4 * Copyright(c) 2014-2015 Chelsio Communications.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Chelsio Communications nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #include <sys/queue.h>
42 #include <netinet/in.h>
44 #include <rte_byteorder.h>
45 #include <rte_common.h>
46 #include <rte_cycles.h>
47 #include <rte_interrupts.h>
49 #include <rte_debug.h>
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_memory.h>
54 #include <rte_memzone.h>
55 #include <rte_tailq.h>
57 #include <rte_alarm.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_atomic.h>
61 #include <rte_malloc.h>
62 #include <rte_random.h>
71 * Response queue handler for the FW event queue.
73 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
74 __rte_unused const struct pkt_gl *gl)
76 u8 opcode = ((const struct rss_header *)rsp)->opcode;
78 rsp++; /* skip RSS header */
81 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
83 if (unlikely(opcode == CPL_FW4_MSG &&
84 ((const struct cpl_fw4_msg *)rsp)->type ==
87 opcode = ((const struct rss_header *)rsp)->opcode;
89 if (opcode != CPL_SGE_EGR_UPDATE) {
90 dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
96 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
98 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
99 const struct cpl_fw6_msg *msg = (const void *)rsp;
101 t4_handle_fw_rpl(q->adapter, msg->data);
103 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
110 int setup_sge_fwevtq(struct adapter *adapter)
112 struct sge *s = &adapter->sge;
116 err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
117 msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
122 static int closest_timer(const struct sge *s, int time)
124 unsigned int i, match = 0;
125 int delta, min_delta = INT_MAX;
127 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
128 delta = time - s->timer_val[i];
131 if (delta < min_delta) {
139 static int closest_thres(const struct sge *s, int thres)
141 unsigned int i, match = 0;
142 int delta, min_delta = INT_MAX;
144 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
145 delta = thres - s->counter_val[i];
148 if (delta < min_delta) {
157 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
159 * @us: the hold-off time in us, or 0 to disable timer
160 * @cnt: the hold-off packet count, or 0 to disable counter
162 * Sets an Rx queue's interrupt hold-off time and packet count. At least
163 * one of the two needs to be enabled for the queue to generate interrupts.
165 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
168 struct adapter *adap = q->adapter;
169 unsigned int timer_val;
175 new_idx = closest_thres(&adap->sge, cnt);
176 if (q->desc && q->pktcnt_idx != new_idx) {
177 /* the queue has already been created, update it */
178 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
180 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
181 V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
182 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
187 q->pktcnt_idx = new_idx;
190 timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
191 closest_timer(&adap->sge, us);
194 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
196 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
197 V_QINTR_CNT_EN(cnt > 0);
201 static inline bool is_x_1g_port(const struct link_config *lc)
203 return ((lc->supported & FW_PORT_CAP_SPEED_1G) != 0);
206 static inline bool is_x_10g_port(const struct link_config *lc)
208 return ((lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
209 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0 ||
210 (lc->supported & FW_PORT_CAP_SPEED_100G) != 0);
213 inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
214 unsigned int us, unsigned int cnt,
215 unsigned int size, unsigned int iqe_size)
218 cxgb4_set_rspq_intr_params(q, us, cnt);
219 q->iqe_len = iqe_size;
223 int cfg_queue_count(struct rte_eth_dev *eth_dev)
225 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
226 struct adapter *adap = pi->adapter;
227 struct sge *s = &adap->sge;
228 unsigned int max_queues = s->max_ethqsets / adap->params.nports;
230 if ((eth_dev->data->nb_rx_queues < 1) ||
231 (eth_dev->data->nb_tx_queues < 1))
234 if ((eth_dev->data->nb_rx_queues > max_queues) ||
235 (eth_dev->data->nb_tx_queues > max_queues))
238 if (eth_dev->data->nb_rx_queues > pi->rss_size)
241 /* We must configure RSS, since config has changed*/
242 pi->flags &= ~PORT_RSS_DONE;
244 pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
245 pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
250 void cfg_queues(struct rte_eth_dev *eth_dev)
252 struct rte_config *config = rte_eal_get_configuration();
253 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
254 struct adapter *adap = pi->adapter;
255 struct sge *s = &adap->sge;
256 unsigned int i, nb_ports = 0, qidx = 0;
257 unsigned int q_per_port = 0;
259 if (!(adap->flags & CFG_QUEUES)) {
260 for_each_port(adap, i) {
261 struct port_info *tpi = adap2pinfo(adap, i);
263 nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
264 is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
268 * We default up to # of cores queues per 1G/10G port.
