1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2014-2018 Chelsio Communications.
14 #include <netinet/in.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
21 #include <rte_debug.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
34 #include <rte_kvargs.h>
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
45 * Allocate a chunk of memory. The allocated memory is cleared.
47 void *t4_alloc_mem(size_t size)
49 return rte_zmalloc(NULL, size, 0);
53 * Free memory allocated through t4_alloc_mem().
55 void t4_free_mem(void *addr)
61 * Response queue handler for the FW event queue.
63 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
64 __rte_unused const struct pkt_gl *gl)
66 u8 opcode = ((const struct rss_header *)rsp)->opcode;
68 rsp++; /* skip RSS header */
71 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
73 if (unlikely(opcode == CPL_FW4_MSG &&
74 ((const struct cpl_fw4_msg *)rsp)->type ==
77 opcode = ((const struct rss_header *)rsp)->opcode;
79 if (opcode != CPL_SGE_EGR_UPDATE) {
80 dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
86 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
88 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
89 const struct cpl_fw6_msg *msg = (const void *)rsp;
91 t4_handle_fw_rpl(q->adapter, msg->data);
92 } else if (opcode == CPL_ABORT_RPL_RSS) {
93 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
95 hash_del_filter_rpl(q->adapter, p);
96 } else if (opcode == CPL_SET_TCB_RPL) {
97 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
99 filter_rpl(q->adapter, p);
100 } else if (opcode == CPL_ACT_OPEN_RPL) {
101 const struct cpl_act_open_rpl *p = (const void *)rsp;
103 hash_filter_rpl(q->adapter, p);
104 } else if (opcode == CPL_L2T_WRITE_RPL) {
105 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
107 do_l2t_write_rpl(q->adapter, p);
109 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
117 * Setup sge control queues to pass control information.
119 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
121 struct sge *s = &adapter->sge;
124 for_each_port(adapter, i) {
125 struct port_info *pi = adap2pinfo(adapter, i);
126 char name[RTE_ETH_NAME_MAX_LEN];
127 struct sge_ctrl_txq *q = &s->ctrlq[i];
130 err = t4_sge_alloc_ctrl_txq(adapter, q,
135 dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
139 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
140 pi->eth_dev->device->driver->name,
141 pi->eth_dev->data->port_id);
142 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
145 RTE_MBUF_DEFAULT_BUF_SIZE,
150 "Can't create ctrl pool for port %d. Err: %d\n",
151 pi->eth_dev->data->port_id, err);
157 t4_free_sge_resources(adapter);
162 * cxgbe_poll_for_completion: Poll rxq for completion
164 * @ms: milliseconds to delay
165 * @cnt: number of times to poll
166 * @c: completion to check for 'done' status
168 * Polls the rxq for reples until completion is done or the count
171 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
172 unsigned int cnt, struct t4_completion *c)
175 unsigned int work_done, budget = 32;
180 for (i = 0; i < cnt; i++) {
181 cxgbe_poll(q, NULL, budget, &work_done);
182 t4_os_lock(&c->lock);
184 t4_os_unlock(&c->lock);
187 t4_os_unlock(&c->lock);
193 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
195 struct sge *s = &adapter->sge;
199 err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
200 msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
205 static int closest_timer(const struct sge *s, int time)
207 unsigned int i, match = 0;
208 int delta, min_delta = INT_MAX;
210 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
211 delta = time - s->timer_val[i];
214 if (delta < min_delta) {
222 static int closest_thres(const struct sge *s, int thres)
224 unsigned int i, match = 0;
225 int delta, min_delta = INT_MAX;
227 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
228 delta = thres - s->counter_val[i];
231 if (delta < min_delta) {
240 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
242 * @us: the hold-off time in us, or 0 to disable timer
243 * @cnt: the hold-off packet count, or 0 to disable counter
245 * Sets an Rx queue's interrupt hold-off time and packet count. At least
246 * one of the two needs to be enabled for the queue to generate interrupts.
248 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
251 struct adapter *adap = q->adapter;
252 unsigned int timer_val;
258 new_idx = closest_thres(&adap->sge, cnt);
259 if (q->desc && q->pktcnt_idx != new_idx) {
260 /* the queue has already been created, update it */
261 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
263 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
264 V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
265 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
270 q->pktcnt_idx = new_idx;
273 timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
274 closest_timer(&adap->sge, us);
277 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
279 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
280 V_QINTR_CNT_EN(cnt > 0);
285 * Allocate an active-open TID and set it to the supplied value.
287 int cxgbe_alloc_atid(struct tid_info *t, void *data)
291 t4_os_lock(&t->atid_lock);
293 union aopen_entry *p = t->afree;
295 atid = p - t->atid_tab;
300 t4_os_unlock(&t->atid_lock);
305 * Release an active-open TID.
307 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
309 union aopen_entry *p = &t->atid_tab[atid];
311 t4_os_lock(&t->atid_lock);
315 t4_os_unlock(&t->atid_lock);
319 * Populate a TID_RELEASE WR. Caller must properly size the skb.
321 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
323 struct cpl_tid_release *req;
325 req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
326 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
330 * Release a TID and inform HW. If we are unable to allocate the release
331 * message we defer to a work queue.
