1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2014-2018 Chelsio Communications.
14 #include <netinet/in.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
21 #include <rte_debug.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_memzone.h>
27 #include <rte_tailq.h>
29 #include <rte_alarm.h>
30 #include <rte_ether.h>
31 #include <rte_ethdev_driver.h>
32 #include <rte_malloc.h>
33 #include <rte_random.h>
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
41 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
42 struct sge_eth_txq *txq);
45 * Max number of Rx buffers we replenish at a time.
47 #define MAX_RX_REFILL 64U
49 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
52 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
55 #define MAX_IMM_TX_PKT_LEN 256
58 * Max size of a WR sent through a control Tx queue.
60 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
63 * Rx buffer sizes for "usembufs" Free List buffers (one ingress packet
64 * per mbuf buffer). We currently only support two sizes for 1500- and
65 * 9000-byte MTUs. We could easily support more but there doesn't seem to be
66 * much need for that ...
68 #define FL_MTU_SMALL 1500
69 #define FL_MTU_LARGE 9000
71 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
74 struct sge *s = &adapter->sge;
76 return CXGBE_ALIGN(s->pktshift + RTE_ETHER_HDR_LEN + VLAN_HLEN + mtu,
80 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
81 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
84 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
85 * these to specify the buffer size as an index into the SGE Free List Buffer
86 * Size register array. We also use bit 4, when the buffer has been unmapped
87 * for DMA, but this is of course never sent to the hardware and is only used
88 * to prevent double unmappings. All of the above requires that the Free List
89 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
90 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
91 * Free List Buffer alignment is 32 bytes, this works out for us ...
94 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
95 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
96 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
99 * XXX We shouldn't depend on being able to use these indices.
100 * XXX Especially when some other Master PF has initialized the
101 * XXX adapter or we use the Firmware Configuration File. We
102 * XXX should really search through the Host Buffer Size register
103 * XXX array for the appropriately sized buffer indices.
105 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
106 RX_LARGE_PG_BUF = 0x1, /* buffer large page buffer */
108 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
109 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
113 * txq_avail - return the number of available slots in a Tx queue
116 * Returns the number of descriptors in a Tx queue available to write new
119 static inline unsigned int txq_avail(const struct sge_txq *q)
121 return q->size - 1 - q->in_use;
124 static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr)
126 struct rte_mbuf *m = mbuf;
128 for (; m; m = m->next, addr++) {
129 *addr = m->buf_iova + rte_pktmbuf_headroom(m);
140 * free_tx_desc - reclaims Tx descriptors and their buffers
141 * @q: the Tx queue to reclaim descriptors from
142 * @n: the number of descriptors to reclaim
144 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
145 * Tx buffers. Called with the Tx queue lock held.
147 static void free_tx_desc(struct sge_txq *q, unsigned int n)
149 struct tx_sw_desc *d;
150 unsigned int cidx = 0;
154 if (d->mbuf) { /* an SGL is present */
155 rte_pktmbuf_free(d->mbuf);
158 if (d->coalesce.idx) {
161 for (i = 0; i < d->coalesce.idx; i++) {
162 rte_pktmbuf_free(d->coalesce.mbuf[i]);
163 d->coalesce.mbuf[i] = NULL;
168 if (++cidx == q->size) {
172 RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool);
176 static void reclaim_tx_desc(struct sge_txq *q, unsigned int n)
178 struct tx_sw_desc *d;
179 unsigned int cidx = q->cidx;
183 if (d->mbuf) { /* an SGL is present */
184 rte_pktmbuf_free(d->mbuf);
188 if (++cidx == q->size) {
197 * fl_cap - return the capacity of a free-buffer list
200 * Returns the capacity of a free-buffer list. The capacity is less than
201 * the size because one descriptor needs to be left unpopulated, otherwise
202 * HW will think the FL is empty.
204 static inline unsigned int fl_cap(const struct sge_fl *fl)
206 return fl->size - 8; /* 1 descriptor = 8 buffers */
210 * fl_starving - return whether a Free List is starving.
