app/testpmd: mark most cmdline symbols as static
[dpdk.git] / drivers / net / cxgbe / cxgbe_main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <sys/queue.h>
7 #include <sys/stat.h>
8 #include <stdio.h>
9 #include <errno.h>
10 #include <stdint.h>
11 #include <string.h>
12 #include <unistd.h>
13 #include <stdarg.h>
14 #include <inttypes.h>
15 #include <fcntl.h>
16 #include <netinet/in.h>
17
18 #include <rte_byteorder.h>
19 #include <rte_common.h>
20 #include <rte_cycles.h>
21 #include <rte_interrupts.h>
22 #include <rte_log.h>
23 #include <rte_debug.h>
24 #include <rte_pci.h>
25 #include <rte_branch_prediction.h>
26 #include <rte_memory.h>
27 #include <rte_tailq.h>
28 #include <rte_eal.h>
29 #include <rte_alarm.h>
30 #include <rte_ether.h>
31 #include <ethdev_driver.h>
32 #include <ethdev_pci.h>
33 #include <rte_random.h>
34 #include <rte_dev.h>
35 #include <rte_kvargs.h>
36
37 #include "base/common.h"
38 #include "base/t4_regs.h"
39 #include "base/t4_msg.h"
40 #include "cxgbe.h"
41 #include "cxgbe_pfvf.h"
42 #include "clip_tbl.h"
43 #include "l2t.h"
44 #include "smt.h"
45 #include "mps_tcam.h"
46
47 static const u16 cxgbe_filter_mode_features[] = {
48         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
49          F_PROTOCOL | F_PORT),
50         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
51          F_PROTOCOL | F_FCOE),
52         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
53          F_PORT),
54         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
55          F_FCOE),
56         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
57          F_FCOE),
58         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
59          F_PORT | F_FCOE),
60         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
61          F_FCOE),
62         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
63          F_FCOE),
64         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
65          F_FCOE),
66         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
67          F_FCOE),
68         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
69          F_FCOE),
70         (F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
71          F_FCOE),
72         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
73          F_PORT | F_FCOE),
74         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
75         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
76         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
77         (F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
78         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
79         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
80         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
81          F_PORT),
82         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
83          F_FCOE),
84         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
85          F_FCOE),
86         (F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
87          F_FCOE),
88         (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
89         (F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
90         (F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
91         (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
92          F_FCOE),
93         (F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
94         (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
95         (F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
96          F_FCOE),
97         (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
98         (F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
99         (F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
100         (F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
101         (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
102         (F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
103         (F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
104         (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
105          F_FCOE),
106         (F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
107         (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
108         (F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
109         (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
110         (F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
111         (F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
112         (F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
113         (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
114         (F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
115         (F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
116 };
117
118 /**
119  * Allocate a chunk of memory. The allocated memory is cleared.
120  */
121 void *t4_alloc_mem(size_t size)
122 {
123         return rte_zmalloc(NULL, size, 0);
124 }
125
126 /**
127  * Free memory allocated through t4_alloc_mem().
128  */
129 void t4_free_mem(void *addr)
130 {
131         rte_free(addr);
132 }
133
134 /*
135  * Response queue handler for the FW event queue.
136  */
137 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
138                           __rte_unused const struct pkt_gl *gl)
139 {
140         u8 opcode = ((const struct rss_header *)rsp)->opcode;
141
142         rsp++;                                          /* skip RSS header */
143
144         /*
145          * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
146          */
147         if (unlikely(opcode == CPL_FW4_MSG &&
148                      ((const struct cpl_fw4_msg *)rsp)->type ==
149                       FW_TYPE_RSSCPL)) {
150                 rsp++;
151                 opcode = ((const struct rss_header *)rsp)->opcode;
152                 rsp++;
153                 if (opcode != CPL_SGE_EGR_UPDATE) {
154                         dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
155                                 opcode);
156                         goto out;
157                 }
158         }
159
160         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
161                 /* do nothing */
162         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
163                 const struct cpl_fw6_msg *msg = (const void *)rsp;
164
165                 t4_handle_fw_rpl(q->adapter, msg->data);
166         } else if (opcode == CPL_ABORT_RPL_RSS) {
167                 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
168
169                 cxgbe_hash_del_filter_rpl(q->adapter, p);
170         } else if (opcode == CPL_SET_TCB_RPL) {
171                 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
172
173                 cxgbe_filter_rpl(q->adapter, p);
174         } else if (opcode == CPL_ACT_OPEN_RPL) {
175                 const struct cpl_act_open_rpl *p = (const void *)rsp;
176
177                 cxgbe_hash_filter_rpl(q->adapter, p);
178         } else if (opcode == CPL_L2T_WRITE_RPL) {
179                 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
180
181                 cxgbe_do_l2t_write_rpl(q->adapter, p);
182         } else if (opcode == CPL_SMT_WRITE_RPL) {
183                 const struct cpl_smt_write_rpl *p = (const void *)rsp;
184
185                 cxgbe_do_smt_write_rpl(q->adapter, p);
186         } else {
187                 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
188                         opcode);
189         }
190 out:
191         return 0;
192 }
193
194 /**
195  * Setup sge control queues to pass control information.
196  */
197 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
198 {
199         struct sge *s = &adapter->sge;
200         int err = 0, i = 0;
201
202         for_each_port(adapter, i) {
203                 struct port_info *pi = adap2pinfo(adapter, i);
204                 char name[RTE_ETH_NAME_MAX_LEN];
205                 struct sge_ctrl_txq *q = &s->ctrlq[i];
206
207                 q->q.size = 1024;
208                 err = t4_sge_alloc_ctrl_txq(adapter, q,
209                                             adapter->eth_dev,  i,
210                                             s->fw_evtq.cntxt_id,
211                                             rte_socket_id());
212                 if (err) {
213                         dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
214                                 err);
215                         goto out;
216                 }
217                 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
218                          pi->eth_dev->device->driver->name,
219                          pi->eth_dev->data->port_id);
220                 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
221                                                      RTE_CACHE_LINE_SIZE,
222                                                      RTE_MBUF_PRIV_ALIGN,
223                                                      RTE_MBUF_DEFAULT_BUF_SIZE,
224                                                      SOCKET_ID_ANY);
225                 if (!q->mb_pool) {
226                         err = -rte_errno;
227                         dev_err(adapter,
228                                 "Can't create ctrl pool for port %d. Err: %d\n",
229                                 pi->eth_dev->data->port_id, err);
230                         goto out;
231                 }
232         }
233         return 0;
234 out:
235         t4_free_sge_resources(adapter);
236         return err;
237 }
238
239 /**
240  * cxgbe_poll_for_completion: Poll rxq for completion
241  * @q: rxq to poll
242  * @ms: milliseconds to delay
243  * @cnt: number of times to poll
244  * @c: completion to check for 'done' status
245  *
246  * Polls the rxq for reples until completion is done or the count
247  * expires.
248  */
249 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
250                               unsigned int cnt, struct t4_completion *c)
251 {
252         unsigned int i;
253         unsigned int work_done, budget = 32;
254
255         if (!c)
256                 return -EINVAL;
257
258         for (i = 0; i < cnt; i++) {
259                 cxgbe_poll(q, NULL, budget, &work_done);
260                 t4_os_lock(&c->lock);
261                 if (c->done) {
262                         t4_os_unlock(&c->lock);
263                         return 0;
264                 }
265                 t4_os_unlock(&c->lock);
266                 rte_delay_ms(ms);
267         }
268         return -ETIMEDOUT;
269 }
270
271 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
272 {
273         struct sge *s = &adapter->sge;
274         int err = 0;
275         int msi_idx = 0;
276
277         err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
278                                msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
279                                rte_socket_id());
280         return err;
281 }
282
283 static int closest_timer(const struct sge *s, int time)
284 {
285         unsigned int i, match = 0;
286         int delta, min_delta = INT_MAX;
287
288         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
289                 delta = time - s->timer_val[i];
290                 if (delta < 0)
291                         delta = -delta;
292                 if (delta < min_delta) {
293                         min_delta = delta;
294                         match = i;
295                 }
296         }
297         return match;
298 }
299
300 static int closest_thres(const struct sge *s, int thres)
301 {
302         unsigned int i, match = 0;
303         int delta, min_delta = INT_MAX;
304
305         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
306                 delta = thres - s->counter_val[i];
307                 if (delta < 0)
308                         delta = -delta;
309                 if (delta < min_delta) {
310                         min_delta = delta;
311                         match = i;
312                 }
313         }
314         return match;
315 }
316
317 /**
318  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
319  * @q: the Rx queue
320  * @us: the hold-off time in us, or 0 to disable timer
321  * @cnt: the hold-off packet count, or 0 to disable counter
322  *
323  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
324  * one of the two needs to be enabled for the queue to generate interrupts.