333 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
334 unsigned short family)
336 struct rte_mbuf *mbuf;
337 struct adapter *adap = container_of(t, struct adapter, tids);
339 WARN_ON(tid >= t->ntids);
341 if (t->tid_tab[tid]) {
342 t->tid_tab[tid] = NULL;
343 rte_atomic32_dec(&t->conns_in_use);
344 if (t->hash_base && tid >= t->hash_base) {
345 if (family == FILTER_TYPE_IPV4)
346 rte_atomic32_dec(&t->hash_tids_in_use);
348 if (family == FILTER_TYPE_IPV4)
349 rte_atomic32_dec(&t->tids_in_use);
353 mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
355 mbuf->data_len = sizeof(struct cpl_tid_release);
356 mbuf->pkt_len = mbuf->data_len;
357 mk_tid_release(mbuf, tid);
358 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
365 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
366 unsigned short family)
368 t->tid_tab[tid] = data;
369 if (t->hash_base && tid >= t->hash_base) {
370 if (family == FILTER_TYPE_IPV4)
371 rte_atomic32_inc(&t->hash_tids_in_use);
373 if (family == FILTER_TYPE_IPV4)
374 rte_atomic32_inc(&t->tids_in_use);
377 rte_atomic32_inc(&t->conns_in_use);
383 static void tid_free(struct tid_info *t)
387 rte_bitmap_free(t->ftid_bmap);
389 if (t->ftid_bmap_array)
390 t4_os_free(t->ftid_bmap_array);
392 t4_os_free(t->tid_tab);
395 memset(t, 0, sizeof(struct tid_info));
399 * Allocate and initialize the TID tables. Returns 0 on success.
401 static int tid_init(struct tid_info *t)
404 unsigned int ftid_bmap_size;
405 unsigned int natids = t->natids;
406 unsigned int max_ftids = t->nftids;
408 ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
409 size = t->ntids * sizeof(*t->tid_tab) +
410 max_ftids * sizeof(*t->ftid_tab) +
411 natids * sizeof(*t->atid_tab);
413 t->tid_tab = t4_os_alloc(size);
417 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
418 t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
419 t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
420 if (!t->ftid_bmap_array) {
425 t4_os_lock_init(&t->atid_lock);
426 t4_os_lock_init(&t->ftid_lock);
430 rte_atomic32_init(&t->tids_in_use);
431 rte_atomic32_set(&t->tids_in_use, 0);
432 rte_atomic32_init(&t->conns_in_use);
433 rte_atomic32_set(&t->conns_in_use, 0);
435 /* Setup the free list for atid_tab and clear the stid bitmap. */
438 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
439 t->afree = t->atid_tab;
442 t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
452 static inline bool is_x_1g_port(const struct link_config *lc)
454 return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
457 static inline bool is_x_10g_port(const struct link_config *lc)
459 unsigned int speeds, high_speeds;
461 speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
462 high_speeds = speeds &
463 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
465 return high_speeds != 0;
468 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
469 unsigned int us, unsigned int cnt,
470 unsigned int size, unsigned int iqe_size)
473 cxgb4_set_rspq_intr_params(q, us, cnt);
474 q->iqe_len = iqe_size;
478 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
480 struct port_info *pi = eth_dev->data->dev_private;
481 struct adapter *adap = pi->adapter;
482 struct sge *s = &adap->sge;
483 unsigned int max_queues = s->max_ethqsets / adap->params.nports;
485 if ((eth_dev->data->nb_rx_queues < 1) ||
486 (eth_dev->data->nb_tx_queues < 1))
489 if ((eth_dev->data->nb_rx_queues > max_queues) ||
490 (eth_dev->data->nb_tx_queues > max_queues))
493 if (eth_dev->data->nb_rx_queues > pi->rss_size)
496 /* We must configure RSS, since config has changed*/
497 pi->flags &= ~PORT_RSS_DONE;
499 pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
500 pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
505 void cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
507 struct port_info *pi = eth_dev->data->dev_private;
508 struct adapter *adap = pi->adapter;
509 struct sge *s = &adap->sge;
510 unsigned int i, nb_ports = 0, qidx = 0;
511 unsigned int q_per_port = 0;
513 if (!(adap->flags & CFG_QUEUES)) {
514 for_each_port(adap, i) {
515 struct port_info *tpi = adap2pinfo(adap, i);
517 nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
518 is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
522 * We default up to # of cores queues per 1G/10G port.
525 q_per_port = (s->max_ethqsets -
526 (adap->params.nports - nb_ports)) /
529 if (q_per_port > rte_lcore_count())
530 q_per_port = rte_lcore_count();
532 for_each_port(adap, i) {
533 struct port_info *pi = adap2pinfo(adap, i);
535 pi->first_qset = qidx;
537 /* Initially n_rx_qsets == n_tx_qsets */
538 pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
539 is_x_1g_port(&pi->link_cfg)) ?
541 pi->n_tx_qsets = pi->n_rx_qsets;
543 if (pi->n_rx_qsets > pi->rss_size)
544 pi->n_rx_qsets = pi->rss_size;
546 qidx += pi->n_rx_qsets;
549 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
550 struct sge_eth_rxq *r = &s->ethrxq[i];
552 init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
554 r->fl.size = (r->usembufs ? 1024 : 72);
557 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
558 s->ethtxq[i].q.size = 1024;
560 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
561 adap->flags |= CFG_QUEUES;
565 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
567 t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
571 void cxgbe_stats_reset(struct port_info *pi)
573 t4_clr_port_stats(pi->adapter, pi->tx_chan);
576 static void setup_memwin(struct adapter *adap)
580 /* For T5, only relative offset inside the PCIe BAR is passed */
581 mem_win0_base = MEMWIN0_BASE;
584 * Set up memory window for accessing adapter memory ranges. (Read
585 * back MA register to ensure that changes propagate before we attempt
586 * to use the new values.)