271 q_per_port = (MAX_ETH_QSETS -
272 (adap->params.nports - nb_ports)) /
275 if (q_per_port > config->lcore_count)
276 q_per_port = config->lcore_count;
278 for_each_port(adap, i) {
279 struct port_info *pi = adap2pinfo(adap, i);
281 pi->first_qset = qidx;
283 /* Initially n_rx_qsets == n_tx_qsets */
284 pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
285 is_x_1g_port(&pi->link_cfg)) ?
287 pi->n_tx_qsets = pi->n_rx_qsets;
289 if (pi->n_rx_qsets > pi->rss_size)
290 pi->n_rx_qsets = pi->rss_size;
292 qidx += pi->n_rx_qsets;
295 s->max_ethqsets = qidx;
297 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
298 struct sge_eth_rxq *r = &s->ethrxq[i];
300 init_rspq(adap, &r->rspq, 0, 0, 1024, 64);
302 r->fl.size = (r->usembufs ? 1024 : 72);
305 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
306 s->ethtxq[i].q.size = 1024;
308 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
309 adap->flags |= CFG_QUEUES;
313 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
315 t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
319 void cxgbe_stats_reset(struct port_info *pi)
321 t4_clr_port_stats(pi->adapter, pi->tx_chan);
324 static void setup_memwin(struct adapter *adap)
328 /* For T5, only relative offset inside the PCIe BAR is passed */
329 mem_win0_base = MEMWIN0_BASE;
332 * Set up memory window for accessing adapter memory ranges. (Read
333 * back MA register to ensure that changes propagate before we attempt
334 * to use the new values.)
337 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
339 mem_win0_base | V_BIR(0) |
340 V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
342 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
346 static int init_rss(struct adapter *adap)
351 err = t4_init_rss_mode(adap, adap->mbox);
355 for_each_port(adap, i) {
356 struct port_info *pi = adap2pinfo(adap, i);
358 pi->rss = rte_zmalloc(NULL, pi->rss_size, 0);
365 static void print_port_info(struct adapter *adap)
369 struct rte_pci_addr *loc = &adap->pdev->addr;
371 for_each_port(adap, i) {
372 const struct port_info *pi = &adap->port[i];
375 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
376 bufp += sprintf(bufp, "100/");
377 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
378 bufp += sprintf(bufp, "1000/");
379 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
380 bufp += sprintf(bufp, "10G/");
381 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
382 bufp += sprintf(bufp, "40G/");
385 sprintf(bufp, "BASE-%s",
386 t4_get_port_type_description(pi->port_type));
389 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
390 loc->domain, loc->bus, loc->devid, loc->function,
391 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
392 (adap->flags & USING_MSIX) ? " MSI-X" :
393 (adap->flags & USING_MSI) ? " MSI" : "");
398 * Tweak configuration based on system architecture, etc. Most of these have
399 * defaults assigned to them by Firmware Configuration Files (if we're using
400 * them) but need to be explicitly set if we're using hard-coded
401 * initialization. So these are essentially common tweaks/settings for
402 * Configuration Files and hard-coded initialization ...
404 static int adap_init0_tweaks(struct adapter *adapter)
409 * Fix up various Host-Dependent Parameters like Page Size, Cache
410 * Line Size, etc. The firmware default is for a 4KB Page Size and
411 * 64B Cache Line Size ...
