4 * Copyright(c) 2014-2017 Chelsio Communications.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Chelsio Communications nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #include <sys/queue.h>
42 #include <netinet/in.h>
44 #include <rte_byteorder.h>
45 #include <rte_common.h>
46 #include <rte_cycles.h>
47 #include <rte_interrupts.h>
49 #include <rte_debug.h>
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_memory.h>
54 #include <rte_memzone.h>
55 #include <rte_tailq.h>
57 #include <rte_alarm.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_ethdev_pci.h>
61 #include <rte_malloc.h>
62 #include <rte_random.h>
71 * Response queue handler for the FW event queue.
73 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
74 __rte_unused const struct pkt_gl *gl)
76 u8 opcode = ((const struct rss_header *)rsp)->opcode;
78 rsp++; /* skip RSS header */
81 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
83 if (unlikely(opcode == CPL_FW4_MSG &&
84 ((const struct cpl_fw4_msg *)rsp)->type ==
87 opcode = ((const struct rss_header *)rsp)->opcode;
89 if (opcode != CPL_SGE_EGR_UPDATE) {
90 dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
96 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
98 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
99 const struct cpl_fw6_msg *msg = (const void *)rsp;
101 t4_handle_fw_rpl(q->adapter, msg->data);
103 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
110 int setup_sge_fwevtq(struct adapter *adapter)
112 struct sge *s = &adapter->sge;
116 err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
117 msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
122 static int closest_timer(const struct sge *s, int time)
124 unsigned int i, match = 0;
125 int delta, min_delta = INT_MAX;
127 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
128 delta = time - s->timer_val[i];
131 if (delta < min_delta) {
139 static int closest_thres(const struct sge *s, int thres)
141 unsigned int i, match = 0;
142 int delta, min_delta = INT_MAX;
144 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
145 delta = thres - s->counter_val[i];
148 if (delta < min_delta) {
157 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
159 * @us: the hold-off time in us, or 0 to disable timer
160 * @cnt: the hold-off packet count, or 0 to disable counter
162 * Sets an Rx queue's interrupt hold-off time and packet count. At least
163 * one of the two needs to be enabled for the queue to generate interrupts.
165 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
168 struct adapter *adap = q->adapter;
169 unsigned int timer_val;
175 new_idx = closest_thres(&adap->sge, cnt);
176 if (q->desc && q->pktcnt_idx != new_idx) {
177 /* the queue has already been created, update it */
178 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
180 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
181 V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
182 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
187 q->pktcnt_idx = new_idx;
190 timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
191 closest_timer(&adap->sge, us);
194 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
196 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
197 V_QINTR_CNT_EN(cnt > 0);
201 static inline bool is_x_1g_port(const struct link_config *lc)
203 return (lc->supported & FW_PORT_CAP_SPEED_1G) != 0;
206 static inline bool is_x_10g_port(const struct link_config *lc)
208 unsigned int speeds, high_speeds;
210 speeds = V_FW_PORT_CAP_SPEED(G_FW_PORT_CAP_SPEED(lc->supported));
211 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
213 return high_speeds != 0;
216 inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
217 unsigned int us, unsigned int cnt,
218 unsigned int size, unsigned int iqe_size)
221 cxgb4_set_rspq_intr_params(q, us, cnt);
222 q->iqe_len = iqe_size;
226 int cfg_queue_count(struct rte_eth_dev *eth_dev)
228 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
229 struct adapter *adap = pi->adapter;
230 struct sge *s = &adap->sge;
231 unsigned int max_queues = s->max_ethqsets / adap->params.nports;
233 if ((eth_dev->data->nb_rx_queues < 1) ||
234 (eth_dev->data->nb_tx_queues < 1))
237 if ((eth_dev->data->nb_rx_queues > max_queues) ||
238 (eth_dev->data->nb_tx_queues > max_queues))
241 if (eth_dev->data->nb_rx_queues > pi->rss_size)
244 /* We must configure RSS, since config has changed*/
245 pi->flags &= ~PORT_RSS_DONE;
247 pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
248 pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
253 void cfg_queues(struct rte_eth_dev *eth_dev)
255 struct rte_config *config = rte_eal_get_configuration();
256 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
257 struct adapter *adap = pi->adapter;
258 struct sge *s = &adap->sge;
259 unsigned int i, nb_ports = 0, qidx = 0;
260 unsigned int q_per_port = 0;
262 if (!(adap->flags & CFG_QUEUES)) {
263 for_each_port(adap, i) {
264 struct port_info *tpi = adap2pinfo(adap, i);
266 nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
267 is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
271 * We default up to # of cores queues per 1G/10G port.
