1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2014-2018 Chelsio Communications.
14 #include <netinet/in.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
21 #include <rte_debug.h>
23 #include <rte_branch_prediction.h>
24 #include <rte_memory.h>
25 #include <rte_tailq.h>
27 #include <rte_alarm.h>
28 #include <rte_ether.h>
29 #include <ethdev_driver.h>
30 #include <ethdev_pci.h>
31 #include <rte_random.h>
33 #include <rte_kvargs.h>
35 #include "base/common.h"
36 #include "base/t4_regs.h"
37 #include "base/t4_msg.h"
39 #include "cxgbe_pfvf.h"
45 static const u16 cxgbe_filter_mode_features[] = {
46 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
48 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
50 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
52 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
54 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
56 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
58 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
60 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
62 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
64 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
66 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
68 (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
70 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
72 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
73 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
74 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
75 (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
76 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
77 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
78 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
80 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
82 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
84 (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
86 (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
87 (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
88 (F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
89 (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
91 (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
92 (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
93 (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
95 (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
96 (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
97 (F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
98 (F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
99 (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
100 (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
101 (F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
102 (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
104 (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
105 (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
106 (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
107 (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
108 (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
109 (F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
110 (F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
111 (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
112 (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
113 (F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
117 * Allocate a chunk of memory. The allocated memory is cleared.
119 void *t4_alloc_mem(size_t size)
121 return rte_zmalloc(NULL, size, 0);
125 * Free memory allocated through t4_alloc_mem().
127 void t4_free_mem(void *addr)
133 * Response queue handler for the FW event queue.
135 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
136 __rte_unused const struct pkt_gl *gl)
138 u8 opcode = ((const struct rss_header *)rsp)->opcode;
140 rsp++; /* skip RSS header */
143 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
145 if (unlikely(opcode == CPL_FW4_MSG &&
146 ((const struct cpl_fw4_msg *)rsp)->type ==
149 opcode = ((const struct rss_header *)rsp)->opcode;
151 if (opcode != CPL_SGE_EGR_UPDATE) {
152 dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
158 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
160 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
161 const struct cpl_fw6_msg *msg = (const void *)rsp;
163 t4_handle_fw_rpl(q->adapter, msg->data);
164 } else if (opcode == CPL_ABORT_RPL_RSS) {
165 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
167 cxgbe_hash_del_filter_rpl(q->adapter, p);
168 } else if (opcode == CPL_SET_TCB_RPL) {
169 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
171 cxgbe_filter_rpl(q->adapter, p);
172 } else if (opcode == CPL_ACT_OPEN_RPL) {
173 const struct cpl_act_open_rpl *p = (const void *)rsp;
175 cxgbe_hash_filter_rpl(q->adapter, p);
176 } else if (opcode == CPL_L2T_WRITE_RPL) {
177 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
179 cxgbe_do_l2t_write_rpl(q->adapter, p);
180 } else if (opcode == CPL_SMT_WRITE_RPL) {
181 const struct cpl_smt_write_rpl *p = (const void *)rsp;
183 cxgbe_do_smt_write_rpl(q->adapter, p);
185 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
193 * Setup sge control queues to pass control information.
195 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
197 struct sge *s = &adapter->sge;
200 for_each_port(adapter, i) {
201 struct port_info *pi = adap2pinfo(adapter, i);
202 char name[RTE_ETH_NAME_MAX_LEN];
203 struct sge_ctrl_txq *q = &s->ctrlq[i];
206 err = t4_sge_alloc_ctrl_txq(adapter, q,
211 dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
215 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
216 pi->eth_dev->device->driver->name,
217 pi->eth_dev->data->port_id);
218 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
221 RTE_MBUF_DEFAULT_BUF_SIZE,
226 "Can't create ctrl pool for port %d. Err: %d\n",
227 pi->eth_dev->data->port_id, err);
233 t4_free_sge_resources(adapter);
238 * cxgbe_poll_for_completion: Poll rxq for completion
240 * @ms: milliseconds to delay
241 * @cnt: number of times to poll
242 * @c: completion to check for 'done' status
244 * Polls the rxq for reples until completion is done or the count
247 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
248 unsigned int cnt, struct t4_completion *c)
251 unsigned int work_done, budget = 32;
256 for (i = 0; i < cnt; i++) {
257 cxgbe_poll(q, NULL, budget, &work_done);
258 t4_os_lock(&c->lock);
260 t4_os_unlock(&c->lock);
263 t4_os_unlock(&c->lock);
269 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
271 struct sge *s = &adapter->sge;
275 err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
276 msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
281 static int closest_timer(const struct sge *s, int time)
283 unsigned int i, match = 0;
284 int delta, min_delta = INT_MAX;
286 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
287 delta = time - s->timer_val[i];
290 if (delta < min_delta) {
298 static int closest_thres(const struct sge *s, int thres)
300 unsigned int i, match = 0;
301 int delta, min_delta = INT_MAX;
303 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
304 delta = thres - s->counter_val[i];
307 if (delta < min_delta) {
316 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
318 * @us: the hold-off time in us, or 0 to disable timer
319 * @cnt: the hold-off packet count, or 0 to disable counter
321 * Sets an Rx queue's interrupt hold-off time and packet count. At least
322 * one of the two needs to be enabled for the queue to generate interrupts.
324 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
327 struct adapter *adap = q->adapter;
328 unsigned int timer_val;
334 new_idx = closest_thres(&adap->sge, cnt);
335 if (q->desc && q->pktcnt_idx != new_idx) {
336 /* the queue has already been created, update it */
337 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
339 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
340 V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
341 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
346 q->pktcnt_idx = new_idx;
349 timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
350 closest_timer(&adap->sge, us);
353 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
355 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
356 V_QINTR_CNT_EN(cnt > 0);
361 * Allocate an active-open TID and set it to the supplied value.
363 int cxgbe_alloc_atid(struct tid_info *t, void *data)
367 t4_os_lock(&t->atid_lock);
369 union aopen_entry *p = t->afree;
371 atid = p - t->atid_tab;
376 t4_os_unlock(&t->atid_lock);
381 * Release an active-open TID.