413 t4_fixup_host_params_compat(adapter, PAGE_SIZE, L1_CACHE_BYTES,
417 * Keep the chip default offset to deliver Ingress packets into our
418 * DMA buffers to zero
421 t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
422 V_PKTSHIFT(rx_dma_offset));
425 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
426 * adds the pseudo header itself.
428 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
429 F_CSUM_HAS_PSEUDO_HDR, 0);
435 * Attempt to initialize the adapter via a Firmware Configuration File.
437 static int adap_init0_config(struct adapter *adapter, int reset)
439 struct fw_caps_config_cmd caps_cmd;
440 unsigned long mtype = 0, maddr = 0;
441 u32 finiver, finicsum, cfcsum;
443 int config_issued = 0;
445 char config_name[20];
448 * Reset device if necessary.
451 ret = t4_fw_reset(adapter, adapter->mbox,
452 F_PIORSTMODE | F_PIORST);
454 dev_warn(adapter, "Firmware reset failed, error %d\n",
460 cfg_addr = t4_flash_cfg_addr(adapter);
463 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
468 strcpy(config_name, "On Flash");
469 mtype = FW_MEMTYPE_CF_FLASH;
473 * Issue a Capability Configuration command to the firmware to get it
474 * to parse the Configuration File. We don't use t4_fw_config_file()
475 * because we want the ability to modify various features after we've
476 * processed the configuration file ...
478 memset(&caps_cmd, 0, sizeof(caps_cmd));
479 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
480 F_FW_CMD_REQUEST | F_FW_CMD_READ);
481 caps_cmd.cfvalid_to_len16 =
482 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
483 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
484 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
486 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
489 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
490 * Configuration File in FLASH), our last gasp effort is to use the
491 * Firmware Configuration File which is embedded in the firmware. A
492 * very few early versions of the firmware didn't have one embedded
493 * but we can ignore those.
495 if (ret == -ENOENT) {
496 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
499 memset(&caps_cmd, 0, sizeof(caps_cmd));
500 caps_cmd.op_to_write =
501 cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
502 F_FW_CMD_REQUEST | F_FW_CMD_READ);
503 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
504 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
505 sizeof(caps_cmd), &caps_cmd);
506 strcpy(config_name, "Firmware Default");
513 finiver = be32_to_cpu(caps_cmd.finiver);
514 finicsum = be32_to_cpu(caps_cmd.finicsum);
515 cfcsum = be32_to_cpu(caps_cmd.cfcsum);
516 if (finicsum != cfcsum)
517 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
521 * If we're a pure NIC driver then disable all offloading facilities.
522 * This will allow the firmware to optimize aspects of the hardware
523 * configuration which will result in improved performance.
525 caps_cmd.niccaps &= cpu_to_be16(~(FW_CAPS_CONFIG_NIC_HASHFILTER |
526 FW_CAPS_CONFIG_NIC_ETHOFLD));
527 caps_cmd.toecaps = 0;
528 caps_cmd.iscsicaps = 0;
529 caps_cmd.rdmacaps = 0;
530 caps_cmd.fcoecaps = 0;
533 * And now tell the firmware to use the configuration we just loaded.
535 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
536 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
537 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
538 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
541 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
547 * Tweak configuration based on system architecture, etc.
549 ret = adap_init0_tweaks(adapter);
551 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
556 * And finally tell the firmware to initialize itself using the
557 * parameters from the Configuration File.
559 ret = t4_fw_initialize(adapter, adapter->mbox);
561 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
567 * Return successfully and note that we're operating with parameters
568 * not supplied by the driver, rather than from hard-wired
569 * initialization constants burried in the driver.
572 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
573 config_name, finiver, cfcsum);
578 * Something bad happened. Return the error ... (If the "error"
579 * is that there's no Configuration File on the adapter we don't
580 * want to issue a warning since this is fairly common.)