274 q_per_port = (MAX_ETH_QSETS -
275 (adap->params.nports - nb_ports)) /
278 if (q_per_port > config->lcore_count)
279 q_per_port = config->lcore_count;
281 for_each_port(adap, i) {
282 struct port_info *pi = adap2pinfo(adap, i);
284 pi->first_qset = qidx;
286 /* Initially n_rx_qsets == n_tx_qsets */
287 pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
288 is_x_1g_port(&pi->link_cfg)) ?
290 pi->n_tx_qsets = pi->n_rx_qsets;
292 if (pi->n_rx_qsets > pi->rss_size)
293 pi->n_rx_qsets = pi->rss_size;
295 qidx += pi->n_rx_qsets;
298 s->max_ethqsets = qidx;
300 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
301 struct sge_eth_rxq *r = &s->ethrxq[i];
303 init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
305 r->fl.size = (r->usembufs ? 1024 : 72);
308 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
309 s->ethtxq[i].q.size = 1024;
311 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
312 adap->flags |= CFG_QUEUES;
316 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
318 t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
322 void cxgbe_stats_reset(struct port_info *pi)
324 t4_clr_port_stats(pi->adapter, pi->tx_chan);
327 static void setup_memwin(struct adapter *adap)
331 /* For T5, only relative offset inside the PCIe BAR is passed */
332 mem_win0_base = MEMWIN0_BASE;
335 * Set up memory window for accessing adapter memory ranges. (Read
336 * back MA register to ensure that changes propagate before we attempt
337 * to use the new values.)
340 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
342 mem_win0_base | V_BIR(0) |
343 V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
345 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
349 static int init_rss(struct adapter *adap)
354 err = t4_init_rss_mode(adap, adap->mbox);
358 for_each_port(adap, i) {
359 struct port_info *pi = adap2pinfo(adap, i);
361 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
369 * Dump basic information about the adapter.
371 static void print_adapter_info(struct adapter *adap)
374 * Hardware/Firmware/etc. Version/Revision IDs.
376 t4_dump_version_info(adap);
379 static void print_port_info(struct adapter *adap)
383 struct rte_pci_addr *loc = &adap->pdev->addr;
385 for_each_port(adap, i) {
386 const struct port_info *pi = &adap->port[i];
389 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
390 bufp += sprintf(bufp, "100M/");
391 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
392 bufp += sprintf(bufp, "1G/");
393 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
394 bufp += sprintf(bufp, "10G/");
395 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
396 bufp += sprintf(bufp, "25G/");
397 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
398 bufp += sprintf(bufp, "40G/");
399 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
400 bufp += sprintf(bufp, "100G/");
403 sprintf(bufp, "BASE-%s",
404 t4_get_port_type_description(
405 (enum fw_port_type)pi->port_type));
408 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
409 loc->domain, loc->bus, loc->devid, loc->function,
410 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
411 (adap->flags & USING_MSIX) ? " MSI-X" :
412 (adap->flags & USING_MSI) ? " MSI" : "");
416 static void configure_pcie_ext_tag(struct adapter *adapter)
419 int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
425 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
426 v |= PCI_EXP_DEVCTL_EXT_TAG;
427 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
428 if (is_t6(adapter->params.chip)) {
429 t4_set_reg_field(adapter, A_PCIE_CFG2,
430 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
432 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
433 V_T6_MINTAG(M_T6_MINTAG),
436 t4_set_reg_field(adapter, A_PCIE_CFG2,
437 V_TOTMAXTAG(M_TOTMAXTAG),
439 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
447 * Tweak configuration based on system architecture, etc. Most of these have
448 * defaults assigned to them by Firmware Configuration Files (if we're using
449 * them) but need to be explicitly set if we're using hard-coded
450 * initialization. So these are essentially common tweaks/settings for
451 * Configuration Files and hard-coded initialization ...