383 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
385 union aopen_entry *p = &t->atid_tab[atid];
387 t4_os_lock(&t->atid_lock);
391 t4_os_unlock(&t->atid_lock);
395 * Populate a TID_RELEASE WR. Caller must properly size the skb.
397 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
399 struct cpl_tid_release *req;
401 req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
402 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
406 * Release a TID and inform HW. If we are unable to allocate the release
407 * message we defer to a work queue.
409 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
410 unsigned short family)
412 struct rte_mbuf *mbuf;
413 struct adapter *adap = container_of(t, struct adapter, tids);
415 WARN_ON(tid >= t->ntids);
417 if (t->tid_tab[tid]) {
418 t->tid_tab[tid] = NULL;
419 __atomic_sub_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
420 if (t->hash_base && tid >= t->hash_base) {
421 if (family == FILTER_TYPE_IPV4)
422 __atomic_sub_fetch(&t->hash_tids_in_use, 1,
425 if (family == FILTER_TYPE_IPV4)
426 __atomic_sub_fetch(&t->tids_in_use, 1,
431 mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
433 mbuf->data_len = sizeof(struct cpl_tid_release);
434 mbuf->pkt_len = mbuf->data_len;
435 mk_tid_release(mbuf, tid);
436 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
443 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
444 unsigned short family)
446 t->tid_tab[tid] = data;
447 if (t->hash_base && tid >= t->hash_base) {
448 if (family == FILTER_TYPE_IPV4)
449 __atomic_add_fetch(&t->hash_tids_in_use, 1,
452 if (family == FILTER_TYPE_IPV4)
453 __atomic_add_fetch(&t->tids_in_use, 1,
457 __atomic_add_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
463 static void tid_free(struct tid_info *t)
467 rte_bitmap_free(t->ftid_bmap);
469 if (t->ftid_bmap_array)
470 t4_os_free(t->ftid_bmap_array);
472 t4_os_free(t->tid_tab);
475 memset(t, 0, sizeof(struct tid_info));
479 * Allocate and initialize the TID tables. Returns 0 on success.
481 static int tid_init(struct tid_info *t)
484 unsigned int ftid_bmap_size;
485 unsigned int natids = t->natids;
486 unsigned int max_ftids = t->nftids;
488 ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
489 size = t->ntids * sizeof(*t->tid_tab) +
490 max_ftids * sizeof(*t->ftid_tab) +
491 natids * sizeof(*t->atid_tab);
493 t->tid_tab = t4_os_alloc(size);
497 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
498 t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
499 t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
500 if (!t->ftid_bmap_array) {
505 t4_os_lock_init(&t->atid_lock);
506 t4_os_lock_init(&t->ftid_lock);
513 /* Setup the free list for atid_tab and clear the stid bitmap. */
516 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
517 t->afree = t->atid_tab;
520 t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
530 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
531 unsigned int us, unsigned int cnt,
532 unsigned int size, unsigned int iqe_size)
535 cxgb4_set_rspq_intr_params(q, us, cnt);
536 q->iqe_len = iqe_size;
540 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
542 struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
543 struct adapter *adap = pi->adapter;
544 u16 first_txq = 0, first_rxq = 0;
545 struct sge *s = &adap->sge;
546 u16 i, max_rxqs, max_txqs;
548 max_rxqs = s->max_ethqsets;
549 max_txqs = s->max_ethqsets;
550 for_each_port(adap, i) {
551 temp_pi = adap2pinfo(adap, i);
552 if (i == pi->port_id)
555 if (max_rxqs <= temp_pi->n_rx_qsets ||
556 max_txqs <= temp_pi->n_tx_qsets)
559 first_rxq += temp_pi->n_rx_qsets;
560 first_txq += temp_pi->n_tx_qsets;
561 max_rxqs -= temp_pi->n_rx_qsets;
562 max_txqs -= temp_pi->n_tx_qsets;
565 if ((eth_dev->data->nb_rx_queues < 1) ||
566 (eth_dev->data->nb_tx_queues < 1))
569 if (eth_dev->data->nb_rx_queues > max_rxqs ||
570 eth_dev->data->nb_tx_queues > max_txqs)
573 /* We must configure RSS, since config has changed*/
574 pi->flags &= ~PORT_RSS_DONE;
576 pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
577 pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
578 pi->first_rxqset = first_rxq;
579 pi->first_txqset = first_txq;
584 void cxgbe_cfg_queues_free(struct adapter *adap)
586 if (adap->sge.ethtxq) {
587 rte_free(adap->sge.ethtxq);
588 adap->sge.ethtxq = NULL;
591 if (adap->sge.ethrxq) {
592 rte_free(adap->sge.ethrxq);
593 adap->sge.ethrxq = NULL;
596 adap->flags &= ~CFG_QUEUES;
599 int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
601 struct port_info *pi = eth_dev->data->dev_private;
602 struct adapter *adap = pi->adapter;
603 struct sge *s = &adap->sge;
606 if (!(adap->flags & CFG_QUEUES)) {
607 s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
608 sizeof(struct sge_eth_rxq), 0,
613 s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
614 sizeof(struct sge_eth_txq), 0,
622 for (i = 0; i < s->max_ethqsets; i++) {
623 struct sge_eth_rxq *r = &s->ethrxq[i];
624 struct sge_eth_txq *t = &s->ethtxq[i];
626 init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
628 r->fl.size = (r->usembufs ? 1024 : 72);
633 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
634 adap->flags |= CFG_QUEUES;
640 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
642 t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
646 void cxgbe_stats_reset(struct port_info *pi)
648 t4_clr_port_stats(pi->adapter, pi->tx_chan);
651 static void setup_memwin(struct adapter *adap)
655 /* For T5, only relative offset inside the PCIe BAR is passed */
656 mem_win0_base = MEMWIN0_BASE;
659 * Set up memory window for accessing adapter memory ranges. (Read
660 * back MA register to ensure that changes propagate before we attempt
661 * to use the new values.)