583 if (config_issued && ret != -ENOENT)
584 dev_warn(adapter, "\"%s\" configuration file error %d\n",
587 dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
591 static int adap_init0(struct adapter *adap)
595 enum dev_state state;
596 u32 params[7], val[7];
598 int mbox = adap->mbox;
601 * Contact FW, advertising Master capability.
603 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
605 dev_err(adap, "%s: could not connect to FW, error %d\n",
610 CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
614 adap->flags |= MASTER_PF;
616 if (state == DEV_STATE_INIT) {
618 * Force halt and reset FW because a previous instance may have
619 * exited abnormally without properly shutting down
621 ret = t4_fw_halt(adap, adap->mbox, reset);
623 dev_err(adap, "Failed to halt. Exit.\n");
627 ret = t4_fw_restart(adap, adap->mbox, reset);
629 dev_err(adap, "Failed to restart. Exit.\n");
632 state &= ~DEV_STATE_INIT;
635 t4_get_fw_version(adap, &adap->params.fw_vers);
636 t4_get_tp_version(adap, &adap->params.tp_vers);
638 dev_info(adap, "fw: %u.%u.%u.%u, TP: %u.%u.%u.%u\n",
639 G_FW_HDR_FW_VER_MAJOR(adap->params.fw_vers),
640 G_FW_HDR_FW_VER_MINOR(adap->params.fw_vers),
641 G_FW_HDR_FW_VER_MICRO(adap->params.fw_vers),
642 G_FW_HDR_FW_VER_BUILD(adap->params.fw_vers),
643 G_FW_HDR_FW_VER_MAJOR(adap->params.tp_vers),
644 G_FW_HDR_FW_VER_MINOR(adap->params.tp_vers),
645 G_FW_HDR_FW_VER_MICRO(adap->params.tp_vers),
646 G_FW_HDR_FW_VER_BUILD(adap->params.tp_vers));
648 ret = t4_get_core_clock(adap, &adap->params.vpd);
650 dev_err(adap, "%s: could not get core clock, error %d\n",
656 * Find out what ports are available to us. Note that we need to do
657 * this before calling adap_init0_no_config() since it needs nports
660 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
661 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
662 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
664 dev_err(adap, "%s: failure in t4_queury_params; error = %d\n",
669 adap->params.nports = hweight32(port_vec);
670 adap->params.portvec = port_vec;
672 dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
673 adap->params.nports);
676 * If the firmware is initialized already (and we're not forcing a
677 * master initialization), note that we're living with existing
678 * adapter parameters. Otherwise, it's time to try initializing the
681 if (state == DEV_STATE_INIT) {
682 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
683 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
685 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
687 ret = adap_init0_config(adap, reset);
688 if (ret == -ENOENT) {
690 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
695 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
700 * Give the SGE code a chance to pull in anything that it needs ...
701 * Note that this must be called after we retrieve our VPD parameters
702 * in order to know how to convert core ticks to seconds, etc.
704 ret = t4_sge_init(adap);
706 dev_err(adap, "t4_sge_init failed with error %d\n",
712 * Grab some of our basic fundamental operating parameters.
714 #define FW_PARAM_DEV(param) \
715 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
716 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
718 #define FW_PARAM_PFVF(param) \
719 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
720 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
721 V_FW_PARAMS_PARAM_Y(0) | \
722 V_FW_PARAMS_PARAM_Z(0))
724 /* If we're running on newer firmware, let it know that we're
725 * prepared to deal with encapsulated CPL messages. Older
726 * firmware won't understand this and we'll just get
727 * unencapsulated messages ...
729 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
731 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
734 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
735 * capability. Earlier versions of the firmware didn't have the
736 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
737 * permission to use ULPTX MEMWRITE DSGL.
