caps_cmd.cfcsum);
943         if (finicsum != cfcsum)
944                 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
945                          finicsum, cfcsum);
946
947         /*
948          * If we're a pure NIC driver then disable all offloading facilities.
949          * This will allow the firmware to optimize aspects of the hardware
950          * configuration which will result in improved performance.
951          */
952         caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
953         caps_cmd.toecaps = 0;
954         caps_cmd.iscsicaps = 0;
955         caps_cmd.rdmacaps = 0;
956         caps_cmd.fcoecaps = 0;
957
958         /*
959          * And now tell the firmware to use the configuration we just loaded.
960          */
961         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
962                                            F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
963         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
964         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
965                          NULL);
966         if (ret < 0) {
967                 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
968                          -ret);
969                 goto bye;
970         }
971
972         /*
973          * Tweak configuration based on system architecture, etc.
974          */
975         ret = adap_init0_tweaks(adapter);
976         if (ret < 0) {
977                 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
978                 goto bye;
979         }
980
981         /*
982          * And finally tell the firmware to initialize itself using the
983          * parameters from the Configuration File.
984          */
985         ret = t4_fw_initialize(adapter, adapter->mbox);
986         if (ret < 0) {
987                 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
988                          -ret);
989                 goto bye;
990         }
991
992         /*
993          * Return successfully and note that we're operating with parameters
994          * not supplied by the driver, rather than from hard-wired
995          * initialization constants buried in the driver.
996          */
997         dev_info(adapter,
998                  "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
999                  config_name, finiver, cfcsum);
1000
1001         return 0;
1002
1003         /*
1004          * Something bad happened.  Return the error ...  (If the "error"
1005          * is that there's no Configuration File on the adapter we don't
1006          * want to issue a warning since this is fairly common.)
1007          */
1008 bye:
1009         if (config_issued && ret != -ENOENT)
1010                 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1011                          config_name, -ret);
1012
1013         dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1014         return ret;
1015 }
1016
1017 static int adap_init0(struct adapter *adap)
1018 {
1019         struct fw_caps_config_cmd caps_cmd;
1020         int ret = 0;
1021         u32 v, port_vec;
1022         enum dev_state state;
1023         u32 params[7], val[7];
1024         int reset = 1;
1025         int mbox = adap->mbox;
1026
1027         /*
1028          * Contact FW, advertising Master capability.
1029          */
1030         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1031         if (ret < 0) {
1032                 dev_err(adap, "%s: could not connect to FW, error %d\n",
1033                         __func__, -ret);
1034                 goto bye;
1035         }
1036
1037         CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1038                          adap->mbox, ret);
1039
1040         if (ret == mbox)
1041                 adap->flags |= MASTER_PF;
1042
1043         if (state == DEV_STATE_INIT) {
1044                 /*
1045                  * Force halt and reset FW because a previous instance may have
1046                  * exited abnormally without properly shutting down
1047                  */
1048                 ret = t4_fw_halt(adap, adap->mbox, reset);
1049                 if (ret < 0) {
1050                         dev_err(adap, "Failed to halt. Exit.\n");
1051                         goto bye;
1052                 }
1053
1054                 ret = t4_fw_restart(adap, adap->mbox, reset);
1055                 if (ret < 0) {
1056                         dev_err(adap, "Failed to restart. Exit.\n");
1057                         goto bye;
1058                 }
1059                 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1060         }
1061
1062         t4_get_version_info(adap);
1063
1064         ret = t4_get_core_clock(adap, &adap->params.vpd);
1065         if (ret < 0) {
1066                 dev_err(adap, "%s: could not get core clock, error %d\n",
1067                         __func__, -ret);
1068                 goto bye;
1069         }
1070
1071         /*
1072          * If the firmware is initialized already (and we're not forcing a
1073          * master initialization), note that we're living with existing
1074          * adapter parameters.  Otherwise, it's time to try initializing the
1075          * adapter ...
