net/cxgbe: separate VF only devargs
[dpdk.git] / drivers / net / cxgbe / cxgbe_main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 #include "clip_tbl.h"
41 #include "l2t.h"
42 #include "mps_tcam.h"
43
44 /**
45  * Allocate a chunk of memory. The allocated memory is cleared.
46  */
47 void *t4_alloc_mem(size_t size)
48 {
49         return rte_zmalloc(NULL, size, 0);
50 }
51
52 /**
53  * Free memory allocated through t4_alloc_mem().
54  */
55 void t4_free_mem(void *addr)
56 {
57         rte_free(addr);
58 }
59
60 /*
61  * Response queue handler for the FW event queue.
62  */
63 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
64                           __rte_unused const struct pkt_gl *gl)
65 {
66         u8 opcode = ((const struct rss_header *)rsp)->opcode;
67
68         rsp++;                                          /* skip RSS header */
69
70         /*
71          * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
72          */
73         if (unlikely(opcode == CPL_FW4_MSG &&
74                      ((const struct cpl_fw4_msg *)rsp)->type ==
75                       FW_TYPE_RSSCPL)) {
76                 rsp++;
77                 opcode = ((const struct rss_header *)rsp)->opcode;
78                 rsp++;
79                 if (opcode != CPL_SGE_EGR_UPDATE) {
80                         dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
81                                 opcode);
82                         goto out;
83                 }
84         }
85
86         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
87                 /* do nothing */
88         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
89                 const struct cpl_fw6_msg *msg = (const void *)rsp;
90
91                 t4_handle_fw_rpl(q->adapter, msg->data);
92         } else if (opcode == CPL_ABORT_RPL_RSS) {
93                 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
94
95                 cxgbe_hash_del_filter_rpl(q->adapter, p);
96         } else if (opcode == CPL_SET_TCB_RPL) {
97                 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
98
99                 cxgbe_filter_rpl(q->adapter, p);
100         } else if (opcode == CPL_ACT_OPEN_RPL) {
101                 const struct cpl_act_open_rpl *p = (const void *)rsp;
102
103                 cxgbe_hash_filter_rpl(q->adapter, p);
104         } else if (opcode == CPL_L2T_WRITE_RPL) {
105                 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
106
107                 cxgbe_do_l2t_write_rpl(q->adapter, p);
108         } else {
109                 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
110                         opcode);
111         }
112 out:
113         return 0;
114 }
115
116 /**
117  * Setup sge control queues to pass control information.
118  */
119 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
120 {
121         struct sge *s = &adapter->sge;
122         int err = 0, i = 0;
123
124         for_each_port(adapter, i) {
125                 struct port_info *pi = adap2pinfo(adapter, i);
126                 char name[RTE_ETH_NAME_MAX_LEN];
127                 struct sge_ctrl_txq *q = &s->ctrlq[i];
128
129                 q->q.size = 1024;
130                 err = t4_sge_alloc_ctrl_txq(adapter, q,
131                                             adapter->eth_dev,  i,
132                                             s->fw_evtq.cntxt_id,
133                                             rte_socket_id());
134                 if (err) {
135                         dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
136                                 err);
137                         goto out;
138                 }
139                 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
140                          pi->eth_dev->device->driver->name,
141                          pi->eth_dev->data->port_id);
142                 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
143                                                      RTE_CACHE_LINE_SIZE,
144                                                      RTE_MBUF_PRIV_ALIGN,
145                                                      RTE_MBUF_DEFAULT_BUF_SIZE,
146                                                      SOCKET_ID_ANY);
147                 if (!q->mb_pool) {
148                         err = -rte_errno;
149                         dev_err(adapter,
150                                 "Can't create ctrl pool for port %d. Err: %d\n",
151                                 pi->eth_dev->data->port_id, err);
152                         goto out;
153                 }
154         }
155         return 0;
156 out:
157         t4_free_sge_resources(adapter);
158         return err;
159 }
160
161 /**
162  * cxgbe_poll_for_completion: Poll rxq for completion
163  * @q: rxq to poll
164  * @ms: milliseconds to delay
165  * @cnt: number of times to poll
166  * @c: completion to check for 'done' status
167  *
168  * Polls the rxq for reples until completion is done or the count
169  * expires.
170  */
171 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
172                               unsigned int cnt, struct t4_completion *c)
173 {
174         unsigned int i;
175         unsigned int work_done, budget = 32;
176
177         if (!c)
178                 return -EINVAL;
179
180         for (i = 0; i < cnt; i++) {
181                 cxgbe_poll(q, NULL, budget, &work_done);
182                 t4_os_lock(&c->lock);
183                 if (c->done) {
184                         t4_os_unlock(&c->lock);
185                         return 0;
186                 }
187                 t4_os_unlock(&c->lock);
188                 rte_delay_ms(ms);
189         }
190         return -ETIMEDOUT;
191 }
192
193 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
194 {
195         struct sge *s = &adapter->sge;
196         int err = 0;
197         int msi_idx = 0;
198
199         err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
200                                msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
201                                rte_socket_id());
202         return err;
203 }
204
205 static int closest_timer(const struct sge *s, int time)
206 {
207         unsigned int i, match = 0;
208         int delta, min_delta = INT_MAX;
209
210         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
211                 delta = time - s->timer_val[i];
212                 if (delta < 0)
213                         delta = -delta;
214                 if (delta < min_delta) {
215                         min_delta = delta;
216                         match = i;
217                 }
218         }
219         return match;
220 }
221
222 static int closest_thres(const struct sge *s, int thres)
223 {
224         unsigned int i, match = 0;
225         int delta, min_delta = INT_MAX;
226
227         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
228                 delta = thres - s->counter_val[i];
229                 if (delta < 0)
230                         delta = -delta;
231                 if (delta < min_delta) {
232                         min_delta = delta;
233                         match = i;
234                 }
235         }
236         return match;
237 }
238
239 /**
240  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
241  * @q: the Rx queue
242  * @us: the hold-off time in us, or 0 to disable timer
243  * @cnt: the hold-off packet count, or 0 to disable counter
244  *
245  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
246  * one of the two needs to be enabled for the queue to generate interrupts.
247  */
248 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
249                                unsigned int cnt)
250 {
251         struct adapter *adap = q->adapter;
252         unsigned int timer_val;
253
254         if (cnt) {
255                 int err;
256                 u32 v, new_idx;
257
258                 new_idx = closest_thres(&adap->sge, cnt);
259                 if (q->desc && q->pktcnt_idx != new_idx) {
260                         /* the queue has already been created, update it */
261                         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
262                             V_FW_PARAMS_PARAM_X(
263                             FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
264                             V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
265                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
266                                             &v, &new_idx);
267                         if (err)
268                                 return err;
269                 }
270                 q->pktcnt_idx = new_idx;
271         }
272
273         timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
274                                 closest_timer(&adap->sge, us);
275
276         if ((us | cnt) == 0)
277                 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
278         else
279                 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
280                                  V_QINTR_CNT_EN(cnt > 0);
281         return 0;
282 }
283
284 /**
285  * Allocate an active-open TID and set it to the supplied value.