664 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
666 mem_win0_base | V_BIR(0) |
667 V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
669 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
673 int cxgbe_init_rss(struct adapter *adap)
680 err = t4_init_rss_mode(adap, adap->mbox);
685 for_each_port(adap, i) {
686 struct port_info *pi = adap2pinfo(adap, i);
688 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
692 pi->rss_hf = CXGBE_RSS_HF_ALL;
698 * Dump basic information about the adapter.
700 void cxgbe_print_adapter_info(struct adapter *adap)
703 * Hardware/Firmware/etc. Version/Revision IDs.
705 t4_dump_version_info(adap);
708 void cxgbe_print_port_info(struct adapter *adap)
712 struct rte_pci_addr *loc = &adap->pdev->addr;
714 for_each_port(adap, i) {
715 const struct port_info *pi = adap2pinfo(adap, i);
718 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
719 bufp += sprintf(bufp, "100M/");
720 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
721 bufp += sprintf(bufp, "1G/");
722 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
723 bufp += sprintf(bufp, "10G/");
724 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
725 bufp += sprintf(bufp, "25G/");
726 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
727 bufp += sprintf(bufp, "40G/");
728 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
729 bufp += sprintf(bufp, "50G/");
730 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
731 bufp += sprintf(bufp, "100G/");
734 sprintf(bufp, "BASE-%s",
735 t4_get_port_type_description(
736 (enum fw_port_type)pi->link_cfg.port_type));
739 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
740 loc->domain, loc->bus, loc->devid, loc->function,
741 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
742 (adap->flags & USING_MSIX) ? " MSI-X" :
743 (adap->flags & USING_MSI) ? " MSI" : "");
747 static int check_devargs_handler(const char *key, const char *value, void *p)
749 if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
750 !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
751 !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
752 if (!strncmp(value, "1", 1)) {
753 bool *dst_val = (bool *)p;
759 if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
760 !strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
761 u32 *dst_val = (u32 *)p;
765 arg_val = strtoul(value, &endptr, 16);
766 if (errno || endptr == value)
775 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
778 struct rte_kvargs *kvlist;
784 kvlist = rte_kvargs_parse(devargs->args, NULL);
788 if (!rte_kvargs_count(kvlist, key))
791 ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
794 rte_kvargs_free(kvlist);
799 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
800 const char *key, bool default_value)
802 struct rte_pci_device *pdev = adap->pdev;
804 bool devarg_value = default_value;
806 *dst = default_value;
810 ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
817 static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
818 const char *key, u32 default_value)
820 struct rte_pci_device *pdev = adap->pdev;
821 u32 devarg_value = default_value;
824 *dst = default_value;
828 ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
835 void cxgbe_process_devargs(struct adapter *adap)
837 cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
838 CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
839 cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
840 CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
841 cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
842 CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
843 cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
844 CXGBE_DEVARG_PF_FILTER_MODE, 0);
845 cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
846 CXGBE_DEVARG_PF_FILTER_MASK, 0);
849 static void configure_vlan_types(struct adapter *adapter)
853 for_each_port(adapter, i) {
854 /* OVLAN Type 0x88a8 */
855 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
856 V_OVLAN_MASK(M_OVLAN_MASK) |
857 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
858 V_OVLAN_MASK(M_OVLAN_MASK) |
859 V_OVLAN_ETYPE(0x88a8));
860 /* OVLAN Type 0x9100 */
861 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
862 V_OVLAN_MASK(M_OVLAN_MASK) |
863 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
864 V_OVLAN_MASK(M_OVLAN_MASK) |
865 V_OVLAN_ETYPE(0x9100));
868 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
869 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
870 V_IVLAN_ETYPE(0x8100));
872 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
873 F_OVLAN_EN0 | F_OVLAN_EN1 |
875 F_OVLAN_EN0 | F_OVLAN_EN1 |
879 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
880 V_RM_OVLAN(!adapter->devargs.keep_ovlan));
883 static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
887 vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
888 CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
891 case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
892 return CXGBE_FILTER_VNIC_MODE_OVLAN;
893 case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
894 return CXGBE_FILTER_VNIC_MODE_PFVF;
900 return CXGBE_FILTER_VNIC_MODE_NONE;
903 static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
905 int vnic_mode, fmode = 0;
909 if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
910 pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
911 CXGBE_DEVARGS_FILTER_MODE_MAX);
915 vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
917 pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
923 if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
925 if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
927 if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
928 fmode |= F_ETHERTYPE;
929 if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
931 if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
933 if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
936 for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
937 if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
946 return closest_match ? cxgbe_filter_mode_features[i] : fmode;
949 static int configure_filter_mode_mask(struct adapter *adap)
951 u32 params[2], val[2], nparams = 0;
954 if (!adap->devargs.filtermode && !adap->devargs.filtermask)
957 if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
958 pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
962 if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
963 pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
964 adap->devargs.filtermask, adap->devargs.filtermode);
969 params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
970 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
972 ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
975 pr_err("Unsupported filtermode devargs combination:0x%x\n",
976 adap->devargs.filtermode);
980 val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
982 ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
985 pr_err("Unsupported filtermask devargs combination:0x%x\n",
986 adap->devargs.filtermask);
990 val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
994 ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
999 params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
1000 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
1007 return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
1011 static void configure_pcie_ext_tag(struct adapter *adapter)
1014 int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
1020 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
1021 v |= PCI_EXP_DEVCTL_EXT_TAG;
1022 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
1023 if (is_t6(adapter->params.chip)) {
1024 t4_set_reg_field(adapter, A_PCIE_CFG2,
1025 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
1027 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1028 V_T6_MINTAG(M_T6_MINTAG),
1031 t4_set_reg_field(adapter, A_PCIE_CFG2,
1032 V_TOTMAXTAG(M_TOTMAXTAG),
1034 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1041 /* Figure out how many Queue Sets we can support */
1042 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
1044 unsigned int ethqsets, reserved;
1046 /* We need to reserve an Ingress Queue for the Asynchronous Firmware
1047 * Event Queue and 1 Control Queue per port.