211 * @adapter: pointer to the adapter
214 * Tests specified Free List to see whether the number of buffers
215 * available to the hardware has falled below our "starvation"
218 static inline bool fl_starving(const struct adapter *adapter,
219 const struct sge_fl *fl)
221 const struct sge *s = &adapter->sge;
223 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
226 static inline unsigned int get_buf_size(struct adapter *adapter,
227 const struct rx_sw_desc *d)
229 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
230 unsigned int buf_size = 0;
232 switch (rx_buf_size_idx) {
233 case RX_SMALL_MTU_BUF:
234 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
237 case RX_LARGE_MTU_BUF:
238 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
250 * free_rx_bufs - free the Rx buffers on an SGE free list
251 * @q: the SGE free list to free buffers from
252 * @n: how many buffers to free
254 * Release the next @n buffers on an SGE free-buffer Rx queue. The
255 * buffers must be made inaccessible to HW before calling this function.
257 static void free_rx_bufs(struct sge_fl *q, int n)
259 unsigned int cidx = q->cidx;
260 struct rx_sw_desc *d;
265 rte_pktmbuf_free(d->buf);
269 if (++cidx == q->size) {
279 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
280 * @q: the SGE free list
282 * Unmap the current buffer on an SGE free-buffer Rx queue. The
283 * buffer must be made inaccessible to HW before calling this function.
285 * This is similar to @free_rx_bufs above but does not free the buffer.
286 * Do note that the FL still loses any further access to the buffer.
288 static void unmap_rx_buf(struct sge_fl *q)
290 if (++q->cidx == q->size)
295 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
297 if (q->pend_cred >= 64) {
298 u32 val = adap->params.arch.sge_fl_db;
300 if (is_t4(adap->params.chip))
301 val |= V_PIDX(q->pend_cred / 8);
303 val |= V_PIDX_T5(q->pend_cred / 8);
306 * Make sure all memory writes to the Free List queue are
307 * committed before we tell the hardware about them.
312 * If we don't have access to the new User Doorbell (T5+), use
313 * the old doorbell mechanism; otherwise use the new BAR2
316 if (unlikely(!q->bar2_addr)) {
317 u32 reg = is_pf4(adap) ? MYPF_REG(A_SGE_PF_KDOORBELL) :
321 t4_write_reg_relaxed(adap, reg,
322 val | V_QID(q->cntxt_id));
324 writel_relaxed(val | V_QID(q->bar2_qid),
325 (void *)((uintptr_t)q->bar2_addr +
329 * This Write memory Barrier will force the write to
330 * the User Doorbell area to be flushed.
338 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf,
342 sd->dma_addr = mapping; /* includes size low bits */
346 * refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs
348 * @q: the ring to refill
349 * @n: the number of new buffers to allocate
351 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
352 * allocated with the supplied gfp flags. The caller must assure that
353 * @n does not exceed the queue's capacity. If afterwards the queue is
354 * found critically low mark it as starving in the bitmap of starving FLs.
356 * Returns the number of buffers allocated.
358 static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q,
361 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
362 unsigned int cred = q->avail;
363 __be64 *d = &q->desc[q->pidx];
364 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
365 unsigned int buf_size_idx = RX_SMALL_MTU_BUF;
366 struct rte_mbuf *buf_bulk[n];
368 struct rte_pktmbuf_pool_private *mbp_priv;
369 u8 jumbo_en = rxq->rspq.eth_dev->data->dev_conf.rxmode.offloads &
370 DEV_RX_OFFLOAD_JUMBO_FRAME;
372 /* Use jumbo mtu buffers if mbuf data room size can fit jumbo data. */
373 mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool);
375 ((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000))
376 buf_size_idx = RX_LARGE_MTU_BUF;
378 ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n);
379 if (unlikely(ret != 0)) {
380 dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n",
383 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
387 for (i = 0; i < n; i++) {
388 struct rte_mbuf *mbuf = buf_bulk[i];
392 dev_debug(adap, "%s: mbuf alloc failed\n", __func__);
394 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
398 rte_mbuf_refcnt_set(mbuf, 1);
401 RTE_PTR_ALIGN((char *)mbuf->buf_addr +
402 RTE_PKTMBUF_HEADROOM,
403 adap->sge.fl_align) -
404 (char *)mbuf->buf_addr);
407 mbuf->port = rxq->rspq.port_id;
409 mapping = (dma_addr_t)RTE_ALIGN(mbuf->buf_iova +
412 mapping |= buf_size_idx;
413 *d++ = cpu_to_be64(mapping);
414 set_rx_sw_desc(sd, mbuf, mapping);
418 if (++q->pidx == q->size) {
425 out: cred = q->avail - cred;
426 q->pend_cred += cred;
429 if (unlikely(fl_starving(adap, q))) {
431 * Make sure data has been written to free list
441 * refill_fl - refill an SGE Rx buffer ring with mbufs
443 * @q: the ring to refill
444 * @n: the number of new buffers to allocate
446 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
447 * allocated with the supplied gfp flags. The caller must assure that
448 * @n does not exceed the queue's capacity. Returns the number of buffers
451 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n)
453 return refill_fl_usembufs(adap, q, n);
456 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
458 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail));
462 * Return the number of reclaimable descriptors in a Tx queue.