286  */
287 int cxgbe_alloc_atid(struct tid_info *t, void *data)
288 {
289         int atid = -1;
290
291         t4_os_lock(&t->atid_lock);
292         if (t->afree) {
293                 union aopen_entry *p = t->afree;
294
295                 atid = p - t->atid_tab;
296                 t->afree = p->next;
297                 p->data = data;
298                 t->atids_in_use++;
299         }
300         t4_os_unlock(&t->atid_lock);
301         return atid;
302 }
303
304 /**
305  * Release an active-open TID.
306  */
307 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
308 {
309         union aopen_entry *p = &t->atid_tab[atid];
310
311         t4_os_lock(&t->atid_lock);
312         p->next = t->afree;
313         t->afree = p;
314         t->atids_in_use--;
315         t4_os_unlock(&t->atid_lock);
316 }
317
318 /**
319  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
320  */
321 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
322 {
323         struct cpl_tid_release *req;
324
325         req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
326         INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
327 }
328
329 /**
330  * Release a TID and inform HW.  If we are unable to allocate the release
331  * message we defer to a work queue.
332  */
333 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
334                       unsigned short family)
335 {
336         struct rte_mbuf *mbuf;
337         struct adapter *adap = container_of(t, struct adapter, tids);
338
339         WARN_ON(tid >= t->ntids);
340
341         if (t->tid_tab[tid]) {
342                 t->tid_tab[tid] = NULL;
343                 rte_atomic32_dec(&t->conns_in_use);
344                 if (t->hash_base && tid >= t->hash_base) {
345                         if (family == FILTER_TYPE_IPV4)
346                                 rte_atomic32_dec(&t->hash_tids_in_use);
347                 } else {
348                         if (family == FILTER_TYPE_IPV4)
349                                 rte_atomic32_dec(&t->tids_in_use);
350                 }
351         }
352
353         mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
354         if (mbuf) {
355                 mbuf->data_len = sizeof(struct cpl_tid_release);
356                 mbuf->pkt_len = mbuf->data_len;
357                 mk_tid_release(mbuf, tid);
358                 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
359         }
360 }
361
362 /**
363  * Insert a TID.
364  */
365 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
366                       unsigned short family)
367 {
368         t->tid_tab[tid] = data;
369         if (t->hash_base && tid >= t->hash_base) {
370                 if (family == FILTER_TYPE_IPV4)
371                         rte_atomic32_inc(&t->hash_tids_in_use);
372         } else {
373                 if (family == FILTER_TYPE_IPV4)
374                         rte_atomic32_inc(&t->tids_in_use);
375         }
376
377         rte_atomic32_inc(&t->conns_in_use);
378 }
379
380 /**
381  * Free TID tables.
382  */
383 static void tid_free(struct tid_info *t)
384 {
385         if (t->tid_tab) {
386                 if (t->ftid_bmap)
387                         rte_bitmap_free(t->ftid_bmap);
388
389                 if (t->ftid_bmap_array)
390                         t4_os_free(t->ftid_bmap_array);
391
392                 t4_os_free(t->tid_tab);
393         }
394
395         memset(t, 0, sizeof(struct tid_info));
396 }
397
398 /**
399  * Allocate and initialize the TID tables.  Returns 0 on success.
400  */
401 static int tid_init(struct tid_info *t)
402 {
403         size_t size;
404         unsigned int ftid_bmap_size;
405         unsigned int natids = t->natids;
406         unsigned int max_ftids = t->nftids;
407
408         ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
409         size = t->ntids * sizeof(*t->tid_tab) +
410                 max_ftids * sizeof(*t->ftid_tab) +
411                 natids * sizeof(*t->atid_tab);
412
413         t->tid_tab = t4_os_alloc(size);
414         if (!t->tid_tab)
415                 return -ENOMEM;
416
417         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
418         t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
419         t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
420         if (!t->ftid_bmap_array) {
421                 tid_free(t);
422                 return -ENOMEM;
423         }
424
425         t4_os_lock_init(&t->atid_lock);
426         t4_os_lock_init(&t->ftid_lock);
427
428         t->afree = NULL;
429         t->atids_in_use = 0;
430         rte_atomic32_init(&t->tids_in_use);
431         rte_atomic32_set(&t->tids_in_use, 0);
432         rte_atomic32_init(&t->conns_in_use);
433         rte_atomic32_set(&t->conns_in_use, 0);
434
435         /* Setup the free list for atid_tab and clear the stid bitmap. */
436         if (natids) {
437                 while (--natids)
438                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
439                 t->afree = t->atid_tab;
440         }
441
442         t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
443                                        ftid_bmap_size);
444         if (!t->ftid_bmap) {
445                 tid_free(t);
446                 return -ENOMEM;
447         }
448
449         return 0;
450 }
451
452 static inline bool is_x_1g_port(const struct link_config *lc)
453 {
454         return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
455 }
456
457 static inline bool is_x_10g_port(const struct link_config *lc)
458 {
459         unsigned int speeds, high_speeds;
460
461         speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
462         high_speeds = speeds &
463                       ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
464
465         return high_speeds != 0;
466 }
467
468 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
469                       unsigned int us, unsigned int cnt,
470                       unsigned int size, unsigned int iqe_size)
471 {
472         q->adapter = adap;
473         cxgb4_set_rspq_intr_params(q, us, cnt);
474         q->iqe_len = iqe_size;
475         q->size = size;
476 }
477
478 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
479 {
480         struct port_info *pi = eth_dev->data->dev_private;
481         struct adapter *adap = pi->adapter;
482         struct sge *s = &adap->sge;
483         unsigned int max_queues = s->max_ethqsets / adap->params.nports;
484
485         if ((eth_dev->data->nb_rx_queues < 1) ||
486             (eth_dev->data->nb_tx_queues < 1))
487                 return -EINVAL;
488
489         if ((eth_dev->data->nb_rx_queues > max_queues) ||
490             (eth_dev->data->nb_tx_queues > max_queues))
491                 return -EINVAL;
492
493         if (eth_dev->data->nb_rx_queues > pi->rss_size)
494                 return -EINVAL;
495
496         /* We must configure RSS, since config has changed*/
497         pi->flags &= ~PORT_RSS_DONE;
498
499         pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
500         pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
501
502         return 0;
503 }
504
505 void cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
506 {
507         struct port_info *pi = eth_dev->data->dev_private;
508         struct adapter *adap = pi->adapter;
509         struct sge *s = &adap->sge;
510         unsigned int i, nb_ports = 0, qidx = 0;
511         unsigned int q_per_port = 0;
512
513         if (!(adap->flags & CFG_QUEUES)) {
514                 for_each_port(adap, i) {
515                         struct port_info *tpi = adap2pinfo(adap, i);
516
517                         nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
518                                      is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
519                 }
520
521                 /*
522                  * We default up to # of cores queues per 1G/10G port.
523                  */
524                 if (nb_ports)
525                         q_per_port = (s->max_ethqsets -
526                                      (adap->params.nports - nb_ports)) /
527                                      nb_ports;
528
529                 if (q_per_port > rte_lcore_count())
530                         q_per_port = rte_lcore_count();
531
532                 for_each_port(adap, i) {
533                         struct port_info *pi = adap2pinfo(adap, i);
534
535                         pi->first_qset = qidx;
536
537                         /* Initially n_rx_qsets == n_tx_qsets */
538                         pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
539                                           is_x_1g_port(&pi->link_cfg)) ?