325  */
326 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
327                                unsigned int cnt)
328 {
329         struct adapter *adap = q->adapter;
330         unsigned int timer_val;
331
332         if (cnt) {
333                 int err;
334                 u32 v, new_idx;
335
336                 new_idx = closest_thres(&adap->sge, cnt);
337                 if (q->desc && q->pktcnt_idx != new_idx) {
338                         /* the queue has already been created, update it */
339                         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
340                             V_FW_PARAMS_PARAM_X(
341                             FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
342                             V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
343                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
344                                             &v, &new_idx);
345                         if (err)
346                                 return err;
347                 }
348                 q->pktcnt_idx = new_idx;
349         }
350
351         timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
352                                 closest_timer(&adap->sge, us);
353
354         if ((us | cnt) == 0)
355                 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
356         else
357                 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
358                                  V_QINTR_CNT_EN(cnt > 0);
359         return 0;
360 }
361
362 /**
363  * Allocate an active-open TID and set it to the supplied value.
364  */
365 int cxgbe_alloc_atid(struct tid_info *t, void *data)
366 {
367         int atid = -1;
368
369         t4_os_lock(&t->atid_lock);
370         if (t->afree) {
371                 union aopen_entry *p = t->afree;
372
373                 atid = p - t->atid_tab;
374                 t->afree = p->next;
375                 p->data = data;
376                 t->atids_in_use++;
377         }
378         t4_os_unlock(&t->atid_lock);
379         return atid;
380 }
381
382 /**
383  * Release an active-open TID.
384  */
385 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
386 {
387         union aopen_entry *p = &t->atid_tab[atid];
388
389         t4_os_lock(&t->atid_lock);
390         p->next = t->afree;
391         t->afree = p;
392         t->atids_in_use--;
393         t4_os_unlock(&t->atid_lock);
394 }
395
396 /**
397  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
398  */
399 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
400 {
401         struct cpl_tid_release *req;
402
403         req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
404         INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
405 }
406
407 /**
408  * Release a TID and inform HW.  If we are unable to allocate the release
409  * message we defer to a work queue.
410  */
411 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
412                       unsigned short family)
413 {
414         struct rte_mbuf *mbuf;
415         struct adapter *adap = container_of(t, struct adapter, tids);
416
417         WARN_ON(tid >= t->ntids);
418
419         if (t->tid_tab[tid]) {
420                 t->tid_tab[tid] = NULL;
421                 __atomic_sub_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
422                 if (t->hash_base && tid >= t->hash_base) {
423                         if (family == FILTER_TYPE_IPV4)
424                                 __atomic_sub_fetch(&t->hash_tids_in_use, 1,
425                                                    __ATOMIC_RELAXED);
426                 } else {
427                         if (family == FILTER_TYPE_IPV4)
428                                 __atomic_sub_fetch(&t->tids_in_use, 1,
429                                                    __ATOMIC_RELAXED);
430                 }
431         }
432
433         mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
434         if (mbuf) {
435                 mbuf->data_len = sizeof(struct cpl_tid_release);
436                 mbuf->pkt_len = mbuf->data_len;
437                 mk_tid_release(mbuf, tid);
438                 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
439         }
440 }
441
442 /**
443  * Insert a TID.
444  */
445 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
446                       unsigned short family)
447 {
448         t->tid_tab[tid] = data;
449         if (t->hash_base && tid >= t->hash_base) {
450                 if (family == FILTER_TYPE_IPV4)
451                         __atomic_add_fetch(&t->hash_tids_in_use, 1,
452                                            __ATOMIC_RELAXED);
453         } else {
454                 if (family == FILTER_TYPE_IPV4)
455                         __atomic_add_fetch(&t->tids_in_use, 1,
456                                            __ATOMIC_RELAXED);
457         }
458
459         __atomic_add_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
460 }
461
462 /**
463  * Free TID tables.
464  */
465 static void tid_free(struct tid_info *t)
466 {
467         if (t->tid_tab) {
468                 rte_bitmap_free(t->ftid_bmap);
469
470                 if (t->ftid_bmap_array)
471                         t4_os_free(t->ftid_bmap_array);
472
473                 t4_os_free(t->tid_tab);
474         }
475
476         memset(t, 0, sizeof(struct tid_info));
477 }
478
479 /**
480  * Allocate and initialize the TID tables.  Returns 0 on success.
481  */
482 static int tid_init(struct tid_info *t)
483 {
484         size_t size;
485         unsigned int ftid_bmap_size;
486         unsigned int natids = t->natids;
487         unsigned int max_ftids = t->nftids;
488
489         ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
490         size = t->ntids * sizeof(*t->tid_tab) +
491                 max_ftids * sizeof(*t->ftid_tab) +
492                 natids * sizeof(*t->atid_tab);
493
494         t->tid_tab = t4_os_alloc(size);
495         if (!t->tid_tab)
496                 return -ENOMEM;
497
498         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
499         t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
500         t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
501         if (!t->ftid_bmap_array) {
502                 tid_free(t);
503                 return -ENOMEM;
504         }
505
506         t4_os_lock_init(&t->atid_lock);
507         t4_os_lock_init(&t->ftid_lock);
508
509         t->afree = NULL;
510         t->atids_in_use = 0;
511         t->tids_in_use = 0;
512         t->conns_in_use = 0;
513
514         /* Setup the free list for atid_tab and clear the stid bitmap. */
515         if (natids) {
516                 while (--natids)
517                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
518                 t->afree = t->atid_tab;
519         }
520
521         t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
522                                        ftid_bmap_size);
523         if (!t->ftid_bmap) {
524                 tid_free(t);
525                 return -ENOMEM;
526         }
527
528         return 0;
529 }
530
531 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
532                       unsigned int us, unsigned int cnt,
533                       unsigned int size, unsigned int iqe_size)
534 {
535         q->adapter = adap;
536         cxgb4_set_rspq_intr_params(q, us, cnt);
537         q->iqe_len = iqe_size;
538         q->size = size;
539 }
540
541 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
542 {
543         struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
544         struct adapter *adap = pi->adapter;
545         u16 first_txq = 0, first_rxq = 0;
546         struct sge *s = &adap->sge;
547         u16 i, max_rxqs, max_txqs;
548
549         max_rxqs = s->max_ethqsets;
550         max_txqs = s->max_ethqsets;
551         for_each_port(adap, i) {
552                 temp_pi = adap2pinfo(adap, i);
553                 if (i == pi->port_id)
554                         break;
555
556                 if (max_rxqs <= temp_pi->n_rx_qsets ||
557                     max_txqs <= temp_pi->n_tx_qsets)
558                         return -ENOMEM;
559
560                 first_rxq += temp_pi->n_rx_qsets;
561                 first_txq += temp_pi->n_tx_qsets;
562                 max_rxqs -= temp_pi->n_rx_qsets;
563                 max_txqs -= temp_pi->n_tx_qsets;
564         }
565
566         if ((eth_dev->data->nb_rx_queues < 1) ||
567             (eth_dev->data->nb_tx_queues < 1))
568                 return -EINVAL;
569
570         if (eth_dev->data->nb_rx_queues > max_rxqs ||
571             eth_dev->data->nb_tx_queues > max_txqs)
572                 return -EINVAL;
573
574         /* We must configure RSS, since config has changed*/
575         pi->flags &= ~PORT_RSS_DONE;
576
577         pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
578         pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
579         pi->first_rxqset = first_rxq;
580         pi->first_txqset = first_txq;
581
582         return 0;
583 }
584
585 void cxgbe_cfg_queues_free(struct adapter *adap)
586 {
587         if (adap->sge.ethtxq) {
588                 rte_free(adap->sge.ethtxq);
589                 adap->sge.ethtxq = NULL;
590         }
591
592         if (adap->sge.ethrxq) {
593                 rte_free(adap->sge.ethrxq);
594                 adap->sge.ethrxq = NULL;
595         }
596
597         adap->flags &= ~CFG_QUEUES;
598 }
599
600 int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
601 {
602         struct port_info *pi = eth_dev->data->dev_private;
603         struct adapter *adap = pi->adapter;
604         struct sge *s = &adap->sge;
605         u16 i;
606
607         if (!(adap->flags & CFG_QUEUES)) {
608                 s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
609                                               sizeof(struct sge_eth_rxq), 0,
610                                               rte_socket_id());
611                 if (!s->ethrxq)
612                         return -ENOMEM;
613
614                 s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
615                                               sizeof(struct sge_eth_txq), 0,
616                                               rte_socket_id());
617                 if (!s->ethtxq) {
618                         rte_free(s->ethrxq);
619                         s->ethrxq = NULL;
620                         return -ENOMEM;
621                 }
622
623                 for (i = 0; i < s->max_ethqsets; i++) {
624                         struct sge_eth_rxq *r = &s->ethrxq[i];
625                         struct sge_eth_txq *t = &s->ethtxq[i];
626
627                         init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
628                         r->fl.size = 1024;
629
630                         t->q.size = 1024;
631                 }
632
633                 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
634                 adap->flags |= CFG_QUEUES;
635         }
636
637         return 0;
638 }
639
640 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
641 {
642         t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
643                                  &pi->stats_base);
644 }
645
646 void cxgbe_stats_reset(struct port_info *pi)
647 {
648         t4_clr_port_stats(pi->adapter, pi->tx_chan);
649 }
650
651 static void setup_memwin(struct adapter *adap)
652 {
653         u32 mem_win0_base;
654
655         /* For T5, only relative offset inside the PCIe BAR is passed */
656         mem_win0_base = MEMWIN0_BASE;
657
658         /*
659          * Set up memory window for accessing adapter memory ranges.  (Read
660          * back MA register to ensure that changes propagate before we attempt
661          * to use the new values.)