464 static inline int reclaimable(const struct sge_txq *q)
466 int hw_cidx = ntohs(q->stat->cidx);
470 return hw_cidx + q->size;
475 * reclaim_completed_tx - reclaims completed Tx descriptors
476 * @q: the Tx queue to reclaim completed descriptors from
478 * Reclaims Tx descriptors that the SGE has indicated it has processed.
480 void reclaim_completed_tx(struct sge_txq *q)
482 unsigned int avail = reclaimable(q);
485 /* reclaim as much as possible */
486 reclaim_tx_desc(q, avail);
488 avail = reclaimable(q);
493 * sgl_len - calculates the size of an SGL of the given capacity
494 * @n: the number of SGL entries
496 * Calculates the number of flits needed for a scatter/gather list that
497 * can hold the given number of entries.
499 static inline unsigned int sgl_len(unsigned int n)
502 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
503 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
504 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
505 * repeated sequences of { Length[i], Length[i+1], Address[i],
506 * Address[i+1] } (this ensures that all addresses are on 64-bit
507 * boundaries). If N is even, then Length[N+1] should be set to 0 and
508 * Address[N+1] is omitted.
510 * The following calculation incorporates all of the above. It's
511 * somewhat hard to follow but, briefly: the "+2" accounts for the
512 * first two flits which include the DSGL header, Length0 and
513 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
514 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
515 * finally the "+((n-1)&1)" adds the one remaining flit needed if
519 return (3 * n) / 2 + (n & 1) + 2;
523 * flits_to_desc - returns the num of Tx descriptors for the given flits
524 * @n: the number of flits
526 * Returns the number of Tx descriptors needed for the supplied number
529 static inline unsigned int flits_to_desc(unsigned int n)
531 return DIV_ROUND_UP(n, 8);
535 * is_eth_imm - can an Ethernet packet be sent as immediate data?
538 * Returns whether an Ethernet packet is small enough to fit as
539 * immediate data. Return value corresponds to the headroom required.
541 static inline int is_eth_imm(const struct rte_mbuf *m)
543 unsigned int hdrlen = (m->ol_flags & PKT_TX_TCP_SEG) ?
544 sizeof(struct cpl_tx_pkt_lso_core) : 0;
546 hdrlen += sizeof(struct cpl_tx_pkt);
547 if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen)
554 * calc_tx_flits - calculate the number of flits for a packet Tx WR
556 * @adap: adapter structure pointer
558 * Returns the number of flits needed for a Tx WR for the given Ethernet
559 * packet, including the needed WR and CPL headers.
561 static inline unsigned int calc_tx_flits(const struct rte_mbuf *m,
562 struct adapter *adap)
564 size_t wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkt_wr) :
565 sizeof(struct fw_eth_tx_pkt_vm_wr);
570 * If the mbuf is small enough, we can pump it out as a work request
571 * with only immediate data. In that case we just have to have the
572 * TX Packet header plus the mbuf data in the Work Request.
575 hdrlen = is_eth_imm(m);
577 return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64));
580 * Otherwise, we're going to have to construct a Scatter gather list
581 * of the mbuf body and fragments. We also include the flits necessary
582 * for the TX Packet Work Request and CPL. We always have a firmware
583 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
584 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
585 * message or, if we're doing a Large Send Offload, an LSO CPL message
586 * with an embedded TX Packet Write CPL message.