540                                           q_per_port : 1;
541                         pi->n_tx_qsets = pi->n_rx_qsets;
542
543                         if (pi->n_rx_qsets > pi->rss_size)
544                                 pi->n_rx_qsets = pi->rss_size;
545
546                         qidx += pi->n_rx_qsets;
547                 }
548
549                 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
550                         struct sge_eth_rxq *r = &s->ethrxq[i];
551
552                         init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
553                         r->usembufs = 1;
554                         r->fl.size = (r->usembufs ? 1024 : 72);
555                 }
556
557                 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
558                         s->ethtxq[i].q.size = 1024;
559
560                 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
561                 adap->flags |= CFG_QUEUES;
562         }
563 }
564
565 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
566 {
567         t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
568                                  &pi->stats_base);
569 }
570
571 void cxgbe_stats_reset(struct port_info *pi)
572 {
573         t4_clr_port_stats(pi->adapter, pi->tx_chan);
574 }
575
576 static void setup_memwin(struct adapter *adap)
577 {
578         u32 mem_win0_base;
579
580         /* For T5, only relative offset inside the PCIe BAR is passed */
581         mem_win0_base = MEMWIN0_BASE;
582
583         /*
584          * Set up memory window for accessing adapter memory ranges.  (Read
585          * back MA register to ensure that changes propagate before we attempt
586          * to use the new values.)
587          */
588         t4_write_reg(adap,
589                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
590                                          MEMWIN_NIC),
591                      mem_win0_base | V_BIR(0) |
592                      V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
593         t4_read_reg(adap,
594                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
595                                         MEMWIN_NIC));
596 }
597
598 int cxgbe_init_rss(struct adapter *adap)
599 {
600         unsigned int i;
601
602         if (is_pf4(adap)) {
603                 int err;
604
605                 err = t4_init_rss_mode(adap, adap->mbox);
606                 if (err)
607                         return err;
608         }
609
610         for_each_port(adap, i) {
611                 struct port_info *pi = adap2pinfo(adap, i);
612
613                 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
614                 if (!pi->rss)
615                         return -ENOMEM;
616
617                 pi->rss_hf = CXGBE_RSS_HF_ALL;
618         }
619         return 0;
620 }
621
622 /**
623  * Dump basic information about the adapter.
624  */
625 void cxgbe_print_adapter_info(struct adapter *adap)
626 {
627         /**
628          * Hardware/Firmware/etc. Version/Revision IDs.
629          */
630         t4_dump_version_info(adap);
631 }
632
633 void cxgbe_print_port_info(struct adapter *adap)
634 {
635         int i;
636         char buf[80];
637         struct rte_pci_addr *loc = &adap->pdev->addr;
638
639         for_each_port(adap, i) {
640                 const struct port_info *pi = adap2pinfo(adap, i);
641                 char *bufp = buf;
642
643                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
644                         bufp += sprintf(bufp, "100M/");
645                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
646                         bufp += sprintf(bufp, "1G/");
647                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
648                         bufp += sprintf(bufp, "10G/");
649                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
650                         bufp += sprintf(bufp, "25G/");
651                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
652                         bufp += sprintf(bufp, "40G/");
653                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
654                         bufp += sprintf(bufp, "50G/");
655                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
656                         bufp += sprintf(bufp, "100G/");
657                 if (bufp != buf)
658                         --bufp;
659                 sprintf(bufp, "BASE-%s",
660                         t4_get_port_type_description(
661                                         (enum fw_port_type)pi->port_type));
662
663                 dev_info(adap,
664                          " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
665                          loc->domain, loc->bus, loc->devid, loc->function,
666                          CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
667                          (adap->flags & USING_MSIX) ? " MSI-X" :
668                          (adap->flags & USING_MSI) ? " MSI" : "");
669         }
670 }
671
672 static int check_devargs_handler(const char *key, const char *value, void *p)
673 {
674         if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
675             !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
676                 if (!strncmp(value, "1", 1)) {
677                         bool *dst_val = (bool *)p;
678
679                         *dst_val = true;
680                 }
681         }
682
683         return 0;
684 }
685
686 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
687                              void *p)
688 {
689         struct rte_kvargs *kvlist;
690         int ret = 0;
691
692         if (!devargs)
693                 return 0;
694
695         kvlist = rte_kvargs_parse(devargs->args, NULL);
696         if (!kvlist)
697                 return 0;
698
699         if (!rte_kvargs_count(kvlist, key))
700                 goto out;
701
702         ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
703
704 out:
705         rte_kvargs_free(kvlist);
706
707         return ret;
708 }
709
710 static void cxgbe_get_devargs_int(struct adapter *adap, int *dst,
711                                   const char *key, int default_value)
712 {
713         struct rte_pci_device *pdev = adap->pdev;
714         int ret, devarg_value = default_value;
715
716         *dst = default_value;
717         if (!pdev)
718                 return;
719
720         ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
721         if (ret)
722                 return;
723
724         *dst = devarg_value;
725 }
726
727 void cxgbe_process_devargs(struct adapter *adap)
728 {
729         cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
730                               CXGBE_DEVARG_CMN_KEEP_OVLAN, 0);
731         cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
732                               CXGBE_DEVARG_VF_FORCE_LINK_UP, 0);
733 }
734
735 static void configure_vlan_types(struct adapter *adapter)
736 {
737         int i;
738
739         for_each_port(adapter, i) {
740                 /* OVLAN Type 0x88a8 */
741                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
742                                  V_OVLAN_MASK(M_OVLAN_MASK) |
743                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
744                                  V_OVLAN_MASK(M_OVLAN_MASK) |
745                                  V_OVLAN_ETYPE(0x88a8));
746                 /* OVLAN Type 0x9100 */
747                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
748                                  V_OVLAN_MASK(M_OVLAN_MASK) |
749                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
750                                  V_OVLAN_MASK(M_OVLAN_MASK) |
751                                  V_OVLAN_ETYPE(0x9100));
752                 /* OVLAN Type 0x8100 */
753                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2),
754                                  V_OVLAN_MASK(M_OVLAN_MASK) |
755                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
756                                  V_OVLAN_MASK(M_OVLAN_MASK) |
757                                  V_OVLAN_ETYPE(0x8100));
758
759                 /* IVLAN 0X8100 */
760                 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
761                                  V_IVLAN_ETYPE(M_IVLAN_ETYPE),
762                                  V_IVLAN_ETYPE(0x8100));
763
764                 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
765                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
766                                  F_OVLAN_EN2 | F_IVLAN_EN,
767                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
768                                  F_OVLAN_EN2 | F_IVLAN_EN);
769         }
770
771         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
772                                V_RM_OVLAN(!adapter->devargs.keep_ovlan));
773 }
774
775 static void configure_pcie_ext_tag(struct adapter *adapter)
776 {
777         u16 v;
778         int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
779
780         if (!pos)
781                 return;
782
783         if (pos > 0) {
784                 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
785                 v |= PCI_EXP_DEVCTL_EXT_TAG;
786                 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
787                 if (is_t6(adapter->params.chip)) {
788                         t4_set_reg_field(adapter, A_PCIE_CFG2,
789                                          V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
790                                          V_T6_TOTMAXTAG(7));
791                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
792                                          V_T6_MINTAG(M_T6_MINTAG),
793                                          V_T6_MINTAG(8));
794                 } else {
795                         t4_set_reg_field(adapter, A_PCIE_CFG2,
796                                          V_TOTMAXTAG(M_TOTMAXTAG),
797                                          V_TOTMAXTAG(3));
798                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
799                                          V_MINTAG(M_MINTAG),
800                                          V_MINTAG(8));
801                 }
802         }
803 }
804
805 /* Figure out how many Queue Sets we can support */
806 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
807 {
808         unsigned int ethqsets;
809
810         /*
811          * We need to reserve an Ingress Queue for the Asynchronous Firmware
812          * Event Queue.