662          */
663         t4_write_reg(adap,
664                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
665                                          MEMWIN_NIC),
666                      mem_win0_base | V_BIR(0) |
667                      V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
668         t4_read_reg(adap,
669                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
670                                         MEMWIN_NIC));
671 }
672
673 int cxgbe_init_rss(struct adapter *adap)
674 {
675         unsigned int i;
676
677         if (is_pf4(adap)) {
678                 int err;
679
680                 err = t4_init_rss_mode(adap, adap->mbox);
681                 if (err)
682                         return err;
683         }
684
685         for_each_port(adap, i) {
686                 struct port_info *pi = adap2pinfo(adap, i);
687
688                 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
689                 if (!pi->rss)
690                         return -ENOMEM;
691
692                 pi->rss_hf = CXGBE_RSS_HF_ALL;
693         }
694         return 0;
695 }
696
697 /**
698  * Dump basic information about the adapter.
699  */
700 void cxgbe_print_adapter_info(struct adapter *adap)
701 {
702         /**
703          * Hardware/Firmware/etc. Version/Revision IDs.
704          */
705         t4_dump_version_info(adap);
706 }
707
708 void cxgbe_print_port_info(struct adapter *adap)
709 {
710         int i;
711         char buf[80];
712         struct rte_pci_addr *loc = &adap->pdev->addr;
713
714         for_each_port(adap, i) {
715                 const struct port_info *pi = adap2pinfo(adap, i);
716                 char *bufp = buf;
717
718                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
719                         bufp += sprintf(bufp, "100M/");
720                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
721                         bufp += sprintf(bufp, "1G/");
722                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
723                         bufp += sprintf(bufp, "10G/");
724                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
725                         bufp += sprintf(bufp, "25G/");
726                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
727                         bufp += sprintf(bufp, "40G/");
728                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
729                         bufp += sprintf(bufp, "50G/");
730                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
731                         bufp += sprintf(bufp, "100G/");
732                 if (bufp != buf)
733                         --bufp;
734                 sprintf(bufp, "BASE-%s",
735                         t4_get_port_type_description(
736                                 (enum fw_port_type)pi->link_cfg.port_type));
737
738                 dev_info(adap,
739                          " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
740                          loc->domain, loc->bus, loc->devid, loc->function,
741                          CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
742                          (adap->flags & USING_MSIX) ? " MSI-X" :
743                          (adap->flags & USING_MSI) ? " MSI" : "");
744         }
745 }
746
747 static int check_devargs_handler(const char *key, const char *value, void *p)
748 {
749         if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
750             !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
751             !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
752                 if (!strncmp(value, "1", 1)) {
753                         bool *dst_val = (bool *)p;
754
755                         *dst_val = true;
756                 }
757         }
758
759         if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
760             !strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
761                 u32 *dst_val = (u32 *)p;
762                 char *endptr = NULL;
763                 u32 arg_val;
764
765                 arg_val = strtoul(value, &endptr, 16);
766                 if (errno || endptr == value)
767                         return -EINVAL;
768
769                 *dst_val = arg_val;
770         }
771
772         return 0;
773 }
774
775 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
776                              void *p)
777 {
778         struct rte_kvargs *kvlist;
779         int ret = 0;
780
781         if (!devargs)
782                 return 0;
783
784         kvlist = rte_kvargs_parse(devargs->args, NULL);
785         if (!kvlist)
786                 return 0;
787
788         if (!rte_kvargs_count(kvlist, key))
789                 goto out;
790
791         ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
792
793 out:
794         rte_kvargs_free(kvlist);
795
796         return ret;
797 }
798
799 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
800                                   const char *key, bool default_value)
801 {
802         struct rte_pci_device *pdev = adap->pdev;
803         int ret;
804         bool devarg_value = default_value;
805
806         *dst = default_value;
807         if (!pdev)
808                 return;
809
810         ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
811         if (ret)
812                 return;
813
814         *dst = devarg_value;
815 }
816
817 static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
818                                   const char *key, u32 default_value)
819 {
820         struct rte_pci_device *pdev = adap->pdev;
821         u32 devarg_value = default_value;
822         int ret;
823
824         *dst = default_value;
825         if (!pdev)
826                 return;
827
828         ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
829         if (ret)
830                 return;
831
832         *dst = devarg_value;
833 }
834
835 void cxgbe_process_devargs(struct adapter *adap)
836 {
837         cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
838                               CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
839         cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
840                               CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
841         cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
842                               CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
843         cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
844                               CXGBE_DEVARG_PF_FILTER_MODE, 0);
845         cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
846                               CXGBE_DEVARG_PF_FILTER_MASK, 0);
847 }
848
849 static void configure_vlan_types(struct adapter *adapter)
850 {
851         int i;
852
853         for_each_port(adapter, i) {
854                 /* OVLAN Type 0x88a8 */
855                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
856                                  V_OVLAN_MASK(M_OVLAN_MASK) |
857                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
858                                  V_OVLAN_MASK(M_OVLAN_MASK) |
859                                  V_OVLAN_ETYPE(0x88a8));
860                 /* OVLAN Type 0x9100 */
861                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
862                                  V_OVLAN_MASK(M_OVLAN_MASK) |
863                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
864                                  V_OVLAN_MASK(M_OVLAN_MASK) |
865                                  V_OVLAN_ETYPE(0x9100));
866
867                 /* IVLAN 0X8100 */
868                 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
869                                  V_IVLAN_ETYPE(M_IVLAN_ETYPE),
870                                  V_IVLAN_ETYPE(0x8100));
871
872                 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
873                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
874                                  F_IVLAN_EN,
875                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
876                                  F_IVLAN_EN);
877         }
878
879         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
880                                V_RM_OVLAN(!adapter->devargs.keep_ovlan));
881 }
882
883 static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
884 {
885         u32 vnic_mode;
886
887         vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
888                            CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
889         if (vnic_mode) {
890                 switch (vnic_mode) {
891                 case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
892                         return CXGBE_FILTER_VNIC_MODE_OVLAN;
893                 case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
894                         return CXGBE_FILTER_VNIC_MODE_PFVF;
895                 default:
896                         return -EINVAL;
897                 }
898         }
899
900         return CXGBE_FILTER_VNIC_MODE_NONE;
901 }
902
903 static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
904 {
905         int vnic_mode, fmode = 0;
906         bool found = false;
907         u8 i;
908
909         if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
910                 pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
911                        CXGBE_DEVARGS_FILTER_MODE_MAX);
912                 return -ERANGE;
913         }
914
915         vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
916         if (vnic_mode < 0) {
917                 pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
918                 return vnic_mode;
919         }
920
921         if (vnic_mode)
922                 fmode |= F_VNIC_ID;
923         if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
924                 fmode |= F_PORT;
925         if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
926                 fmode |= F_MACMATCH;
927         if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
928                 fmode |= F_ETHERTYPE;
929         if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
930                 fmode |= F_VLAN;
931         if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
932                 fmode |= F_TOS;
933         if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
934                 fmode |= F_PROTOCOL;
935
936         for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
937                 if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
938                         found = true;
939                         break;
940                 }
941         }
942
943         if (!found)
944                 return -EINVAL;
945
946         return closest_match ? cxgbe_filter_mode_features[i] : fmode;
947 }
948
949 static int configure_filter_mode_mask(struct adapter *adap)
950 {
951         u32 params[2], val[2], nparams = 0;
952         int ret;
953
954         if (!adap->devargs.filtermode && !adap->devargs.filtermask)
955                 return 0;
956
957         if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
958                 pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
959                 return -EINVAL;
960         }
961
962         if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
963                 pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
964                        adap->devargs.filtermask, adap->devargs.filtermode);
965
966                 return -EINVAL;
967         }
968
969         params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
970                     V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
971
972         ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
973                                                  true);
974         if (ret < 0) {
975                 pr_err("Unsupported filtermode devargs combination:0x%x\n",
976                        adap->devargs.filtermode);
977                 return ret;
978         }
979
980         val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
981
982         ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
983                                                  false);
984         if (ret < 0) {
985                 pr_err("Unsupported filtermask devargs combination:0x%x\n",
986                        adap->devargs.filtermask);
987                 return ret;
988         }
989
990         val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
991
992         nparams++;
993
994         ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
995         if (ret < 0)
996                 return ret;
997
998         if (ret) {
999                 params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
1000                             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
1001
1002                 val[1] = ret - 1;
1003
1004                 nparams++;
1005         }
1006
1007         return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
1008                              params, val);
1009 }
1010
1011 #define CXGBE_FW_CONFIG_PATH_T5 "/lib/firmware/cxgb4/t5-config.txt"
1012 #define CXGBE_FW_CONFIG_PATH_T6 "/lib/firmware/cxgb4/t6-config.txt"
1013
1014 /*
1015  * Load firmware configuration from file in /lib/firmware/cxgb4/ path,
1016  * if it is present.
