4 * Copyright(c) 2014-2015 Chelsio Communications.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Chelsio Communications nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #include <sys/queue.h>
42 #include <netinet/in.h>
44 #include <rte_byteorder.h>
45 #include <rte_common.h>
46 #include <rte_cycles.h>
47 #include <rte_interrupts.h>
49 #include <rte_debug.h>
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_memory.h>
54 #include <rte_memzone.h>
55 #include <rte_tailq.h>
57 #include <rte_alarm.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_malloc.h>
61 #include <rte_random.h>
69 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
70 struct sge_eth_txq *txq);
73 * Max number of Rx buffers we replenish at a time.
75 #define MAX_RX_REFILL 64U
77 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
80 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
83 #define MAX_IMM_TX_PKT_LEN 256
86 * Rx buffer sizes for "usembufs" Free List buffers (one ingress packet
87 * per mbuf buffer). We currently only support two sizes for 1500- and
88 * 9000-byte MTUs. We could easily support more but there doesn't seem to be
89 * much need for that ...
91 #define FL_MTU_SMALL 1500
92 #define FL_MTU_LARGE 9000
94 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
97 struct sge *s = &adapter->sge;
99 return CXGBE_ALIGN(s->pktshift + ETHER_HDR_LEN + VLAN_HLEN + mtu,
103 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
104 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
107 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
108 * these to specify the buffer size as an index into the SGE Free List Buffer
109 * Size register array. We also use bit 4, when the buffer has been unmapped
110 * for DMA, but this is of course never sent to the hardware and is only used
111 * to prevent double unmappings. All of the above requires that the Free List
112 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
113 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
114 * Free List Buffer alignment is 32 bytes, this works out for us ...
117 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
118 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
119 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
122 * XXX We shouldn't depend on being able to use these indices.
123 * XXX Especially when some other Master PF has initialized the
124 * XXX adapter or we use the Firmware Configuration File. We
125 * XXX should really search through the Host Buffer Size register
126 * XXX array for the appropriately sized buffer indices.
128 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
129 RX_LARGE_PG_BUF = 0x1, /* buffer large page buffer */
131 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
132 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
136 * txq_avail - return the number of available slots in a Tx queue
139 * Returns the number of descriptors in a Tx queue available to write new
142 static inline unsigned int txq_avail(const struct sge_txq *q)
144 return q->size - 1 - q->in_use;
147 static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr)
149 struct rte_mbuf *m = mbuf;
151 for (; m; m = m->next, addr++) {
152 *addr = m->buf_physaddr + rte_pktmbuf_headroom(m);
163 * free_tx_desc - reclaims Tx descriptors and their buffers
164 * @q: the Tx queue to reclaim descriptors from
165 * @n: the number of descriptors to reclaim
167 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
168 * Tx buffers. Called with the Tx queue lock held.
170 static void free_tx_desc(struct sge_txq *q, unsigned int n)
172 struct tx_sw_desc *d;
173 unsigned int cidx = 0;
177 if (d->mbuf) { /* an SGL is present */
178 rte_pktmbuf_free(d->mbuf);
181 if (d->coalesce.idx) {
184 for (i = 0; i < d->coalesce.idx; i++) {
185 rte_pktmbuf_free(d->coalesce.mbuf[i]);
186 d->coalesce.mbuf[i] = NULL;
191 if (++cidx == q->size) {
195 RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool);
199 static void reclaim_tx_desc(struct sge_txq *q, unsigned int n)
201 struct tx_sw_desc *d;
202 unsigned int cidx = q->cidx;
206 if (d->mbuf) { /* an SGL is present */
207 rte_pktmbuf_free(d->mbuf);
211 if (++cidx == q->size) {
220 * fl_cap - return the capacity of a free-buffer list
223 * Returns the capacity of a free-buffer list. The capacity is less than
224 * the size because one descriptor needs to be left unpopulated, otherwise
225 * HW will think the FL is empty.
227 static inline unsigned int fl_cap(const struct sge_fl *fl)
229 return fl->size - 8; /* 1 descriptor = 8 buffers */
233 * fl_starving - return whether a Free List is starving.
234 * @adapter: pointer to the adapter
237 * Tests specified Free List to see whether the number of buffers
238 * available to the hardware has falled below our "starvation"
241 static inline bool fl_starving(const struct adapter *adapter,
242 const struct sge_fl *fl)
244 const struct sge *s = &adapter->sge;
246 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
249 static inline unsigned int get_buf_size(struct adapter *adapter,
250 const struct rx_sw_desc *d)
252 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
253 unsigned int buf_size = 0;
255 switch (rx_buf_size_idx) {
256 case RX_SMALL_MTU_BUF:
257 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
260 case RX_LARGE_MTU_BUF:
261 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
273 * free_rx_bufs - free the Rx buffers on an SGE free list
274 * @q: the SGE free list to free buffers from
275 * @n: how many buffers to free
277 * Release the next @n buffers on an SGE free-buffer Rx queue. The
278 * buffers must be made inaccessible to HW before calling this function.
280 static void free_rx_bufs(struct sge_fl *q, int n)
282 unsigned int cidx = q->cidx;
283 struct rx_sw_desc *d;
288 rte_pktmbuf_free(d->buf);
292 if (++cidx == q->size) {
302 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
303 * @q: the SGE free list
305 * Unmap the current buffer on an SGE free-buffer Rx queue. The
306 * buffer must be made inaccessible to HW before calling this function.
308 * This is similar to @free_rx_bufs above but does not free the buffer.
309 * Do note that the FL still loses any further access to the buffer.
311 static void unmap_rx_buf(struct sge_fl *q)
313 if (++q->cidx == q->size)
318 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
320 if (q->pend_cred >= 64) {
321 u32 val = adap->params.arch.sge_fl_db;
323 if (is_t4(adap->params.chip))
324 val |= V_PIDX(q->pend_cred / 8);
326 val |= V_PIDX_T5(q->pend_cred / 8);
329 * Make sure all memory writes to the Free List queue are
330 * committed before we tell the hardware about them.
335 * If we don't have access to the new User Doorbell (T5+), use
336 * the old doorbell mechanism; otherwise use the new BAR2
339 if (unlikely(!q->bar2_addr)) {
340 t4_write_reg_relaxed(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
341 val | V_QID(q->cntxt_id));
343 writel_relaxed(val | V_QID(q->bar2_qid),
344 (void *)((uintptr_t)q->bar2_addr +
348 * This Write memory Barrier will force the write to
349 * the User Doorbell area to be flushed.
357 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf,
361 sd->dma_addr = mapping; /* includes size low bits */
365 * refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs
367 * @q: the ring to refill
368 * @n: the number of new buffers to allocate
370 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
371 * allocated with the supplied gfp flags. The caller must assure that
372 * @n does not exceed the queue's capacity. If afterwards the queue is
373 * found critically low mark it as starving in the bitmap of starving FLs.
375 * Returns the number of buffers allocated.