813          *
814          * For each Queue Set, we'll need the ability to allocate two Egress
815          * Contexts -- one for the Ingress Queue Free List and one for the TX
816          * Ethernet Queue.
817          */
818         if (is_pf4(adapter)) {
819                 struct pf_resources *pfres = &adapter->params.pfres;
820
821                 ethqsets = pfres->niqflint - 1;
822                 if (pfres->neq < ethqsets * 2)
823                         ethqsets = pfres->neq / 2;
824         } else {
825                 struct vf_resources *vfres = &adapter->params.vfres;
826
827                 ethqsets = vfres->niqflint - 1;
828                 if (vfres->nethctrl != ethqsets)
829                         ethqsets = min(vfres->nethctrl, ethqsets);
830                 if (vfres->neq < ethqsets * 2)
831                         ethqsets = vfres->neq / 2;
832         }
833
834         if (ethqsets > MAX_ETH_QSETS)
835                 ethqsets = MAX_ETH_QSETS;
836         adapter->sge.max_ethqsets = ethqsets;
837 }
838
839 /*
840  * Tweak configuration based on system architecture, etc.  Most of these have
841  * defaults assigned to them by Firmware Configuration Files (if we're using
842  * them) but need to be explicitly set if we're using hard-coded
843  * initialization. So these are essentially common tweaks/settings for
844  * Configuration Files and hard-coded initialization ...
845  */
846 static int adap_init0_tweaks(struct adapter *adapter)
847 {
848         u8 rx_dma_offset;
849
850         /*
851          * Fix up various Host-Dependent Parameters like Page Size, Cache
852          * Line Size, etc.  The firmware default is for a 4KB Page Size and
853          * 64B Cache Line Size ...
854          */
855         t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
856                                     T5_LAST_REV);
857
858         /*
859          * Keep the chip default offset to deliver Ingress packets into our
860          * DMA buffers to zero
861          */
862         rx_dma_offset = 0;
863         t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
864                          V_PKTSHIFT(rx_dma_offset));
865
866         t4_set_reg_field(adapter, A_SGE_FLM_CFG,
867                          V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
868                          V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
869
870         t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
871                          V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
872
873         t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
874                          V_IDMAARBROUNDROBIN(1U));
875
876         /*
877          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
878          * adds the pseudo header itself.
879          */
880         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
881                                F_CSUM_HAS_PSEUDO_HDR, 0);
882
883         return 0;
884 }
885
886 /*
887  * Attempt to initialize the adapter via a Firmware Configuration File.
888  */
889 static int adap_init0_config(struct adapter *adapter, int reset)
890 {
891         struct fw_caps_config_cmd caps_cmd;
892         unsigned long mtype = 0, maddr = 0;
893         u32 finiver, finicsum, cfcsum;
894         int ret;
895         int config_issued = 0;
896         int cfg_addr;
897         char config_name[20];
898
899         /*
900          * Reset device if necessary.
901          */
902         if (reset) {
903                 ret = t4_fw_reset(adapter, adapter->mbox,
904                                   F_PIORSTMODE | F_PIORST);
905                 if (ret < 0) {
906                         dev_warn(adapter, "Firmware reset failed, error %d\n",
907                                  -ret);
908                         goto bye;
909                 }
910         }
911
912         cfg_addr = t4_flash_cfg_addr(adapter);
913         if (cfg_addr < 0) {
914                 ret = cfg_addr;
915                 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
916                          -ret);
917                 goto bye;
918         }
919
920         strcpy(config_name, "On Flash");
921         mtype = FW_MEMTYPE_CF_FLASH;
922         maddr = cfg_addr;
923
924         /*
925          * Issue a Capability Configuration command to the firmware to get it
926          * to parse the Configuration File.  We don't use t4_fw_config_file()
927          * because we want the ability to modify various features after we've
928          * processed the configuration file ...
929          */
930         memset(&caps_cmd, 0, sizeof(caps_cmd));
931         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
932                                            F_FW_CMD_REQUEST | F_FW_CMD_READ);
933         caps_cmd.cfvalid_to_len16 =
934                 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
935                             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
936                             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
937                             FW_LEN16(caps_cmd));
938         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
939                          &caps_cmd);
940         /*
941          * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
942          * Configuration File in FLASH), our last gasp effort is to use the
943          * Firmware Configuration File which is embedded in the firmware.  A
944          * very few early versions of the firmware didn't have one embedded
945          * but we can ignore those.
946          */
947         if (ret == -ENOENT) {
948                 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
949                          __func__);
950
951                 memset(&caps_cmd, 0, sizeof(caps_cmd));
952                 caps_cmd.op_to_write =
953                         cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
954                                     F_FW_CMD_REQUEST | F_FW_CMD_READ);
955                 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
956                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
957                                  sizeof(caps_cmd), &caps_cmd);
958                 strcpy(config_name, "Firmware Default");
959         }
960
961         config_issued = 1;
962         if (ret < 0)
963                 goto bye;
964
965         finiver = be32_to_cpu(caps_cmd.finiver);
966         finicsum = be32_to_cpu(caps_cmd.finicsum);
967         cfcsum = be32_to_cpu(caps_cmd.cfcsum);
968         if (finicsum != cfcsum)
969                 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
970                          finicsum, cfcsum);
971
972         /*
973          * If we're a pure NIC driver then disable all offloading facilities.
974          * This will allow the firmware to optimize aspects of the hardware
975          * configuration which will result in improved performance.
976          */
977         caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
978         caps_cmd.toecaps = 0;
979         caps_cmd.iscsicaps = 0;
980         caps_cmd.rdmacaps = 0;
981         caps_cmd.fcoecaps = 0;
982
983         /*
984          * And now tell the firmware to use the configuration we just loaded.
985          */
986         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
987                                            F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
988         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
989         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
990                          NULL);
991         if (ret < 0) {
992                 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
993                          -ret);
994                 goto bye;
995         }
996
997         /*
998          * Tweak configuration based on system architecture, etc.
999          */
1000         ret = adap_init0_tweaks(adapter);
1001         if (ret < 0) {
1002                 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1003                 goto bye;
1004         }
1005
1006         /*
1007          * And finally tell the firmware to initialize itself using the
1008          * parameters from the Configuration File.
1009          */
1010         ret = t4_fw_initialize(adapter, adapter->mbox);
1011         if (ret < 0) {
1012                 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1013                          -ret);
1014                 goto bye;
1015         }
1016
1017         /*
1018          * Return successfully and note that we're operating with parameters
1019          * not supplied by the driver, rather than from hard-wired
1020          * initialization constants buried in the driver.
1021          */
1022         dev_info(adapter,
1023                  "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1024                  config_name, finiver, cfcsum);
1025
1026         return 0;
1027
1028         /*
1029          * Something bad happened.  Return the error ...  (If the "error"
1030          * is that there's no Configuration File on the adapter we don't
1031          * want to issue a warning since this is fairly common.)