1076          */
1077         if (state == DEV_STATE_INIT) {
1078                 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1079                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1080         } else {
1081                 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1082
1083                 ret = adap_init0_config(adap, reset);
1084                 if (ret == -ENOENT) {
1085                         dev_err(adap,
1086                                 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1087                         goto bye;
1088                 }
1089         }
1090         if (ret < 0) {
1091                 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1092                 goto bye;
1093         }
1094
1095         /* Now that we've successfully configured and initialized the adapter
1096          * (or found it already initialized), we can ask the Firmware what
1097          * resources it has provisioned for us.
1098          */
1099         ret = t4_get_pfres(adap);
1100         if (ret) {
1101                 dev_err(adap->pdev_dev,
1102                         "Unable to retrieve resource provisioning info\n");
1103                 goto bye;
1104         }
1105
1106         /* Find out what ports are available to us. */
1107         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1108             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1109         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1110         if (ret < 0) {
1111                 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1112                         __func__, ret);
1113                 goto bye;
1114         }
1115
1116         adap->params.nports = hweight32(port_vec);
1117         adap->params.portvec = port_vec;
1118
1119         dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1120                   adap->params.nports);
1121
1122         /*
1123          * Give the SGE code a chance to pull in anything that it needs ...
1124          * Note that this must be called after we retrieve our VPD parameters
1125          * in order to know how to convert core ticks to seconds, etc.
1126          */
1127         ret = t4_sge_init(adap);
1128         if (ret < 0) {
1129                 dev_err(adap, "t4_sge_init failed with error %d\n",
1130                         -ret);
1131                 goto bye;
1132         }
1133
1134         /*
1135          * Grab some of our basic fundamental operating parameters.
1136          */
1137 #define FW_PARAM_DEV(param) \
1138         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
1139          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
1140
1141 #define FW_PARAM_PFVF(param) \
1142         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
1143          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) |  \
1144          V_FW_PARAMS_PARAM_Y(0) | \
1145          V_FW_PARAMS_PARAM_Z(0))
1146
1147         params[0] = FW_PARAM_PFVF(L2T_START);
1148         params[1] = FW_PARAM_PFVF(L2T_END);
1149         params[2] = FW_PARAM_PFVF(FILTER_START);
1150         params[3] = FW_PARAM_PFVF(FILTER_END);
1151         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1152         if (ret < 0)
1153                 goto bye;
1154         adap->l2t_start = val[0];
1155         adap->l2t_end = val[1];
1156         adap->tids.ftid_base = val[2];
1157         adap->tids.nftids = val[3] - val[2] + 1;
1158
1159         params[0] = FW_PARAM_PFVF(CLIP_START);
1160         params[1] = FW_PARAM_PFVF(CLIP_END);
1161         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1162         if (ret < 0)
1163                 goto bye;
1164         adap->clipt_start = val[0];
1165         adap->clipt_end = val[1];
1166
1167         /*
1168          * Get device capabilities so we can determine what resources we need
1169          * to manage.
1170          */
1171         memset(&caps_cmd, 0, sizeof(caps_cmd));
1172         caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1173                                      F_FW_CMD_REQUEST | F_FW_CMD_READ);
1174         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1175         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1176                          &caps_cmd);
1177         if (ret < 0)
1178                 goto bye;
1179
1180         if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1181             is_t6(adap->params.chip)) {
1182                 if (init_hash_filter(adap) < 0)
1183                         goto bye;
1184         }
1185
1186         /* See if FW supports FW_FILTER2 work request */
1187         if (is_t4(adap->params.chip)) {
1188                 adap->params.filter2_wr_support = 0;
1189         } else {
1190                 params[0] = FW_PARAM_DEV(FILTER2_WR);
1191                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1192                                       1, params, val);
1193                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1194         }
1195
1196         /* query tid-related parameters */
1197         params[0] = FW_PARAM_DEV(NTID);
1198         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1199                               params, val);
1200         if (ret < 0)
1201                 goto bye;
1202         adap->tids.ntids = val[0];
1203         adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1204
1205         /* If we're running on newer firmware, let it know that we're
1206          * prepared to deal with encapsulated CPL messages.  Older
1207          * firmware won't understand this and we'll just get
1208          * unencapsulated messages ...