377 static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q,
380 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
381 unsigned int cred = q->avail;
382 __be64 *d = &q->desc[q->pidx];
383 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
384 unsigned int buf_size_idx = RX_SMALL_MTU_BUF;
385 struct rte_mbuf *buf_bulk[n];
387 struct rte_pktmbuf_pool_private *mbp_priv;
388 u8 jumbo_en = rxq->rspq.eth_dev->data->dev_conf.rxmode.jumbo_frame;
390 /* Use jumbo mtu buffers if mbuf data room size can fit jumbo data. */
391 mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool);
393 ((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000))
394 buf_size_idx = RX_LARGE_MTU_BUF;
396 ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n);
397 if (unlikely(ret != 0)) {
398 dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n",
401 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
405 for (i = 0; i < n; i++) {
406 struct rte_mbuf *mbuf = buf_bulk[i];
410 dev_debug(adap, "%s: mbuf alloc failed\n", __func__);
412 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
416 rte_mbuf_refcnt_set(mbuf, 1);
418 (uint16_t)(RTE_PTR_ALIGN((char *)mbuf->buf_addr +
419 RTE_PKTMBUF_HEADROOM,
420 adap->sge.fl_align) -
421 (char *)mbuf->buf_addr);
424 mbuf->port = rxq->rspq.port_id;
426 mapping = (dma_addr_t)RTE_ALIGN(mbuf->buf_physaddr +
429 mapping |= buf_size_idx;
430 *d++ = cpu_to_be64(mapping);
431 set_rx_sw_desc(sd, mbuf, mapping);
435 if (++q->pidx == q->size) {
442 out: cred = q->avail - cred;
443 q->pend_cred += cred;
446 if (unlikely(fl_starving(adap, q))) {
448 * Make sure data has been written to free list
458 * refill_fl - refill an SGE Rx buffer ring with mbufs
460 * @q: the ring to refill
461 * @n: the number of new buffers to allocate
463 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
464 * allocated with the supplied gfp flags. The caller must assure that
465 * @n does not exceed the queue's capacity. Returns the number of buffers
468 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n)
470 return refill_fl_usembufs(adap, q, n);
473 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
475 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail));
479 * Return the number of reclaimable descriptors in a Tx queue.
481 static inline int reclaimable(const struct sge_txq *q)
483 int hw_cidx = ntohs(q->stat->cidx);
487 return hw_cidx + q->size;
492 * reclaim_completed_tx - reclaims completed Tx descriptors
493 * @q: the Tx queue to reclaim completed descriptors from
495 * Reclaims Tx descriptors that the SGE has indicated it has processed.
497 void reclaim_completed_tx(struct sge_txq *q)
499 unsigned int avail = reclaimable(q);
502 /* reclaim as much as possible */
503 reclaim_tx_desc(q, avail);
505 avail = reclaimable(q);
510 * sgl_len - calculates the size of an SGL of the given capacity
511 * @n: the number of SGL entries
513 * Calculates the number of flits needed for a scatter/gather list that
514 * can hold the given number of entries.
516 static inline unsigned int sgl_len(unsigned int n)
519 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
520 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
521 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
522 * repeated sequences of { Length[i], Length[i+1], Address[i],
523 * Address[i+1] } (this ensures that all addresses are on 64-bit
524 * boundaries). If N is even, then Length[N+1] should be set to 0 and
525 * Address[N+1] is omitted.
527 * The following calculation incorporates all of the above. It's
528 * somewhat hard to follow but, briefly: the "+2" accounts for the
529 * first two flits which include the DSGL header, Length0 and
530 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
531 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
532 * finally the "+((n-1)&1)" adds the one remaining flit needed if
536 return (3 * n) / 2 + (n & 1) + 2;
540 * flits_to_desc - returns the num of Tx descriptors for the given flits
541 * @n: the number of flits
543 * Returns the number of Tx descriptors needed for the supplied number
546 static inline unsigned int flits_to_desc(unsigned int n)
548 return DIV_ROUND_UP(n, 8);
552 * is_eth_imm - can an Ethernet packet be sent as immediate data?
555 * Returns whether an Ethernet packet is small enough to fit as
556 * immediate data. Return value corresponds to the headroom required.
558 static inline int is_eth_imm(const struct rte_mbuf *m)
560 unsigned int hdrlen = (m->ol_flags & PKT_TX_TCP_SEG) ?
561 sizeof(struct cpl_tx_pkt_lso_core) : 0;
563 hdrlen += sizeof(struct cpl_tx_pkt);
564 if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen)
571 * calc_tx_flits - calculate the number of flits for a packet Tx WR
574 * Returns the number of flits needed for a Tx WR for the given Ethernet
575 * packet, including the needed WR and CPL headers.
577 static inline unsigned int calc_tx_flits(const struct rte_mbuf *m)
583 * If the mbuf is small enough, we can pump it out as a work request
584 * with only immediate data. In that case we just have to have the
585 * TX Packet header plus the mbuf data in the Work Request.
588 hdrlen = is_eth_imm(m);
590 return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64));
593 * Otherwise, we're going to have to construct a Scatter gather list
594 * of the mbuf body and fragments. We also include the flits necessary
595 * for the TX Packet Work Request and CPL. We always have a firmware
596 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
597 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
598 * message or, if we're doing a Large Send Offload, an LSO CPL message
599 * with an embedded TX Packet Write CPL message.
601 flits = sgl_len(m->nb_segs);
603 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
604 sizeof(struct cpl_tx_pkt_lso_core) +
605 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
607 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
608 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
613 * write_sgl - populate a scatter/gather list for a packet
615 * @q: the Tx queue we are writing into
616 * @sgl: starting location for writing the SGL
617 * @end: points right after the end of the SGL
618 * @start: start offset into mbuf main-body data to include in the SGL
619 * @addr: address of mapped region
621 * Generates a scatter/gather list for the buffers that make up a packet.
622 * The caller must provide adequate space for the SGL that will be written.
623 * The SGL includes all of the packet's page fragments and the data in its
624 * main body except for the first @start bytes. @sgl must be 16-byte
625 * aligned and within a Tx descriptor with available space. @end points
626 * write after the end of the SGL but does not account for any potential
627 * wrap around, i.e., @end > @sgl.
629 static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q,
630 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
631 const dma_addr_t *addr)
634 struct ulptx_sge_pair *to;
635 struct rte_mbuf *m = mbuf;
636 unsigned int nfrags = m->nb_segs;
637 struct ulptx_sge_pair buf[nfrags / 2];
639 len = m->data_len - start;
640 sgl->len0 = htonl(len);
641 sgl->addr0 = rte_cpu_to_be_64(addr[0]);
643 sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
644 V_ULPTX_NSGE(nfrags));
645 if (likely(--nfrags == 0))
648 * Most of the complexity below deals with the possibility we hit the
649 * end of the queue in the middle of writing the SGL. For this case
650 * only we create the SGL in a temporary buffer and then copy it.
652 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
654 for (i = 0; nfrags >= 2; nfrags -= 2, to++) {
656 to->len[0] = rte_cpu_to_be_32(m->data_len);
657 to->addr[0] = rte_cpu_to_be_64(addr[++i]);
659 to->len[1] = rte_cpu_to_be_32(m->data_len);
660 to->addr[1] = rte_cpu_to_be_64(addr[++i]);
664 to->len[0] = rte_cpu_to_be_32(m->data_len);
665 to->len[1] = rte_cpu_to_be_32(0);
666 to->addr[0] = rte_cpu_to_be_64(addr[i + 1]);
668 if (unlikely((u8 *)end > (u8 *)q->stat)) {
669 unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat,
674 memcpy(sgl->sge, buf, part0);
675 part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat);
676 rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1);
677 end = RTE_PTR_ADD((void *)q->desc, part1);
679 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
683 #define IDXDIFF(head, tail, wrap) \
684 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
686 #define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size)
687 #define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size)
689 #define PIDXDIFF(head, tail, wrap) \
690 ((tail) >= (head) ? (tail) - (head) : (wrap) - (head) + (tail))
691 #define P_IDXDIFF(q, idx) PIDXDIFF((q)->cidx, idx, (q)->size)
694 * ring_tx_db - ring a Tx queue's doorbell
697 * @n: number of new descriptors to give to HW
699 * Ring the doorbel for a Tx queue.