1032          */
1033 bye:
1034         if (config_issued && ret != -ENOENT)
1035                 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1036                          config_name, -ret);
1037
1038         dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1039         return ret;
1040 }
1041
1042 static int adap_init0(struct adapter *adap)
1043 {
1044         struct fw_caps_config_cmd caps_cmd;
1045         int ret = 0;
1046         u32 v, port_vec;
1047         enum dev_state state;
1048         u32 params[7], val[7];
1049         int reset = 1;
1050         int mbox = adap->mbox;
1051
1052         /*
1053          * Contact FW, advertising Master capability.
1054          */
1055         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1056         if (ret < 0) {
1057                 dev_err(adap, "%s: could not connect to FW, error %d\n",
1058                         __func__, -ret);
1059                 goto bye;
1060         }
1061
1062         CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1063                          adap->mbox, ret);
1064
1065         if (ret == mbox)
1066                 adap->flags |= MASTER_PF;
1067
1068         if (state == DEV_STATE_INIT) {
1069                 /*
1070                  * Force halt and reset FW because a previous instance may have
1071                  * exited abnormally without properly shutting down
1072                  */
1073                 ret = t4_fw_halt(adap, adap->mbox, reset);
1074                 if (ret < 0) {
1075                         dev_err(adap, "Failed to halt. Exit.\n");
1076                         goto bye;
1077                 }
1078
1079                 ret = t4_fw_restart(adap, adap->mbox, reset);
1080                 if (ret < 0) {
1081                         dev_err(adap, "Failed to restart. Exit.\n");
1082                         goto bye;
1083                 }
1084                 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1085         }
1086
1087         t4_get_version_info(adap);
1088
1089         ret = t4_get_core_clock(adap, &adap->params.vpd);
1090         if (ret < 0) {
1091                 dev_err(adap, "%s: could not get core clock, error %d\n",
1092                         __func__, -ret);
1093                 goto bye;
1094         }
1095
1096         /*
1097          * If the firmware is initialized already (and we're not forcing a
1098          * master initialization), note that we're living with existing
1099          * adapter parameters.  Otherwise, it's time to try initializing the
1100          * adapter ...
1101          */
1102         if (state == DEV_STATE_INIT) {
1103                 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1104                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1105         } else {
1106                 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1107
1108                 ret = adap_init0_config(adap, reset);
1109                 if (ret == -ENOENT) {
1110                         dev_err(adap,
1111                                 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1112                         goto bye;
1113                 }
1114         }
1115         if (ret < 0) {
1116                 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1117                 goto bye;
1118         }
1119
1120         /* Now that we've successfully configured and initialized the adapter
1121          * (or found it already initialized), we can ask the Firmware what
1122          * resources it has provisioned for us.
1123          */
1124         ret = t4_get_pfres(adap);
1125         if (ret) {
1126                 dev_err(adap->pdev_dev,
1127                         "Unable to retrieve resource provisioning info\n");
1128                 goto bye;
1129         }
1130
1131         /* Find out what ports are available to us. */
1132         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1133             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1134         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1135         if (ret < 0) {
1136                 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1137                         __func__, ret);
1138                 goto bye;
1139         }
1140
1141         adap->params.nports = hweight32(port_vec);
1142         adap->params.portvec = port_vec;
1143
1144         dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1145                   adap->params.nports);
1146
1147         /*
1148          * Give the SGE code a chance to pull in anything that it needs ...
1149          * Note that this must be called after we retrieve our VPD parameters
1150          * in order to know how to convert core ticks to seconds, etc.
1151          */
1152         ret = t4_sge_init(adap);
1153         if (ret < 0) {
1154                 dev_err(adap, "t4_sge_init failed with error %d\n",
1155                         -ret);
1156                 goto bye;
1157         }
1158
1159         /*
1160          * Grab some of our basic fundamental operating parameters.
1161          */
1162 #define FW_PARAM_DEV(param) \
1163         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
1164          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
1165
1166 #define FW_PARAM_PFVF(param) \
1167         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
1168          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) |  \
1169          V_FW_PARAMS_PARAM_Y(0) | \
1170          V_FW_PARAMS_PARAM_Z(0))
1171
1172         params[0] = FW_PARAM_PFVF(L2T_START);
1173         params[1] = FW_PARAM_PFVF(L2T_END);
1174         params[2] = FW_PARAM_PFVF(FILTER_START);
1175         params[3] = FW_PARAM_PFVF(FILTER_END);
1176         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1177         if (ret < 0)
1178                 goto bye;
1179         adap->l2t_start = val[0];
1180         adap->l2t_end = val[1];
1181         adap->tids.ftid_base = val[2];
1182         adap->tids.nftids = val[3] - val[2] + 1;
1183
1184         params[0] = FW_PARAM_PFVF(CLIP_START);
1185         params[1] = FW_PARAM_PFVF(CLIP_END);
1186         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1187         if (ret < 0)
1188                 goto bye;
1189         adap->clipt_start = val[0];
1190         adap->clipt_end = val[1];
1191
1192         /*
1193          * Get device capabilities so we can determine what resources we need
1194          * to manage.
1195          */
1196         memset(&caps_cmd, 0, sizeof(caps_cmd));
1197         caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1198                                      F_FW_CMD_REQUEST | F_FW_CMD_READ);
1199         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1200         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1201                          &caps_cmd);
1202         if (ret < 0)
1203                 goto bye;
1204
1205         if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1206             is_t6(adap->params.chip)) {
1207                 if (cxgbe_init_hash_filter(adap) < 0)
1208                         goto bye;
1209         }
1210
1211         /* See if FW supports FW_FILTER2 work request */
1212         if (is_t4(adap->params.chip)) {
1213                 adap->params.filter2_wr_support = 0;
1214         } else {
1215                 params[0] = FW_PARAM_DEV(FILTER2_WR);
1216                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1217                                       1, params, val);
1218                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1219         }
1220
1221         /* query tid-related parameters */
1222         params[0] = FW_PARAM_DEV(NTID);
1223         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1224                               params, val);
1225         if (ret < 0)
1226                 goto bye;
1227         adap->tids.ntids = val[0];
1228         adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1229
1230         /* If we're running on newer firmware, let it know that we're
1231          * prepared to deal with encapsulated CPL messages.  Older
1232          * firmware won't understand this and we'll just get
1233          * unencapsulated messages ...
1234          */
1235         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1236         val[0] = 1;
1237         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1238
1239         /*
1240          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1241          * capability.  Earlier versions of the firmware didn't have the
1242          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1243          * permission to use ULPTX MEMWRITE DSGL.
1244          */
1245         if (is_t4(adap->params.chip)) {
1246                 adap->params.ulptx_memwrite_dsgl = false;
1247         } else {
1248                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1249                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1250                                       1, params, val);
1251                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1252         }
1253
1254         /*
1255          * The MTU/MSS Table is initialized by now, so load their values.  If
1256          * we're initializing the adapter, then we'll make any modifications
1257          * we want to the MTU/MSS Table and also initialize the congestion
1258          * parameters.
1259          */
1260         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1261         if (state != DEV_STATE_INIT) {
1262                 int i;
1263
1264                 /*
1265                  * The default MTU Table contains values 1492 and 1500.