588 flits = sgl_len(m->nb_segs);
590 flits += (wr_size + sizeof(struct cpl_tx_pkt_lso_core) +
591 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
594 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
599 * write_sgl - populate a scatter/gather list for a packet
601 * @q: the Tx queue we are writing into
602 * @sgl: starting location for writing the SGL
603 * @end: points right after the end of the SGL
604 * @start: start offset into mbuf main-body data to include in the SGL
605 * @addr: address of mapped region
607 * Generates a scatter/gather list for the buffers that make up a packet.
608 * The caller must provide adequate space for the SGL that will be written.
609 * The SGL includes all of the packet's page fragments and the data in its
610 * main body except for the first @start bytes. @sgl must be 16-byte
611 * aligned and within a Tx descriptor with available space. @end points
612 * write after the end of the SGL but does not account for any potential
613 * wrap around, i.e., @end > @sgl.
615 static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q,
616 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
617 const dma_addr_t *addr)
620 struct ulptx_sge_pair *to;
621 struct rte_mbuf *m = mbuf;
622 unsigned int nfrags = m->nb_segs;
623 struct ulptx_sge_pair buf[nfrags / 2];
625 len = m->data_len - start;
626 sgl->len0 = htonl(len);
627 sgl->addr0 = rte_cpu_to_be_64(addr[0]);
629 sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
630 V_ULPTX_NSGE(nfrags));
631 if (likely(--nfrags == 0))
634 * Most of the complexity below deals with the possibility we hit the
635 * end of the queue in the middle of writing the SGL. For this case
636 * only we create the SGL in a temporary buffer and then copy it.
638 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
640 for (i = 0; nfrags >= 2; nfrags -= 2, to++) {
642 to->len[0] = rte_cpu_to_be_32(m->data_len);
643 to->addr[0] = rte_cpu_to_be_64(addr[++i]);
645 to->len[1] = rte_cpu_to_be_32(m->data_len);
646 to->addr[1] = rte_cpu_to_be_64(addr[++i]);
650 to->len[0] = rte_cpu_to_be_32(m->data_len);
651 to->len[1] = rte_cpu_to_be_32(0);
652 to->addr[0] = rte_cpu_to_be_64(addr[i + 1]);
654 if (unlikely((u8 *)end > (u8 *)q->stat)) {
655 unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat,
660 memcpy(sgl->sge, buf, part0);
661 part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat);
662 rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1);
663 end = RTE_PTR_ADD((void *)q->desc, part1);
665 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
669 #define IDXDIFF(head, tail, wrap) \
670 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
672 #define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size)
673 #define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size)
675 #define PIDXDIFF(head, tail, wrap) \
676 ((tail) >= (head) ? (tail) - (head) : (wrap) - (head) + (tail))
677 #define P_IDXDIFF(q, idx) PIDXDIFF((q)->cidx, idx, (q)->size)
680 * ring_tx_db - ring a Tx queue's doorbell
683 * @n: number of new descriptors to give to HW
685 * Ring the doorbel for a Tx queue.
687 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q)
689 int n = Q_IDXDIFF(q, dbidx);
692 * Make sure that all writes to the TX Descriptors are committed
693 * before we tell the hardware about them.
698 * If we don't have access to the new User Doorbell (T5+), use the old
699 * doorbell mechanism; otherwise use the new BAR2 mechanism.
701 if (unlikely(!q->bar2_addr)) {
705 * For T4 we need to participate in the Doorbell Recovery
709 t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
710 V_QID(q->cntxt_id) | val);
713 q->db_pidx = q->pidx;
715 u32 val = V_PIDX_T5(n);
718 * T4 and later chips share the same PIDX field offset within
719 * the doorbell, but T5 and later shrank the field in order to
720 * gain a bit for Doorbell Priority. The field was absurdly
721 * large in the first place (14 bits) so we just use the T5
722 * and later limits and warn if a Queue ID is too large.
724 WARN_ON(val & F_DBPRIO);
726 writel(val | V_QID(q->bar2_qid),
727 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL));
730 * This Write Memory Barrier will force the write to the User
731 * Doorbell area to be flushed. This is needed to prevent
732 * writes on different CPUs for the same queue from hitting
733 * the adapter out of order. This is required when some Work
734 * Requests take the Write Combine Gather Buffer path (user
735 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
736 * take the traditional path where we simply increment the
737 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
738 * hardware DMA read the actual Work Request.