453 static int adap_init0_tweaks(struct adapter *adapter)
458 * Fix up various Host-Dependent Parameters like Page Size, Cache
459 * Line Size, etc. The firmware default is for a 4KB Page Size and
460 * 64B Cache Line Size ...
462 t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
466 * Keep the chip default offset to deliver Ingress packets into our
467 * DMA buffers to zero
470 t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
471 V_PKTSHIFT(rx_dma_offset));
473 t4_set_reg_field(adapter, A_SGE_FLM_CFG,
474 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
475 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
477 t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
478 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
480 t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
481 V_IDMAARBROUNDROBIN(1U));
484 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
485 * adds the pseudo header itself.
487 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
488 F_CSUM_HAS_PSEUDO_HDR, 0);
494 * Attempt to initialize the adapter via a Firmware Configuration File.
496 static int adap_init0_config(struct adapter *adapter, int reset)
498 struct fw_caps_config_cmd caps_cmd;
499 unsigned long mtype = 0, maddr = 0;
500 u32 finiver, finicsum, cfcsum;
502 int config_issued = 0;
504 char config_name[20];
507 * Reset device if necessary.
510 ret = t4_fw_reset(adapter, adapter->mbox,
511 F_PIORSTMODE | F_PIORST);
513 dev_warn(adapter, "Firmware reset failed, error %d\n",
519 cfg_addr = t4_flash_cfg_addr(adapter);
522 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
527 strcpy(config_name, "On Flash");
528 mtype = FW_MEMTYPE_CF_FLASH;
532 * Issue a Capability Configuration command to the firmware to get it
533 * to parse the Configuration File. We don't use t4_fw_config_file()
534 * because we want the ability to modify various features after we've
535 * processed the configuration file ...
537 memset(&caps_cmd, 0, sizeof(caps_cmd));
538 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
539 F_FW_CMD_REQUEST | F_FW_CMD_READ);
540 caps_cmd.cfvalid_to_len16 =
541 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
542 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
543 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
545 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
548 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
549 * Configuration File in FLASH), our last gasp effort is to use the
550 * Firmware Configuration File which is embedded in the firmware. A
551 * very few early versions of the firmware didn't have one embedded
552 * but we can ignore those.
554 if (ret == -ENOENT) {
555 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
558 memset(&caps_cmd, 0, sizeof(caps_cmd));
559 caps_cmd.op_to_write =
560 cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
561 F_FW_CMD_REQUEST | F_FW_CMD_READ);
562 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
563 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
564 sizeof(caps_cmd), &caps_cmd);
565 strcpy(config_name, "Firmware Default");
572 finiver = be32_to_cpu(caps_cmd.finiver);
573 finicsum = be32_to_cpu(caps_cmd.finicsum);
574 cfcsum = be32_to_cpu(caps_cmd.cfcsum);
575 if (finicsum != cfcsum)
576 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
580 * If we're a pure NIC driver then disable all offloading facilities.
581 * This will allow the firmware to optimize aspects of the hardware
582 * configuration which will result in improved performance.
584 caps_cmd.niccaps &= cpu_to_be16(~(FW_CAPS_CONFIG_NIC_HASHFILTER |
585 FW_CAPS_CONFIG_NIC_ETHOFLD));
586 caps_cmd.toecaps = 0;
587 caps_cmd.iscsicaps = 0;
588 caps_cmd.rdmacaps = 0;
589 caps_cmd.fcoecaps = 0;
592 * And now tell the firmware to use the configuration we just loaded.
594 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
595 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
596 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
597 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
600 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
606 * Tweak configuration based on system architecture, etc.
608 ret = adap_init0_tweaks(adapter);
610 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
615 * And finally tell the firmware to initialize itself using the
616 * parameters from the Configuration File.
618 ret = t4_fw_initialize(adapter, adapter->mbox);
620 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
626 * Return successfully and note that we're operating with parameters
627 * not supplied by the driver, rather than from hard-wired
628 * initialization constants buried in the driver.
631 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
632 config_name, finiver, cfcsum);
637 * Something bad happened. Return the error ... (If the "error"
638 * is that there's no Configuration File on the adapter we don't
639 * want to issue a warning since this is fairly common.)
642 if (config_issued && ret != -ENOENT)
643 dev_warn(adapter, "\"%s\" configuration file error %d\n",
646 dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
650 static int adap_init0(struct adapter *adap)
654 enum dev_state state;
655 u32 params[7], val[7];
657 int mbox = adap->mbox;
660 * Contact FW, advertising Master capability.