589 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
591 mem_win0_base | V_BIR(0) |
592 V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
594 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
598 int cxgbe_init_rss(struct adapter *adap)
605 err = t4_init_rss_mode(adap, adap->mbox);
610 for_each_port(adap, i) {
611 struct port_info *pi = adap2pinfo(adap, i);
613 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
617 pi->rss_hf = CXGBE_RSS_HF_ALL;
623 * Dump basic information about the adapter.
625 void cxgbe_print_adapter_info(struct adapter *adap)
628 * Hardware/Firmware/etc. Version/Revision IDs.
630 t4_dump_version_info(adap);
633 void cxgbe_print_port_info(struct adapter *adap)
637 struct rte_pci_addr *loc = &adap->pdev->addr;
639 for_each_port(adap, i) {
640 const struct port_info *pi = adap2pinfo(adap, i);
643 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
644 bufp += sprintf(bufp, "100M/");
645 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
646 bufp += sprintf(bufp, "1G/");
647 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
648 bufp += sprintf(bufp, "10G/");
649 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
650 bufp += sprintf(bufp, "25G/");
651 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
652 bufp += sprintf(bufp, "40G/");
653 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
654 bufp += sprintf(bufp, "50G/");
655 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
656 bufp += sprintf(bufp, "100G/");
659 sprintf(bufp, "BASE-%s",
660 t4_get_port_type_description(
661 (enum fw_port_type)pi->port_type));
664 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
665 loc->domain, loc->bus, loc->devid, loc->function,
666 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
667 (adap->flags & USING_MSIX) ? " MSI-X" :
668 (adap->flags & USING_MSI) ? " MSI" : "");
673 check_devargs_handler(__rte_unused const char *key, const char *value,
674 __rte_unused void *opaque)
676 if (strcmp(value, "1"))
682 int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key)
684 struct rte_kvargs *kvlist;
689 kvlist = rte_kvargs_parse(devargs->args, NULL);
693 if (!rte_kvargs_count(kvlist, key)) {
694 rte_kvargs_free(kvlist);
698 if (rte_kvargs_process(kvlist, key,
699 check_devargs_handler, NULL) < 0) {
700 rte_kvargs_free(kvlist);
703 rte_kvargs_free(kvlist);
708 static void configure_vlan_types(struct adapter *adapter)
710 struct rte_pci_device *pdev = adapter->pdev;
713 for_each_port(adapter, i) {
714 /* OVLAN Type 0x88a8 */
715 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
716 V_OVLAN_MASK(M_OVLAN_MASK) |
717 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
718 V_OVLAN_MASK(M_OVLAN_MASK) |
719 V_OVLAN_ETYPE(0x88a8));
720 /* OVLAN Type 0x9100 */
721 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
722 V_OVLAN_MASK(M_OVLAN_MASK) |
723 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
724 V_OVLAN_MASK(M_OVLAN_MASK) |
725 V_OVLAN_ETYPE(0x9100));
726 /* OVLAN Type 0x8100 */
727 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2),
728 V_OVLAN_MASK(M_OVLAN_MASK) |
729 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
730 V_OVLAN_MASK(M_OVLAN_MASK) |
731 V_OVLAN_ETYPE(0x8100));
734 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
735 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
736 V_IVLAN_ETYPE(0x8100));
738 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
739 F_OVLAN_EN0 | F_OVLAN_EN1 |
740 F_OVLAN_EN2 | F_IVLAN_EN,
741 F_OVLAN_EN0 | F_OVLAN_EN1 |
742 F_OVLAN_EN2 | F_IVLAN_EN);
745 if (cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_KEEP_OVLAN))
746 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
747 V_RM_OVLAN(1), V_RM_OVLAN(0));
750 static void configure_pcie_ext_tag(struct adapter *adapter)
753 int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
759 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
760 v |= PCI_EXP_DEVCTL_EXT_TAG;
761 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
762 if (is_t6(adapter->params.chip)) {
763 t4_set_reg_field(adapter, A_PCIE_CFG2,
764 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
766 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
767 V_T6_MINTAG(M_T6_MINTAG),
770 t4_set_reg_field(adapter, A_PCIE_CFG2,
771 V_TOTMAXTAG(M_TOTMAXTAG),
773 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
780 /* Figure out how many Queue Sets we can support */
781 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
783 unsigned int ethqsets;
786 * We need to reserve an Ingress Queue for the Asynchronous Firmware
789 * For each Queue Set, we'll need the ability to allocate two Egress
790 * Contexts -- one for the Ingress Queue Free List and one for the TX
793 if (is_pf4(adapter)) {
794 struct pf_resources *pfres = &adapter->params.pfres;
796 ethqsets = pfres->niqflint - 1;
797 if (pfres->neq < ethqsets * 2)
798 ethqsets = pfres->neq / 2;
800 struct vf_resources *vfres = &adapter->params.vfres;
802 ethqsets = vfres->niqflint - 1;
803 if (vfres->nethctrl != ethqsets)
804 ethqsets = min(vfres->nethctrl, ethqsets);
805 if (vfres->neq < ethqsets * 2)
806 ethqsets = vfres->neq / 2;
809 if (ethqsets > MAX_ETH_QSETS)
810 ethqsets = MAX_ETH_QSETS;
811 adapter->sge.max_ethqsets = ethqsets;
815 * Tweak configuration based on system architecture, etc. Most of these have
816 * defaults assigned to them by Firmware Configuration Files (if we're using
817 * them) but need to be explicitly set if we're using hard-coded
818 * initialization. So these are essentially common tweaks/settings for
819 * Configuration Files and hard-coded initialization ...