1017  */
1018 static int cxgbe_load_fw_config_from_filesystem(struct adapter *adap,
1019                                                 const char **config_name,
1020                                                 u32 *mem_type, u32 *mem_addr)
1021 {
1022         u32 param, val, mtype, maddr;
1023         const char *fw_cfg_path;
1024         char *fw_cfg = NULL;
1025         struct stat st;
1026         int ret, fd;
1027
1028         switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
1029         case CHELSIO_T5:
1030                 fw_cfg_path = CXGBE_FW_CONFIG_PATH_T5;
1031                 break;
1032         case CHELSIO_T6:
1033                 fw_cfg_path = CXGBE_FW_CONFIG_PATH_T6;
1034                 break;
1035         default:
1036                 return -ENOENT;
1037         }
1038
1039         ret = open(fw_cfg_path, O_RDONLY);
1040         if (ret < 0) {
1041                 dev_debug(adap, "Couldn't open FW config file\n");
1042                 return ret;
1043         }
1044
1045         fd = ret;
1046
1047         ret = fstat(fd, &st);
1048         if (ret < 0) {
1049                 dev_debug(adap, "Couldn't get FW config file size\n");
1050                 goto out_err;
1051         }
1052
1053         if (st.st_size >= FLASH_CFG_MAX_SIZE) {
1054                 dev_debug(adap, "FW config file size >= max(%u)\n",
1055                           FLASH_CFG_MAX_SIZE);
1056                 ret = -ENOMEM;
1057                 goto out_err;
1058         }
1059
1060         fw_cfg = rte_zmalloc(NULL, st.st_size, 0);
1061         if (fw_cfg == NULL) {
1062                 ret = -ENOMEM;
1063                 goto out_err;
1064         }
1065
1066         if (read(fd, fw_cfg, st.st_size) != st.st_size) {
1067                 dev_debug(adap, "Couldn't read FW config file data\n");
1068                 ret = -EIO;
1069                 goto out_err;
1070         }
1071
1072         close(fd);
1073
1074         /* Send it to FW to verify and update to new configuration */
1075         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1076                 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF);
1077         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
1078         if (ret < 0) {
1079                 dev_debug(adap, "FW config param query failed: %d\n", ret);
1080                 goto out_free;
1081         }
1082
1083         mtype = val >> 8;
1084         maddr = (val & 0xff) << 16;
1085
1086         t4_os_lock(&adap->win0_lock);
1087         ret = t4_memory_rw(adap, MEMWIN_NIC, mtype, maddr, st.st_size,
1088                            fw_cfg, T4_MEMORY_WRITE);
1089         t4_os_unlock(&adap->win0_lock);
1090         if (ret < 0) {
1091                 dev_debug(adap, "FW config file update failed: %d\n", ret);
1092                 goto out_free;
1093         }
1094
1095         rte_free(fw_cfg);
1096
1097         *mem_type = mtype;
1098         *mem_addr = maddr;
1099         *config_name = fw_cfg_path;
1100         return 0;
1101
1102 out_err:
1103         close(fd);
1104 out_free:
1105         rte_free(fw_cfg);
1106         return ret;
1107 }
1108
1109 static int cxgbe_load_fw_config(struct adapter *adap)
1110 {
1111         u32 finiver, finicsum, cfcsum, mtype, maddr, param, val;
1112         struct fw_caps_config_cmd caps_cmd = { 0 };
1113         const char *config_name = NULL;
1114         int ret;
1115
1116         ret = cxgbe_load_fw_config_from_filesystem(adap, &config_name,
1117                                                    &mtype, &maddr);
1118         if (ret < 0) {
1119                 config_name = "On Flash";
1120
1121                 ret = t4_flash_cfg_addr(adap);
1122                 if (ret < 0) {
1123                         dev_warn(adap,
1124                                  "Finding address for FW config file in flash failed: %d\n",
1125                                  ret);
1126                         goto out_default_config;
1127                 }
1128
1129                 mtype = FW_MEMTYPE_CF_FLASH;
1130                 maddr = ret;
1131         }
1132
1133         /* Enable HASH filter region when support is available. */
1134         val = 1;
1135         param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
1136         t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
1137
1138         /*
1139          * Issue a Capability Configuration command to the firmware to get it
1140          * to parse the Configuration File.
1141          */
1142         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1143                                            F_FW_CMD_REQUEST | F_FW_CMD_READ);
1144         caps_cmd.cfvalid_to_len16 =
1145                 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
1146                             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1147                             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1148                             FW_LEN16(caps_cmd));
1149         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1150                          &caps_cmd);
1151
1152 out_default_config:
1153         /*
1154          * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1155          * Configuration File in filesystem or FLASH), our last gasp
1156          * effort is to use the Firmware Configuration File which is
1157          * embedded in the firmware.
1158          */
1159         if (ret == -ENOENT) {
1160                 config_name = "Firmware Default";
1161
1162                 memset(&caps_cmd, 0, sizeof(caps_cmd));
1163                 caps_cmd.op_to_write =
1164                         cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1165                                     F_FW_CMD_REQUEST | F_FW_CMD_READ);
1166                 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
1167                 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1168                                  &caps_cmd);
1169         }
1170
1171         if (ret < 0) {
1172                 dev_info(adap,
1173                          "Failed to configure using %s Firmware Configuration file: %d\n",
1174                          config_name, ret);
1175                 return ret;
1176         }
1177
1178         finiver = be32_to_cpu(caps_cmd.finiver);
1179         finicsum = be32_to_cpu(caps_cmd.finicsum);
1180         cfcsum = be32_to_cpu(caps_cmd.cfcsum);
1181         if (finicsum != cfcsum)
1182                 dev_warn(adap,
1183                          "Configuration File checksum mismatch: [fini] csum=0x%x, computed csum=0x%x\n",
1184                          finicsum, cfcsum);
1185
1186         /*
1187          * If we're a pure NIC driver then disable all offloading facilities.
1188          * This will allow the firmware to optimize aspects of the hardware
1189          * configuration which will result in improved performance.
1190          */
1191         caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
1192         caps_cmd.toecaps = 0;
1193         caps_cmd.iscsicaps = 0;
1194         caps_cmd.rdmacaps = 0;
1195         caps_cmd.fcoecaps = 0;
1196         caps_cmd.cryptocaps = 0;
1197
1198         /*
1199          * And now tell the firmware to use the configuration we just loaded.
1200          */
1201         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1202                                            F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
1203         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1204         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1205                          NULL);
1206         if (ret < 0) {
1207                 dev_warn(adap, "Unable to finalize Firmware Capabilities %d\n",
1208                          ret);
1209                 return ret;
1210         }
1211
1212         /*
1213          * Return successfully and note that we're operating with parameters
1214          * not supplied by the driver, rather than from hard-wired
1215          * initialization constants buried in the driver.
1216          */
1217         dev_info(adap,
1218                  "Successfully configured using Firmware Configuration File \"%s\", version: 0x%x, computed csum: 0x%x\n",
1219                  config_name, finiver, cfcsum);
1220         return 0;
1221 }
1222
1223 static void configure_pcie_ext_tag(struct adapter *adapter)
1224 {
1225         u16 v;
1226         int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
1227
1228         if (!pos)
1229                 return;
1230
1231         if (pos > 0) {
1232                 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
1233                 v |= PCI_EXP_DEVCTL_EXT_TAG;
1234                 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
1235                 if (is_t6(adapter->params.chip)) {
1236                         t4_set_reg_field(adapter, A_PCIE_CFG2,
1237                                          V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
1238                                          V_T6_TOTMAXTAG(7));
1239                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1240                                          V_T6_MINTAG(M_T6_MINTAG),
1241                                          V_T6_MINTAG(8));
1242                 } else {
1243                         t4_set_reg_field(adapter, A_PCIE_CFG2,
1244                                          V_TOTMAXTAG(M_TOTMAXTAG),
1245                                          V_TOTMAXTAG(3));
1246                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1247                                          V_MINTAG(M_MINTAG),
1248                                          V_MINTAG(8));
1249                 }
1250         }
1251 }
1252
1253 /* Figure out how many Queue Sets we can support */
1254 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
1255 {
1256         unsigned int ethqsets, reserved;
1257
1258         /* We need to reserve an Ingress Queue for the Asynchronous Firmware
1259          * Event Queue and 1 Control Queue per port.
1260          *
1261          * For each Queue Set, we'll need the ability to allocate two Egress
1262          * Contexts -- one for the Ingress Queue Free List and one for the TX
1263          * Ethernet Queue.