1209          */
1210         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1211         val[0] = 1;
1212         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1213
1214         /*
1215          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1216          * capability.  Earlier versions of the firmware didn't have the
1217          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1218          * permission to use ULPTX MEMWRITE DSGL.
1219          */
1220         if (is_t4(adap->params.chip)) {
1221                 adap->params.ulptx_memwrite_dsgl = false;
1222         } else {
1223                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1224                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1225                                       1, params, val);
1226                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1227         }
1228
1229         /*
1230          * The MTU/MSS Table is initialized by now, so load their values.  If
1231          * we're initializing the adapter, then we'll make any modifications
1232          * we want to the MTU/MSS Table and also initialize the congestion
1233          * parameters.
1234          */
1235         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1236         if (state != DEV_STATE_INIT) {
1237                 int i;
1238
1239                 /*
1240                  * The default MTU Table contains values 1492 and 1500.
1241                  * However, for TCP, it's better to have two values which are
1242                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1243                  * This allows us to have a TCP Data Payload which is a
1244                  * multiple of 8 regardless of what combination of TCP Options
1245                  * are in use (always a multiple of 4 bytes) which is
1246                  * important for performance reasons.  For instance, if no
1247                  * options are in use, then we have a 20-byte IP header and a
1248                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
1249                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1250                  * which is not a multiple of 8.  So using an MSS of 1488 in
1251                  * this case results in a TCP Data Payload of 1448 bytes which
1252                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1253                  * Stamps have been negotiated, then an MTU of 1500 bytes
1254                  * results in a TCP Data Payload of 1448 bytes which, as
1255                  * above, is a multiple of 8 bytes ...
1256                  */
1257                 for (i = 0; i < NMTUS; i++)
1258                         if (adap->params.mtus[i] == 1492) {
1259                                 adap->params.mtus[i] = 1488;
1260                                 break;
1261                         }
1262
1263                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1264                              adap->params.b_wnd);
1265         }
1266         t4_init_sge_params(adap);
1267         t4_init_tp_params(adap);
1268         configure_pcie_ext_tag(adap);
1269         configure_vlan_types(adap);
1270         cxgbe_configure_max_ethqsets(adap);
1271
1272         adap->params.drv_memwin = MEMWIN_NIC;
1273         adap->flags |= FW_OK;
1274         dev_debug(adap, "%s: returning zero..\n", __func__);
1275         return 0;
1276
1277         /*
1278          * Something bad happened.  If a command timed out or failed with EIO
1279          * FW does not operate within its spec or something catastrophic
1280          * happened to HW/FW, stop issuing commands.
1281          */
1282 bye:
1283         if (ret != -ETIMEDOUT && ret != -EIO)
1284                 t4_fw_bye(adap, adap->mbox);
1285         return ret;
1286 }
1287
1288 /**
1289  * t4_os_portmod_changed - handle port module changes
1290  * @adap: the adapter associated with the module change
1291  * @port_id: the port index whose module status has changed
1292  *
1293  * This is the OS-dependent handler for port module changes.  It is
1294  * invoked when a port module is removed or inserted for any OS-specific
1295  * processing.
1296  */
1297 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1298 {
1299         static const char * const mod_str[] = {
1300                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1301         };
1302
1303         const struct port_info *pi = adap2pinfo(adap, port_id);
1304
1305         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1306                 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1307         else if (pi->mod_type < ARRAY_SIZE(mod_str))
1308                 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1309                          mod_str[pi->mod_type]);
1310         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1311                 dev_info(adap, "Port%d: unsupported port module inserted\n",
1312                          pi->port_id);
1313         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1314                 dev_info(adap, "Port%d: unknown port module inserted\n",
1315                          pi->port_id);
1316         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1317                 dev_info(adap, "Port%d: transceiver module error\n",
1318                          pi->port_id);
1319         else
1320                 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1321                          pi->port_id, pi->mod_type);
1322 }
1323
1324 bool cxgbe_force_linkup(struct adapter *adap)
1325 {
1326         struct rte_pci_device *pdev = adap->pdev;
1327
1328         if (is_pf4(adap))
1329                 return false;   /* force_linkup not required for pf driver*/
1330         if (!cxgbe_get_devargs(pdev->device.devargs,
1331                                CXGBE_DEVARG_FORCE_LINK_UP))
1332                 return false;
1333         return true;
1334 }
1335
1336 /**
1337  * link_start - enable a port
1338  * @dev: the port to enable
1339  *
1340  * Performs the MAC and PHY actions needed to enable a port.