746 * Figure out what HW csum a packet wants and return the appropriate control
749 static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m)
753 if (m->ol_flags & PKT_TX_IP_CKSUM) {
754 switch (m->ol_flags & PKT_TX_L4_MASK) {
755 case PKT_TX_TCP_CKSUM:
756 csum_type = TX_CSUM_TCPIP;
758 case PKT_TX_UDP_CKSUM:
759 csum_type = TX_CSUM_UDPIP;
768 if (likely(csum_type >= TX_CSUM_TCPIP)) {
769 u64 hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len);
770 int eth_hdr_len = m->l2_len;
772 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
773 hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len);
775 hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len);
776 return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len;
780 * unknown protocol, disable HW csum
781 * and hope a bad packet is detected
783 return F_TXPKT_L4CSUM_DIS;
786 static inline void txq_advance(struct sge_txq *q, unsigned int n)
790 if (q->pidx >= q->size)
794 #define MAX_COALESCE_LEN 64000
796 static inline int wraps_around(struct sge_txq *q, int ndesc)
798 return (q->pidx + ndesc) > q->size ? 1 : 0;
801 static void tx_timer_cb(void *data)
803 struct adapter *adap = (struct adapter *)data;
804 struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
806 unsigned int coal_idx;
808 /* monitor any pending tx */
809 for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) {
810 if (t4_os_trylock(&txq->txq_lock)) {
811 coal_idx = txq->q.coalesce.idx;
813 if (coal_idx == txq->q.last_coal_idx &&
814 txq->q.pidx == txq->q.last_pidx) {
815 ship_tx_pkt_coalesce_wr(adap, txq);
817 txq->q.last_coal_idx = coal_idx;
818 txq->q.last_pidx = txq->q.pidx;
821 t4_os_unlock(&txq->txq_lock);
824 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
828 * ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR
829 * @ adap: adapter structure
832 * writes the different fields of the pkts WR and sends it.
834 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
835 struct sge_eth_txq *txq)
837 struct fw_eth_tx_pkts_vm_wr *vmwr;
838 const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) +
839 sizeof(vmwr->ethmacsrc) +
840 sizeof(vmwr->ethtype) +
841 sizeof(vmwr->vlantci));
842 struct fw_eth_tx_pkts_wr *wr;
843 struct sge_txq *q = &txq->q;
847 /* fill the pkts WR header */
848 wr = (void *)&q->desc[q->pidx];
849 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
850 vmwr = (void *)&q->desc[q->pidx];
852 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2));
853 ndesc = flits_to_desc(q->coalesce.flits);
854 wr->equiq_to_len16 = htonl(wr_mid);
855 wr->plen = cpu_to_be16(q->coalesce.len);
856 wr->npkt = q->coalesce.idx;
859 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
860 wr->type = q->coalesce.type;
862 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
864 memcpy((void *)vmwr->ethmacdst, (void *)q->coalesce.ethmacdst,
868 /* zero out coalesce structure members */
869 memset((void *)&q->coalesce, 0, sizeof(struct eth_coalesce));
871 txq_advance(q, ndesc);
872 txq->stats.coal_wr++;
873 txq->stats.coal_pkts += wr->npkt;
875 if (Q_IDXDIFF(q, equeidx) >= q->size / 2) {
876 q->equeidx = q->pidx;
877 wr_mid |= F_FW_WR_EQUEQ;
878 wr->equiq_to_len16 = htonl(wr_mid);
884 * should_tx_packet_coalesce - decides wether to coalesce an mbuf or not
885 * @txq: tx queue where the mbuf is sent
886 * @mbuf: mbuf to be sent
887 * @nflits: return value for number of flits needed
888 * @adap: adapter structure
890 * This function decides if a packet should be coalesced or not.
892 static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq,
893 struct rte_mbuf *mbuf,
894 unsigned int *nflits,
895 struct adapter *adap)
897 struct fw_eth_tx_pkts_vm_wr *wr;
898 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
899 sizeof(wr->ethmacsrc) +
900 sizeof(wr->ethtype) +
901 sizeof(wr->vlantci));
902 struct sge_txq *q = &txq->q;
903 unsigned int flits, ndesc;
904 unsigned char type = 0;
905 int credits, wr_size;
907 /* use coal WR type 1 when no frags are present */
908 type = (mbuf->nb_segs == 1) ? 1 : 0;
913 if (q->coalesce.idx && memcmp((void *)q->coalesce.ethmacdst,
914 rte_pktmbuf_mtod(mbuf, void *),
916 ship_tx_pkt_coalesce_wr(adap, txq);
919 if (unlikely(type != q->coalesce.type && q->coalesce.idx))
920 ship_tx_pkt_coalesce_wr(adap, txq);
922 /* calculate the number of flits required for coalescing this packet
923 * without the 2 flits of the WR header. These are added further down
924 * if we are just starting in new PKTS WR. sgl_len doesn't account for
925 * the possible 16 bytes alignment ULP TX commands so we do it here.