821 static int adap_init0_tweaks(struct adapter *adapter)
826 * Fix up various Host-Dependent Parameters like Page Size, Cache
827 * Line Size, etc. The firmware default is for a 4KB Page Size and
828 * 64B Cache Line Size ...
830 t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
834 * Keep the chip default offset to deliver Ingress packets into our
835 * DMA buffers to zero
838 t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
839 V_PKTSHIFT(rx_dma_offset));
841 t4_set_reg_field(adapter, A_SGE_FLM_CFG,
842 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
843 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
845 t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
846 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
848 t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
849 V_IDMAARBROUNDROBIN(1U));
852 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
853 * adds the pseudo header itself.
855 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
856 F_CSUM_HAS_PSEUDO_HDR, 0);
862 * Attempt to initialize the adapter via a Firmware Configuration File.
864 static int adap_init0_config(struct adapter *adapter, int reset)
866 struct fw_caps_config_cmd caps_cmd;
867 unsigned long mtype = 0, maddr = 0;
868 u32 finiver, finicsum, cfcsum;
870 int config_issued = 0;
872 char config_name[20];
875 * Reset device if necessary.
878 ret = t4_fw_reset(adapter, adapter->mbox,
879 F_PIORSTMODE | F_PIORST);
881 dev_warn(adapter, "Firmware reset failed, error %d\n",
887 cfg_addr = t4_flash_cfg_addr(adapter);
890 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
895 strcpy(config_name, "On Flash");
896 mtype = FW_MEMTYPE_CF_FLASH;
900 * Issue a Capability Configuration command to the firmware to get it
901 * to parse the Configuration File. We don't use t4_fw_config_file()
902 * because we want the ability to modify various features after we've
903 * processed the configuration file ...
905 memset(&caps_cmd, 0, sizeof(caps_cmd));
906 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
907 F_FW_CMD_REQUEST | F_FW_CMD_READ);
908 caps_cmd.cfvalid_to_len16 =
909 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
910 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
911 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
913 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
916 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
917 * Configuration File in FLASH), our last gasp effort is to use the
918 * Firmware Configuration File which is embedded in the firmware. A
919 * very few early versions of the firmware didn't have one embedded
920 * but we can ignore those.
922 if (ret == -ENOENT) {
923 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
926 memset(&caps_cmd, 0, sizeof(caps_cmd));
927 caps_cmd.op_to_write =
928 cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
929 F_FW_CMD_REQUEST | F_FW_CMD_READ);
930 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
931 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
932 sizeof(caps_cmd), &caps_cmd);
933 strcpy(config_name, "Firmware Default");
940 finiver = be32_to_cpu(caps_cmd.finiver);
941 finicsum = be32_to_cpu(caps_cmd.finicsum);
942 cfcsum = be32_to_cpu(caps_cmd.cfcsum);
943 if (finicsum != cfcsum)
944 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
948 * If we're a pure NIC driver then disable all offloading facilities.
949 * This will allow the firmware to optimize aspects of the hardware
950 * configuration which will result in improved performance.
952 caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
953 caps_cmd.toecaps = 0;
954 caps_cmd.iscsicaps = 0;
955 caps_cmd.rdmacaps = 0;
956 caps_cmd.fcoecaps = 0;
959 * And now tell the firmware to use the configuration we just loaded.
961 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
962 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
963 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
964 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
967 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
973 * Tweak configuration based on system architecture, etc.
975 ret = adap_init0_tweaks(adapter);
977 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
982 * And finally tell the firmware to initialize itself using the
983 * parameters from the Configuration File.
985 ret = t4_fw_initialize(adapter, adapter->mbox);
987 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
993 * Return successfully and note that we're operating with parameters
994 * not supplied by the driver, rather than from hard-wired
995 * initialization constants buried in the driver.
998 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
999 config_name, finiver, cfcsum);
1004 * Something bad happened. Return the error ... (If the "error"
1005 * is that there's no Configuration File on the adapter we don't
1006 * want to issue a warning since this is fairly common.)
1009 if (config_issued && ret != -ENOENT)
1010 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1013 dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1017 static int adap_init0(struct adapter *adap)
1019 struct fw_caps_config_cmd caps_cmd;
1022 enum dev_state state;
1023 u32 params[7], val[7];
1025 int mbox = adap->mbox;
1028 * Contact FW, advertising Master capability.