1341  */
1342 int cxgbe_link_start(struct port_info *pi)
1343 {
1344         struct adapter *adapter = pi->adapter;
1345         u64 conf_offloads;
1346         unsigned int mtu;
1347         int ret;
1348
1349         mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1350               (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1351
1352         conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1353
1354         /*
1355          * We do not set address filters and promiscuity here, the stack does
1356          * that step explicitly.
1357          */
1358         ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1359                             !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1360                             true);
1361         if (ret == 0) {
1362                 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1363                                 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1364                 if (ret >= 0) {
1365                         pi->xact_addr_filt = ret;
1366                         ret = 0;
1367                 }
1368         }
1369         if (ret == 0 && is_pf4(adapter))
1370                 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1371                                     &pi->link_cfg);
1372         if (ret == 0) {
1373                 /*
1374                  * Enabling a Virtual Interface can result in an interrupt
1375                  * during the processing of the VI Enable command and, in some
1376                  * paths, result in an attempt to issue another command in the
1377                  * interrupt context.  Thus, we disable interrupts during the
1378                  * course of the VI Enable command ...
1379                  */
1380                 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1381                                           true, true, false);
1382         }
1383
1384         if (ret == 0 && cxgbe_force_linkup(adapter))
1385                 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1386         return ret;
1387 }
1388
1389 /**
1390  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1391  * @pi: the port
1392  * @rss_hf: Hash configuration to apply
1393  */
1394 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1395 {
1396         struct adapter *adapter = pi->adapter;
1397         const struct sge_eth_rxq *rxq;
1398         u64 flags = 0;
1399         u16 rss;
1400         int err;
1401
1402         /*  Should never be called before setting up sge eth rx queues */
1403         if (!(adapter->flags & FULL_INIT_DONE)) {
1404                 dev_err(adap, "%s No RXQs available on port %d\n",
1405                         __func__, pi->port_id);
1406                 return -EINVAL;
1407         }
1408
1409         /* Don't allow unsupported hash functions */
1410         if (rss_hf & ~CXGBE_RSS_HF_ALL)
1411                 return -EINVAL;
1412
1413         if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1414                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1415
1416         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1417                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1418
1419         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1420                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1421                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1422
1423         if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1424                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1425
1426         if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1427                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1428                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1429
1430         if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1431                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1432                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1433                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1434
1435         rxq = &adapter->sge.ethrxq[pi->first_qset];
1436         rss = rxq[0].rspq.abs_id;
1437
1438         /* If Tunnel All Lookup isn't specified in the global RSS
1439          * Configuration, then we need to specify a default Ingress
1440          * Queue for any ingress packets which aren't hashed.  We'll
1441          * use our first ingress queue ...
1442          */
1443         err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1444                                flags, rss);
1445         return err;
1446 }
1447
1448 /**
1449  * cxgbe_write_rss - write the RSS table for a given port
1450  * @pi: the port
1451  * @queues: array of queue indices for RSS
1452  *
1453  * Sets up the portion of the HW RSS table for the port's VI to distribute
1454  * packets to the Rx queues in @queues.