739 if (is_t4(adap->params.chip)) {
740 adap->params.ulptx_memwrite_dsgl = false;
742 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
743 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
745 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
749 * The MTU/MSS Table is initialized by now, so load their values. If
750 * we're initializing the adapter, then we'll make any modifications
751 * we want to the MTU/MSS Table and also initialize the congestion
754 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
755 if (state != DEV_STATE_INIT) {
759 * The default MTU Table contains values 1492 and 1500.
760 * However, for TCP, it's better to have two values which are
761 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
762 * This allows us to have a TCP Data Payload which is a
763 * multiple of 8 regardless of what combination of TCP Options
764 * are in use (always a multiple of 4 bytes) which is
765 * important for performance reasons. For instance, if no
766 * options are in use, then we have a 20-byte IP header and a
767 * 20-byte TCP header. In this case, a 1500-byte MSS would
768 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
769 * which is not a multiple of 8. So using an MSS of 1488 in
770 * this case results in a TCP Data Payload of 1448 bytes which
771 * is a multiple of 8. On the other hand, if 12-byte TCP Time
772 * Stamps have been negotiated, then an MTU of 1500 bytes
773 * results in a TCP Data Payload of 1448 bytes which, as
774 * above, is a multiple of 8 bytes ...
776 for (i = 0; i < NMTUS; i++)
777 if (adap->params.mtus[i] == 1492) {
778 adap->params.mtus[i] = 1488;
782 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
785 t4_init_sge_params(adap);
786 t4_init_tp_params(adap);
788 adap->params.drv_memwin = MEMWIN_NIC;
789 adap->flags |= FW_OK;
790 dev_debug(adap, "%s: returning zero..\n", __func__);
794 * Something bad happened. If a command timed out or failed with EIO
795 * FW does not operate within its spec or something catastrophic
796 * happened to HW/FW, stop issuing commands.
799 if (ret != -ETIMEDOUT && ret != -EIO)
800 t4_fw_bye(adap, adap->mbox);
805 * t4_os_portmod_changed - handle port module changes
806 * @adap: the adapter associated with the module change
807 * @port_id: the port index whose module status has changed
809 * This is the OS-dependent handler for port module changes. It is
810 * invoked when a port module is removed or inserted for any OS-specific
813 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
815 static const char * const mod_str[] = {
816 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
819 const struct port_info *pi = &adap->port[port_id];
821 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
822 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
823 else if (pi->mod_type < ARRAY_SIZE(mod_str))
824 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
825 mod_str[pi->mod_type]);
826 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
827 dev_info(adap, "Port%d: unsupported optical port module inserted\n",
829 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
830 dev_info(adap, "Port%d: unknown port module inserted, forcing TWINAX\n",
832 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
833 dev_info(adap, "Port%d: transceiver module error\n",
836 dev_info(adap, "Port%d: unknown module type %d inserted\n",
837 pi->port_id, pi->mod_type);
841 * link_start - enable a port
842 * @dev: the port to enable
844 * Performs the MAC and PHY actions needed to enable a port.
846 int link_start(struct port_info *pi)
848 struct adapter *adapter = pi->adapter;
852 * We do not set address filters and promiscuity here, the stack does
853 * that step explicitly.
855 ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, 1500, -1, -1,
858 ret = t4_change_mac(adapter, adapter->mbox, pi->viid,
860 (u8 *)&pi->eth_dev->data->mac_addrs[0],
863 pi->xact_addr_filt = ret;
868 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
872 * Enabling a Virtual Interface can result in an interrupt
873 * during the processing of the VI Enable command and, in some
874 * paths, result in an attempt to issue another command in the
875 * interrupt context. Thus, we disable interrupts during the
876 * course of the VI Enable command ...
878 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
885 * cxgb4_write_rss - write the RSS table for a given port
887 * @queues: array of queue indices for RSS
889 * Sets up the portion of the HW RSS table for the port's VI to distribute
890 * packets to the Rx queues in @queues.