1030 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1032 dev_err(adap, "%s: could not connect to FW, error %d\n",
1037 CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1041 adap->flags |= MASTER_PF;
1043 if (state == DEV_STATE_INIT) {
1045 * Force halt and reset FW because a previous instance may have
1046 * exited abnormally without properly shutting down
1048 ret = t4_fw_halt(adap, adap->mbox, reset);
1050 dev_err(adap, "Failed to halt. Exit.\n");
1054 ret = t4_fw_restart(adap, adap->mbox, reset);
1056 dev_err(adap, "Failed to restart. Exit.\n");
1059 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1062 t4_get_version_info(adap);
1064 ret = t4_get_core_clock(adap, &adap->params.vpd);
1066 dev_err(adap, "%s: could not get core clock, error %d\n",
1072 * If the firmware is initialized already (and we're not forcing a
1073 * master initialization), note that we're living with existing
1074 * adapter parameters. Otherwise, it's time to try initializing the
1077 if (state == DEV_STATE_INIT) {
1078 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1079 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1081 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1083 ret = adap_init0_config(adap, reset);
1084 if (ret == -ENOENT) {
1086 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1091 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1095 /* Now that we've successfully configured and initialized the adapter
1096 * (or found it already initialized), we can ask the Firmware what
1097 * resources it has provisioned for us.
1099 ret = t4_get_pfres(adap);
1101 dev_err(adap->pdev_dev,
1102 "Unable to retrieve resource provisioning info\n");
1106 /* Find out what ports are available to us. */
1107 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1108 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1109 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1111 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1116 adap->params.nports = hweight32(port_vec);
1117 adap->params.portvec = port_vec;
1119 dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1120 adap->params.nports);
1123 * Give the SGE code a chance to pull in anything that it needs ...
1124 * Note that this must be called after we retrieve our VPD parameters
1125 * in order to know how to convert core ticks to seconds, etc.
1127 ret = t4_sge_init(adap);
1129 dev_err(adap, "t4_sge_init failed with error %d\n",
1135 * Grab some of our basic fundamental operating parameters.
1137 #define FW_PARAM_DEV(param) \
1138 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
1139 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
1141 #define FW_PARAM_PFVF(param) \
1142 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
1143 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
1144 V_FW_PARAMS_PARAM_Y(0) | \
1145 V_FW_PARAMS_PARAM_Z(0))
1147 params[0] = FW_PARAM_PFVF(L2T_START);
1148 params[1] = FW_PARAM_PFVF(L2T_END);
1149 params[2] = FW_PARAM_PFVF(FILTER_START);
1150 params[3] = FW_PARAM_PFVF(FILTER_END);
1151 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1154 adap->l2t_start = val[0];
1155 adap->l2t_end = val[1];
1156 adap->tids.ftid_base = val[2];
1157 adap->tids.nftids = val[3] - val[2] + 1;
1159 params[0] = FW_PARAM_PFVF(CLIP_START);
1160 params[1] = FW_PARAM_PFVF(CLIP_END);
1161 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1164 adap->clipt_start = val[0];
1165 adap->clipt_end = val[1];
1168 * Get device capabilities so we can determine what resources we need
1171 memset(&caps_cmd, 0, sizeof(caps_cmd));
1172 caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1173 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1174 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1175 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1180 if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1181 is_t6(adap->params.chip)) {
1182 if (init_hash_filter(adap) < 0)
1186 /* See if FW supports FW_FILTER2 work request */
1187 if (is_t4(adap->params.chip)) {
1188 adap->params.filter2_wr_support = 0;
1190 params[0] = FW_PARAM_DEV(FILTER2_WR);
1191 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1193 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1196 /* query tid-related parameters */
1197 params[0] = FW_PARAM_DEV(NTID);
1198 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1202 adap->tids.ntids = val[0];
1203 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1205 /* If we're running on newer firmware, let it know that we're
1206 * prepared to deal with encapsulated CPL messages. Older
1207 * firmware won't understand this and we'll just get
1208 * unencapsulated messages ...
1210 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1212 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1215 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1216 * capability. Earlier versions of the firmware didn't have the
1217 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1218 * permission to use ULPTX MEMWRITE DSGL.
1220 if (is_t4(adap->params.chip)) {
1221 adap->params.ulptx_memwrite_dsgl = false;
1223 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1224 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1226 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1230 * The MTU/MSS Table is initialized by now, so load their values. If
1231 * we're initializing the adapter, then we'll make any modifications
1232 * we want to the MTU/MSS Table and also initialize the congestion
1235 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1236 if (state != DEV_STATE_INIT) {
1240 * The default MTU Table contains values 1492 and 1500.
1241 * However, for TCP, it's better to have two values which are
1242 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1243 * This allows us to have a TCP Data Payload which is a
1244 * multiple of 8 regardless of what combination of TCP Options
1245 * are in use (always a multiple of 4 bytes) which is
1246 * important for performance reasons. For instance, if no
1247 * options are in use, then we have a 20-byte IP header and a
1248 * 20-byte TCP header. In this case, a 1500-byte MSS would
1249 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1250 * which is not a multiple of 8. So using an MSS of 1488 in
1251 * this case results in a TCP Data Payload of 1448 bytes which
1252 * is a multiple of 8. On the other hand, if 12-byte TCP Time
1253 * Stamps have been negotiated, then an MTU of 1500 bytes
1254 * results in a TCP Data Payload of 1448 bytes which, as
1255 * above, is a multiple of 8 bytes ...