662 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
664 dev_err(adap, "%s: could not connect to FW, error %d\n",
669 CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
673 adap->flags |= MASTER_PF;
675 if (state == DEV_STATE_INIT) {
677 * Force halt and reset FW because a previous instance may have
678 * exited abnormally without properly shutting down
680 ret = t4_fw_halt(adap, adap->mbox, reset);
682 dev_err(adap, "Failed to halt. Exit.\n");
686 ret = t4_fw_restart(adap, adap->mbox, reset);
688 dev_err(adap, "Failed to restart. Exit.\n");
691 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
694 t4_get_version_info(adap);
696 ret = t4_get_core_clock(adap, &adap->params.vpd);
698 dev_err(adap, "%s: could not get core clock, error %d\n",
704 * If the firmware is initialized already (and we're not forcing a
705 * master initialization), note that we're living with existing
706 * adapter parameters. Otherwise, it's time to try initializing the
709 if (state == DEV_STATE_INIT) {
710 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
711 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
713 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
715 ret = adap_init0_config(adap, reset);
716 if (ret == -ENOENT) {
718 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
723 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
727 /* Find out what ports are available to us. */
728 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
729 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
730 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
732 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
737 adap->params.nports = hweight32(port_vec);
738 adap->params.portvec = port_vec;
740 dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
741 adap->params.nports);
744 * Give the SGE code a chance to pull in anything that it needs ...
745 * Note that this must be called after we retrieve our VPD parameters
746 * in order to know how to convert core ticks to seconds, etc.
748 ret = t4_sge_init(adap);
750 dev_err(adap, "t4_sge_init failed with error %d\n",
756 * Grab some of our basic fundamental operating parameters.
758 #define FW_PARAM_DEV(param) \
759 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
760 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
762 #define FW_PARAM_PFVF(param) \
763 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
764 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
765 V_FW_PARAMS_PARAM_Y(0) | \
766 V_FW_PARAMS_PARAM_Z(0))
768 /* If we're running on newer firmware, let it know that we're
769 * prepared to deal with encapsulated CPL messages. Older
770 * firmware won't understand this and we'll just get
771 * unencapsulated messages ...
773 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
775 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
778 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
779 * capability. Earlier versions of the firmware didn't have the
780 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
781 * permission to use ULPTX MEMWRITE DSGL.
783 if (is_t4(adap->params.chip)) {
784 adap->params.ulptx_memwrite_dsgl = false;
786 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
787 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
789 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
793 * The MTU/MSS Table is initialized by now, so load their values. If
794 * we're initializing the adapter, then we'll make any modifications
795 * we want to the MTU/MSS Table and also initialize the congestion
798 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
799 if (state != DEV_STATE_INIT) {
803 * The default MTU Table contains values 1492 and 1500.
804 * However, for TCP, it's better to have two values which are
805 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
806 * This allows us to have a TCP Data Payload which is a
807 * multiple of 8 regardless of what combination of TCP Options
808 * are in use (always a multiple of 4 bytes) which is
809 * important for performance reasons. For instance, if no
810 * options are in use, then we have a 20-byte IP header and a
811 * 20-byte TCP header. In this case, a 1500-byte MSS would
812 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
813 * which is not a multiple of 8. So using an MSS of 1488 in
814 * this case results in a TCP Data Payload of 1448 bytes which
815 * is a multiple of 8. On the other hand, if 12-byte TCP Time
816 * Stamps have been negotiated, then an MTU of 1500 bytes
817 * results in a TCP Data Payload of 1448 bytes which, as
818 * above, is a multiple of 8 bytes ...
820 for (i = 0; i < NMTUS; i++)
821 if (adap->params.mtus[i] == 1492) {
822 adap->params.mtus[i] = 1488;
826 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
829 t4_init_sge_params(adap);
830 t4_init_tp_params(adap);
831 configure_pcie_ext_tag(adap);
833 adap->params.drv_memwin = MEMWIN_NIC;
834 adap->flags |= FW_OK;
835 dev_debug(adap, "%s: returning zero..\n", __func__);
839 * Something bad happened. If a command timed out or failed with EIO
840 * FW does not operate within its spec or something catastrophic
841 * happened to HW/FW, stop issuing commands.