1049 * For each Queue Set, we'll need the ability to allocate two Egress
1050 * Contexts -- one for the Ingress Queue Free List and one for the TX
1053 reserved = max(adapter->params.nports, 1);
1054 if (is_pf4(adapter)) {
1055 struct pf_resources *pfres = &adapter->params.pfres;
1057 ethqsets = min(pfres->niqflint, pfres->nethctrl);
1058 if (ethqsets > (pfres->neq / 2))
1059 ethqsets = pfres->neq / 2;
1061 struct vf_resources *vfres = &adapter->params.vfres;
1063 ethqsets = min(vfres->niqflint, vfres->nethctrl);
1064 if (ethqsets > (vfres->neq / 2))
1065 ethqsets = vfres->neq / 2;
1068 ethqsets -= reserved;
1069 adapter->sge.max_ethqsets = ethqsets;
1073 * Tweak configuration based on system architecture, etc. Most of these have
1074 * defaults assigned to them by Firmware Configuration Files (if we're using
1075 * them) but need to be explicitly set if we're using hard-coded
1076 * initialization. So these are essentially common tweaks/settings for
1077 * Configuration Files and hard-coded initialization ...
1079 static int adap_init0_tweaks(struct adapter *adapter)
1084 * Fix up various Host-Dependent Parameters like Page Size, Cache
1085 * Line Size, etc. The firmware default is for a 4KB Page Size and
1086 * 64B Cache Line Size ...
1088 t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
1092 * Keep the chip default offset to deliver Ingress packets into our
1093 * DMA buffers to zero
1096 t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
1097 V_PKTSHIFT(rx_dma_offset));
1099 t4_set_reg_field(adapter, A_SGE_FLM_CFG,
1100 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
1101 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
1103 t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
1104 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
1106 t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
1107 V_IDMAARBROUNDROBIN(1U));
1110 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
1111 * adds the pseudo header itself.
1113 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
1114 F_CSUM_HAS_PSEUDO_HDR, 0);
1120 * Attempt to initialize the adapter via a Firmware Configuration File.
1122 static int adap_init0_config(struct adapter *adapter, int reset)
1124 u32 finiver, finicsum, cfcsum, param, val;
1125 struct fw_caps_config_cmd caps_cmd;
1126 unsigned long mtype = 0, maddr = 0;
1127 u8 config_issued = 0;
1128 char config_name[20];
1132 * Reset device if necessary.
1135 ret = t4_fw_reset(adapter, adapter->mbox,
1136 F_PIORSTMODE | F_PIORST);
1138 dev_warn(adapter, "Firmware reset failed, error %d\n",
1144 cfg_addr = t4_flash_cfg_addr(adapter);
1147 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
1152 strcpy(config_name, "On Flash");
1153 mtype = FW_MEMTYPE_CF_FLASH;
1156 /* Enable HASH filter region when support is available. */
1158 param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
1159 t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 1,
1163 * Issue a Capability Configuration command to the firmware to get it
1164 * to parse the Configuration File. We don't use t4_fw_config_file()
1165 * because we want the ability to modify various features after we've
1166 * processed the configuration file ...
1168 memset(&caps_cmd, 0, sizeof(caps_cmd));
1169 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1170 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1171 caps_cmd.cfvalid_to_len16 =
1172 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
1173 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1174 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1175 FW_LEN16(caps_cmd));
1176 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1179 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1180 * Configuration File in FLASH), our last gasp effort is to use the
1181 * Firmware Configuration File which is embedded in the firmware. A
1182 * very few early versions of the firmware didn't have one embedded
1183 * but we can ignore those.
1185 if (ret == -ENOENT) {
1186 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
1189 memset(&caps_cmd, 0, sizeof(caps_cmd));
1190 caps_cmd.op_to_write =
1191 cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1192 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1193 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
1194 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
1195 sizeof(caps_cmd), &caps_cmd);
1196 strcpy(config_name, "Firmware Default");
1203 finiver = be32_to_cpu(caps_cmd.finiver);
1204 finicsum = be32_to_cpu(caps_cmd.finicsum);
1205 cfcsum = be32_to_cpu(caps_cmd.cfcsum);
1206 if (finicsum != cfcsum)
1207 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
1211 * If we're a pure NIC driver then disable all offloading facilities.
1212 * This will allow the firmware to optimize aspects of the hardware
1213 * configuration which will result in improved performance.
1215 caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
1216 caps_cmd.toecaps = 0;
1217 caps_cmd.iscsicaps = 0;
1218 caps_cmd.rdmacaps = 0;
1219 caps_cmd.fcoecaps = 0;
1220 caps_cmd.cryptocaps = 0;
1223 * And now tell the firmware to use the configuration we just loaded.
1225 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1226 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
1227 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1228 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1231 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
1237 * Tweak configuration based on system architecture, etc.
1239 ret = adap_init0_tweaks(adapter);
1241 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1246 * And finally tell the firmware to initialize itself using the
1247 * parameters from the Configuration File.
1249 ret = t4_fw_initialize(adapter, adapter->mbox);
1251 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1257 * Return successfully and note that we're operating with parameters
1258 * not supplied by the driver, rather than from hard-wired
1259 * initialization constants buried in the driver.
1262 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1263 config_name, finiver, cfcsum);
1268 * Something bad happened. Return the error ... (If the "error"
1269 * is that there's no Configuration File on the adapter we don't
1270 * want to issue a warning since this is fairly common.)
1273 if (config_issued && ret != -ENOENT)
1274 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1277 dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1281 static int adap_init0(struct adapter *adap)
1283 struct fw_caps_config_cmd caps_cmd;
1286 enum dev_state state;
1287 u32 params[7], val[7];
1289 int mbox = adap->mbox;
1292 * Contact FW, advertising Master capability.