1264          */
1265         reserved = max(adapter->params.nports, 1);
1266         if (is_pf4(adapter)) {
1267                 struct pf_resources *pfres = &adapter->params.pfres;
1268
1269                 ethqsets = min(pfres->niqflint, pfres->nethctrl);
1270                 if (ethqsets > (pfres->neq / 2))
1271                         ethqsets = pfres->neq / 2;
1272         } else {
1273                 struct vf_resources *vfres = &adapter->params.vfres;
1274
1275                 ethqsets = min(vfres->niqflint, vfres->nethctrl);
1276                 if (ethqsets > (vfres->neq / 2))
1277                         ethqsets = vfres->neq / 2;
1278         }
1279
1280         ethqsets -= reserved;
1281         adapter->sge.max_ethqsets = ethqsets;
1282 }
1283
1284 /*
1285  * Tweak configuration based on system architecture, etc.  Most of these have
1286  * defaults assigned to them by Firmware Configuration Files (if we're using
1287  * them) but need to be explicitly set if we're using hard-coded
1288  * initialization. So these are essentially common tweaks/settings for
1289  * Configuration Files and hard-coded initialization ...
1290  */
1291 static int adap_init0_tweaks(struct adapter *adapter)
1292 {
1293         u8 rx_dma_offset;
1294
1295         /*
1296          * Fix up various Host-Dependent Parameters like Page Size, Cache
1297          * Line Size, etc.  The firmware default is for a 4KB Page Size and
1298          * 64B Cache Line Size ...
1299          */
1300         t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
1301                                     T5_LAST_REV);
1302
1303         /*
1304          * Keep the chip default offset to deliver Ingress packets into our
1305          * DMA buffers to zero
1306          */
1307         rx_dma_offset = 0;
1308         t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
1309                          V_PKTSHIFT(rx_dma_offset));
1310
1311         t4_set_reg_field(adapter, A_SGE_FLM_CFG,
1312                          V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
1313                          V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
1314
1315         t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
1316                          V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
1317
1318         t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
1319                          V_IDMAARBROUNDROBIN(1U));
1320
1321         /*
1322          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
1323          * adds the pseudo header itself.
1324          */
1325         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
1326                                F_CSUM_HAS_PSEUDO_HDR, 0);
1327
1328         return 0;
1329 }
1330
1331 /*
1332  * Attempt to initialize the adapter via a Firmware Configuration File.
1333  */
1334 static int adap_init0_config(struct adapter *adapter, int reset)
1335 {
1336         int ret;
1337
1338         /*
1339          * Reset device if necessary.
1340          */
1341         if (reset) {
1342                 ret = t4_fw_reset(adapter, adapter->mbox,
1343                                   F_PIORSTMODE | F_PIORST);
1344                 if (ret < 0) {
1345                         dev_warn(adapter, "Firmware reset failed, error %d\n",
1346                                  -ret);
1347                         goto bye;
1348                 }
1349         }
1350
1351         ret = cxgbe_load_fw_config(adapter);
1352         if (ret < 0)
1353                 goto bye;
1354
1355         /*
1356          * Tweak configuration based on system architecture, etc.
1357          */
1358         ret = adap_init0_tweaks(adapter);
1359         if (ret < 0) {
1360                 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1361                 goto bye;
1362         }
1363
1364         /*
1365          * And finally tell the firmware to initialize itself using the
1366          * parameters from the Configuration File.
1367          */
1368         ret = t4_fw_initialize(adapter, adapter->mbox);
1369         if (ret < 0) {
1370                 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1371                          -ret);
1372                 goto bye;
1373         }
1374
1375         return 0;
1376
1377 bye:
1378         dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1379         return ret;
1380 }
1381
1382 static int adap_init0(struct adapter *adap)
1383 {
1384         struct fw_caps_config_cmd caps_cmd;
1385         int ret = 0;
1386         u32 v, port_vec;
1387         enum dev_state state;
1388         u32 params[7], val[7];
1389         int reset = 1;
1390         int mbox = adap->mbox;
1391
1392         /*
1393          * Contact FW, advertising Master capability.
1394          */
1395         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1396         if (ret < 0) {
1397                 dev_err(adap, "%s: could not connect to FW, error %d\n",
1398                         __func__, -ret);
1399                 goto bye;
1400         }
1401
1402         CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1403                          adap->mbox, ret);
1404
1405         if (ret == mbox)
1406                 adap->flags |= MASTER_PF;
1407
1408         if (state == DEV_STATE_INIT) {
1409                 /*
1410                  * Force halt and reset FW because a previous instance may have
1411                  * exited abnormally without properly shutting down
1412                  */
1413                 ret = t4_fw_halt(adap, adap->mbox, reset);
1414                 if (ret < 0) {
1415                         dev_err(adap, "Failed to halt. Exit.\n");
1416                         goto bye;
1417                 }
1418
1419                 ret = t4_fw_restart(adap, adap->mbox, reset);
1420                 if (ret < 0) {
1421                         dev_err(adap, "Failed to restart. Exit.\n");
1422                         goto bye;
1423                 }
1424                 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1425         }
1426
1427         t4_get_version_info(adap);
1428
1429         ret = t4_get_core_clock(adap, &adap->params.vpd);
1430         if (ret < 0) {
1431                 dev_err(adap, "%s: could not get core clock, error %d\n",
1432                         __func__, -ret);
1433                 goto bye;
1434         }
1435
1436         /*
1437          * If the firmware is initialized already (and we're not forcing a
1438          * master initialization), note that we're living with existing
1439          * adapter parameters.  Otherwise, it's time to try initializing the
1440          * adapter ...
1441          */
1442         if (state == DEV_STATE_INIT) {
1443                 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1444                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1445         } else {
1446                 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1447
1448                 ret = adap_init0_config(adap, reset);
1449                 if (ret == -ENOENT) {
1450                         dev_err(adap,
1451                                 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1452                         goto bye;
1453                 }
1454         }
1455         if (ret < 0) {
1456                 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1457                 goto bye;
1458         }
1459
1460         /* Now that we've successfully configured and initialized the adapter
1461          * (or found it already initialized), we can ask the Firmware what
1462          * resources it has provisioned for us.
1463          */
1464         ret = t4_get_pfres(adap);
1465         if (ret) {
1466                 dev_err(adap->pdev_dev,
1467                         "Unable to retrieve resource provisioning info\n");
1468                 goto bye;
1469         }
1470
1471         /* Find out what ports are available to us. */
1472         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1473             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1474         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1475         if (ret < 0) {
1476                 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1477                         __func__, ret);
1478                 goto bye;
1479         }
1480
1481         adap->params.nports = hweight32(port_vec);
1482         adap->params.portvec = port_vec;
1483
1484         dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1485                   adap->params.nports);
1486
1487         /*
1488          * Give the SGE code a chance to pull in anything that it needs ...
1489          * Note that this must be called after we retrieve our VPD parameters
1490          * in order to know how to convert core ticks to seconds, etc.
1491          */
1492         ret = t4_sge_init(adap);
1493         if (ret < 0) {
1494                 dev_err(adap, "t4_sge_init failed with error %d\n",
1495                         -ret);
1496                 goto bye;
1497         }
1498
1499         /*
1500          * Grab some of our basic fundamental operating parameters.
1501          */
1502         params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1503         params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1504         params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1505         params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1506         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1507         if (ret < 0)
1508                 goto bye;
1509         adap->l2t_start = val[0];
1510         adap->l2t_end = val[1];
1511         adap->tids.ftid_base = val[2];
1512         adap->tids.nftids = val[3] - val[2] + 1;
1513
1514         params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1515         params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1516         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1517         if (ret < 0)
1518                 goto bye;
1519         adap->clipt_start = val[0];
1520         adap->clipt_end = val[1];
1521
1522         /*
1523          * Get device capabilities so we can determine what resources we need
1524          * to manage.
1525          */
1526         memset(&caps_cmd, 0, sizeof(caps_cmd));
1527         caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1528                                      F_FW_CMD_REQUEST | F_FW_CMD_READ);
1529         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1530         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1531                          &caps_cmd);
1532         if (ret < 0)
1533                 goto bye;
1534
1535         if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1536             is_t6(adap->params.chip)) {
1537                 if (cxgbe_init_hash_filter(adap) < 0)
1538                         goto bye;
1539         }
1540
1541         /* See if FW supports FW_FILTER2 work request */
1542         if (is_t4(adap->params.chip)) {
1543                 adap->params.filter2_wr_support = 0;
1544         } else {
1545                 params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1546                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1547                                       1, params, val);
1548                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1549         }
1550
1551         /* Check if FW supports returning vin.
1552          * If this is not supported, driver will interpret
1553          * these values from viid.
1554          */
1555         params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
1556         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1557                               1, params, val);
1558         adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
1559
1560         /* query tid-related parameters */
1561         params[0] = CXGBE_FW_PARAM_DEV(NTID);
1562         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1563                               params, val);
1564         if (ret < 0)
1565                 goto bye;
1566         adap->tids.ntids = val[0];
1567         adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1568
1569         /* If we're running on newer firmware, let it know that we're
1570          * prepared to deal with encapsulated CPL messages.  Older
1571          * firmware won't understand this and we'll just get
1572          * unencapsulated messages ...
1573          */
1574         params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1575         val[0] = 1;
1576         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1577
1578         /*
1579          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1580          * capability.  Earlier versions of the firmware didn't have the
1581          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1582          * permission to use ULPTX MEMWRITE DSGL.