844 if (ret != -ETIMEDOUT && ret != -EIO)
845 t4_fw_bye(adap, adap->mbox);
850 * t4_os_portmod_changed - handle port module changes
851 * @adap: the adapter associated with the module change
852 * @port_id: the port index whose module status has changed
854 * This is the OS-dependent handler for port module changes. It is
855 * invoked when a port module is removed or inserted for any OS-specific
858 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
860 static const char * const mod_str[] = {
861 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
864 const struct port_info *pi = &adap->port[port_id];
866 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
867 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
868 else if (pi->mod_type < ARRAY_SIZE(mod_str))
869 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
870 mod_str[pi->mod_type]);
871 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
872 dev_info(adap, "Port%d: unsupported port module inserted\n",
874 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
875 dev_info(adap, "Port%d: unknown port module inserted\n",
877 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
878 dev_info(adap, "Port%d: transceiver module error\n",
881 dev_info(adap, "Port%d: unknown module type %d inserted\n",
882 pi->port_id, pi->mod_type);
886 * link_start - enable a port
887 * @dev: the port to enable
889 * Performs the MAC and PHY actions needed to enable a port.
891 int link_start(struct port_info *pi)
893 struct adapter *adapter = pi->adapter;
897 mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
898 (ETHER_HDR_LEN + ETHER_CRC_LEN);
901 * We do not set address filters and promiscuity here, the stack does
902 * that step explicitly.
904 ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1,
907 ret = t4_change_mac(adapter, adapter->mbox, pi->viid,
909 (u8 *)&pi->eth_dev->data->mac_addrs[0],
912 pi->xact_addr_filt = ret;
917 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
921 * Enabling a Virtual Interface can result in an interrupt
922 * during the processing of the VI Enable command and, in some
923 * paths, result in an attempt to issue another command in the
924 * interrupt context. Thus, we disable interrupts during the
925 * course of the VI Enable command ...
927 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
934 * cxgb4_write_rss - write the RSS table for a given port
936 * @queues: array of queue indices for RSS
938 * Sets up the portion of the HW RSS table for the port's VI to distribute
939 * packets to the Rx queues in @queues.
941 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
945 struct adapter *adapter = pi->adapter;
946 const struct sge_eth_rxq *rxq;
948 /* Should never be called before setting up sge eth rx queues */
949 BUG_ON(!(adapter->flags & FULL_INIT_DONE));
951 rxq = &adapter->sge.ethrxq[pi->first_qset];
952 rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
956 /* map the queue indices to queue ids */
957 for (i = 0; i < pi->rss_size; i++, queues++)
958 rss[i] = rxq[*queues].rspq.abs_id;
960 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
961 pi->rss_size, rss, pi->rss_size);
963 * If Tunnel All Lookup isn't specified in the global RSS
964 * Configuration, then we need to specify a default Ingress
965 * Queue for any ingress packets which aren't hashed. We'll
966 * use our first ingress queue ...
969 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
970 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
971 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
972 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
973 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN |
974 F_FW_RSS_VI_CONFIG_CMD_UDPEN,
981 * setup_rss - configure RSS
982 * @adapter: the adapter
984 * Sets up RSS to distribute packets to multiple receive queues. We
985 * configure the RSS CPU lookup table to distribute to the number of HW
986 * receive queues, and the response queue lookup table to narrow that
987 * down to the response queues actually configured for each port.
988 * We always configure the RSS mapping for all ports since the mapping
989 * table has plenty of entries.
991 int setup_rss(struct port_info *pi)
994 struct adapter *adapter = pi->adapter;
996 dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
997 __func__, pi->rss_size, pi->n_rx_qsets);
999 if (!(pi->flags & PORT_RSS_DONE)) {
1000 if (adapter->flags & FULL_INIT_DONE) {
1001 /* Fill default values with equal distribution */
1002 for (j = 0; j < pi->rss_size; j++)
1003 pi->rss[j] = j % pi->n_rx_qsets;
1005 err = cxgb4_write_rss(pi, pi->rss);
1008 pi->flags |= PORT_RSS_DONE;
1015 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1017 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1019 /* 0-increment GTS to start the timer and enable interrupts */
1020 t4_write_reg(adap, MYPF_REG(A_SGE_PF_GTS),
1021 V_SEINTARM(q->intr_params) |
1022 V_INGRESSQID(q->cntxt_id));
1025 void cxgbe_enable_rx_queues(struct port_info *pi)
1027 struct adapter *adap = pi->adapter;
1028 struct sge *s = &adap->sge;
1031 for (i = 0; i < pi->n_rx_qsets; i++)
1032 enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1036 * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1037 * @port_type: Firmware Port Type
1038 * @fw_caps: Firmware Port Capabilities
1039 * @speed_caps: Device Info Speed Capabilities
1041 * Translate a Firmware Port Capabilities specification to Device Info
1042 * Speed Capabilities.