1294 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1296 dev_err(adap, "%s: could not connect to FW, error %d\n",
1301 CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1305 adap->flags |= MASTER_PF;
1307 if (state == DEV_STATE_INIT) {
1309 * Force halt and reset FW because a previous instance may have
1310 * exited abnormally without properly shutting down
1312 ret = t4_fw_halt(adap, adap->mbox, reset);
1314 dev_err(adap, "Failed to halt. Exit.\n");
1318 ret = t4_fw_restart(adap, adap->mbox, reset);
1320 dev_err(adap, "Failed to restart. Exit.\n");
1323 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1326 t4_get_version_info(adap);
1328 ret = t4_get_core_clock(adap, &adap->params.vpd);
1330 dev_err(adap, "%s: could not get core clock, error %d\n",
1336 * If the firmware is initialized already (and we're not forcing a
1337 * master initialization), note that we're living with existing
1338 * adapter parameters. Otherwise, it's time to try initializing the
1341 if (state == DEV_STATE_INIT) {
1342 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1343 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1345 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1347 ret = adap_init0_config(adap, reset);
1348 if (ret == -ENOENT) {
1350 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1355 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1359 /* Now that we've successfully configured and initialized the adapter
1360 * (or found it already initialized), we can ask the Firmware what
1361 * resources it has provisioned for us.
1363 ret = t4_get_pfres(adap);
1365 dev_err(adap->pdev_dev,
1366 "Unable to retrieve resource provisioning info\n");
1370 /* Find out what ports are available to us. */
1371 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1372 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1373 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1375 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1380 adap->params.nports = hweight32(port_vec);
1381 adap->params.portvec = port_vec;
1383 dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1384 adap->params.nports);
1387 * Give the SGE code a chance to pull in anything that it needs ...
1388 * Note that this must be called after we retrieve our VPD parameters
1389 * in order to know how to convert core ticks to seconds, etc.
1391 ret = t4_sge_init(adap);
1393 dev_err(adap, "t4_sge_init failed with error %d\n",
1399 * Grab some of our basic fundamental operating parameters.
1401 params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1402 params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1403 params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1404 params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1405 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1408 adap->l2t_start = val[0];
1409 adap->l2t_end = val[1];
1410 adap->tids.ftid_base = val[2];
1411 adap->tids.nftids = val[3] - val[2] + 1;
1413 params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1414 params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1415 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1418 adap->clipt_start = val[0];
1419 adap->clipt_end = val[1];
1422 * Get device capabilities so we can determine what resources we need
1425 memset(&caps_cmd, 0, sizeof(caps_cmd));
1426 caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1427 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1428 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1429 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1434 if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1435 is_t6(adap->params.chip)) {
1436 if (cxgbe_init_hash_filter(adap) < 0)
1440 /* See if FW supports FW_FILTER2 work request */
1441 if (is_t4(adap->params.chip)) {
1442 adap->params.filter2_wr_support = 0;
1444 params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1445 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1447 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1450 /* Check if FW supports returning vin.
1451 * If this is not supported, driver will interpret
1452 * these values from viid.
1454 params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
1455 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1457 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
1459 /* query tid-related parameters */
1460 params[0] = CXGBE_FW_PARAM_DEV(NTID);
1461 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1465 adap->tids.ntids = val[0];
1466 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1468 /* If we're running on newer firmware, let it know that we're
1469 * prepared to deal with encapsulated CPL messages. Older
1470 * firmware won't understand this and we'll just get
1471 * unencapsulated messages ...
1473 params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1475 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1478 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1479 * capability. Earlier versions of the firmware didn't have the
1480 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1481 * permission to use ULPTX MEMWRITE DSGL.
1483 if (is_t4(adap->params.chip)) {
1484 adap->params.ulptx_memwrite_dsgl = false;
1486 params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1487 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1489 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1492 /* Query for max number of packets that can be coalesced for Tx */
1493 params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1494 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1495 if (!ret && val[0] > 0)
1496 adap->params.max_tx_coalesce_num = val[0];
1498 adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1500 params[0] = CXGBE_FW_PARAM_DEV(VI_ENABLE_INGRESS_AFTER_LINKUP);
1501 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1502 adap->params.vi_enable_rx = (ret == 0 && val[0] != 0);
1504 /* Read the RAW MPS entries. In T6, the last 2 TCAM entries
1505 * are reserved for RAW MAC addresses (rawf = 2, one per port).
1507 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
1508 params[0] = CXGBE_FW_PARAM_PFVF(RAWF_START);
1509 params[1] = CXGBE_FW_PARAM_PFVF(RAWF_END);
1510 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1513 adap->params.rawf_start = val[0];
1514 adap->params.rawf_size = val[1] - val[0] + 1;
1519 * The MTU/MSS Table is initialized by now, so load their values. If
1520 * we're initializing the adapter, then we'll make any modifications
1521 * we want to the MTU/MSS Table and also initialize the congestion
1524 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1525 if (state != DEV_STATE_INIT) {
1529 * The default MTU Table contains values 1492 and 1500.
1530 * However, for TCP, it's better to have two values which are
1531 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1532 * This allows us to have a TCP Data Payload which is a
1533 * multiple of 8 regardless of what combination of TCP Options
1534 * are in use (always a multiple of 4 bytes) which is
1535 * important for performance reasons. For instance, if no
1536 * options are in use, then we have a 20-byte IP header and a
1537 * 20-byte TCP header. In this case, a 1500-byte MSS would
1538 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1539 * which is not a multiple of 8. So using an MSS of 1488 in
1540 * this case results in a TCP Data Payload of 1448 bytes which
1541 * is a multiple of 8. On the other hand, if 12-byte TCP Time
1542 * Stamps have been negotiated, then an MTU of 1500 bytes
1543 * results in a TCP Data Payload of 1448 bytes which, as
1544 * above, is a multiple of 8 bytes ...
1546 for (i = 0; i < NMTUS; i++)
1547 if (adap->params.mtus[i] == 1492) {
1548 adap->params.mtus[i] = 1488;
1552 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1553 adap->params.b_wnd);
1555 t4_init_sge_params(adap);
1556 ret = configure_filter_mode_mask(adap);
1559 t4_init_tp_params(adap);
1560 configure_pcie_ext_tag(adap);
1561 configure_vlan_types(adap);
1562 cxgbe_configure_max_ethqsets(adap);
1564 adap->params.drv_memwin = MEMWIN_NIC;
1565 adap->flags |= FW_OK;
1566 dev_debug(adap, "%s: returning zero..\n", __func__);
1570 * Something bad happened. If a command timed out or failed with EIO
1571 * FW does not operate within its spec or something catastrophic
1572 * happened to HW/FW, stop issuing commands.