1257 for (i = 0; i < NMTUS; i++)
1258 if (adap->params.mtus[i] == 1492) {
1259 adap->params.mtus[i] = 1488;
1263 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1264 adap->params.b_wnd);
1266 t4_init_sge_params(adap);
1267 t4_init_tp_params(adap);
1268 configure_pcie_ext_tag(adap);
1269 configure_vlan_types(adap);
1270 cxgbe_configure_max_ethqsets(adap);
1272 adap->params.drv_memwin = MEMWIN_NIC;
1273 adap->flags |= FW_OK;
1274 dev_debug(adap, "%s: returning zero..\n", __func__);
1278 * Something bad happened. If a command timed out or failed with EIO
1279 * FW does not operate within its spec or something catastrophic
1280 * happened to HW/FW, stop issuing commands.
1283 if (ret != -ETIMEDOUT && ret != -EIO)
1284 t4_fw_bye(adap, adap->mbox);
1289 * t4_os_portmod_changed - handle port module changes
1290 * @adap: the adapter associated with the module change
1291 * @port_id: the port index whose module status has changed
1293 * This is the OS-dependent handler for port module changes. It is
1294 * invoked when a port module is removed or inserted for any OS-specific
1297 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1299 static const char * const mod_str[] = {
1300 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1303 const struct port_info *pi = adap2pinfo(adap, port_id);
1305 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1306 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1307 else if (pi->mod_type < ARRAY_SIZE(mod_str))
1308 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1309 mod_str[pi->mod_type]);
1310 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1311 dev_info(adap, "Port%d: unsupported port module inserted\n",
1313 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1314 dev_info(adap, "Port%d: unknown port module inserted\n",
1316 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1317 dev_info(adap, "Port%d: transceiver module error\n",
1320 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1321 pi->port_id, pi->mod_type);
1324 bool cxgbe_force_linkup(struct adapter *adap)
1326 struct rte_pci_device *pdev = adap->pdev;
1329 return false; /* force_linkup not required for pf driver*/
1330 if (!cxgbe_get_devargs(pdev->device.devargs,
1331 CXGBE_DEVARG_FORCE_LINK_UP))
1337 * link_start - enable a port
1338 * @dev: the port to enable
1340 * Performs the MAC and PHY actions needed to enable a port.
1342 int cxgbe_link_start(struct port_info *pi)
1344 struct adapter *adapter = pi->adapter;
1349 mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1350 (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1352 conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1355 * We do not set address filters and promiscuity here, the stack does
1356 * that step explicitly.
1358 ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1359 !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1362 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1363 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1365 pi->xact_addr_filt = ret;
1369 if (ret == 0 && is_pf4(adapter))
1370 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1374 * Enabling a Virtual Interface can result in an interrupt
1375 * during the processing of the VI Enable command and, in some
1376 * paths, result in an attempt to issue another command in the
1377 * interrupt context. Thus, we disable interrupts during the
1378 * course of the VI Enable command ...
1380 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1384 if (ret == 0 && cxgbe_force_linkup(adapter))
1385 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1390 * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1392 * @rss_hf: Hash configuration to apply
1394 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1396 struct adapter *adapter = pi->adapter;
1397 const struct sge_eth_rxq *rxq;
1402 /* Should never be called before setting up sge eth rx queues */
1403 if (!(adapter->flags & FULL_INIT_DONE)) {
1404 dev_err(adap, "%s No RXQs available on port %d\n",
1405 __func__, pi->port_id);
1409 /* Don't allow unsupported hash functions */
1410 if (rss_hf & ~CXGBE_RSS_HF_ALL)
1413 if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1414 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1416 if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1417 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1419 if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1420 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1421 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1423 if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1424 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1426 if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1427 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1428 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1430 if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1431 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1432 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1433 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1435 rxq = &adapter->sge.ethrxq[pi->first_qset];
1436 rss = rxq[0].rspq.abs_id;
1438 /* If Tunnel All Lookup isn't specified in the global RSS
1439 * Configuration, then we need to specify a default Ingress
1440 * Queue for any ingress packets which aren't hashed. We'll
1441 * use our first ingress queue ...
1443 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1449 * cxgbe_write_rss - write the RSS table for a given port
1451 * @queues: array of queue indices for RSS
1453 * Sets up the portion of the HW RSS table for the port's VI to distribute
1454 * packets to the Rx queues in @queues.
1456 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1460 struct adapter *adapter = pi->adapter;
1461 const struct sge_eth_rxq *rxq;
1463 /* Should never be called before setting up sge eth rx queues */
1464 BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1466 rxq = &adapter->sge.ethrxq[pi->first_qset];
1467 rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1471 /* map the queue indices to queue ids */
1472 for (i = 0; i < pi->rss_size; i++, queues++)
1473 rss[i] = rxq[*queues].rspq.abs_id;
1475 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1476 pi->rss_size, rss, pi->rss_size);
1482 * setup_rss - configure RSS
1483 * @adapter: the adapter
1485 * Sets up RSS to distribute packets to multiple receive queues. We
1486 * configure the RSS CPU lookup table to distribute to the number of HW
1487 * receive queues, and the response queue lookup table to narrow that
1488 * down to the response queues actually configured for each port.
1489 * We always configure the RSS mapping for all ports since the mapping
1490 * table has plenty of entries.