1266                  * However, for TCP, it's better to have two values which are
1267                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1268                  * This allows us to have a TCP Data Payload which is a
1269                  * multiple of 8 regardless of what combination of TCP Options
1270                  * are in use (always a multiple of 4 bytes) which is
1271                  * important for performance reasons.  For instance, if no
1272                  * options are in use, then we have a 20-byte IP header and a
1273                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
1274                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1275                  * which is not a multiple of 8.  So using an MSS of 1488 in
1276                  * this case results in a TCP Data Payload of 1448 bytes which
1277                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1278                  * Stamps have been negotiated, then an MTU of 1500 bytes
1279                  * results in a TCP Data Payload of 1448 bytes which, as
1280                  * above, is a multiple of 8 bytes ...
1281                  */
1282                 for (i = 0; i < NMTUS; i++)
1283                         if (adap->params.mtus[i] == 1492) {
1284                                 adap->params.mtus[i] = 1488;
1285                                 break;
1286                         }
1287
1288                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1289                              adap->params.b_wnd);
1290         }
1291         t4_init_sge_params(adap);
1292         t4_init_tp_params(adap);
1293         configure_pcie_ext_tag(adap);
1294         configure_vlan_types(adap);
1295         cxgbe_configure_max_ethqsets(adap);
1296
1297         adap->params.drv_memwin = MEMWIN_NIC;
1298         adap->flags |= FW_OK;
1299         dev_debug(adap, "%s: returning zero..\n", __func__);
1300         return 0;
1301
1302         /*
1303          * Something bad happened.  If a command timed out or failed with EIO
1304          * FW does not operate within its spec or something catastrophic
1305          * happened to HW/FW, stop issuing commands.
1306          */
1307 bye:
1308         if (ret != -ETIMEDOUT && ret != -EIO)
1309                 t4_fw_bye(adap, adap->mbox);
1310         return ret;
1311 }
1312
1313 /**
1314  * t4_os_portmod_changed - handle port module changes
1315  * @adap: the adapter associated with the module change
1316  * @port_id: the port index whose module status has changed
1317  *
1318  * This is the OS-dependent handler for port module changes.  It is
1319  * invoked when a port module is removed or inserted for any OS-specific
1320  * processing.
1321  */
1322 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1323 {
1324         static const char * const mod_str[] = {
1325                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1326         };
1327
1328         const struct port_info *pi = adap2pinfo(adap, port_id);
1329
1330         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1331                 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1332         else if (pi->mod_type < ARRAY_SIZE(mod_str))
1333                 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1334                          mod_str[pi->mod_type]);
1335         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1336                 dev_info(adap, "Port%d: unsupported port module inserted\n",
1337                          pi->port_id);
1338         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1339                 dev_info(adap, "Port%d: unknown port module inserted\n",
1340                          pi->port_id);
1341         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1342                 dev_info(adap, "Port%d: transceiver module error\n",
1343                          pi->port_id);
1344         else
1345                 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1346                          pi->port_id, pi->mod_type);
1347 }
1348
1349 bool cxgbe_force_linkup(struct adapter *adap)
1350 {
1351         if (is_pf4(adap))
1352                 return false;   /* force_linkup not required for pf driver */
1353
1354         return adap->devargs.force_link_up;
1355 }
1356
1357 /**
1358  * link_start - enable a port
1359  * @dev: the port to enable
1360  *
1361  * Performs the MAC and PHY actions needed to enable a port.
1362  */
1363 int cxgbe_link_start(struct port_info *pi)
1364 {
1365         struct adapter *adapter = pi->adapter;
1366         u64 conf_offloads;
1367         unsigned int mtu;
1368         int ret;
1369
1370         mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1371               (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1372
1373         conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1374
1375         /*
1376          * We do not set address filters and promiscuity here, the stack does
1377          * that step explicitly.
1378          */
1379         ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1380                             !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1381                             true);
1382         if (ret == 0) {
1383                 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1384                                 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1385                 if (ret >= 0) {
1386                         pi->xact_addr_filt = ret;
1387                         ret = 0;
1388                 }
1389         }
1390         if (ret == 0 && is_pf4(adapter))
1391                 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1392                                     &pi->link_cfg);
1393         if (ret == 0) {
1394                 /*
1395                  * Enabling a Virtual Interface can result in an interrupt
1396                  * during the processing of the VI Enable command and, in some
1397                  * paths, result in an attempt to issue another command in the
1398                  * interrupt context.  Thus, we disable interrupts during the
1399                  * course of the VI Enable command ...
1400                  */
1401                 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1402                                           true, true, false);
1403         }
1404
1405         if (ret == 0 && cxgbe_force_linkup(adapter))
1406                 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1407         return ret;
1408 }
1409
1410 /**
1411  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1412  * @pi: the port
1413  * @rss_hf: Hash configuration to apply
1414  */
1415 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1416 {
1417         struct adapter *adapter = pi->adapter;
1418         const struct sge_eth_rxq *rxq;
1419         u64 flags = 0;
1420         u16 rss;
1421         int err;
1422
1423         /*  Should never be called before setting up sge eth rx queues */
1424         if (!(adapter->flags & FULL_INIT_DONE)) {
1425                 dev_err(adap, "%s No RXQs available on port %d\n",
1426                         __func__, pi->port_id);
1427                 return -EINVAL;
1428         }
1429
1430         /* Don't allow unsupported hash functions */
1431         if (rss_hf & ~CXGBE_RSS_HF_ALL)
1432                 return -EINVAL;
1433
1434         if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1435                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1436
1437         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1438                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1439
1440         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1441                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1442                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1443
1444         if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1445                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1446
1447         if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1448                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1449                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1450
1451         if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1452                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1453                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1454                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1455
1456         rxq = &adapter->sge.ethrxq[pi->first_qset];
1457         rss = rxq[0].rspq.abs_id;
1458
1459         /* If Tunnel All Lookup isn't specified in the global RSS
1460          * Configuration, then we need to specify a default Ingress
1461          * Queue for any ingress packets which aren't hashed.  We'll
1462          * use our first ingress queue ...
1463          */
1464         err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1465                                flags, rss);
1466         return err;
1467 }
1468
1469 /**
1470  * cxgbe_write_rss - write the RSS table for a given port
1471  * @pi: the port
1472  * @queues: array of queue indices for RSS
1473  *
1474  * Sets up the portion of the HW RSS table for the port's VI to distribute
1475  * packets to the Rx queues in @queues.
1476  */
1477 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1478 {
1479         u16 *rss;
1480         int i, err;
1481         struct adapter *adapter = pi->adapter;
1482         const struct sge_eth_rxq *rxq;
1483
1484         /*  Should never be called before setting up sge eth rx queues */
1485         BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1486
1487         rxq = &adapter->sge.ethrxq[pi->first_qset];
1488         rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1489         if (!rss)
1490                 return -ENOMEM;
1491
1492         /* map the queue indices to queue ids */
1493         for (i = 0; i < pi->rss_size; i++, queues++)
1494                 rss[i] = rxq[*queues].rspq.abs_id;
1495
1496         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1497                                   pi->rss_size, rss, pi->rss_size);
1498         rte_free(rss);
1499         return err;
1500 }
1501
1502 /**
1503  * setup_rss - configure RSS
1504  * @adapter: the adapter
1505  *
1506  * Sets up RSS to distribute packets to multiple receive queues.  We
1507  * configure the RSS CPU lookup table to distribute to the number of HW
1508  * receive queues, and the response queue lookup table to narrow that
1509  * down to the response queues actually configured for each port.
1510  * We always configure the RSS mapping for all ports since the mapping
1511  * table has plenty of entries.