1455  */
1456 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1457 {
1458         u16 *rss;
1459         int i, err;
1460         struct adapter *adapter = pi->adapter;
1461         const struct sge_eth_rxq *rxq;
1462
1463         /*  Should never be called before setting up sge eth rx queues */
1464         BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1465
1466         rxq = &adapter->sge.ethrxq[pi->first_qset];
1467         rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1468         if (!rss)
1469                 return -ENOMEM;
1470
1471         /* map the queue indices to queue ids */
1472         for (i = 0; i < pi->rss_size; i++, queues++)
1473                 rss[i] = rxq[*queues].rspq.abs_id;
1474
1475         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1476                                   pi->rss_size, rss, pi->rss_size);
1477         rte_free(rss);
1478         return err;
1479 }
1480
1481 /**
1482  * setup_rss - configure RSS
1483  * @adapter: the adapter
1484  *
1485  * Sets up RSS to distribute packets to multiple receive queues.  We
1486  * configure the RSS CPU lookup table to distribute to the number of HW
1487  * receive queues, and the response queue lookup table to narrow that
1488  * down to the response queues actually configured for each port.
1489  * We always configure the RSS mapping for all ports since the mapping
1490  * table has plenty of entries.
1491  */
1492 int cxgbe_setup_rss(struct port_info *pi)
1493 {
1494         int j, err;
1495         struct adapter *adapter = pi->adapter;
1496
1497         dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1498                   __func__, pi->rss_size, pi->n_rx_qsets);
1499
1500         if (!(pi->flags & PORT_RSS_DONE)) {
1501                 if (adapter->flags & FULL_INIT_DONE) {
1502                         /* Fill default values with equal distribution */
1503                         for (j = 0; j < pi->rss_size; j++)
1504                                 pi->rss[j] = j % pi->n_rx_qsets;
1505
1506                         err = cxgbe_write_rss(pi, pi->rss);
1507                         if (err)
1508                                 return err;
1509
1510                         err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1511                         if (err)
1512                                 return err;
1513                         pi->flags |= PORT_RSS_DONE;
1514                 }
1515         }
1516         return 0;
1517 }
1518
1519 /*
1520  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1521  */
1522 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1523 {
1524         /* 0-increment GTS to start the timer and enable interrupts */
1525         t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1526                                           T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1527                      V_SEINTARM(q->intr_params) |
1528                      V_INGRESSQID(q->cntxt_id));
1529 }
1530
1531 void cxgbe_enable_rx_queues(struct port_info *pi)
1532 {
1533         struct adapter *adap = pi->adapter;
1534         struct sge *s = &adap->sge;
1535         unsigned int i;
1536
1537         for (i = 0; i < pi->n_rx_qsets; i++)
1538                 enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1539 }
1540
1541 /**
1542  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1543  * @port_type: Firmware Port Type
1544  * @fw_caps: Firmware Port Capabilities
1545  * @speed_caps: Device Info Speed Capabilities
1546  *
1547  * Translate a Firmware Port Capabilities specification to Device Info
1548  * Speed Capabilities.