701 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q)
703 int n = Q_IDXDIFF(q, dbidx);
706 * Make sure that all writes to the TX Descriptors are committed
707 * before we tell the hardware about them.
712 * If we don't have access to the new User Doorbell (T5+), use the old
713 * doorbell mechanism; otherwise use the new BAR2 mechanism.
715 if (unlikely(!q->bar2_addr)) {
719 * For T4 we need to participate in the Doorbell Recovery
723 t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
724 V_QID(q->cntxt_id) | val);
727 q->db_pidx = q->pidx;
729 u32 val = V_PIDX_T5(n);
732 * T4 and later chips share the same PIDX field offset within
733 * the doorbell, but T5 and later shrank the field in order to
734 * gain a bit for Doorbell Priority. The field was absurdly
735 * large in the first place (14 bits) so we just use the T5
736 * and later limits and warn if a Queue ID is too large.
738 WARN_ON(val & F_DBPRIO);
740 writel(val | V_QID(q->bar2_qid),
741 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL));
744 * This Write Memory Barrier will force the write to the User
745 * Doorbell area to be flushed. This is needed to prevent
746 * writes on different CPUs for the same queue from hitting
747 * the adapter out of order. This is required when some Work
748 * Requests take the Write Combine Gather Buffer path (user
749 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
750 * take the traditional path where we simply increment the
751 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
752 * hardware DMA read the actual Work Request.
760 * Figure out what HW csum a packet wants and return the appropriate control
763 static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m)
767 if (m->ol_flags & PKT_TX_IP_CKSUM) {
768 switch (m->ol_flags & PKT_TX_L4_MASK) {
769 case PKT_TX_TCP_CKSUM:
770 csum_type = TX_CSUM_TCPIP;
772 case PKT_TX_UDP_CKSUM:
773 csum_type = TX_CSUM_UDPIP;
782 if (likely(csum_type >= TX_CSUM_TCPIP)) {
783 u64 hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len);
784 int eth_hdr_len = m->l2_len;
786 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
787 hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len);
789 hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len);
790 return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len;
794 * unknown protocol, disable HW csum
795 * and hope a bad packet is detected
797 return F_TXPKT_L4CSUM_DIS;
800 static inline void txq_advance(struct sge_txq *q, unsigned int n)
804 if (q->pidx >= q->size)
808 #define MAX_COALESCE_LEN 64000
810 static inline int wraps_around(struct sge_txq *q, int ndesc)
812 return (q->pidx + ndesc) > q->size ? 1 : 0;
815 static void tx_timer_cb(void *data)
817 struct adapter *adap = (struct adapter *)data;
818 struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
820 unsigned int coal_idx;
822 /* monitor any pending tx */
823 for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) {
824 if (t4_os_trylock(&txq->txq_lock)) {
825 coal_idx = txq->q.coalesce.idx;
827 if (coal_idx == txq->q.last_coal_idx &&
828 txq->q.pidx == txq->q.last_pidx) {
829 ship_tx_pkt_coalesce_wr(adap, txq);
831 txq->q.last_coal_idx = coal_idx;
832 txq->q.last_pidx = txq->q.pidx;
835 t4_os_unlock(&txq->txq_lock);
838 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
842 * ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR
843 * @ adap: adapter structure
846 * writes the different fields of the pkts WR and sends it.
848 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
849 struct sge_eth_txq *txq)
852 struct sge_txq *q = &txq->q;
853 struct fw_eth_tx_pkts_wr *wr;
856 /* fill the pkts WR header */
857 wr = (void *)&q->desc[q->pidx];
858 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
860 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2));
861 ndesc = flits_to_desc(q->coalesce.flits);
862 wr->equiq_to_len16 = htonl(wr_mid);
863 wr->plen = cpu_to_be16(q->coalesce.len);
864 wr->npkt = q->coalesce.idx;
866 wr->type = q->coalesce.type;
868 /* zero out coalesce structure members */
870 q->coalesce.flits = 0;
873 txq_advance(q, ndesc);
874 txq->stats.coal_wr++;
875 txq->stats.coal_pkts += wr->npkt;
877 if (Q_IDXDIFF(q, equeidx) >= q->size / 2) {
878 q->equeidx = q->pidx;
879 wr_mid |= F_FW_WR_EQUEQ;
880 wr->equiq_to_len16 = htonl(wr_mid);
886 * should_tx_packet_coalesce - decides wether to coalesce an mbuf or not
887 * @txq: tx queue where the mbuf is sent
888 * @mbuf: mbuf to be sent
889 * @nflits: return value for number of flits needed
890 * @adap: adapter structure
892 * This function decides if a packet should be coalesced or not.
894 static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq,
895 struct rte_mbuf *mbuf,
896 unsigned int *nflits,
897 struct adapter *adap)
899 struct sge_txq *q = &txq->q;
900 unsigned int flits, ndesc;
901 unsigned char type = 0;
904 /* use coal WR type 1 when no frags are present */
905 type = (mbuf->nb_segs == 1) ? 1 : 0;
907 if (unlikely(type != q->coalesce.type && q->coalesce.idx))
908 ship_tx_pkt_coalesce_wr(adap, txq);
910 /* calculate the number of flits required for coalescing this packet
911 * without the 2 flits of the WR header. These are added further down
912 * if we are just starting in new PKTS WR. sgl_len doesn't account for
913 * the possible 16 bytes alignment ULP TX commands so we do it here.
915 flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U;
917 flits += (sizeof(struct ulp_txpkt) +
918 sizeof(struct ulptx_idata)) / sizeof(__be64);
919 flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64);
922 /* If coalescing is on, the mbuf is added to a pkts WR */
923 if (q->coalesce.idx) {
924 ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8);
925 credits = txq_avail(q) - ndesc;
927 /* If we are wrapping or this is last mbuf then, send the
928 * already coalesced mbufs and let the non-coalesce pass
931 if (unlikely(credits < 0 || wraps_around(q, ndesc))) {
932 ship_tx_pkt_coalesce_wr(adap, txq);
936 /* If the max coalesce len or the max WR len is reached
937 * ship the WR and keep coalescing on.
939 if (unlikely((q->coalesce.len + mbuf->pkt_len >
941 (q->coalesce.flits + flits >
943 ship_tx_pkt_coalesce_wr(adap, txq);
950 /* start a new pkts WR, the WR header is not filled below */
951 flits += sizeof(struct fw_eth_tx_pkts_wr) / sizeof(__be64);
952 ndesc = flits_to_desc(q->coalesce.flits + flits);
953 credits = txq_avail(q) - ndesc;
955 if (unlikely(credits < 0 || wraps_around(q, ndesc)))
957 q->coalesce.flits += 2;
958 q->coalesce.type = type;
959 q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] +
965 * tx_do_packet_coalesce - add an mbuf to a coalesce WR
966 * @txq: sge_eth_txq used send the mbuf
967 * @mbuf: mbuf to be sent
968 * @flits: flits needed for this mbuf
969 * @adap: adapter structure
970 * @pi: port_info structure
971 * @addr: mapped address of the mbuf
973 * Adds an mbuf to be sent as part of a coalesce WR by filling a
974 * ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and
975 * ulp_tx_sc_dsgl command.