1492 int cxgbe_setup_rss(struct port_info *pi)
1495 struct adapter *adapter = pi->adapter;
1497 dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1498 __func__, pi->rss_size, pi->n_rx_qsets);
1500 if (!(pi->flags & PORT_RSS_DONE)) {
1501 if (adapter->flags & FULL_INIT_DONE) {
1502 /* Fill default values with equal distribution */
1503 for (j = 0; j < pi->rss_size; j++)
1504 pi->rss[j] = j % pi->n_rx_qsets;
1506 err = cxgbe_write_rss(pi, pi->rss);
1510 err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1513 pi->flags |= PORT_RSS_DONE;
1520 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1522 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1524 /* 0-increment GTS to start the timer and enable interrupts */
1525 t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1526 T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1527 V_SEINTARM(q->intr_params) |
1528 V_INGRESSQID(q->cntxt_id));
1531 void cxgbe_enable_rx_queues(struct port_info *pi)
1533 struct adapter *adap = pi->adapter;
1534 struct sge *s = &adap->sge;
1537 for (i = 0; i < pi->n_rx_qsets; i++)
1538 enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1542 * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1543 * @port_type: Firmware Port Type
1544 * @fw_caps: Firmware Port Capabilities
1545 * @speed_caps: Device Info Speed Capabilities
1547 * Translate a Firmware Port Capabilities specification to Device Info
1548 * Speed Capabilities.
1550 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1551 unsigned int fw_caps,
1554 #define SET_SPEED(__speed_name) \
1556 *speed_caps |= ETH_LINK_ ## __speed_name; \
1559 #define FW_CAPS_TO_SPEED(__fw_name) \
1561 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1562 SET_SPEED(__fw_name); \
1565 switch (port_type) {
1566 case FW_PORT_TYPE_BT_SGMII:
1567 case FW_PORT_TYPE_BT_XFI:
1568 case FW_PORT_TYPE_BT_XAUI:
1569 FW_CAPS_TO_SPEED(SPEED_100M);
1570 FW_CAPS_TO_SPEED(SPEED_1G);
1571 FW_CAPS_TO_SPEED(SPEED_10G);
1574 case FW_PORT_TYPE_KX4:
1575 case FW_PORT_TYPE_KX:
1576 case FW_PORT_TYPE_FIBER_XFI:
1577 case FW_PORT_TYPE_FIBER_XAUI:
1578 case FW_PORT_TYPE_SFP:
1579 case FW_PORT_TYPE_QSFP_10G:
1580 case FW_PORT_TYPE_QSA:
1581 FW_CAPS_TO_SPEED(SPEED_1G);
1582 FW_CAPS_TO_SPEED(SPEED_10G);
1585 case FW_PORT_TYPE_KR:
1586 SET_SPEED(SPEED_10G);
1589 case FW_PORT_TYPE_BP_AP:
1590 case FW_PORT_TYPE_BP4_AP:
1591 SET_SPEED(SPEED_1G);
1592 SET_SPEED(SPEED_10G);
1595 case FW_PORT_TYPE_BP40_BA:
1596 case FW_PORT_TYPE_QSFP:
1597 SET_SPEED(SPEED_40G);
1600 case FW_PORT_TYPE_CR_QSFP:
1601 case FW_PORT_TYPE_SFP28:
1602 case FW_PORT_TYPE_KR_SFP28:
1603 FW_CAPS_TO_SPEED(SPEED_1G);
1604 FW_CAPS_TO_SPEED(SPEED_10G);
1605 FW_CAPS_TO_SPEED(SPEED_25G);
1608 case FW_PORT_TYPE_CR2_QSFP:
1609 SET_SPEED(SPEED_50G);
1612 case FW_PORT_TYPE_KR4_100G:
1613 case FW_PORT_TYPE_CR4_QSFP:
1614 FW_CAPS_TO_SPEED(SPEED_25G);
1615 FW_CAPS_TO_SPEED(SPEED_40G);
1616 FW_CAPS_TO_SPEED(SPEED_50G);
1617 FW_CAPS_TO_SPEED(SPEED_100G);
1624 #undef FW_CAPS_TO_SPEED
1629 * cxgbe_get_speed_caps - Fetch supported speed capabilities
1630 * @pi: Underlying port's info
1631 * @speed_caps: Device Info speed capabilities
1633 * Fetch supported speed capabilities of the underlying port.
1635 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1639 fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1642 if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1643 *speed_caps |= ETH_LINK_SPEED_FIXED;
1647 * cxgbe_set_link_status - Set device link up or down.
1648 * @pi: Underlying port's info
1649 * @status: 0 - down, 1 - up
1651 * Set the device link up or down.
1653 int cxgbe_set_link_status(struct port_info *pi, bool status)
1655 struct adapter *adapter = pi->adapter;
1658 err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1660 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1665 t4_reset_link_config(adapter, pi->pidx);
1671 * cxgb_up - enable the adapter
1672 * @adap: adapter being enabled
1674 * Called when the first port is enabled, this function performs the
1675 * actions necessary to make an adapter operational, such as completing
1676 * the initialization of HW modules, and enabling interrupts.
1678 int cxgbe_up(struct adapter *adap)
1680 enable_rx(adap, &adap->sge.fw_evtq);
1681 t4_sge_tx_monitor_start(adap);
1683 t4_intr_enable(adap);
1684 adap->flags |= FULL_INIT_DONE;
1686 /* TODO: deadman watchdog ?? */
1693 int cxgbe_down(struct port_info *pi)
1695 return cxgbe_set_link_status(pi, false);
1699 * Release resources when all the ports have been stopped.