1512  */
1513 int cxgbe_setup_rss(struct port_info *pi)
1514 {
1515         int j, err;
1516         struct adapter *adapter = pi->adapter;
1517
1518         dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1519                   __func__, pi->rss_size, pi->n_rx_qsets);
1520
1521         if (!(pi->flags & PORT_RSS_DONE)) {
1522                 if (adapter->flags & FULL_INIT_DONE) {
1523                         /* Fill default values with equal distribution */
1524                         for (j = 0; j < pi->rss_size; j++)
1525                                 pi->rss[j] = j % pi->n_rx_qsets;
1526
1527                         err = cxgbe_write_rss(pi, pi->rss);
1528                         if (err)
1529                                 return err;
1530
1531                         err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1532                         if (err)
1533                                 return err;
1534                         pi->flags |= PORT_RSS_DONE;
1535                 }
1536         }
1537         return 0;
1538 }
1539
1540 /*
1541  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1542  */
1543 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1544 {
1545         /* 0-increment GTS to start the timer and enable interrupts */
1546         t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1547                                           T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1548                      V_SEINTARM(q->intr_params) |
1549                      V_INGRESSQID(q->cntxt_id));
1550 }
1551
1552 void cxgbe_enable_rx_queues(struct port_info *pi)
1553 {
1554         struct adapter *adap = pi->adapter;
1555         struct sge *s = &adap->sge;
1556         unsigned int i;
1557
1558         for (i = 0; i < pi->n_rx_qsets; i++)
1559                 enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1560 }
1561
1562 /**
1563  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1564  * @port_type: Firmware Port Type
1565  * @fw_caps: Firmware Port Capabilities
1566  * @speed_caps: Device Info Speed Capabilities
1567  *
1568  * Translate a Firmware Port Capabilities specification to Device Info
1569  * Speed Capabilities.
1570  */
1571 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1572                                   unsigned int fw_caps,
1573                                   u32 *speed_caps)
1574 {
1575 #define SET_SPEED(__speed_name) \
1576         do { \
1577                 *speed_caps |= ETH_LINK_ ## __speed_name; \
1578         } while (0)
1579
1580 #define FW_CAPS_TO_SPEED(__fw_name) \
1581         do { \
1582                 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1583                         SET_SPEED(__fw_name); \
1584         } while (0)
1585
1586         switch (port_type) {
1587         case FW_PORT_TYPE_BT_SGMII:
1588         case FW_PORT_TYPE_BT_XFI:
1589         case FW_PORT_TYPE_BT_XAUI:
1590                 FW_CAPS_TO_SPEED(SPEED_100M);
1591                 FW_CAPS_TO_SPEED(SPEED_1G);
1592                 FW_CAPS_TO_SPEED(SPEED_10G);
1593                 break;
1594
1595         case FW_PORT_TYPE_KX4:
1596         case FW_PORT_TYPE_KX:
1597         case FW_PORT_TYPE_FIBER_XFI:
1598         case FW_PORT_TYPE_FIBER_XAUI:
1599         case FW_PORT_TYPE_SFP:
1600         case FW_PORT_TYPE_QSFP_10G:
1601         case FW_PORT_TYPE_QSA:
1602                 FW_CAPS_TO_SPEED(SPEED_1G);
1603                 FW_CAPS_TO_SPEED(SPEED_10G);
1604                 break;
1605
1606         case FW_PORT_TYPE_KR:
1607                 SET_SPEED(SPEED_10G);
1608                 break;
1609
1610         case FW_PORT_TYPE_BP_AP:
1611         case FW_PORT_TYPE_BP4_AP:
1612                 SET_SPEED(SPEED_1G);
1613                 SET_SPEED(SPEED_10G);
1614                 break;
1615
1616         case FW_PORT_TYPE_BP40_BA:
1617         case FW_PORT_TYPE_QSFP:
1618                 SET_SPEED(SPEED_40G);
1619                 break;
1620
1621         case FW_PORT_TYPE_CR_QSFP:
1622         case FW_PORT_TYPE_SFP28:
1623         case FW_PORT_TYPE_KR_SFP28:
1624                 FW_CAPS_TO_SPEED(SPEED_1G);
1625                 FW_CAPS_TO_SPEED(SPEED_10G);
1626                 FW_CAPS_TO_SPEED(SPEED_25G);
1627                 break;
1628
1629         case FW_PORT_TYPE_CR2_QSFP:
1630                 SET_SPEED(SPEED_50G);
1631                 break;
1632
1633         case FW_PORT_TYPE_KR4_100G:
1634         case FW_PORT_TYPE_CR4_QSFP:
1635                 FW_CAPS_TO_SPEED(SPEED_25G);
1636                 FW_CAPS_TO_SPEED(SPEED_40G);
1637                 FW_CAPS_TO_SPEED(SPEED_50G);
1638                 FW_CAPS_TO_SPEED(SPEED_100G);
1639                 break;
1640
1641         default:
1642                 break;
1643         }
1644
1645 #undef FW_CAPS_TO_SPEED
1646 #undef SET_SPEED
1647 }
1648
1649 /**
1650  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1651  * @pi: Underlying port's info
1652  * @speed_caps: Device Info speed capabilities
1653  *
1654  * Fetch supported speed capabilities of the underlying port.
1655  */
1656 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1657 {
1658         *speed_caps = 0;
1659
1660         fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1661                               speed_caps);
1662
1663         if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1664                 *speed_caps |= ETH_LINK_SPEED_FIXED;
1665 }
1666
1667 /**
1668  * cxgbe_set_link_status - Set device link up or down.
1669  * @pi: Underlying port's info
1670  * @status: 0 - down, 1 - up
1671  *
1672  * Set the device link up or down.
1673  */
1674 int cxgbe_set_link_status(struct port_info *pi, bool status)
1675 {
1676         struct adapter *adapter = pi->adapter;
1677         int err = 0;
1678
1679         err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1680         if (err) {
1681                 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1682                 return err;
1683         }
1684
1685         if (!status)
1686                 t4_reset_link_config(adapter, pi->pidx);
1687
1688         return 0;
1689 }
1690
1691 /**
1692  * cxgb_up - enable the adapter
1693  * @adap: adapter being enabled
1694  *
1695  * Called when the first port is enabled, this function performs the
1696  * actions necessary to make an adapter operational, such as completing
1697  * the initialization of HW modules, and enabling interrupts.
1698  */
1699 int cxgbe_up(struct adapter *adap)
1700 {
1701         enable_rx(adap, &adap->sge.fw_evtq);
1702         t4_sge_tx_monitor_start(adap);
1703         if (is_pf4(adap))
1704                 t4_intr_enable(adap);
1705         adap->flags |= FULL_INIT_DONE;
1706
1707         /* TODO: deadman watchdog ?? */
1708         return 0;
1709 }
1710
1711 /*
1712  * Close the port
1713  */
1714 int cxgbe_down(struct port_info *pi)
1715 {
1716         return cxgbe_set_link_status(pi, false);
1717 }
1718
1719 /*
1720  * Release resources when all the ports have been stopped.