927 flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U;
929 flits += (sizeof(struct ulp_txpkt) +
930 sizeof(struct ulptx_idata)) / sizeof(__be64);
931 flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64);
934 /* If coalescing is on, the mbuf is added to a pkts WR */
935 if (q->coalesce.idx) {
936 ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8);
937 credits = txq_avail(q) - ndesc;
939 /* If we are wrapping or this is last mbuf then, send the
940 * already coalesced mbufs and let the non-coalesce pass
943 if (unlikely(credits < 0 || wraps_around(q, ndesc))) {
944 ship_tx_pkt_coalesce_wr(adap, txq);
948 /* If the max coalesce len or the max WR len is reached
949 * ship the WR and keep coalescing on.
951 if (unlikely((q->coalesce.len + mbuf->pkt_len >
953 (q->coalesce.flits + flits >
955 ship_tx_pkt_coalesce_wr(adap, txq);
962 /* start a new pkts WR, the WR header is not filled below */
963 wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkts_wr) :
964 sizeof(struct fw_eth_tx_pkts_vm_wr);
965 flits += wr_size / sizeof(__be64);
966 ndesc = flits_to_desc(q->coalesce.flits + flits);
967 credits = txq_avail(q) - ndesc;
969 if (unlikely(credits < 0 || wraps_around(q, ndesc)))
971 q->coalesce.flits += wr_size / sizeof(__be64);
972 q->coalesce.type = type;
973 q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] +
974 q->coalesce.flits * sizeof(__be64);
976 memcpy((void *)q->coalesce.ethmacdst,
977 rte_pktmbuf_mtod(mbuf, void *), fw_hdr_copy_len);
982 * tx_do_packet_coalesce - add an mbuf to a coalesce WR
983 * @txq: sge_eth_txq used send the mbuf
984 * @mbuf: mbuf to be sent
985 * @flits: flits needed for this mbuf
986 * @adap: adapter structure
987 * @pi: port_info structure
988 * @addr: mapped address of the mbuf
990 * Adds an mbuf to be sent as part of a coalesce WR by filling a
991 * ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and
992 * ulp_tx_sc_dsgl command.
994 static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq,
995 struct rte_mbuf *mbuf,
996 int flits, struct adapter *adap,
997 const struct port_info *pi,
998 dma_addr_t *addr, uint16_t nb_pkts)
1001 struct sge_txq *q = &txq->q;
1002 struct ulp_txpkt *mc;
1003 struct ulptx_idata *sc_imm;
1004 struct cpl_tx_pkt_core *cpl;
1005 struct tx_sw_desc *sd;
1006 unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len;
1008 if (q->coalesce.type == 0) {
1009 mc = (struct ulp_txpkt *)q->coalesce.ptr;
1010 mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) |
1011 V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) |
1013 mc->len = htonl(DIV_ROUND_UP(flits, 2));
1014 sc_imm = (struct ulptx_idata *)(mc + 1);
1015 sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) |
1017 sc_imm->len = htonl(sizeof(*cpl));
1018 end = (u64 *)mc + flits;
1019 cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1);
1021 end = (u64 *)q->coalesce.ptr + flits;
1022 cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr;
1025 /* update coalesce structure for this txq */
1026 q->coalesce.flits += flits;
1027 q->coalesce.ptr += flits * sizeof(__be64);
1028 q->coalesce.len += mbuf->pkt_len;
1030 /* fill the cpl message, same as in t4_eth_xmit, this should be kept
1031 * similar to t4_eth_xmit
1033 if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
1034 cntrl = hwcsum(adap->params.chip, mbuf) |
1036 txq->stats.tx_cso++;
1038 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1041 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1042 txq->stats.vlan_ins++;
1043 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci);
1046 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT));
1048 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) |
1049 V_TXPKT_PF(adap->pf));
1051 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id));
1052 cpl->pack = htons(0);
1053 cpl->len = htons(len);
1054 cpl->ctrl1 = cpu_to_be64(cntrl);
1055 write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0, addr);
1057 txq->stats.tx_bytes += len;
1059 sd = &q->sdesc[q->pidx + (idx >> 1)];
1061 if (sd->coalesce.idx) {
1064 for (i = 0; i < sd->coalesce.idx; i++) {
1065 rte_pktmbuf_free(sd->coalesce.mbuf[i]);
1066 sd->coalesce.mbuf[i] = NULL;
1071 /* store pointers to the mbuf and the sgl used in free_tx_desc.