892 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
896 struct adapter *adapter = pi->adapter;
897 const struct sge_eth_rxq *rxq;
899 /* Should never be called before setting up sge eth rx queues */
900 BUG_ON(!(adapter->flags & FULL_INIT_DONE));
902 rxq = &adapter->sge.ethrxq[pi->first_qset];
903 rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
907 /* map the queue indices to queue ids */
908 for (i = 0; i < pi->rss_size; i++, queues++)
909 rss[i] = rxq[*queues].rspq.abs_id;
911 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
912 pi->rss_size, rss, pi->rss_size);
914 * If Tunnel All Lookup isn't specified in the global RSS
915 * Configuration, then we need to specify a default Ingress
916 * Queue for any ingress packets which aren't hashed. We'll
917 * use our first ingress queue ...
920 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
921 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
922 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
923 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
924 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN |
925 F_FW_RSS_VI_CONFIG_CMD_UDPEN,
932 * setup_rss - configure RSS
933 * @adapter: the adapter
935 * Sets up RSS to distribute packets to multiple receive queues. We
936 * configure the RSS CPU lookup table to distribute to the number of HW
937 * receive queues, and the response queue lookup table to narrow that
938 * down to the response queues actually configured for each port.
939 * We always configure the RSS mapping for all ports since the mapping
940 * table has plenty of entries.
942 int setup_rss(struct port_info *pi)
945 struct adapter *adapter = pi->adapter;
947 dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
948 __func__, pi->rss_size, pi->n_rx_qsets);
950 if (!pi->flags & PORT_RSS_DONE) {
951 if (adapter->flags & FULL_INIT_DONE) {
952 /* Fill default values with equal distribution */
953 for (j = 0; j < pi->rss_size; j++)
954 pi->rss[j] = j % pi->n_rx_qsets;
956 err = cxgb4_write_rss(pi, pi->rss);
959 pi->flags |= PORT_RSS_DONE;
966 * Enable NAPI scheduling and interrupt generation for all Rx queues.
968 static void enable_rx(struct adapter *adap)
970 struct sge *s = &adap->sge;
971 struct sge_rspq *q = &s->fw_evtq;
974 /* 0-increment GTS to start the timer and enable interrupts */
975 t4_write_reg(adap, MYPF_REG(A_SGE_PF_GTS),
976 V_SEINTARM(q->intr_params) |
977 V_INGRESSQID(q->cntxt_id));
979 for_each_port(adap, i) {
980 const struct port_info *pi = &adap->port[i];
981 struct rte_eth_dev *eth_dev = pi->eth_dev;
983 for (j = 0; j < eth_dev->data->nb_rx_queues; j++) {
984 q = eth_dev->data->rx_queues[j];
987 * 0-increment GTS to start the timer and enable
990 t4_write_reg(adap, MYPF_REG(A_SGE_PF_GTS),
991 V_SEINTARM(q->intr_params) |
992 V_INGRESSQID(q->cntxt_id));
998 * cxgb_up - enable the adapter
999 * @adap: adapter being enabled
1001 * Called when the first port is enabled, this function performs the
1002 * actions necessary to make an adapter operational, such as completing
1003 * the initialization of HW modules, and enabling interrupts.
1005 int cxgbe_up(struct adapter *adap)
1008 t4_sge_tx_monitor_start(adap);
1009 t4_intr_enable(adap);
1010 adap->flags |= FULL_INIT_DONE;
1012 /* TODO: deadman watchdog ?? */
1019 int cxgbe_down(struct port_info *pi)
1021 struct adapter *adapter = pi->adapter;
1024 err = t4_enable_vi(adapter, adapter->mbox, pi->viid, false, false);
1026 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1030 t4_reset_link_config(adapter, pi->port_id);
1035 * Release resources when all the ports have been stopped.