1575 if (ret != -ETIMEDOUT && ret != -EIO)
1576 t4_fw_bye(adap, adap->mbox);
1581 * t4_os_portmod_changed - handle port module changes
1582 * @adap: the adapter associated with the module change
1583 * @port_id: the port index whose module status has changed
1585 * This is the OS-dependent handler for port module changes. It is
1586 * invoked when a port module is removed or inserted for any OS-specific
1589 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1591 static const char * const mod_str[] = {
1592 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1595 const struct port_info *pi = adap2pinfo(adap, port_id);
1597 if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NONE)
1598 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1599 else if (pi->link_cfg.mod_type < ARRAY_SIZE(mod_str))
1600 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1601 mod_str[pi->link_cfg.mod_type]);
1602 else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1603 dev_info(adap, "Port%d: unsupported port module inserted\n",
1605 else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1606 dev_info(adap, "Port%d: unknown port module inserted\n",
1608 else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_ERROR)
1609 dev_info(adap, "Port%d: transceiver module error\n",
1612 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1613 pi->port_id, pi->link_cfg.mod_type);
1616 void t4_os_link_changed(struct adapter *adap, int port_id)
1618 struct port_info *pi = adap2pinfo(adap, port_id);
1620 /* If link status has not changed or if firmware doesn't
1621 * support enabling/disabling VI's Rx path during runtime,
1624 if (adap->params.vi_enable_rx == 0 ||
1625 pi->vi_en_rx == pi->link_cfg.link_ok)
1628 /* Don't enable VI Rx path, if link has been administratively
1631 if (pi->vi_en_tx == 0 && pi->vi_en_rx == 0)
1634 /* When link goes down, disable the port's Rx path to drop
1635 * Rx traffic closer to the wire, instead of processing it
1636 * further in the Rx pipeline. The Rx path will be re-enabled
1637 * once the link up message comes in firmware event queue.
1639 pi->vi_en_rx = pi->link_cfg.link_ok;
1640 t4_enable_vi(adap, adap->mbox, pi->viid, pi->vi_en_rx, pi->vi_en_tx);
1643 bool cxgbe_force_linkup(struct adapter *adap)
1646 return false; /* force_linkup not required for pf driver */
1648 return adap->devargs.force_link_up;
1652 * link_start - enable a port
1653 * @dev: the port to enable
1655 * Performs the MAC and PHY actions needed to enable a port.
1657 int cxgbe_link_start(struct port_info *pi)
1659 struct adapter *adapter = pi->adapter;
1664 mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1665 (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1667 conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1670 * We do not set address filters and promiscuity here, the stack does
1671 * that step explicitly.
1673 ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1674 !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1677 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1678 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1680 pi->xact_addr_filt = ret;
1684 if (ret == 0 && is_pf4(adapter))
1685 ret = t4_link_l1cfg(pi, pi->link_cfg.admin_caps);
1687 /* Disable VI Rx until link up message is received in
1688 * firmware event queue, if firmware supports enabling/
1689 * disabling VI Rx at runtime.
1691 pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : 1;
1693 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1694 pi->vi_en_rx, pi->vi_en_tx, false);
1697 if (ret == 0 && cxgbe_force_linkup(adapter))
1698 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1703 * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1705 * @rss_hf: Hash configuration to apply
1707 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1709 struct adapter *adapter = pi->adapter;
1710 const struct sge_eth_rxq *rxq;
1715 /* Should never be called before setting up sge eth rx queues */
1716 if (!(adapter->flags & FULL_INIT_DONE)) {
1717 dev_err(adap, "%s No RXQs available on port %d\n",
1718 __func__, pi->port_id);
1722 /* Don't allow unsupported hash functions */
1723 if (rss_hf & ~CXGBE_RSS_HF_ALL)
1726 if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1727 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1729 if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1730 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1732 if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1733 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1734 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1736 if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1737 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1739 if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1740 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1741 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1743 if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1744 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1745 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1746 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1748 rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1749 rss = rxq[0].rspq.abs_id;
1751 /* If Tunnel All Lookup isn't specified in the global RSS
1752 * Configuration, then we need to specify a default Ingress
1753 * Queue for any ingress packets which aren't hashed. We'll
1754 * use our first ingress queue ...
1756 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1762 * cxgbe_write_rss - write the RSS table for a given port
1764 * @queues: array of queue indices for RSS
1766 * Sets up the portion of the HW RSS table for the port's VI to distribute
1767 * packets to the Rx queues in @queues.
1769 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1773 struct adapter *adapter = pi->adapter;
1774 const struct sge_eth_rxq *rxq;
1776 /* Should never be called before setting up sge eth rx queues */
1777 BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1779 rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1780 rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1784 /* map the queue indices to queue ids */
1785 for (i = 0; i < pi->rss_size; i++, queues++)
1786 rss[i] = rxq[*queues].rspq.abs_id;
1788 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1789 pi->rss_size, rss, pi->rss_size);
1795 * setup_rss - configure RSS
1796 * @adapter: the adapter
1798 * Sets up RSS to distribute packets to multiple receive queues. We
1799 * configure the RSS CPU lookup table to distribute to the number of HW
1800 * receive queues, and the response queue lookup table to narrow that
1801 * down to the response queues actually configured for each port.
1802 * We always configure the RSS mapping for all ports since the mapping
1803 * table has plenty of entries.