977 static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq,
978 struct rte_mbuf *mbuf,
979 int flits, struct adapter *adap,
980 const struct port_info *pi,
981 dma_addr_t *addr, uint16_t nb_pkts)
984 struct sge_txq *q = &txq->q;
985 struct ulp_txpkt *mc;
986 struct ulptx_idata *sc_imm;
987 struct cpl_tx_pkt_core *cpl;
988 struct tx_sw_desc *sd;
989 unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len;
991 #ifdef RTE_LIBRTE_CXGBE_TPUT
992 RTE_SET_USED(nb_pkts);
995 if (q->coalesce.type == 0) {
996 mc = (struct ulp_txpkt *)q->coalesce.ptr;
997 mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) |
998 V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) |
1000 mc->len = htonl(DIV_ROUND_UP(flits, 2));
1001 sc_imm = (struct ulptx_idata *)(mc + 1);
1002 sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) |
1004 sc_imm->len = htonl(sizeof(*cpl));
1005 end = (u64 *)mc + flits;
1006 cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1);
1008 end = (u64 *)q->coalesce.ptr + flits;
1009 cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr;
1012 /* update coalesce structure for this txq */
1013 q->coalesce.flits += flits;
1014 q->coalesce.ptr += flits * sizeof(__be64);
1015 q->coalesce.len += mbuf->pkt_len;
1017 /* fill the cpl message, same as in t4_eth_xmit, this should be kept
1018 * similar to t4_eth_xmit
1020 if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
1021 cntrl = hwcsum(adap->params.chip, mbuf) |
1023 txq->stats.tx_cso++;
1025 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1028 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1029 txq->stats.vlan_ins++;
1030 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci);
1033 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
1034 V_TXPKT_INTF(pi->tx_chan) |
1035 V_TXPKT_PF(adap->pf));
1036 cpl->pack = htons(0);
1037 cpl->len = htons(len);
1038 cpl->ctrl1 = cpu_to_be64(cntrl);
1039 write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0, addr);
1041 txq->stats.tx_bytes += len;
1043 sd = &q->sdesc[q->pidx + (idx >> 1)];
1045 if (sd->coalesce.idx) {
1048 for (i = 0; i < sd->coalesce.idx; i++) {
1049 rte_pktmbuf_free(sd->coalesce.mbuf[i]);
1050 sd->coalesce.mbuf[i] = NULL;
1055 /* store pointers to the mbuf and the sgl used in free_tx_desc.
1056 * each tx desc can hold two pointers corresponding to the value
1057 * of ETH_COALESCE_PKT_PER_DESC
1059 sd->coalesce.mbuf[idx & 1] = mbuf;
1060 sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1);
1061 sd->coalesce.idx = (idx & 1) + 1;
1063 /* send the coaelsced work request if max reached */
1064 if (++q->coalesce.idx == ETH_COALESCE_PKT_NUM
1065 #ifndef RTE_LIBRTE_CXGBE_TPUT
1066 || q->coalesce.idx >= nb_pkts
1069 ship_tx_pkt_coalesce_wr(adap, txq);
1074 * t4_eth_xmit - add a packet to an Ethernet Tx queue
1075 * @txq: the egress queue
1078 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1080 int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf,
1083 const struct port_info *pi;
1084 struct cpl_tx_pkt_lso_core *lso;
1085 struct adapter *adap;
1086 struct rte_mbuf *m = mbuf;
1087 struct fw_eth_tx_pkt_wr *wr;
1088 struct cpl_tx_pkt_core *cpl;
1089 struct tx_sw_desc *d;
1090 dma_addr_t addr[m->nb_segs];
1091 unsigned int flits, ndesc, cflits;
1092 int l3hdr_len, l4hdr_len, eth_xtra_len;
1098 u32 max_pkt_len = txq->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1100 /* Reject xmit if queue is stopped */
1101 if (unlikely(txq->flags & EQ_STOPPED))
1105 * The chip min packet length is 10 octets but play safe and reject
1106 * anything shorter than an Ethernet header.
1108 if (unlikely(m->pkt_len < ETHER_HDR_LEN)) {
1110 rte_pktmbuf_free(m);
1114 if ((!(m->ol_flags & PKT_TX_TCP_SEG)) &&
1115 (unlikely(m->pkt_len > max_pkt_len)))
1118 pi = (struct port_info *)txq->eth_dev->data->dev_private;
1121 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1122 /* align the end of coalesce WR to a 512 byte boundary */
1123 txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8;
1125 if (!((m->ol_flags & PKT_TX_TCP_SEG) || (m->pkt_len > ETHER_MAX_LEN))) {
1126 if (should_tx_packet_coalesce(txq, mbuf, &cflits, adap)) {
1127 if (unlikely(map_mbuf(mbuf, addr) < 0)) {
1128 dev_warn(adap, "%s: mapping err for coalesce\n",
1130 txq->stats.mapping_err++;
1133 rte_prefetch0((volatile void *)addr);
1134 return tx_do_packet_coalesce(txq, mbuf, cflits, adap,
1141 if (txq->q.coalesce.idx)
1142 ship_tx_pkt_coalesce_wr(adap, txq);
1144 flits = calc_tx_flits(m);
1145 ndesc = flits_to_desc(flits);
1146 credits = txq_avail(&txq->q) - ndesc;
1148 if (unlikely(credits < 0)) {
1149 dev_debug(adap, "%s: Tx ring %u full; credits = %d\n",
1150 __func__, txq->q.cntxt_id, credits);
1154 if (unlikely(map_mbuf(m, addr) < 0)) {
1155 txq->stats.mapping_err++;
1159 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1160 if (Q_IDXDIFF(&txq->q, equeidx) >= 64) {
1161 txq->q.equeidx = txq->q.pidx;
1162 wr_mid |= F_FW_WR_EQUEQ;
1165 wr = (void *)&txq->q.desc[txq->q.pidx];
1166 wr->equiq_to_len16 = htonl(wr_mid);
1167 wr->r3 = rte_cpu_to_be_64(0);
1168 end = (u64 *)wr + flits;
1171 len += sizeof(*cpl);
1173 /* Coalescing skipped and we send through normal path */
1174 if (!(m->ol_flags & PKT_TX_TCP_SEG)) {
1175 wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
1176 V_FW_WR_IMMDLEN(len));
1177 cpl = (void *)(wr + 1);
1178 if (m->ol_flags & PKT_TX_IP_CKSUM) {
1179 cntrl = hwcsum(adap->params.chip, m) |
1181 txq->stats.tx_cso++;
1184 lso = (void *)(wr + 1);
1185 v6 = (m->ol_flags & PKT_TX_IPV6) != 0;
1186 l3hdr_len = m->l3_len;
1187 l4hdr_len = m->l4_len;
1188 eth_xtra_len = m->l2_len - ETHER_HDR_LEN;
1189 len += sizeof(*lso);
1190 wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
1191 V_FW_WR_IMMDLEN(len));
1192 lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) |
1193 F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
1195 V_LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1196 V_LSO_IPHDR_LEN(l3hdr_len / 4) |
1197 V_LSO_TCPHDR_LEN(l4hdr_len / 4));
1198 lso->ipid_ofst = htons(0);
1199 lso->mss = htons(m->tso_segsz);
1200 lso->seqno_offset = htonl(0);
1201 if (is_t4(adap->params.chip))
1202 lso->len = htonl(m->pkt_len);
1204 lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len));
1205 cpl = (void *)(lso + 1);
1207 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1208 cntrl = V_TXPKT_ETHHDR_LEN(eth_xtra_len);
1210 cntrl = V_T6_TXPKT_ETHHDR_LEN(eth_xtra_len);