1037 void cxgbe_close(struct adapter *adapter)
1039 struct port_info *pi;
1042 if (adapter->flags & FULL_INIT_DONE) {
1043 t4_intr_disable(adapter);
1044 t4_sge_tx_monitor_stop(adapter);
1045 t4_free_sge_resources(adapter);
1046 for_each_port(adapter, i) {
1047 pi = adap2pinfo(adapter, i);
1049 t4_free_vi(adapter, adapter->mbox,
1050 adapter->pf, 0, pi->viid);
1051 rte_free(pi->eth_dev->data->mac_addrs);
1053 adapter->flags &= ~FULL_INIT_DONE;
1056 if (adapter->flags & FW_OK)
1057 t4_fw_bye(adapter, adapter->mbox);
1060 int cxgbe_probe(struct adapter *adapter)
1062 struct port_info *pi;
1066 func = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
1067 adapter->mbox = func;
1070 t4_os_lock_init(&adapter->mbox_lock);
1071 TAILQ_INIT(&adapter->mbox_list);
1073 err = t4_prep_adapter(adapter);
1077 setup_memwin(adapter);
1078 err = adap_init0(adapter);
1080 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1085 if (!is_t4(adapter->params.chip)) {
1087 * The userspace doorbell BAR is split evenly into doorbell
1088 * regions, each associated with an egress queue. If this
1089 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1090 * then it can be used to submit a tx work request with an
1091 * implied doorbell. Enable write combining on the BAR if
1092 * there is room for such work requests.
1094 int s_qpp, qpp, num_seg;
1096 s_qpp = (S_QUEUESPERPAGEPF0 +
1097 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1099 qpp = 1 << ((t4_read_reg(adapter,
1100 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1101 & M_QUEUESPERPAGEPF0);
1102 num_seg = PAGE_SIZE / UDBS_SEG_SIZE;
1104 dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1106 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1107 if (!adapter->bar2) {
1108 dev_err(adapter, "cannot map device bar2 region\n");
1112 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1116 for_each_port(adapter, i) {
1117 char name[RTE_ETH_NAME_MAX_LEN];
1118 struct rte_eth_dev_data *data = NULL;
1119 const unsigned int numa_node = rte_socket_id();
1121 pi = &adapter->port[i];
1122 pi->adapter = adapter;
1123 pi->xact_addr_filt = -1;
1126 snprintf(name, sizeof(name), "cxgbe%d",
1127 adapter->eth_dev->data->port_id + i);
1130 /* First port is already allocated by DPDK */
1131 pi->eth_dev = adapter->eth_dev;
1136 * now do all data allocation - for eth_dev structure,
1137 * and internal (private) data for the remaining ports
1140 /* reserve an ethdev entry */
1141 pi->eth_dev = rte_eth_dev_allocate(name, RTE_ETH_DEV_PCI);
1145 data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node);
1149 data->port_id = adapter->eth_dev->data->port_id + i;
1151 pi->eth_dev->data = data;
1154 pi->eth_dev->pci_dev = adapter->pdev;
1155 pi->eth_dev->data->dev_private = pi;
1156 pi->eth_dev->driver = adapter->eth_dev->driver;
1157 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1158 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1159 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1160 TAILQ_INIT(&pi->eth_dev->link_intr_cbs);
1162 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1164 if (!pi->eth_dev->data->mac_addrs) {
1165 dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1172 if (adapter->flags & FW_OK) {
1173 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1175 dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1181 cfg_queues(adapter->eth_dev);
1183 print_port_info(adapter);
1185 err = init_rss(adapter);
1192 for_each_port(adapter, i) {
1193 pi = adap2pinfo(adapter, i);
1195 t4_free_vi(adapter, adapter->mbox, adapter->pf,
1197 /* Skip first port since it'll be de-allocated by DPDK */
1200 if (pi->eth_dev->data)
1201 rte_free(pi->eth_dev->data);
1204 if (adapter->flags & FW_OK)
1205 t4_fw_bye(adapter, adapter->mbox);