1549  */
1550 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1551                                   unsigned int fw_caps,
1552                                   u32 *speed_caps)
1553 {
1554 #define SET_SPEED(__speed_name) \
1555         do { \
1556                 *speed_caps |= ETH_LINK_ ## __speed_name; \
1557         } while (0)
1558
1559 #define FW_CAPS_TO_SPEED(__fw_name) \
1560         do { \
1561                 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1562                         SET_SPEED(__fw_name); \
1563         } while (0)
1564
1565         switch (port_type) {
1566         case FW_PORT_TYPE_BT_SGMII:
1567         case FW_PORT_TYPE_BT_XFI:
1568         case FW_PORT_TYPE_BT_XAUI:
1569                 FW_CAPS_TO_SPEED(SPEED_100M);
1570                 FW_CAPS_TO_SPEED(SPEED_1G);
1571                 FW_CAPS_TO_SPEED(SPEED_10G);
1572                 break;
1573
1574         case FW_PORT_TYPE_KX4:
1575         case FW_PORT_TYPE_KX:
1576         case FW_PORT_TYPE_FIBER_XFI:
1577         case FW_PORT_TYPE_FIBER_XAUI:
1578         case FW_PORT_TYPE_SFP:
1579         case FW_PORT_TYPE_QSFP_10G:
1580         case FW_PORT_TYPE_QSA:
1581                 FW_CAPS_TO_SPEED(SPEED_1G);
1582                 FW_CAPS_TO_SPEED(SPEED_10G);
1583                 break;
1584
1585         case FW_PORT_TYPE_KR:
1586                 SET_SPEED(SPEED_10G);
1587                 break;
1588
1589         case FW_PORT_TYPE_BP_AP:
1590         case FW_PORT_TYPE_BP4_AP:
1591                 SET_SPEED(SPEED_1G);
1592                 SET_SPEED(SPEED_10G);
1593                 break;
1594
1595         case FW_PORT_TYPE_BP40_BA:
1596         case FW_PORT_TYPE_QSFP:
1597                 SET_SPEED(SPEED_40G);
1598                 break;
1599
1600         case FW_PORT_TYPE_CR_QSFP:
1601         case FW_PORT_TYPE_SFP28:
1602         case FW_PORT_TYPE_KR_SFP28:
1603                 FW_CAPS_TO_SPEED(SPEED_1G);
1604                 FW_CAPS_TO_SPEED(SPEED_10G);
1605                 FW_CAPS_TO_SPEED(SPEED_25G);
1606                 break;
1607
1608         case FW_PORT_TYPE_CR2_QSFP:
1609                 SET_SPEED(SPEED_50G);
1610                 break;
1611
1612         case FW_PORT_TYPE_KR4_100G:
1613         case FW_PORT_TYPE_CR4_QSFP:
1614                 FW_CAPS_TO_SPEED(SPEED_25G);
1615                 FW_CAPS_TO_SPEED(SPEED_40G);
1616                 FW_CAPS_TO_SPEED(SPEED_50G);
1617                 FW_CAPS_TO_SPEED(SPEED_100G);
1618                 break;
1619
1620         default:
1621                 break;
1622         }
1623
1624 #undef FW_CAPS_TO_SPEED
1625 #undef SET_SPEED
1626 }
1627
1628 /**
1629  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1630  * @pi: Underlying port's info
1631  * @speed_caps: Device Info speed capabilities
1632  *
1633  * Fetch supported speed capabilities of the underlying port.
1634  */
1635 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1636 {
1637         *speed_caps = 0;
1638
1639         fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1640                               speed_caps);
1641
1642         if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1643                 *speed_caps |= ETH_LINK_SPEED_FIXED;
1644 }
1645
1646 /**
1647  * cxgbe_set_link_status - Set device link up or down.
1648  * @pi: Underlying port's info
1649  * @status: 0 - down, 1 - up
1650  *
1651  * Set the device link up or down.
1652  */
1653 int cxgbe_set_link_status(struct port_info *pi, bool status)
1654 {
1655         struct adapter *adapter = pi->adapter;
1656         int err = 0;
1657
1658         err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1659         if (err) {
1660                 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1661                 return err;
1662         }
1663
1664         if (!status)
1665                 t4_reset_link_config(adapter, pi->pidx);
1666
1667         return 0;
1668 }
1669
1670 /**
1671  * cxgb_up - enable the adapter
1672  * @adap: adapter being enabled
1673  *
1674  * Called when the first port is enabled, this function performs the
1675  * actions necessary to make an adapter operational, such as completing
1676  * the initialization of HW modules, and enabling interrupts.
1677  */
1678 int cxgbe_up(struct adapter *adap)
1679 {
1680         enable_rx(adap, &adap->sge.fw_evtq);
1681         t4_sge_tx_monitor_start(adap);
1682         if (is_pf4(adap))
1683                 t4_intr_enable(adap);
1684         adap->flags |= FULL_INIT_DONE;
1685
1686         /* TODO: deadman watchdog ?? */
1687         return 0;
1688 }
1689
1690 /*
1691  * Close the port
1692  */
1693 int cxgbe_down(struct port_info *pi)
1694 {
1695         return cxgbe_set_link_status(pi, false);
1696 }
1697
1698 /*
1699  * Release resources when all the ports have been stopped.