1212 cntrl |= V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 :
1214 V_TXPKT_IPHDR_LEN(l3hdr_len);
1216 txq->stats.tx_cso += m->tso_segsz;
1219 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1220 txq->stats.vlan_ins++;
1221 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci);
1224 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
1225 V_TXPKT_INTF(pi->tx_chan) |
1226 V_TXPKT_PF(adap->pf));
1227 cpl->pack = htons(0);
1228 cpl->len = htons(m->pkt_len);
1229 cpl->ctrl1 = cpu_to_be64(cntrl);
1232 txq->stats.tx_bytes += m->pkt_len;
1233 last_desc = txq->q.pidx + ndesc - 1;
1234 if (last_desc >= (int)txq->q.size)
1235 last_desc -= txq->q.size;
1237 d = &txq->q.sdesc[last_desc];
1238 if (d->coalesce.idx) {
1241 for (i = 0; i < d->coalesce.idx; i++) {
1242 rte_pktmbuf_free(d->coalesce.mbuf[i]);
1243 d->coalesce.mbuf[i] = NULL;
1245 d->coalesce.idx = 0;
1247 write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1249 txq->q.sdesc[last_desc].mbuf = m;
1250 txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1251 txq_advance(&txq->q, ndesc);
1252 ring_tx_db(adap, &txq->q);
1257 * alloc_ring - allocate resources for an SGE descriptor ring
1258 * @dev: the PCI device's core device
1259 * @nelem: the number of descriptors
1260 * @elem_size: the size of each descriptor
1261 * @sw_size: the size of the SW state associated with each ring element
1262 * @phys: the physical address of the allocated ring
1263 * @metadata: address of the array holding the SW state for the ring
1264 * @stat_size: extra space in HW ring for status information
1265 * @node: preferred node for memory allocations
1267 * Allocates resources for an SGE descriptor ring, such as Tx queues,
1268 * free buffer lists, or response queues. Each SGE ring requires
1269 * space for its HW descriptors plus, optionally, space for the SW state
1270 * associated with each HW entry (the metadata). The function returns
1271 * three values: the virtual address for the HW ring (the return value
1272 * of the function), the bus address of the HW ring, and the address
1275 static void *alloc_ring(size_t nelem, size_t elem_size,
1276 size_t sw_size, dma_addr_t *phys, void *metadata,
1277 size_t stat_size, __rte_unused uint16_t queue_id,
1278 int socket_id, const char *z_name,
1279 const char *z_name_sw)
1281 size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size;
1282 const struct rte_memzone *tz;
1285 dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; "
1286 "stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;"
1287 " z_name_sw = %s\n", __func__, nelem, elem_size, sw_size,
1288 stat_size, queue_id, socket_id, z_name, z_name_sw);
1290 tz = rte_memzone_lookup(z_name);
1292 dev_debug(adapter, "%s: tz exists...returning existing..\n",
1298 * Allocate TX/RX ring hardware descriptors. A memzone large enough to
1299 * handle the maximum ring size is allocated in order to allow for
1300 * resizing in later calls to the queue setup function.
1302 tz = rte_memzone_reserve_aligned(z_name, len, socket_id, 0, 4096);
1307 memset(tz->addr, 0, len);
1309 s = rte_zmalloc_socket(z_name_sw, nelem * sw_size,
1310 RTE_CACHE_LINE_SIZE, socket_id);
1313 dev_err(adapter, "%s: failed to get sw_ring memory\n",
1319 *(void **)metadata = s;
1321 *phys = (uint64_t)tz->phys_addr;
1326 * t4_pktgl_to_mbuf_usembufs - build an mbuf from a packet gather list
1327 * @gl: the gather list
1329 * Builds an mbuf from the given packet gather list. Returns the mbuf or
1330 * %NULL if mbuf allocation failed.
1332 static struct rte_mbuf *t4_pktgl_to_mbuf_usembufs(const struct pkt_gl *gl)
1335 * If there's only one mbuf fragment, just return that.
1337 if (likely(gl->nfrags == 1))
1338 return gl->mbufs[0];
1344 * t4_pktgl_to_mbuf - build an mbuf from a packet gather list
1345 * @gl: the gather list
1347 * Builds an mbuf from the given packet gather list. Returns the mbuf or
1348 * %NULL if mbuf allocation failed.
1350 static struct rte_mbuf *t4_pktgl_to_mbuf(const struct pkt_gl *gl)
1352 return t4_pktgl_to_mbuf_usembufs(gl);
1356 * t4_ethrx_handler - process an ingress ethernet packet
1357 * @q: the response queue that received the packet
1358 * @rsp: the response queue descriptor holding the RX_PKT message
1359 * @si: the gather list of packet fragments
1361 * Process an ingress ethernet packet and deliver it to the stack.
1363 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1364 const struct pkt_gl *si)
1366 struct rte_mbuf *mbuf;
1367 const struct cpl_rx_pkt *pkt;
1368 const struct rss_header *rss_hdr;
1370 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1373 rss_hdr = (const void *)rsp;
1374 pkt = (const void *)&rsp[1];
1375 /* Compressed error vector is enabled for T6 only */
1376 if (q->adapter->params.tp.rx_pkt_encap)
1377 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(pkt->err_vec));
1379 err_vec = ntohs(pkt->err_vec);
1380 csum_ok = pkt->csum_calc && !err_vec;
1382 mbuf = t4_pktgl_to_mbuf(si);
1383 if (unlikely(!mbuf)) {
1384 rxq->stats.rx_drops++;
1388 mbuf->port = pkt->iff;
1389 if (pkt->l2info & htonl(F_RXF_IP)) {
1390 mbuf->packet_type = RTE_PTYPE_L3_IPV4;
1391 if (unlikely(!csum_ok))
1392 mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
1394 if ((pkt->l2info & htonl(F_RXF_UDP | F_RXF_TCP)) && !csum_ok)
1395 mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
1396 } else if (pkt->l2info & htonl(F_RXF_IP6)) {
1397 mbuf->packet_type = RTE_PTYPE_L3_IPV6;
1400 mbuf->port = pkt->iff;
1402 if (!rss_hdr->filter_tid && rss_hdr->hash_type) {
1403 mbuf->ol_flags |= PKT_RX_RSS_HASH;
1404 mbuf->hash.rss = ntohl(rss_hdr->hash_val);
1408 mbuf->ol_flags |= PKT_RX_VLAN_PKT;
1409 mbuf->vlan_tci = ntohs(pkt->vlan);
1412 rxq->stats.rx_bytes += mbuf->pkt_len;
1417 #define CXGB4_MSG_AN ((void *)1)
1420 * rspq_next - advance to the next entry in a response queue
1423 * Updates the state of a response queue to advance it to the next entry.
1425 static inline void rspq_next(struct sge_rspq *q)
1427 q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len);
1428 if (unlikely(++q->cidx == q->size)) {
1431 q->cur_desc = q->desc;
1436 * process_responses - process responses from an SGE response queue
1437 * @q: the ingress queue to process
1438 * @budget: how many responses can be processed in this round
1439 * @rx_pkts: mbuf to put the pkts
1441 * Process responses from an SGE response queue up to the supplied budget.