1583          */
1584         if (is_t4(adap->params.chip)) {
1585                 adap->params.ulptx_memwrite_dsgl = false;
1586         } else {
1587                 params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1588                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1589                                       1, params, val);
1590                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1591         }
1592
1593         /* Query for max number of packets that can be coalesced for Tx */
1594         params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1595         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1596         if (!ret && val[0] > 0)
1597                 adap->params.max_tx_coalesce_num = val[0];
1598         else
1599                 adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1600
1601         params[0] = CXGBE_FW_PARAM_DEV(VI_ENABLE_INGRESS_AFTER_LINKUP);
1602         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1603         adap->params.vi_enable_rx = (ret == 0 && val[0] != 0);
1604
1605         /* Read the RAW MPS entries. In T6, the last 2 TCAM entries
1606          * are reserved for RAW MAC addresses (rawf = 2, one per port).
1607          */
1608         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
1609                 params[0] = CXGBE_FW_PARAM_PFVF(RAWF_START);
1610                 params[1] = CXGBE_FW_PARAM_PFVF(RAWF_END);
1611                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1612                                       params, val);
1613                 if (ret == 0) {
1614                         adap->params.rawf_start = val[0];
1615                         adap->params.rawf_size = val[1] - val[0] + 1;
1616                 }
1617         }
1618
1619         /*
1620          * The MTU/MSS Table is initialized by now, so load their values.  If
1621          * we're initializing the adapter, then we'll make any modifications
1622          * we want to the MTU/MSS Table and also initialize the congestion
1623          * parameters.
1624          */
1625         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1626         if (state != DEV_STATE_INIT) {
1627                 int i;
1628
1629                 /*
1630                  * The default MTU Table contains values 1492 and 1500.
1631                  * However, for TCP, it's better to have two values which are
1632                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1633                  * This allows us to have a TCP Data Payload which is a
1634                  * multiple of 8 regardless of what combination of TCP Options
1635                  * are in use (always a multiple of 4 bytes) which is
1636                  * important for performance reasons.  For instance, if no
1637                  * options are in use, then we have a 20-byte IP header and a
1638                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
1639                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1640                  * which is not a multiple of 8.  So using an MSS of 1488 in
1641                  * this case results in a TCP Data Payload of 1448 bytes which
1642                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1643                  * Stamps have been negotiated, then an MTU of 1500 bytes
1644                  * results in a TCP Data Payload of 1448 bytes which, as
1645                  * above, is a multiple of 8 bytes ...
1646                  */
1647                 for (i = 0; i < NMTUS; i++)
1648                         if (adap->params.mtus[i] == 1492) {
1649                                 adap->params.mtus[i] = 1488;
1650                                 break;
1651                         }
1652
1653                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1654                              adap->params.b_wnd);
1655         }
1656         t4_init_sge_params(adap);
1657         ret = configure_filter_mode_mask(adap);
1658         if (ret < 0)
1659                 goto bye;
1660         t4_init_tp_params(adap);
1661         configure_pcie_ext_tag(adap);
1662         configure_vlan_types(adap);
1663         cxgbe_configure_max_ethqsets(adap);
1664
1665         adap->params.drv_memwin = MEMWIN_NIC;
1666         adap->flags |= FW_OK;
1667         dev_debug(adap, "%s: returning zero..\n", __func__);
1668         return 0;
1669
1670         /*
1671          * Something bad happened.  If a command timed out or failed with EIO
1672          * FW does not operate within its spec or something catastrophic
1673          * happened to HW/FW, stop issuing commands.
1674          */
1675 bye:
1676         if (ret != -ETIMEDOUT && ret != -EIO)
1677                 t4_fw_bye(adap, adap->mbox);
1678         return ret;
1679 }
1680
1681 /**
1682  * t4_os_portmod_changed - handle port module changes
1683  * @adap: the adapter associated with the module change
1684  * @port_id: the port index whose module status has changed
1685  *
1686  * This is the OS-dependent handler for port module changes.  It is
1687  * invoked when a port module is removed or inserted for any OS-specific
1688  * processing.
1689  */
1690 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1691 {
1692         static const char * const mod_str[] = {
1693                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1694         };
1695
1696         const struct port_info *pi = adap2pinfo(adap, port_id);
1697
1698         if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NONE)
1699                 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1700         else if (pi->link_cfg.mod_type < ARRAY_SIZE(mod_str))
1701                 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1702                          mod_str[pi->link_cfg.mod_type]);
1703         else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1704                 dev_info(adap, "Port%d: unsupported port module inserted\n",
1705                          pi->port_id);
1706         else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1707                 dev_info(adap, "Port%d: unknown port module inserted\n",
1708                          pi->port_id);
1709         else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_ERROR)
1710                 dev_info(adap, "Port%d: transceiver module error\n",
1711                          pi->port_id);
1712         else
1713                 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1714                          pi->port_id, pi->link_cfg.mod_type);
1715 }
1716
1717 void t4_os_link_changed(struct adapter *adap, int port_id)
1718 {
1719         struct port_info *pi = adap2pinfo(adap, port_id);
1720
1721         /* If link status has not changed or if firmware doesn't
1722          * support enabling/disabling VI's Rx path during runtime,
1723          * then return.
1724          */
1725         if (adap->params.vi_enable_rx == 0 ||
1726             pi->vi_en_rx == pi->link_cfg.link_ok)
1727                 return;
1728
1729         /* Don't enable VI Rx path, if link has been administratively
1730          * turned off.
1731          */
1732         if (pi->vi_en_tx == 0 && pi->vi_en_rx == 0)
1733                 return;
1734
1735         /* When link goes down, disable the port's Rx path to drop
1736          * Rx traffic closer to the wire, instead of processing it
1737          * further in the Rx pipeline. The Rx path will be re-enabled
1738          * once the link up message comes in firmware event queue.
1739          */
1740         pi->vi_en_rx = pi->link_cfg.link_ok;
1741         t4_enable_vi(adap, adap->mbox, pi->viid, pi->vi_en_rx, pi->vi_en_tx);
1742 }
1743
1744 bool cxgbe_force_linkup(struct adapter *adap)
1745 {
1746         if (is_pf4(adap))
1747                 return false;   /* force_linkup not required for pf driver */
1748
1749         return adap->devargs.force_link_up;
1750 }
1751
1752 /**
1753  * link_start - enable a port
1754  * @dev: the port to enable
1755  *
1756  * Performs the MAC and PHY actions needed to enable a port.
1757  */
1758 int cxgbe_link_start(struct port_info *pi)
1759 {
1760         struct adapter *adapter = pi->adapter;
1761         u64 conf_offloads;
1762         unsigned int mtu;
1763         int ret;
1764
1765         mtu = pi->eth_dev->data->mtu;
1766
1767         conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1768
1769         /*
1770          * We do not set address filters and promiscuity here, the stack does
1771          * that step explicitly.
1772          */
1773         ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1774                             !!(conf_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP),
1775                             true);
1776         if (ret == 0) {
1777                 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1778                                 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1779                 if (ret >= 0) {
1780                         pi->xact_addr_filt = ret;
1781                         ret = 0;
1782                 }
1783         }
1784         if (ret == 0 && is_pf4(adapter))
1785                 ret = t4_link_l1cfg(pi, pi->link_cfg.admin_caps);
1786         if (ret == 0) {
1787                 /* Disable VI Rx until link up message is received in
1788                  * firmware event queue, if firmware supports enabling/
1789                  * disabling VI Rx at runtime.
1790                  */
1791                 pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : 1;
1792                 pi->vi_en_tx = 1;
1793                 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1794                                           pi->vi_en_rx, pi->vi_en_tx, false);
1795         }
1796
1797         if (ret == 0 && cxgbe_force_linkup(adapter))
1798                 pi->eth_dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
1799         return ret;
1800 }
1801
1802 /**
1803  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1804  * @pi: the port
1805  * @rss_hf: Hash configuration to apply
1806  */
1807 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1808 {
1809         struct adapter *adapter = pi->adapter;
1810         const struct sge_eth_rxq *rxq;
1811         u64 flags = 0;
1812         u16 rss;
1813         int err;
1814
1815         /*  Should never be called before setting up sge eth rx queues */
1816         if (!(adapter->flags & FULL_INIT_DONE)) {
1817                 dev_err(adap, "%s No RXQs available on port %d\n",
1818                         __func__, pi->port_id);
1819                 return -EINVAL;
1820         }
1821
1822         /* Don't allow unsupported hash functions */
1823         if (rss_hf & ~CXGBE_RSS_HF_ALL)
1824                 return -EINVAL;
1825
1826         if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1827                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1828
1829         if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
1830                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1831
1832         if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
1833                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1834                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1835
1836         if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1837                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1838
1839         if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1840                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1841                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1842
1843         if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1844                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1845                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1846                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1847
1848         rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1849         rss = rxq[0].rspq.abs_id;
1850
1851         /* If Tunnel All Lookup isn't specified in the global RSS
1852          * Configuration, then we need to specify a default Ingress
1853          * Queue for any ingress packets which aren't hashed.  We'll
1854          * use our first ingress queue ...