1700  */
1701 void cxgbe_close(struct adapter *adapter)
1702 {
1703         struct port_info *pi;
1704         int i;
1705
1706         if (adapter->flags & FULL_INIT_DONE) {
1707                 tid_free(&adapter->tids);
1708                 t4_cleanup_mpstcam(adapter);
1709                 t4_cleanup_clip_tbl(adapter);
1710                 t4_cleanup_l2t(adapter);
1711                 if (is_pf4(adapter))
1712                         t4_intr_disable(adapter);
1713                 t4_sge_tx_monitor_stop(adapter);
1714                 t4_free_sge_resources(adapter);
1715                 for_each_port(adapter, i) {
1716                         pi = adap2pinfo(adapter, i);
1717                         if (pi->viid != 0)
1718                                 t4_free_vi(adapter, adapter->mbox,
1719                                            adapter->pf, 0, pi->viid);
1720                         rte_eth_dev_release_port(pi->eth_dev);
1721                 }
1722                 adapter->flags &= ~FULL_INIT_DONE;
1723         }
1724
1725         if (is_pf4(adapter) && (adapter->flags & FW_OK))
1726                 t4_fw_bye(adapter, adapter->mbox);
1727 }
1728
1729 int cxgbe_probe(struct adapter *adapter)
1730 {
1731         struct port_info *pi;
1732         int chip;
1733         int func, i;
1734         int err = 0;
1735         u32 whoami;
1736
1737         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1738         chip = t4_get_chip_type(adapter,
1739                         CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1740         if (chip < 0)
1741                 return chip;
1742
1743         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1744                G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1745
1746         adapter->mbox = func;
1747         adapter->pf = func;
1748
1749         t4_os_lock_init(&adapter->mbox_lock);
1750         TAILQ_INIT(&adapter->mbox_list);
1751         t4_os_lock_init(&adapter->win0_lock);
1752
1753         err = t4_prep_adapter(adapter);
1754         if (err)
1755                 return err;
1756
1757         setup_memwin(adapter);
1758         err = adap_init0(adapter);
1759         if (err) {
1760                 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1761                         __func__, err);
1762                 goto out_free;
1763         }
1764
1765         if (!is_t4(adapter->params.chip)) {
1766                 /*
1767                  * The userspace doorbell BAR is split evenly into doorbell
1768                  * regions, each associated with an egress queue.  If this
1769                  * per-queue region is large enough (at least UDBS_SEG_SIZE)
1770                  * then it can be used to submit a tx work request with an
1771                  * implied doorbell.  Enable write combining on the BAR if
1772                  * there is room for such work requests.
1773                  */
1774                 int s_qpp, qpp, num_seg;
1775
1776                 s_qpp = (S_QUEUESPERPAGEPF0 +
1777                         (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1778                         adapter->pf);
1779                 qpp = 1 << ((t4_read_reg(adapter,
1780                                 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1781                                 & M_QUEUESPERPAGEPF0);
1782                 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1783                 if (qpp > num_seg)
1784                         dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1785
1786                 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1787                 if (!adapter->bar2) {
1788                         dev_err(adapter, "cannot map device bar2 region\n");
1789                         err = -ENOMEM;
1790                         goto out_free;
1791                 }
1792                 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1793                              V_STATMODE(0));
1794         }
1795
1796         for_each_port(adapter, i) {
1797                 const unsigned int numa_node = rte_socket_id();
1798                 char name[RTE_ETH_NAME_MAX_LEN];
1799                 struct rte_eth_dev *eth_dev;
1800
1801                 snprintf(name, sizeof(name), "%s_%d",
1802                          adapter->pdev->device.name, i);
1803
1804                 if (i == 0) {
1805                         /* First port is already allocated by DPDK */
1806                         eth_dev = adapter->eth_dev;
1807                         goto allocate_mac;
1808                 }
1809
1810                 /*
1811                  * now do all data allocation - for eth_dev structure,
1812                  * and internal (private) data for the remaining ports
1813                  */
1814