1442 * Responses include received packets as well as control messages from FW
1445 * Additionally choose the interrupt holdoff time for the next interrupt
1446 * on this queue. If the system is under memory shortage use a fairly
1447 * long delay to help recovery.
1449 static int process_responses(struct sge_rspq *q, int budget,
1450 struct rte_mbuf **rx_pkts)
1452 int ret = 0, rsp_type;
1453 int budget_left = budget;
1454 const struct rsp_ctrl *rc;
1455 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1457 while (likely(budget_left)) {
1458 if (q->cidx == ntohs(q->stat->pidx))
1461 rc = (const struct rsp_ctrl *)
1462 ((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc)));
1465 * Ensure response has been read
1468 rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1470 if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) {
1471 unsigned int stat_pidx;
1474 stat_pidx = ntohs(q->stat->pidx);
1475 stat_pidx_diff = P_IDXDIFF(q, stat_pidx);
1476 while (stat_pidx_diff && budget_left) {
1477 const struct rx_sw_desc *rsd =
1478 &rxq->fl.sdesc[rxq->fl.cidx];
1479 const struct rss_header *rss_hdr =
1480 (const void *)q->cur_desc;
1481 const struct cpl_rx_pkt *cpl =
1482 (const void *)&q->cur_desc[1];
1483 struct rte_mbuf *pkt, *npkt;
1488 rc = (const struct rsp_ctrl *)
1489 ((const char *)q->cur_desc +
1490 (q->iqe_len - sizeof(*rc)));
1492 rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1493 if (unlikely(rsp_type != X_RSPD_TYPE_FLBUF))
1496 len = ntohl(rc->pldbuflen_qid);
1497 BUG_ON(!(len & F_RSPD_NEWBUF));
1500 len = G_RSPD_LEN(len);
1503 /* Compressed error vector is enabled for
1506 if (q->adapter->params.tp.rx_pkt_encap)
1507 err_vec = G_T6_COMPR_RXERR_VEC(
1508 ntohs(cpl->err_vec));
1510 err_vec = ntohs(cpl->err_vec);
1511 csum_ok = cpl->csum_calc && !err_vec;
1513 /* Chain mbufs into len if necessary */
1515 struct rte_mbuf *new_pkt = rsd->buf;
1517 bufsz = min(get_buf_size(q->adapter,
1519 new_pkt->data_len = bufsz;
1520 unmap_rx_buf(&rxq->fl);
1522 npkt->next = new_pkt;
1525 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1530 if (cpl->l2info & htonl(F_RXF_IP)) {
1531 pkt->packet_type = RTE_PTYPE_L3_IPV4;
1532 if (unlikely(!csum_ok))
1534 PKT_RX_IP_CKSUM_BAD;
1537 htonl(F_RXF_UDP | F_RXF_TCP)) &&
1540 PKT_RX_L4_CKSUM_BAD;
1541 } else if (cpl->l2info & htonl(F_RXF_IP6)) {
1542 pkt->packet_type = RTE_PTYPE_L3_IPV6;
1545 if (!rss_hdr->filter_tid &&
1546 rss_hdr->hash_type) {
1547 pkt->ol_flags |= PKT_RX_RSS_HASH;
1549 ntohl(rss_hdr->hash_val);
1553 pkt->ol_flags |= PKT_RX_VLAN_PKT;
1554 pkt->vlan_tci = ntohs(cpl->vlan);
1558 rxq->stats.rx_bytes += pkt->pkt_len;
1559 rx_pkts[budget - budget_left] = pkt;
1566 } else if (likely(rsp_type == X_RSPD_TYPE_CPL)) {
1567 ret = q->handler(q, q->cur_desc, NULL);
1569 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1572 if (unlikely(ret)) {
1573 /* couldn't process descriptor, back off for recovery */
1574 q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1583 * If this is a Response Queue with an associated Free List and
1584 * there's room for another chunk of new Free List buffer pointers,
1585 * refill the Free List.
1588 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1589 __refill_fl(q->adapter, &rxq->fl);
1591 return budget - budget_left;
1594 int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts,
1595 unsigned int budget, unsigned int *work_done)
1597 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1598 unsigned int cidx_inc;
1599 unsigned int params;
1602 *work_done = process_responses(q, budget, rx_pkts);
1605 cidx_inc = R_IDXDIFF(q, gts_idx);
1607 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1608 __refill_fl(q->adapter, &rxq->fl);
1610 params = q->intr_params;
1611 q->next_intr_params = params;
1612 val = V_CIDXINC(cidx_inc) | V_SEINTARM(params);
1614 if (unlikely(!q->bar2_addr)) {
1615 t4_write_reg(q->adapter, MYPF_REG(A_SGE_PF_GTS),
1616 val | V_INGRESSQID((u32)q->cntxt_id));
1618 writel(val | V_INGRESSQID(q->bar2_qid),
1619 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_GTS));
1620 /* This Write memory Barrier will force the
1621 * write to the User Doorbell area to be
1626 q->gts_idx = q->cidx;
1632 * bar2_address - return the BAR2 address for an SGE Queue's Registers
1633 * @adapter: the adapter
1634 * @qid: the SGE Queue ID
1635 * @qtype: the SGE Queue Type (Egress or Ingress)
1636 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
1638 * Returns the BAR2 address for the SGE Queue Registers associated with
1639 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
1640 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
1641 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
1642 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
1644 static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid,
1645 enum t4_bar2_qtype qtype,
1646 unsigned int *pbar2_qid)
1651 ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid);
1655 return adapter->bar2 + bar2_qoffset;
1658 int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_rspq *rq)
1660 struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1661 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1663 return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0,
1664 rq->cntxt_id, fl_id, 0xffff);
1667 int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_rspq *rq)
1669 struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1670 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1672 return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0,
1673 rq->cntxt_id, fl_id, 0xffff);
1677 * @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
1678 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
1680 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
1681 struct rte_eth_dev *eth_dev, int intr_idx,
1682 struct sge_fl *fl, rspq_handler_t hnd, int cong,
1683 struct rte_mempool *mp, int queue_id, int socket_id)
1687 struct sge *s = &adap->sge;
1688 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
1689 char z_name[RTE_MEMZONE_NAMESIZE];
1690 char z_name_sw[RTE_MEMZONE_NAMESIZE];
1691 unsigned int nb_refill;
1693 /* Size needs to be multiple of 16, including status entry. */
1694 iq->size = cxgbe_roundup(iq->size, 16);
1696 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1697 eth_dev->device->driver->name,
1698 fwevtq ? "fwq_ring" : "rx_ring",
1699 eth_dev->data->port_id, queue_id);
1700 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1702 iq->desc = alloc_ring(iq->size, iq->iqe_len, 0, &iq->phys_addr, NULL, 0,
1703 queue_id, socket_id, z_name, z_name_sw);
1707 memset(&c, 0, sizeof(c));
1708 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1709 F_FW_CMD_WRITE | F_FW_CMD_EXEC |
1710 V_FW_IQ_CMD_PFN(adap->pf) | V_FW_IQ_CMD_VFN(0));
1711 c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1713 c.type_to_iqandstindex =
1714 htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1715 V_FW_IQ_CMD_IQASYNCH(fwevtq) |
1716 V_FW_IQ_CMD_VIID(pi->viid) |
1717 V_FW_IQ_CMD_IQANDST(intr_idx < 0) |
1718 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_STATUS_PAGE) |
1719 V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
1721 c.iqdroprss_to_iqesize =
1722 htons(V_FW_IQ_CMD_IQPCIECH(cong > 0 ? cxgbe_ffs(cong) - 1 :
1724 F_FW_IQ_CMD_IQGTSMODE |
1725 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
1726 V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
1727 c.iqsize = htons(iq->size);
1728 c.iqaddr = cpu_to_be64(iq->phys_addr);
1730 c.iqns_to_fl0congen = htonl(F_FW_IQ_CMD_IQFLINTCONGEN |
1734 struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq,
1736 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1739 * Allocate the ring for the hardware free list (with space
1740 * for its status page) along with the associated software
1741 * descriptor ring. The free list size needs to be a multiple
1742 * of the Egress Queue Unit and at least 2 Egress Units larger
1743 * than the SGE's Egress Congrestion Threshold
1744 * (fl_starve_thres - 1).