1855          */
1856         err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1857                                flags, rss);
1858         return err;
1859 }
1860
1861 /**
1862  * cxgbe_write_rss - write the RSS table for a given port
1863  * @pi: the port
1864  * @queues: array of queue indices for RSS
1865  *
1866  * Sets up the portion of the HW RSS table for the port's VI to distribute
1867  * packets to the Rx queues in @queues.
1868  */
1869 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1870 {
1871         u16 *rss;
1872         int i, err;
1873         struct adapter *adapter = pi->adapter;
1874         const struct sge_eth_rxq *rxq;
1875
1876         /*  Should never be called before setting up sge eth rx queues */
1877         BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1878
1879         rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1880         rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1881         if (!rss)
1882                 return -ENOMEM;
1883
1884         /* map the queue indices to queue ids */
1885         for (i = 0; i < pi->rss_size; i++, queues++)
1886                 rss[i] = rxq[*queues].rspq.abs_id;
1887
1888         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1889                                   pi->rss_size, rss, pi->rss_size);
1890         rte_free(rss);
1891         return err;
1892 }
1893
1894 /**
1895  * setup_rss - configure RSS
1896  * @adapter: the adapter
1897  *
1898  * Sets up RSS to distribute packets to multiple receive queues.  We
1899  * configure the RSS CPU lookup table to distribute to the number of HW
1900  * receive queues, and the response queue lookup table to narrow that
1901  * down to the response queues actually configured for each port.
1902  * We always configure the RSS mapping for all ports since the mapping
1903  * table has plenty of entries.
1904  */
1905 int cxgbe_setup_rss(struct port_info *pi)
1906 {
1907         int j, err;
1908         struct adapter *adapter = pi->adapter;
1909
1910         dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1911                   __func__, pi->rss_size, pi->n_rx_qsets);
1912
1913         if (!(pi->flags & PORT_RSS_DONE)) {
1914                 if (adapter->flags & FULL_INIT_DONE) {
1915                         /* Fill default values with equal distribution */
1916                         for (j = 0; j < pi->rss_size; j++)
1917                                 pi->rss[j] = j % pi->n_rx_qsets;
1918
1919                         err = cxgbe_write_rss(pi, pi->rss);
1920                         if (err)
1921                                 return err;
1922
1923                         err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1924                         if (err)
1925                                 return err;
1926                         pi->flags |= PORT_RSS_DONE;
1927                 }
1928         }
1929         return 0;
1930 }
1931
1932 /*
1933  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1934  */
1935 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1936 {
1937         /* 0-increment GTS to start the timer and enable interrupts */
1938         t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1939                                           T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1940                      V_SEINTARM(q->intr_params) |
1941                      V_INGRESSQID(q->cntxt_id));
1942 }
1943
1944 void cxgbe_enable_rx_queues(struct port_info *pi)
1945 {
1946         struct adapter *adap = pi->adapter;
1947         struct sge *s = &adap->sge;
1948         unsigned int i;
1949
1950         for (i = 0; i < pi->n_rx_qsets; i++)
1951                 enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
1952 }
1953
1954 /**
1955  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1956  * @port_type: Firmware Port Type
1957  * @fw_caps: Firmware Port Capabilities
1958  * @speed_caps: Device Info Speed Capabilities
1959  *
1960  * Translate a Firmware Port Capabilities specification to Device Info
1961  * Speed Capabilities.
1962  */
1963 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1964                                   unsigned int fw_caps,
1965                                   u32 *speed_caps)
1966 {
1967 #define SET_SPEED(__speed_name) \
1968         do { \
1969                 *speed_caps |= RTE_ETH_LINK_ ## __speed_name; \
1970         } while (0)
1971
1972 #define FW_CAPS_TO_SPEED(__fw_name) \
1973         do { \
1974                 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1975                         SET_SPEED(__fw_name); \
1976         } while (0)
1977
1978         switch (port_type) {
1979         case FW_PORT_TYPE_BT_SGMII:
1980         case FW_PORT_TYPE_BT_XFI:
1981         case FW_PORT_TYPE_BT_XAUI:
1982                 FW_CAPS_TO_SPEED(SPEED_100M);
1983                 FW_CAPS_TO_SPEED(SPEED_1G);
1984                 FW_CAPS_TO_SPEED(SPEED_10G);
1985                 break;
1986
1987         case FW_PORT_TYPE_KX4:
1988         case FW_PORT_TYPE_KX:
1989         case FW_PORT_TYPE_FIBER_XFI:
1990         case FW_PORT_TYPE_FIBER_XAUI:
1991         case FW_PORT_TYPE_SFP:
1992         case FW_PORT_TYPE_QSFP_10G:
1993         case FW_PORT_TYPE_QSA:
1994                 FW_CAPS_TO_SPEED(SPEED_1G);
1995                 FW_CAPS_TO_SPEED(SPEED_10G);
1996                 break;
1997
1998         case FW_PORT_TYPE_KR:
1999                 SET_SPEED(SPEED_10G);
2000                 break;
2001
2002         case FW_PORT_TYPE_BP_AP:
2003         case FW_PORT_TYPE_BP4_AP:
2004                 SET_SPEED(SPEED_1G);
2005                 SET_SPEED(SPEED_10G);
2006                 break;
2007
2008         case FW_PORT_TYPE_BP40_BA:
2009         case FW_PORT_TYPE_QSFP:
2010                 SET_SPEED(SPEED_40G);
2011                 break;
2012
2013         case FW_PORT_TYPE_CR_QSFP:
2014         case FW_PORT_TYPE_SFP28:
2015         case FW_PORT_TYPE_KR_SFP28:
2016                 FW_CAPS_TO_SPEED(SPEED_1G);
2017                 FW_CAPS_TO_SPEED(SPEED_10G);
2018                 FW_CAPS_TO_SPEED(SPEED_25G);
2019                 break;
2020
2021         case FW_PORT_TYPE_CR2_QSFP:
2022                 SET_SPEED(SPEED_50G);
2023                 break;
2024
2025         case FW_PORT_TYPE_KR4_100G:
2026         case FW_PORT_TYPE_CR4_QSFP:
2027                 FW_CAPS_TO_SPEED(SPEED_25G);
2028                 FW_CAPS_TO_SPEED(SPEED_40G);
2029                 FW_CAPS_TO_SPEED(SPEED_50G);
2030                 FW_CAPS_TO_SPEED(SPEED_100G);
2031                 break;
2032
2033         default:
2034                 break;
2035         }
2036
2037 #undef FW_CAPS_TO_SPEED
2038 #undef SET_SPEED
2039 }
2040
2041 /**
2042  * cxgbe_get_speed_caps - Fetch supported speed capabilities
2043  * @pi: Underlying port's info
2044  * @speed_caps: Device Info speed capabilities
2045  *
2046  * Fetch supported speed capabilities of the underlying port.
2047  */
2048 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
2049 {
2050         *speed_caps = 0;
2051
2052         fw_caps_to_speed_caps(pi->link_cfg.port_type, pi->link_cfg.pcaps,
2053                               speed_caps);
2054
2055         if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
2056                 *speed_caps |= RTE_ETH_LINK_SPEED_FIXED;
2057 }
2058
2059 /**
2060  * cxgbe_set_link_status - Set device link up or down.
2061  * @pi: Underlying port's info
2062  * @status: 0 - down, 1 - up
2063  *
2064  * Set the device link up or down.
2065  */
2066 int cxgbe_set_link_status(struct port_info *pi, bool status)
2067 {
2068         struct adapter *adapter = pi->adapter;
2069         int err = 0;
2070
2071         /* Wait for link up message from firmware to enable Rx path,
2072          * if firmware supports enabling/disabling VI Rx at runtime.
2073          */
2074         pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : status;
2075         pi->vi_en_tx = status;
2076         err = t4_enable_vi(adapter, adapter->mbox, pi->viid, pi->vi_en_rx,
2077                            pi->vi_en_tx);
2078         if (err) {
2079                 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
2080                 return err;
2081         }
2082
2083         if (!status)
2084                 t4_reset_link_config(adapter, pi->pidx);
2085
2086         return 0;
2087 }
2088
2089 /**
2090  * cxgb_up - enable the adapter
2091  * @adap: adapter being enabled
2092  *
2093  * Called when the first port is enabled, this function performs the
2094  * actions necessary to make an adapter operational, such as completing
2095  * the initialization of HW modules, and enabling interrupts.
2096  */
2097 int cxgbe_up(struct adapter *adap)
2098 {
2099         enable_rx(adap, &adap->sge.fw_evtq);
2100         t4_sge_tx_monitor_start(adap);
2101         if (is_pf4(adap))
2102                 t4_intr_enable(adap);
2103         adap->flags |= FULL_INIT_DONE;
2104
2105         /* TODO: deadman watchdog ?? */
2106         return 0;
2107 }
2108
2109 /*
2110  * Close the port
2111  */
2112 int cxgbe_down(struct port_info *pi)
2113 {
2114         return cxgbe_set_link_status(pi, false);
2115 }
2116
2117 /*
2118  * Release resources when all the ports have been stopped.