1044 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1045 unsigned int fw_caps,
1048 #define SET_SPEED(__speed_name) \
1050 *speed_caps |= ETH_LINK_ ## __speed_name; \
1053 #define FW_CAPS_TO_SPEED(__fw_name) \
1055 if (fw_caps & FW_PORT_CAP_ ## __fw_name) \
1056 SET_SPEED(__fw_name); \
1059 switch (port_type) {
1060 case FW_PORT_TYPE_BT_SGMII:
1061 case FW_PORT_TYPE_BT_XFI:
1062 case FW_PORT_TYPE_BT_XAUI:
1063 FW_CAPS_TO_SPEED(SPEED_100M);
1064 FW_CAPS_TO_SPEED(SPEED_1G);
1065 FW_CAPS_TO_SPEED(SPEED_10G);
1068 case FW_PORT_TYPE_KX4:
1069 case FW_PORT_TYPE_KX:
1070 case FW_PORT_TYPE_FIBER_XFI:
1071 case FW_PORT_TYPE_FIBER_XAUI:
1072 case FW_PORT_TYPE_SFP:
1073 case FW_PORT_TYPE_QSFP_10G:
1074 case FW_PORT_TYPE_QSA:
1075 FW_CAPS_TO_SPEED(SPEED_1G);
1076 FW_CAPS_TO_SPEED(SPEED_10G);
1079 case FW_PORT_TYPE_KR:
1080 SET_SPEED(SPEED_10G);
1083 case FW_PORT_TYPE_BP_AP:
1084 case FW_PORT_TYPE_BP4_AP:
1085 SET_SPEED(SPEED_1G);
1086 SET_SPEED(SPEED_10G);
1089 case FW_PORT_TYPE_BP40_BA:
1090 case FW_PORT_TYPE_QSFP:
1091 SET_SPEED(SPEED_40G);
1094 case FW_PORT_TYPE_CR_QSFP:
1095 case FW_PORT_TYPE_SFP28:
1096 case FW_PORT_TYPE_KR_SFP28:
1097 FW_CAPS_TO_SPEED(SPEED_1G);
1098 FW_CAPS_TO_SPEED(SPEED_10G);
1099 FW_CAPS_TO_SPEED(SPEED_25G);
1102 case FW_PORT_TYPE_CR2_QSFP:
1103 SET_SPEED(SPEED_50G);
1106 case FW_PORT_TYPE_KR4_100G:
1107 case FW_PORT_TYPE_CR4_QSFP:
1108 FW_CAPS_TO_SPEED(SPEED_25G);
1109 FW_CAPS_TO_SPEED(SPEED_40G);
1110 FW_CAPS_TO_SPEED(SPEED_100G);
1117 #undef FW_CAPS_TO_SPEED
1122 * cxgbe_get_speed_caps - Fetch supported speed capabilities
1123 * @pi: Underlying port's info
1124 * @speed_caps: Device Info speed capabilities
1126 * Fetch supported speed capabilities of the underlying port.
1128 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1132 fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.supported,
1135 if (!(pi->link_cfg.supported & FW_PORT_CAP_ANEG))
1136 *speed_caps |= ETH_LINK_SPEED_FIXED;
1140 * cxgb_up - enable the adapter
1141 * @adap: adapter being enabled
1143 * Called when the first port is enabled, this function performs the
1144 * actions necessary to make an adapter operational, such as completing
1145 * the initialization of HW modules, and enabling interrupts.