1072 * each tx desc can hold two pointers corresponding to the value
1073 * of ETH_COALESCE_PKT_PER_DESC
1075 sd->coalesce.mbuf[idx & 1] = mbuf;
1076 sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1);
1077 sd->coalesce.idx = (idx & 1) + 1;
1079 /* Send the coalesced work request, only if max reached. However,
1080 * if lower latency is preferred over throughput, then don't wait
1081 * for coalescing the next Tx burst and send the packets now.
1084 if (q->coalesce.idx == adap->params.max_tx_coalesce_num ||
1085 (adap->devargs.tx_mode_latency && q->coalesce.idx >= nb_pkts))
1086 ship_tx_pkt_coalesce_wr(adap, txq);
1092 * t4_eth_xmit - add a packet to an Ethernet Tx queue
1093 * @txq: the egress queue
1096 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1098 int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf,
1101 const struct port_info *pi;
1102 struct cpl_tx_pkt_lso_core *lso;
1103 struct adapter *adap;
1104 struct rte_mbuf *m = mbuf;
1105 struct fw_eth_tx_pkt_wr *wr;
1106 struct fw_eth_tx_pkt_vm_wr *vmwr;
1107 struct cpl_tx_pkt_core *cpl;
1108 struct tx_sw_desc *d;
1109 dma_addr_t addr[m->nb_segs];
1110 unsigned int flits, ndesc, cflits;
1111 int l3hdr_len, l4hdr_len, eth_xtra_len;
1117 u32 max_pkt_len = txq->data->dev_conf.rxmode.max_rx_pkt_len;
1119 /* Reject xmit if queue is stopped */
1120 if (unlikely(txq->flags & EQ_STOPPED))
1124 * The chip min packet length is 10 octets but play safe and reject
1125 * anything shorter than an Ethernet header.
1127 if (unlikely(m->pkt_len < RTE_ETHER_HDR_LEN)) {
1129 rte_pktmbuf_free(m);
1133 if ((!(m->ol_flags & PKT_TX_TCP_SEG)) &&
1134 (unlikely(m->pkt_len > max_pkt_len)))
1137 pi = txq->data->dev_private;
1140 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1141 /* align the end of coalesce WR to a 512 byte boundary */
1142 txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8;
1144 if (!((m->ol_flags & PKT_TX_TCP_SEG) ||
1145 m->pkt_len > RTE_ETHER_MAX_LEN)) {
1146 if (should_tx_packet_coalesce(txq, mbuf, &cflits, adap)) {
1147 if (unlikely(map_mbuf(mbuf, addr) < 0)) {
1148 dev_warn(adap, "%s: mapping err for coalesce\n",
1150 txq->stats.mapping_err++;
1153 return tx_do_packet_coalesce(txq, mbuf, cflits, adap,
1160 if (txq->q.coalesce.idx)
1161 ship_tx_pkt_coalesce_wr(adap, txq);
1163 flits = calc_tx_flits(m, adap);
1164 ndesc = flits_to_desc(flits);
1165 credits = txq_avail(&txq->q) - ndesc;
1167 if (unlikely(credits < 0)) {
1168 dev_debug(adap, "%s: Tx ring %u full; credits = %d\n",
1169 __func__, txq->q.cntxt_id, credits);
1173 if (unlikely(map_mbuf(m, addr) < 0)) {
1174 txq->stats.mapping_err++;
1178 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1179 if (Q_IDXDIFF(&txq->q, equeidx) >= 64) {
1180 txq->q.equeidx = txq->q.pidx;
1181 wr_mid |= F_FW_WR_EQUEQ;
1184 wr = (void *)&txq->q.desc[txq->q.pidx];
1185 vmwr = (void *)&txq->q.desc[txq->q.pidx];
1186 wr->equiq_to_len16 = htonl(wr_mid);
1188 wr->r3 = rte_cpu_to_be_64(0);
1189 end = (u64 *)wr + flits;
1191 const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) +
1192 sizeof(vmwr->ethmacsrc) +
1193 sizeof(vmwr->ethtype) +
1194 sizeof(vmwr->vlantci));
1196 vmwr->r3[0] = rte_cpu_to_be_32(0);
1197 vmwr->r3[1] = rte_cpu_to_be_32(0);
1198 memcpy((void *)vmwr->ethmacdst, rte_pktmbuf_mtod(m, void *),
1200 end = (u64 *)vmwr + flits;
1204 len += sizeof(*cpl);
1206 /* Coalescing skipped and we send through normal path */
1207 if (!(m->ol_flags & PKT_TX_TCP_SEG)) {
1208 wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ?