2119  */
2120 void cxgbe_close(struct adapter *adapter)
2121 {
2122         if (adapter->flags & FULL_INIT_DONE) {
2123                 tid_free(&adapter->tids);
2124                 t4_cleanup_mpstcam(adapter);
2125                 t4_cleanup_clip_tbl(adapter);
2126                 t4_cleanup_l2t(adapter);
2127                 t4_cleanup_smt(adapter);
2128                 if (is_pf4(adapter))
2129                         t4_intr_disable(adapter);
2130                 t4_sge_tx_monitor_stop(adapter);
2131                 t4_free_sge_resources(adapter);
2132                 adapter->flags &= ~FULL_INIT_DONE;
2133         }
2134
2135         cxgbe_cfg_queues_free(adapter);
2136
2137         if (is_pf4(adapter) && (adapter->flags & FW_OK))
2138                 t4_fw_bye(adapter, adapter->mbox);
2139 }
2140
2141 static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
2142                            u32 *smt_size)
2143 {
2144         u32 params[2], smt_val[2];
2145         int ret;
2146
2147         params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
2148         params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
2149
2150         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2151                               2, params, smt_val);
2152
2153         /* if FW doesn't recognize this command then set it to default setting
2154          * which is start index as 0 and size as 256.
2155          */
2156         if (ret < 0) {
2157                 *smt_start_idx = 0;
2158                 *smt_size = SMT_SIZE;
2159         } else {
2160                 *smt_start_idx = smt_val[0];
2161                 /* smt size can be zero, if nsmt is not yet configured in
2162                  * the config file or set as zero, then configure all the
2163                  * remaining entries to this PF itself.
2164                  */
2165                 if (!smt_val[1])
2166                         *smt_size = SMT_SIZE - *smt_start_idx;
2167                 else
2168                         *smt_size = smt_val[1];
2169         }
2170 }
2171
2172 int cxgbe_probe(struct adapter *adapter)
2173 {
2174         u32 smt_start_idx, smt_size;
2175         struct port_info *pi;
2176         int func, i;
2177         int err = 0;
2178         u32 whoami;
2179         int chip;
2180
2181         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2182         chip = t4_get_chip_type(adapter,
2183                         CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
2184         if (chip < 0)
2185                 return chip;
2186
2187         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
2188                G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2189
2190         adapter->mbox = func;
2191         adapter->pf = func;
2192
2193         t4_os_lock_init(&adapter->mbox_lock);
2194         TAILQ_INIT(&adapter->mbox_list);
2195         t4_os_lock_init(&adapter->win0_lock);
2196
2197         err = t4_prep_adapter(adapter);
2198         if (err)
2199                 return err;
2200
2201         setup_memwin(adapter);
2202         err = adap_init0(adapter);
2203         if (err) {
2204                 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
2205                         __func__, err);
2206                 goto out_free;
2207         }
2208
2209         if (!is_t4(adapter->params.chip)) {
2210                 /*
2211                  * The userspace doorbell BAR is split evenly into doorbell
2212                  * regions, each associated with an egress queue.  If this
2213                  * per-queue region is large enough (at least UDBS_SEG_SIZE)
2214                  * then it can be used to submit a tx work request with an
2215                  * implied doorbell.  Enable write combining on the BAR if
2216                  * there is room for such work requests.
2217                  */
2218                 int s_qpp, qpp, num_seg;
2219
2220                 s_qpp = (S_QUEUESPERPAGEPF0 +
2221                         (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
2222                         adapter->pf);
2223                 qpp = 1 << ((t4_read_reg(adapter,
2224                                 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
2225                                 & M_QUEUESPERPAGEPF0);
2226                 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
2227                 if (qpp > num_seg)
2228                         dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
2229
2230                 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
2231                 if (!adapter->bar2) {
2232                         dev_err(adapter, "cannot map device bar2 region\n");
2233                         err = -ENOMEM;
2234                         goto out_free;
2235                 }
2236                 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
2237                              V_STATMODE(0));
2238         }
2239
2240         for_each_port(adapter, i) {
2241                 const unsigned int numa_node = rte_socket_id();
2242                 char name[RTE_ETH_NAME_MAX_LEN];
2243                 struct rte_eth_dev *eth_dev;
2244
2245                 snprintf(name, sizeof(name), "%s_%d",
2246                          adapter->pdev->device.name, i);
2247
2248                 if (i == 0) {
2249                         /* First port is already allocated by DPDK */
2250                         eth_dev = adapter->eth_dev;
2251                         goto allocate_mac;
2252                 }
2253
2254                 /*
2255                  * now do all data allocation - for eth_dev structure,
2256                  * and internal (private) data for the remaining ports
2257                  */
2258
2259                 /* reserve an ethdev entry */
2260                 eth_dev = rte_eth_dev_allocate(name);
2261                 if (!eth_dev)
2262                         goto out_free;
2263
2264                 eth_dev->data->dev_private =
2265                         rte_zmalloc_socket(name, sizeof(struct port_info),
2266                                            RTE_CACHE_LINE_SIZE, numa_node);
2267                 if (!eth_dev->data->dev_private)
2268                         goto out_free;
2269
2270 allocate_mac:
2271                 pi = eth_dev->data->dev_private;
2272                 adapter->port[i] = pi;
2273                 pi->eth_dev = eth_dev;
2274                 pi->adapter = adapter;
2275                 pi->xact_addr_filt = -1;
2276                 pi->port_id = i;
2277                 pi->pidx = i;
2278
2279                 pi->eth_dev->device = &adapter->pdev->device;
2280                 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
2281                 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
2282                 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
2283
2284                 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
2285
2286                 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
2287                                                         RTE_ETHER_ADDR_LEN, 0);
2288                 if (!pi->eth_dev->data->mac_addrs) {
2289                         dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
2290                                 __func__);
2291                         err = -1;
2292                         goto out_free;
2293                 }
2294
2295                 if (i > 0) {
2296                         /* First port will be notified by upper layer */
2297                         rte_eth_dev_probing_finish(eth_dev);
2298                 }
2299         }
2300
2301         if (adapter->flags & FW_OK) {
2302                 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
2303                 if (err) {
2304                         dev_err(adapter, "%s: t4_port_init failed with err %d\n",
2305                                 __func__, err);
2306                         goto out_free;
2307                 }
2308         }
2309
2310         err = cxgbe_cfg_queues(adapter->eth_dev);
2311         if (err)
2312                 goto out_free;
2313
2314         cxgbe_print_adapter_info(adapter);
2315         cxgbe_print_port_info(adapter);
2316
2317         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
2318                                           adapter->clipt_end);
2319         if (!adapter->clipt) {
2320                 /* We tolerate a lack of clip_table, giving up some
2321                  * functionality
2322                  */
2323                 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
2324         }
2325
2326         adap_smt_index(adapter, &smt_start_idx, &smt_size);
2327         adapter->smt = t4_init_smt(smt_start_idx, smt_size);
2328         if (!adapter->smt)
2329                 dev_warn(adapter, "could not allocate SMT, continuing\n");
2330
2331         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
2332         if (!adapter->l2t) {
2333                 /* We tolerate a lack of L2T, giving up some functionality */
2334                 dev_warn(adapter, "could not allocate L2T. Continuing\n");
2335         }
2336
2337         if (tid_init(&adapter->tids) < 0) {
2338                 /* Disable filtering support */
2339                 dev_warn(adapter, "could not allocate TID table, "
2340                          "filter support disabled. Continuing\n");
2341         }
2342
2343         t4_os_lock_init(&adapter->flow_lock);
2344
2345         adapter->mpstcam = t4_init_mpstcam(adapter);
2346         if (!adapter->mpstcam)
2347                 dev_warn(adapter, "could not allocate mps tcam table."
2348                          " Continuing\n");
2349
2350         if (is_hashfilter(adapter)) {
2351                 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
2352                         u32 hash_base, hash_reg;
2353
2354                         hash_reg = A_LE_DB_TID_HASHBASE;
2355                         hash_base = t4_read_reg(adapter, hash_reg);
2356                         adapter->tids.hash_base = hash_base / 4;
2357                 }
2358         } else {
2359                 /* Disable hash filtering support */
2360                 dev_warn(adapter,
2361                          "Maskless filter support disabled. Continuing\n");
2362         }
2363
2364         err = cxgbe_init_rss(adapter);
2365         if (err)
2366                 goto out_free;
2367
2368         return 0;
2369
2370 out_free:
2371         cxgbe_cfg_queues_free(adapter);
2372
2373         for_each_port(adapter, i) {
2374                 pi = adap2pinfo(adapter, i);
2375                 if (pi->viid != 0)
2376                         t4_free_vi(adapter, adapter->mbox, adapter->pf,
2377                                    0, pi->viid);
2378                 rte_eth_dev_release_port(pi->eth_dev);
2379         }
2380
2381         if (adapter->flags & FW_OK)
2382                 t4_fw_bye(adapter, adapter->mbox);
2383         return -err;
2384 }