1805 int cxgbe_setup_rss(struct port_info *pi)
1808 struct adapter *adapter = pi->adapter;
1810 dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1811 __func__, pi->rss_size, pi->n_rx_qsets);
1813 if (!(pi->flags & PORT_RSS_DONE)) {
1814 if (adapter->flags & FULL_INIT_DONE) {
1815 /* Fill default values with equal distribution */
1816 for (j = 0; j < pi->rss_size; j++)
1817 pi->rss[j] = j % pi->n_rx_qsets;
1819 err = cxgbe_write_rss(pi, pi->rss);
1823 err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1826 pi->flags |= PORT_RSS_DONE;
1833 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1835 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1837 /* 0-increment GTS to start the timer and enable interrupts */
1838 t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1839 T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1840 V_SEINTARM(q->intr_params) |
1841 V_INGRESSQID(q->cntxt_id));
1844 void cxgbe_enable_rx_queues(struct port_info *pi)
1846 struct adapter *adap = pi->adapter;
1847 struct sge *s = &adap->sge;
1850 for (i = 0; i < pi->n_rx_qsets; i++)
1851 enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
1855 * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1856 * @port_type: Firmware Port Type
1857 * @fw_caps: Firmware Port Capabilities
1858 * @speed_caps: Device Info Speed Capabilities
1860 * Translate a Firmware Port Capabilities specification to Device Info
1861 * Speed Capabilities.
1863 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1864 unsigned int fw_caps,
1867 #define SET_SPEED(__speed_name) \
1869 *speed_caps |= ETH_LINK_ ## __speed_name; \
1872 #define FW_CAPS_TO_SPEED(__fw_name) \
1874 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1875 SET_SPEED(__fw_name); \
1878 switch (port_type) {
1879 case FW_PORT_TYPE_BT_SGMII:
1880 case FW_PORT_TYPE_BT_XFI:
1881 case FW_PORT_TYPE_BT_XAUI:
1882 FW_CAPS_TO_SPEED(SPEED_100M);
1883 FW_CAPS_TO_SPEED(SPEED_1G);
1884 FW_CAPS_TO_SPEED(SPEED_10G);
1887 case FW_PORT_TYPE_KX4:
1888 case FW_PORT_TYPE_KX:
1889 case FW_PORT_TYPE_FIBER_XFI:
1890 case FW_PORT_TYPE_FIBER_XAUI:
1891 case FW_PORT_TYPE_SFP:
1892 case FW_PORT_TYPE_QSFP_10G:
1893 case FW_PORT_TYPE_QSA:
1894 FW_CAPS_TO_SPEED(SPEED_1G);
1895 FW_CAPS_TO_SPEED(SPEED_10G);
1898 case FW_PORT_TYPE_KR:
1899 SET_SPEED(SPEED_10G);
1902 case FW_PORT_TYPE_BP_AP:
1903 case FW_PORT_TYPE_BP4_AP:
1904 SET_SPEED(SPEED_1G);
1905 SET_SPEED(SPEED_10G);
1908 case FW_PORT_TYPE_BP40_BA:
1909 case FW_PORT_TYPE_QSFP:
1910 SET_SPEED(SPEED_40G);
1913 case FW_PORT_TYPE_CR_QSFP:
1914 case FW_PORT_TYPE_SFP28:
1915 case FW_PORT_TYPE_KR_SFP28:
1916 FW_CAPS_TO_SPEED(SPEED_1G);
1917 FW_CAPS_TO_SPEED(SPEED_10G);
1918 FW_CAPS_TO_SPEED(SPEED_25G);
1921 case FW_PORT_TYPE_CR2_QSFP:
1922 SET_SPEED(SPEED_50G);
1925 case FW_PORT_TYPE_KR4_100G:
1926 case FW_PORT_TYPE_CR4_QSFP:
1927 FW_CAPS_TO_SPEED(SPEED_25G);
1928 FW_CAPS_TO_SPEED(SPEED_40G);
1929 FW_CAPS_TO_SPEED(SPEED_50G);
1930 FW_CAPS_TO_SPEED(SPEED_100G);
1937 #undef FW_CAPS_TO_SPEED
1942 * cxgbe_get_speed_caps - Fetch supported speed capabilities
1943 * @pi: Underlying port's info
1944 * @speed_caps: Device Info speed capabilities
1946 * Fetch supported speed capabilities of the underlying port.
1948 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1952 fw_caps_to_speed_caps(pi->link_cfg.port_type, pi->link_cfg.pcaps,
1955 if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1956 *speed_caps |= ETH_LINK_SPEED_FIXED;
1960 * cxgbe_set_link_status - Set device link up or down.
1961 * @pi: Underlying port's info
1962 * @status: 0 - down, 1 - up
1964 * Set the device link up or down.
1966 int cxgbe_set_link_status(struct port_info *pi, bool status)
1968 struct adapter *adapter = pi->adapter;
1971 /* Wait for link up message from firmware to enable Rx path,
1972 * if firmware supports enabling/disabling VI Rx at runtime.
1974 pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : status;
1975 pi->vi_en_tx = status;
1976 err = t4_enable_vi(adapter, adapter->mbox, pi->viid, pi->vi_en_rx,
1979 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1984 t4_reset_link_config(adapter, pi->pidx);
1990 * cxgb_up - enable the adapter
1991 * @adap: adapter being enabled
1993 * Called when the first port is enabled, this function performs the
1994 * actions necessary to make an adapter operational, such as completing
1995 * the initialization of HW modules, and enabling interrupts.
1997 int cxgbe_up(struct adapter *adap)
1999 enable_rx(adap, &adap->sge.fw_evtq);
2000 t4_sge_tx_monitor_start(adap);
2002 t4_intr_enable(adap);
2003 adap->flags |= FULL_INIT_DONE;
2005 /* TODO: deadman watchdog ?? */
2012 int cxgbe_down(struct port_info *pi)
2014 return cxgbe_set_link_status(pi, false);
2018 * Release resources when all the ports have been stopped.