1746 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
1747 fl->size = s->fl_starve_thres - 1 + 2 * 8;
1748 fl->size = cxgbe_roundup(fl->size, 8);
1750 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1751 eth_dev->device->driver->name,
1752 fwevtq ? "fwq_ring" : "fl_ring",
1753 eth_dev->data->port_id, queue_id);
1754 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1756 fl->desc = alloc_ring(fl->size, sizeof(__be64),
1757 sizeof(struct rx_sw_desc),
1758 &fl->addr, &fl->sdesc, s->stat_len,
1759 queue_id, socket_id, z_name, z_name_sw);
1764 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
1765 c.iqns_to_fl0congen |=
1766 htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1767 (unlikely(rxq->usembufs) ?
1768 0 : F_FW_IQ_CMD_FL0PACKEN) |
1769 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1770 F_FW_IQ_CMD_FL0PADEN);
1772 c.iqns_to_fl0congen |=
1773 htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1774 F_FW_IQ_CMD_FL0CONGCIF |
1775 F_FW_IQ_CMD_FL0CONGEN);
1777 /* In T6, for egress queue type FL there is internal overhead
1778 * of 16B for header going into FLM module.
1779 * Hence maximum allowed burst size will be 448 bytes.
1781 c.fl0dcaen_to_fl0cidxfthresh =
1782 htons(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ?
1783 X_FETCHBURSTMIN_128B :
1784 X_FETCHBURSTMIN_64B) |
1785 V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ?
1786 X_FETCHBURSTMAX_512B :
1787 X_FETCHBURSTMAX_256B));
1788 c.fl0size = htons(flsz);
1789 c.fl0addr = cpu_to_be64(fl->addr);
1792 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
1796 iq->cur_desc = iq->desc;
1800 iq->next_intr_params = iq->intr_params;
1801 iq->cntxt_id = ntohs(c.iqid);
1802 iq->abs_id = ntohs(c.physiqid);
1803 iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS,
1805 iq->size--; /* subtract status entry */
1806 iq->stat = (void *)&iq->desc[iq->size * 8];
1807 iq->eth_dev = eth_dev;
1809 iq->port_id = pi->port_id;
1812 /* set offset to -1 to distinguish ingress queues without FL */
1813 iq->offset = fl ? 0 : -1;
1816 fl->cntxt_id = ntohs(c.fl0id);
1821 fl->alloc_failed = 0;
1824 * Note, we must initialize the BAR2 Free List User Doorbell
1825 * information before refilling the Free List!
1827 fl->bar2_addr = bar2_address(adap, fl->cntxt_id,
1828 T4_BAR2_QTYPE_EGRESS,
1831 nb_refill = refill_fl(adap, fl, fl_cap(fl));
1832 if (nb_refill != fl_cap(fl)) {
1834 dev_err(adap, "%s: mbuf alloc failed with error: %d\n",
1841 * For T5 and later we attempt to set up the Congestion Manager values
1842 * of the new RX Ethernet Queue. This should really be handled by
1843 * firmware because it's more complex than any host driver wants to
1844 * get involved with and it's different per chip and this is almost
1845 * certainly wrong. Formware would be wrong as well, but it would be
1846 * a lot easier to fix in one place ... For now we do something very
1847 * simple (and hopefully less wrong).
1849 if (!is_t4(adap->params.chip) && cong >= 0) {
1853 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1854 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1855 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id));
1857 val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE);
1859 val = V_CONMCTXT_CNGTPMODE(
1860 X_CONMCTXT_CNGTPMODE_CHANNEL);
1861 for (i = 0; i < 4; i++) {
1862 if (cong & (1 << i))
1863 val |= V_CONMCTXT_CNGCHMAP(1 <<
1867 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1870 dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n",
1871 iq->cntxt_id, -ret);
1877 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
1878 iq->cntxt_id, fl->cntxt_id, 0xffff);
1887 if (fl && fl->desc) {
1888 rte_free(fl->sdesc);
1896 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
1899 q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS,
1906 q->coalesce.idx = 0;
1907 q->coalesce.len = 0;
1908 q->coalesce.flits = 0;
1909 q->last_coal_idx = 0;
1911 q->stat = (void *)&q->desc[q->size];
1914 int t4_sge_eth_txq_start(struct sge_eth_txq *txq)
1917 * TODO: For flow-control, queue may be stopped waiting to reclaim
1919 * Ensure queue is in EQ_STOPPED state before starting it.
1921 if (!(txq->flags & EQ_STOPPED))
1924 txq->flags &= ~EQ_STOPPED;
1929 int t4_sge_eth_txq_stop(struct sge_eth_txq *txq)
1931 txq->flags |= EQ_STOPPED;
1936 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
1937 struct rte_eth_dev *eth_dev, uint16_t queue_id,
1938 unsigned int iqid, int socket_id)
1941 struct fw_eq_eth_cmd c;
1942 struct sge *s = &adap->sge;
1943 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
1944 char z_name[RTE_MEMZONE_NAMESIZE];
1945 char z_name_sw[RTE_MEMZONE_NAMESIZE];
1947 /* Add status entries */
1948 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
1950 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1951 eth_dev->device->driver->name, "tx_ring",
1952 eth_dev->data->port_id, queue_id);
1953 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1955 txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc),
1956 sizeof(struct tx_sw_desc), &txq->q.phys_addr,
1957 &txq->q.sdesc, s->stat_len, queue_id,
1958 socket_id, z_name, z_name_sw);
1962 memset(&c, 0, sizeof(c));
1963 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1964 F_FW_CMD_WRITE | F_FW_CMD_EXEC |
1965 V_FW_EQ_ETH_CMD_PFN(adap->pf) |
1966 V_FW_EQ_ETH_CMD_VFN(0));
1967 c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC |
1968 F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16));
1969 c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE |
1970 V_FW_EQ_ETH_CMD_VIID(pi->viid));
1971 c.fetchszm_to_iqid =
1972 htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
1973 V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
1974 F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid));
1976 htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1977 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1978 V_FW_EQ_ETH_CMD_EQSIZE(nentries));
1979 c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr);
1981 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
1983 rte_free(txq->q.sdesc);
1984 txq->q.sdesc = NULL;
1989 init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)));
1991 txq->stats.pkts = 0;
1992 txq->stats.tx_cso = 0;
1993 txq->stats.coal_wr = 0;
1994 txq->stats.vlan_ins = 0;
1995 txq->stats.tx_bytes = 0;
1996 txq->stats.coal_pkts = 0;
1997 txq->stats.mapping_err = 0;
1998 txq->flags |= EQ_STOPPED;
1999 txq->eth_dev = eth_dev;
2000 t4_os_lock_init(&txq->txq_lock);
2004 static void free_txq(struct sge_txq *q)
2011 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2014 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2016 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
2017 rq->cntxt_id, fl_id, 0xffff);
2023 free_rx_bufs(fl, fl->avail);
2024 rte_free(fl->sdesc);
2032 * Clear all queues of the port
2034 * Note: This function must only be called after rx and tx path
2035 * of the port have been disabled.