1701 void cxgbe_close(struct adapter *adapter)
1703 struct port_info *pi;
1706 if (adapter->flags & FULL_INIT_DONE) {
1707 tid_free(&adapter->tids);
1708 t4_cleanup_mpstcam(adapter);
1709 t4_cleanup_clip_tbl(adapter);
1710 t4_cleanup_l2t(adapter);
1711 if (is_pf4(adapter))
1712 t4_intr_disable(adapter);
1713 t4_sge_tx_monitor_stop(adapter);
1714 t4_free_sge_resources(adapter);
1715 for_each_port(adapter, i) {
1716 pi = adap2pinfo(adapter, i);
1718 t4_free_vi(adapter, adapter->mbox,
1719 adapter->pf, 0, pi->viid);
1720 rte_eth_dev_release_port(pi->eth_dev);
1722 adapter->flags &= ~FULL_INIT_DONE;
1725 if (is_pf4(adapter) && (adapter->flags & FW_OK))
1726 t4_fw_bye(adapter, adapter->mbox);
1729 int cxgbe_probe(struct adapter *adapter)
1731 struct port_info *pi;
1737 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1738 chip = t4_get_chip_type(adapter,
1739 CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1743 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1744 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1746 adapter->mbox = func;
1749 t4_os_lock_init(&adapter->mbox_lock);
1750 TAILQ_INIT(&adapter->mbox_list);
1751 t4_os_lock_init(&adapter->win0_lock);
1753 err = t4_prep_adapter(adapter);
1757 setup_memwin(adapter);
1758 err = adap_init0(adapter);
1760 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1765 if (!is_t4(adapter->params.chip)) {
1767 * The userspace doorbell BAR is split evenly into doorbell
1768 * regions, each associated with an egress queue. If this
1769 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1770 * then it can be used to submit a tx work request with an
1771 * implied doorbell. Enable write combining on the BAR if
1772 * there is room for such work requests.
1774 int s_qpp, qpp, num_seg;
1776 s_qpp = (S_QUEUESPERPAGEPF0 +
1777 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1779 qpp = 1 << ((t4_read_reg(adapter,
1780 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1781 & M_QUEUESPERPAGEPF0);
1782 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1784 dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1786 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1787 if (!adapter->bar2) {
1788 dev_err(adapter, "cannot map device bar2 region\n");
1792 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1796 for_each_port(adapter, i) {
1797 const unsigned int numa_node = rte_socket_id();
1798 char name[RTE_ETH_NAME_MAX_LEN];
1799 struct rte_eth_dev *eth_dev;
1801 snprintf(name, sizeof(name), "%s_%d",
1802 adapter->pdev->device.name, i);
1805 /* First port is already allocated by DPDK */
1806 eth_dev = adapter->eth_dev;
1811 * now do all data allocation - for eth_dev structure,
1812 * and internal (private) data for the remaining ports
1815 /* reserve an ethdev entry */
1816 eth_dev = rte_eth_dev_allocate(name);
1820 eth_dev->data->dev_private =
1821 rte_zmalloc_socket(name, sizeof(struct port_info),
1822 RTE_CACHE_LINE_SIZE, numa_node);
1823 if (!eth_dev->data->dev_private)
1827 pi = eth_dev->data->dev_private;
1828 adapter->port[i] = pi;
1829 pi->eth_dev = eth_dev;
1830 pi->adapter = adapter;
1831 pi->xact_addr_filt = -1;
1835 pi->eth_dev->device = &adapter->pdev->device;
1836 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1837 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1838 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1840 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1842 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1843 RTE_ETHER_ADDR_LEN, 0);
1844 if (!pi->eth_dev->data->mac_addrs) {
1845 dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1852 /* First port will be notified by upper layer */
1853 rte_eth_dev_probing_finish(eth_dev);
1857 if (adapter->flags & FW_OK) {
1858 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1860 dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1866 cxgbe_cfg_queues(adapter->eth_dev);
1868 cxgbe_print_adapter_info(adapter);
1869 cxgbe_print_port_info(adapter);
1871 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1872 adapter->clipt_end);
1873 if (!adapter->clipt) {
1874 /* We tolerate a lack of clip_table, giving up some
1877 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1880 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1881 if (!adapter->l2t) {
1882 /* We tolerate a lack of L2T, giving up some functionality */
1883 dev_warn(adapter, "could not allocate L2T. Continuing\n");
1886 if (tid_init(&adapter->tids) < 0) {
1887 /* Disable filtering support */
1888 dev_warn(adapter, "could not allocate TID table, "
1889 "filter support disabled. Continuing\n");
1892 adapter->mpstcam = t4_init_mpstcam(adapter);
1893 if (!adapter->mpstcam)
1894 dev_warn(adapter, "could not allocate mps tcam table."
1897 if (is_hashfilter(adapter)) {
1898 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1899 u32 hash_base, hash_reg;
1901 hash_reg = A_LE_DB_TID_HASHBASE;
1902 hash_base = t4_read_reg(adapter, hash_reg);
1903 adapter->tids.hash_base = hash_base / 4;
1906 /* Disable hash filtering support */
1908 "Maskless filter support disabled. Continuing\n");
1911 err = cxgbe_init_rss(adapter);
1918 for_each_port(adapter, i) {
1919 pi = adap2pinfo(adapter, i);
1921 t4_free_vi(adapter, adapter->mbox, adapter->pf,
1923 rte_eth_dev_release_port(pi->eth_dev);
1926 if (adapter->flags & FW_OK)
1927 t4_fw_bye(adapter, adapter->mbox);