1721  */
1722 void cxgbe_close(struct adapter *adapter)
1723 {
1724         struct port_info *pi;
1725         int i;
1726
1727         if (adapter->flags & FULL_INIT_DONE) {
1728                 tid_free(&adapter->tids);
1729                 t4_cleanup_mpstcam(adapter);
1730                 t4_cleanup_clip_tbl(adapter);
1731                 t4_cleanup_l2t(adapter);
1732                 if (is_pf4(adapter))
1733                         t4_intr_disable(adapter);
1734                 t4_sge_tx_monitor_stop(adapter);
1735                 t4_free_sge_resources(adapter);
1736                 for_each_port(adapter, i) {
1737                         pi = adap2pinfo(adapter, i);
1738                         if (pi->viid != 0)
1739                                 t4_free_vi(adapter, adapter->mbox,
1740                                            adapter->pf, 0, pi->viid);
1741                         rte_eth_dev_release_port(pi->eth_dev);
1742                 }
1743                 adapter->flags &= ~FULL_INIT_DONE;
1744         }
1745
1746         if (is_pf4(adapter) && (adapter->flags & FW_OK))
1747                 t4_fw_bye(adapter, adapter->mbox);
1748 }
1749
1750 int cxgbe_probe(struct adapter *adapter)
1751 {
1752         struct port_info *pi;
1753         int chip;
1754         int func, i;
1755         int err = 0;
1756         u32 whoami;
1757
1758         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1759         chip = t4_get_chip_type(adapter,
1760                         CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1761         if (chip < 0)
1762                 return chip;
1763
1764         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1765                G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1766
1767         adapter->mbox = func;
1768         adapter->pf = func;
1769
1770         t4_os_lock_init(&adapter->mbox_lock);
1771         TAILQ_INIT(&adapter->mbox_list);
1772         t4_os_lock_init(&adapter->win0_lock);
1773
1774         err = t4_prep_adapter(adapter);
1775         if (err)
1776                 return err;
1777
1778         setup_memwin(adapter);
1779         err = adap_init0(adapter);
1780         if (err) {
1781                 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1782                         __func__, err);
1783                 goto out_free;
1784         }
1785
1786         if (!is_t4(adapter->params.chip)) {
1787                 /*
1788                  * The userspace doorbell BAR is split evenly into doorbell
1789                  * regions, each associated with an egress queue.  If this
1790                  * per-queue region is large enough (at least UDBS_SEG_SIZE)
1791                  * then it can be used to submit a tx work request with an
1792                  * implied doorbell.  Enable write combining on the BAR if
1793                  * there is room for such work requests.
1794                  */
1795                 int s_qpp, qpp, num_seg;
1796
1797                 s_qpp = (S_QUEUESPERPAGEPF0 +
1798                         (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1799                         adapter->pf);
1800                 qpp = 1 << ((t4_read_reg(adapter,
1801                                 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1802                                 & M_QUEUESPERPAGEPF0);
1803                 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1804                 if (qpp > num_seg)
1805                         dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1806
1807                 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1808                 if (!adapter->bar2) {
1809                         dev_err(adapter, "cannot map device bar2 region\n");
1810                         err = -ENOMEM;
1811                         goto out_free;
1812                 }
1813                 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1814                              V_STATMODE(0));
1815         }
1816
1817         for_each_port(adapter, i) {
1818                 const unsigned int numa_node = rte_socket_id();
1819                 char name[RTE_ETH_NAME_MAX_LEN];
1820                 struct rte_eth_dev *eth_dev;
1821
1822                 snprintf(name, sizeof(name), "%s_%d",
1823                          adapter->pdev->device.name, i);
1824
1825                 if (i == 0) {
1826                         /* First port is already allocated by DPDK */
1827                         eth_dev = adapter->eth_dev;
1828                         goto allocate_mac;
1829                 }
1830
1831                 /*
1832                  * now do all data allocation - for eth_dev structure,
1833                  * and internal (private) data for the remaining ports
1834                  */
1835
1836                 /* reserve an ethdev entry */
1837                 eth_dev = rte_eth_dev_allocate(name);
1838                 if (!eth_dev)
1839                         goto out_free;
1840
1841                 eth_dev->data->dev_private =
1842                         rte_zmalloc_socket(name, sizeof(struct port_info),
1843                                            RTE_CACHE_LINE_SIZE, numa_node);
1844                 if (!eth_dev->data->dev_private)
1845                         goto out_free;
1846
1847 allocate_mac:
1848                 pi = eth_dev->data->dev_private;
1849                 adapter->port[i] = pi;
1850                 pi->eth_dev = eth_dev;
1851                 pi->adapter = adapter;
1852                 pi->xact_addr_filt = -1;
1853                 pi->port_id = i;
1854                 pi->pidx = i;
1855
1856                 pi->eth_dev->device = &adapter->pdev->device;
1857                 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1858                 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1859                 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1860
1861                 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1862
1863                 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1864                                                         RTE_ETHER_ADDR_LEN, 0);
1865                 if (!pi->eth_dev->data->mac_addrs) {
1866                         dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1867                                 __func__);
1868                         err = -1;
1869                         goto out_free;
1870                 }
1871
1872                 if (i > 0) {
1873                         /* First port will be notified by upper layer */
1874                         rte_eth_dev_probing_finish(eth_dev);
1875                 }
1876         }
1877
1878         if (adapter->flags & FW_OK) {
1879                 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1880                 if (err) {
1881                         dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1882                                 __func__, err);
1883                         goto out_free;
1884                 }
1885         }
1886
1887         cxgbe_cfg_queues(adapter->eth_dev);
1888
1889         cxgbe_print_adapter_info(adapter);
1890         cxgbe_print_port_info(adapter);
1891
1892         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1893                                           adapter->clipt_end);
1894         if (!adapter->clipt) {
1895                 /* We tolerate a lack of clip_table, giving up some
1896                  * functionality
1897                  */
1898                 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1899         }
1900
1901         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1902         if (!adapter->l2t) {
1903                 /* We tolerate a lack of L2T, giving up some functionality */
1904                 dev_warn(adapter, "could not allocate L2T. Continuing\n");
1905         }
1906
1907         if (tid_init(&adapter->tids) < 0) {
1908                 /* Disable filtering support */
1909                 dev_warn(adapter, "could not allocate TID table, "
1910                          "filter support disabled. Continuing\n");
1911         }
1912
1913         adapter->mpstcam = t4_init_mpstcam(adapter);
1914         if (!adapter->mpstcam)
1915                 dev_warn(adapter, "could not allocate mps tcam table."
1916                          " Continuing\n");
1917
1918         if (is_hashfilter(adapter)) {
1919                 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1920                         u32 hash_base, hash_reg;
1921
1922                         hash_reg = A_LE_DB_TID_HASHBASE;
1923                         hash_base = t4_read_reg(adapter, hash_reg);
1924                         adapter->tids.hash_base = hash_base / 4;
1925                 }
1926         } else {
1927                 /* Disable hash filtering support */
1928                 dev_warn(adapter,
1929                          "Maskless filter support disabled. Continuing\n");
1930         }
1931
1932         err = cxgbe_init_rss(adapter);
1933         if (err)
1934                 goto out_free;
1935
1936         return 0;
1937
1938 out_free:
1939         for_each_port(adapter, i) {
1940                 pi = adap2pinfo(adapter, i);
1941                 if (pi->viid != 0)
1942                         t4_free_vi(adapter, adapter->mbox, adapter->pf,
1943                                    0, pi->viid);
1944                 rte_eth_dev_release_port(pi->eth_dev);
1945         }
1946
1947         if (adapter->flags & FW_OK)
1948                 t4_fw_bye(adapter, adapter->mbox);
1949         return -err;
1950 }