2037 void t4_sge_eth_clear_queues(struct port_info *pi)
2040 struct adapter *adap = pi->adapter;
2041 struct sge_eth_rxq *rxq = &adap->sge.ethrxq[pi->first_qset];
2042 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
2044 for (i = 0; i < pi->n_rx_qsets; i++, rxq++) {
2046 t4_sge_eth_rxq_stop(adap, &rxq->rspq);
2048 for (i = 0; i < pi->n_tx_qsets; i++, txq++) {
2050 struct sge_txq *q = &txq->q;
2052 t4_sge_eth_txq_stop(txq);
2053 reclaim_completed_tx(q);
2054 free_tx_desc(q, q->size);
2055 q->equeidx = q->pidx;
2060 void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq)
2062 if (rxq->rspq.desc) {
2063 t4_sge_eth_rxq_stop(adap, &rxq->rspq);
2064 free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL);
2068 void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq)
2071 t4_sge_eth_txq_stop(txq);
2072 reclaim_completed_tx(&txq->q);
2073 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id);
2074 free_tx_desc(&txq->q, txq->q.size);
2075 rte_free(txq->q.sdesc);
2080 void t4_sge_tx_monitor_start(struct adapter *adap)
2082 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
2085 void t4_sge_tx_monitor_stop(struct adapter *adap)
2087 rte_eal_alarm_cancel(tx_timer_cb, (void *)adap);
2091 * t4_free_sge_resources - free SGE resources
2092 * @adap: the adapter
2094 * Frees resources used by the SGE queue sets.
2096 void t4_free_sge_resources(struct adapter *adap)
2099 struct sge_eth_rxq *rxq = &adap->sge.ethrxq[0];
2100 struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
2102 /* clean up Ethernet Tx/Rx queues */
2103 for (i = 0; i < adap->sge.max_ethqsets; i++, rxq++, txq++) {
2104 /* Free only the queues allocated */
2105 if (rxq->rspq.desc) {
2106 t4_sge_eth_rxq_release(adap, rxq);
2107 rxq->rspq.eth_dev = NULL;
2110 t4_sge_eth_txq_release(adap, txq);
2111 txq->eth_dev = NULL;
2115 if (adap->sge.fw_evtq.desc)
2116 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2120 * t4_sge_init - initialize SGE
2121 * @adap: the adapter
2123 * Performs SGE initialization needed every time after a chip reset.
2124 * We do not initialize any of the queues here, instead the driver
2125 * top-level must request those individually.
2127 * Called in two different modes:
2129 * 1. Perform actual hardware initialization and record hard-coded
2130 * parameters which were used. This gets used when we're the
2131 * Master PF and the Firmware Configuration File support didn't
2132 * work for some reason.
2134 * 2. We're not the Master PF or initialization was performed with
2135 * a Firmware Configuration File. In this case we need to grab
2136 * any of the SGE operating parameters that we need to have in
2137 * order to do our job and make sure we can live with them ...
2139 static int t4_sge_init_soft(struct adapter *adap)
2141 struct sge *s = &adap->sge;
2142 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2143 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2144 u32 ingress_rx_threshold;
2147 * Verify that CPL messages are going to the Ingress Queue for
2148 * process_responses() and that only packet data is going to the
2151 if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) !=
2152 V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2153 dev_err(adap, "bad SGE CPL MODE\n");
2158 * Validate the Host Buffer Register Array indices that we want to
2161 * XXX Note that we should really read through the Host Buffer Size
2162 * XXX register array and find the indices of the Buffer Sizes which
2163 * XXX meet our needs!
2165 #define READ_FL_BUF(x) \
2166 t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32))
2168 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2169 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2170 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2171 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2174 * We only bother using the Large Page logic if the Large Page Buffer
2175 * is larger than our Page Size Buffer.
2177 if (fl_large_pg <= fl_small_pg)
2183 * The Page Size Buffer must be exactly equal to our Page Size and the
2184 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2186 if (fl_small_pg != CXGBE_PAGE_SIZE ||
2187 (fl_large_pg & (fl_large_pg - 1)) != 0) {
2188 dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n",
2189 fl_small_pg, fl_large_pg);
2193 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2195 if (adap->use_unpacked_mode) {
2198 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) {
2199 dev_err(adap, "bad SGE FL small MTU %d\n",
2203 if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2204 dev_err(adap, "bad SGE FL large MTU %d\n",
2213 * Retrieve our RX interrupt holdoff timer values and counter
2214 * threshold values from the SGE parameters.
2216 timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1);
2217 timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3);
2218 timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5);
2219 s->timer_val[0] = core_ticks_to_us(adap,
2220 G_TIMERVALUE0(timer_value_0_and_1));
2221 s->timer_val[1] = core_ticks_to_us(adap,
2222 G_TIMERVALUE1(timer_value_0_and_1));
2223 s->timer_val[2] = core_ticks_to_us(adap,
2224 G_TIMERVALUE2(timer_value_2_and_3));
2225 s->timer_val[3] = core_ticks_to_us(adap,
2226 G_TIMERVALUE3(timer_value_2_and_3));
2227 s->timer_val[4] = core_ticks_to_us(adap,
2228 G_TIMERVALUE4(timer_value_4_and_5));
2229 s->timer_val[5] = core_ticks_to_us(adap,
2230 G_TIMERVALUE5(timer_value_4_and_5));
2232 ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD);
2233 s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold);
2234 s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold);
2235 s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold);
2236 s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold);
2241 int t4_sge_init(struct adapter *adap)
2243 struct sge *s = &adap->sge;
2244 u32 sge_control, sge_conm_ctrl;
2245 int ret, egress_threshold;
2248 * Ingress Padding Boundary and Egress Status Page Size are set up by
2249 * t4_fixup_host_params().
2251 sge_control = t4_read_reg(adap, A_SGE_CONTROL);
2252 s->pktshift = G_PKTSHIFT(sge_control);
2253 s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
2254 s->fl_align = t4_fl_pkt_align(adap);
2255 ret = t4_sge_init_soft(adap);
2257 dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n",
2263 * A FL with <= fl_starve_thres buffers is starving and a periodic
2264 * timer will attempt to refill it. This needs to be larger than the
2265 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2266 * stuck waiting for new packets while the SGE is waiting for us to
2267 * give it more Free List entries. (Note that the SGE's Egress
2268 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2269 * there was only a single field to control this. For T5 there's the
2270 * original field which now only applies to Unpacked Mode Free List
2271 * buffers and a new field which only applies to Packed Mode Free List
2274 sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL);
2275 if (is_t4(adap->params.chip) || adap->use_unpacked_mode)
2276 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
2278 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
2279 s->fl_starve_thres = 2 * egress_threshold + 1;