1815                 /* reserve an ethdev entry */
1816                 eth_dev = rte_eth_dev_allocate(name);
1817                 if (!eth_dev)
1818                         goto out_free;
1819
1820                 eth_dev->data->dev_private =
1821                         rte_zmalloc_socket(name, sizeof(struct port_info),
1822                                            RTE_CACHE_LINE_SIZE, numa_node);
1823                 if (!eth_dev->data->dev_private)
1824                         goto out_free;
1825
1826 allocate_mac:
1827                 pi = eth_dev->data->dev_private;
1828                 adapter->port[i] = pi;
1829                 pi->eth_dev = eth_dev;
1830                 pi->adapter = adapter;
1831                 pi->xact_addr_filt = -1;
1832                 pi->port_id = i;
1833                 pi->pidx = i;
1834
1835                 pi->eth_dev->device = &adapter->pdev->device;
1836                 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1837                 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1838                 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1839
1840                 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1841
1842                 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1843                                                         RTE_ETHER_ADDR_LEN, 0);
1844                 if (!pi->eth_dev->data->mac_addrs) {
1845                         dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1846                                 __func__);
1847                         err = -1;
1848                         goto out_free;
1849                 }
1850
1851                 if (i > 0) {
1852                         /* First port will be notified by upper layer */
1853                         rte_eth_dev_probing_finish(eth_dev);
1854                 }
1855         }
1856
1857         if (adapter->flags & FW_OK) {
1858                 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1859                 if (err) {
1860                         dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1861                                 __func__, err);
1862                         goto out_free;
1863                 }
1864         }
1865
1866         cxgbe_cfg_queues(adapter->eth_dev);
1867
1868         cxgbe_print_adapter_info(adapter);
1869         cxgbe_print_port_info(adapter);
1870
1871         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1872                                           adapter->clipt_end);
1873         if (!adapter->clipt) {
1874                 /* We tolerate a lack of clip_table, giving up some
1875                  * functionality
1876                  */
1877                 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1878         }
1879
1880         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1881         if (!adapter->l2t) {
1882                 /* We tolerate a lack of L2T, giving up some functionality */
1883                 dev_warn(adapter, "could not allocate L2T. Continuing\n");
1884         }
1885
1886         if (tid_init(&adapter->tids) < 0) {
1887                 /* Disable filtering support */
1888                 dev_warn(adapter, "could not allocate TID table, "
1889                          "filter support disabled. Continuing\n");
1890         }
1891
1892         adapter->mpstcam = t4_init_mpstcam(adapter);
1893         if (!adapter->mpstcam)
1894                 dev_warn(adapter, "could not allocate mps tcam table."
1895                          " Continuing\n");
1896
1897         if (is_hashfilter(adapter)) {
1898                 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1899                         u32 hash_base, hash_reg;
1900
1901                         hash_reg = A_LE_DB_TID_HASHBASE;
1902                         hash_base = t4_read_reg(adapter, hash_reg);
1903                         adapter->tids.hash_base = hash_base / 4;
1904                 }
1905         } else {
1906                 /* Disable hash filtering support */
1907                 dev_warn(adapter,
1908                          "Maskless filter support disabled. Continuing\n");
1909         }
1910
1911         err = cxgbe_init_rss(adapter);
1912         if (err)
1913                 goto out_free;
1914
1915         return 0;
1916
1917 out_free:
1918         for_each_port(adapter, i) {
1919                 pi = adap2pinfo(adapter, i);
1920                 if (pi->viid != 0)
1921                         t4_free_vi(adapter, adapter->mbox, adapter->pf,
1922                                    0, pi->viid);
1923                 rte_eth_dev_release_port(pi->eth_dev);
1924         }
1925
1926         if (adapter->flags & FW_OK)
1927                 t4_fw_bye(adapter, adapter->mbox);
1928         return -err;
1929 }