1147 int cxgbe_up(struct adapter *adap)
1149 enable_rx(adap, &adap->sge.fw_evtq);
1150 t4_sge_tx_monitor_start(adap);
1151 t4_intr_enable(adap);
1152 adap->flags |= FULL_INIT_DONE;
1154 /* TODO: deadman watchdog ?? */
1161 int cxgbe_down(struct port_info *pi)
1163 struct adapter *adapter = pi->adapter;
1166 err = t4_enable_vi(adapter, adapter->mbox, pi->viid, false, false);
1168 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1172 t4_reset_link_config(adapter, pi->port_id);
1177 * Release resources when all the ports have been stopped.
1179 void cxgbe_close(struct adapter *adapter)
1181 struct port_info *pi;
1184 if (adapter->flags & FULL_INIT_DONE) {
1185 t4_intr_disable(adapter);
1186 t4_sge_tx_monitor_stop(adapter);
1187 t4_free_sge_resources(adapter);
1188 for_each_port(adapter, i) {
1189 pi = adap2pinfo(adapter, i);
1191 t4_free_vi(adapter, adapter->mbox,
1192 adapter->pf, 0, pi->viid);
1193 rte_free(pi->eth_dev->data->mac_addrs);
1195 adapter->flags &= ~FULL_INIT_DONE;
1198 if (adapter->flags & FW_OK)
1199 t4_fw_bye(adapter, adapter->mbox);
1202 int cxgbe_probe(struct adapter *adapter)
1204 struct port_info *pi;
1210 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1211 chip = t4_get_chip_type(adapter,
1212 CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1216 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1217 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1219 adapter->mbox = func;
1222 t4_os_lock_init(&adapter->mbox_lock);
1223 TAILQ_INIT(&adapter->mbox_list);
1225 err = t4_prep_adapter(adapter);
1229 setup_memwin(adapter);
1230 err = adap_init0(adapter);
1232 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1237 if (!is_t4(adapter->params.chip)) {
1239 * The userspace doorbell BAR is split evenly into doorbell
1240 * regions, each associated with an egress queue. If this
1241 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1242 * then it can be used to submit a tx work request with an
1243 * implied doorbell. Enable write combining on the BAR if
1244 * there is room for such work requests.
1246 int s_qpp, qpp, num_seg;
1248 s_qpp = (S_QUEUESPERPAGEPF0 +
1249 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1251 qpp = 1 << ((t4_read_reg(adapter,
1252 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1253 & M_QUEUESPERPAGEPF0);
1254 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1256 dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1258 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1259 if (!adapter->bar2) {
1260 dev_err(adapter, "cannot map device bar2 region\n");
1264 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1268 for_each_port(adapter, i) {
1269 char name[RTE_ETH_NAME_MAX_LEN];
1270 struct rte_eth_dev_data *data = NULL;
1271 const unsigned int numa_node = rte_socket_id();
1273 pi = &adapter->port[i];
1274 pi->adapter = adapter;
1275 pi->xact_addr_filt = -1;
1278 snprintf(name, sizeof(name), "cxgbe%d",
1279 adapter->eth_dev->data->port_id + i);
1282 /* First port is already allocated by DPDK */
1283 pi->eth_dev = adapter->eth_dev;
1288 * now do all data allocation - for eth_dev structure,
1289 * and internal (private) data for the remaining ports
1292 /* reserve an ethdev entry */
1293 pi->eth_dev = rte_eth_dev_allocate(name);
1297 data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node);
1301 data->port_id = adapter->eth_dev->data->port_id + i;
1303 pi->eth_dev->data = data;
1306 pi->eth_dev->device = &adapter->pdev->device;
1307 pi->eth_dev->data->dev_private = pi;
1308 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1309 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1310 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1312 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1314 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1316 if (!pi->eth_dev->data->mac_addrs) {
1317 dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1324 if (adapter->flags & FW_OK) {
1325 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1327 dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1333 cfg_queues(adapter->eth_dev);
1335 print_adapter_info(adapter);
1336 print_port_info(adapter);
1338 err = init_rss(adapter);
1345 for_each_port(adapter, i) {
1346 pi = adap2pinfo(adapter, i);
1348 t4_free_vi(adapter, adapter->mbox, adapter->pf,
1350 /* Skip first port since it'll be de-allocated by DPDK */
1353 if (pi->eth_dev->data)
1354 rte_free(pi->eth_dev->data);
1357 if (adapter->flags & FW_OK)
1358 t4_fw_bye(adapter, adapter->mbox);