2020 void cxgbe_close(struct adapter *adapter)
2022 if (adapter->flags & FULL_INIT_DONE) {
2023 tid_free(&adapter->tids);
2024 t4_cleanup_mpstcam(adapter);
2025 t4_cleanup_clip_tbl(adapter);
2026 t4_cleanup_l2t(adapter);
2027 t4_cleanup_smt(adapter);
2028 if (is_pf4(adapter))
2029 t4_intr_disable(adapter);
2030 t4_sge_tx_monitor_stop(adapter);
2031 t4_free_sge_resources(adapter);
2032 adapter->flags &= ~FULL_INIT_DONE;
2035 cxgbe_cfg_queues_free(adapter);
2037 if (is_pf4(adapter) && (adapter->flags & FW_OK))
2038 t4_fw_bye(adapter, adapter->mbox);
2041 static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
2044 u32 params[2], smt_val[2];
2047 params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
2048 params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
2050 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2051 2, params, smt_val);
2053 /* if FW doesn't recognize this command then set it to default setting
2054 * which is start index as 0 and size as 256.
2058 *smt_size = SMT_SIZE;
2060 *smt_start_idx = smt_val[0];
2061 /* smt size can be zero, if nsmt is not yet configured in
2062 * the config file or set as zero, then configure all the
2063 * remaining entries to this PF itself.
2066 *smt_size = SMT_SIZE - *smt_start_idx;
2068 *smt_size = smt_val[1];
2072 int cxgbe_probe(struct adapter *adapter)
2074 u32 smt_start_idx, smt_size;
2075 struct port_info *pi;
2081 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2082 chip = t4_get_chip_type(adapter,
2083 CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
2087 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
2088 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2090 adapter->mbox = func;
2093 t4_os_lock_init(&adapter->mbox_lock);
2094 TAILQ_INIT(&adapter->mbox_list);
2095 t4_os_lock_init(&adapter->win0_lock);
2097 err = t4_prep_adapter(adapter);
2101 setup_memwin(adapter);
2102 err = adap_init0(adapter);
2104 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
2109 if (!is_t4(adapter->params.chip)) {
2111 * The userspace doorbell BAR is split evenly into doorbell
2112 * regions, each associated with an egress queue. If this
2113 * per-queue region is large enough (at least UDBS_SEG_SIZE)
2114 * then it can be used to submit a tx work request with an
2115 * implied doorbell. Enable write combining on the BAR if
2116 * there is room for such work requests.
2118 int s_qpp, qpp, num_seg;
2120 s_qpp = (S_QUEUESPERPAGEPF0 +
2121 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
2123 qpp = 1 << ((t4_read_reg(adapter,
2124 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
2125 & M_QUEUESPERPAGEPF0);
2126 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
2128 dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
2130 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
2131 if (!adapter->bar2) {
2132 dev_err(adapter, "cannot map device bar2 region\n");
2136 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
2140 for_each_port(adapter, i) {
2141 const unsigned int numa_node = rte_socket_id();
2142 char name[RTE_ETH_NAME_MAX_LEN];
2143 struct rte_eth_dev *eth_dev;
2145 snprintf(name, sizeof(name), "%s_%d",
2146 adapter->pdev->device.name, i);
2149 /* First port is already allocated by DPDK */
2150 eth_dev = adapter->eth_dev;
2155 * now do all data allocation - for eth_dev structure,
2156 * and internal (private) data for the remaining ports
2159 /* reserve an ethdev entry */
2160 eth_dev = rte_eth_dev_allocate(name);
2164 eth_dev->data->dev_private =
2165 rte_zmalloc_socket(name, sizeof(struct port_info),
2166 RTE_CACHE_LINE_SIZE, numa_node);
2167 if (!eth_dev->data->dev_private)
2171 pi = eth_dev->data->dev_private;
2172 adapter->port[i] = pi;
2173 pi->eth_dev = eth_dev;
2174 pi->adapter = adapter;
2175 pi->xact_addr_filt = -1;
2179 pi->eth_dev->device = &adapter->pdev->device;
2180 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
2181 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
2182 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
2184 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
2186 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
2187 RTE_ETHER_ADDR_LEN, 0);
2188 if (!pi->eth_dev->data->mac_addrs) {
2189 dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
2196 /* First port will be notified by upper layer */
2197 rte_eth_dev_probing_finish(eth_dev);
2201 if (adapter->flags & FW_OK) {
2202 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
2204 dev_err(adapter, "%s: t4_port_init failed with err %d\n",
2210 err = cxgbe_cfg_queues(adapter->eth_dev);
2214 cxgbe_print_adapter_info(adapter);
2215 cxgbe_print_port_info(adapter);
2217 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
2218 adapter->clipt_end);
2219 if (!adapter->clipt) {
2220 /* We tolerate a lack of clip_table, giving up some
2223 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
2226 adap_smt_index(adapter, &smt_start_idx, &smt_size);
2227 adapter->smt = t4_init_smt(smt_start_idx, smt_size);
2229 dev_warn(adapter, "could not allocate SMT, continuing\n");
2231 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
2232 if (!adapter->l2t) {
2233 /* We tolerate a lack of L2T, giving up some functionality */
2234 dev_warn(adapter, "could not allocate L2T. Continuing\n");
2237 if (tid_init(&adapter->tids) < 0) {
2238 /* Disable filtering support */
2239 dev_warn(adapter, "could not allocate TID table, "
2240 "filter support disabled. Continuing\n");
2243 t4_os_lock_init(&adapter->flow_lock);
2245 adapter->mpstcam = t4_init_mpstcam(adapter);
2246 if (!adapter->mpstcam)
2247 dev_warn(adapter, "could not allocate mps tcam table."
2250 if (is_hashfilter(adapter)) {
2251 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
2252 u32 hash_base, hash_reg;
2254 hash_reg = A_LE_DB_TID_HASHBASE;
2255 hash_base = t4_read_reg(adapter, hash_reg);
2256 adapter->tids.hash_base = hash_base / 4;
2259 /* Disable hash filtering support */
2261 "Maskless filter support disabled. Continuing\n");
2264 err = cxgbe_init_rss(adapter);
2271 cxgbe_cfg_queues_free(adapter);
2273 for_each_port(adapter, i) {
2274 pi = adap2pinfo(adapter, i);
2276 t4_free_vi(adapter, adapter->mbox, adapter->pf,
2278 rte_eth_dev_release_port(pi->eth_dev);
2281 if (adapter->flags & FW_OK)
2282 t4_fw_bye(adapter, adapter->mbox);