1210 FW_ETH_TX_PKT_VM_WR) |
1211 V_FW_WR_IMMDLEN(len));
1213 cpl = (void *)(wr + 1);
1215 cpl = (void *)(vmwr + 1);
1216 if (m->ol_flags & PKT_TX_IP_CKSUM) {
1217 cntrl = hwcsum(adap->params.chip, m) |
1219 txq->stats.tx_cso++;
1223 lso = (void *)(wr + 1);
1225 lso = (void *)(vmwr + 1);
1226 v6 = (m->ol_flags & PKT_TX_IPV6) != 0;
1227 l3hdr_len = m->l3_len;
1228 l4hdr_len = m->l4_len;
1229 eth_xtra_len = m->l2_len - RTE_ETHER_HDR_LEN;
1230 len += sizeof(*lso);
1231 wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ?
1233 FW_ETH_TX_PKT_VM_WR) |
1234 V_FW_WR_IMMDLEN(len));
1235 lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) |
1236 F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
1238 V_LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1239 V_LSO_IPHDR_LEN(l3hdr_len / 4) |
1240 V_LSO_TCPHDR_LEN(l4hdr_len / 4));
1241 lso->ipid_ofst = htons(0);
1242 lso->mss = htons(m->tso_segsz);
1243 lso->seqno_offset = htonl(0);
1244 if (is_t4(adap->params.chip))
1245 lso->len = htonl(m->pkt_len);
1247 lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len));
1248 cpl = (void *)(lso + 1);
1250 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1251 cntrl = V_TXPKT_ETHHDR_LEN(eth_xtra_len);
1253 cntrl = V_T6_TXPKT_ETHHDR_LEN(eth_xtra_len);
1255 cntrl |= V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 :
1257 V_TXPKT_IPHDR_LEN(l3hdr_len);
1259 txq->stats.tx_cso += m->tso_segsz;
1262 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1263 txq->stats.vlan_ins++;
1264 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci);
1267 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT));
1269 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) |
1270 V_TXPKT_PF(adap->pf));
1272 cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id) |
1275 cpl->pack = htons(0);
1276 cpl->len = htons(m->pkt_len);
1277 cpl->ctrl1 = cpu_to_be64(cntrl);
1280 txq->stats.tx_bytes += m->pkt_len;
1281 last_desc = txq->q.pidx + ndesc - 1;
1282 if (last_desc >= (int)txq->q.size)
1283 last_desc -= txq->q.size;
1285 d = &txq->q.sdesc[last_desc];
1286 if (d->coalesce.idx) {
1289 for (i = 0; i < d->coalesce.idx; i++) {
1290 rte_pktmbuf_free(d->coalesce.mbuf[i]);
1291 d->coalesce.mbuf[i] = NULL;
1293 d->coalesce.idx = 0;
1295 write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1297 txq->q.sdesc[last_desc].mbuf = m;
1298 txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1299 txq_advance(&txq->q, ndesc);
1300 ring_tx_db(adap, &txq->q);
1305 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1306 * @q: the SGE control Tx queue
1308 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1309 * that send only immediate data (presently just the control queues) and
1310 * thus do not have any mbufs to release.
1312 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1314 int hw_cidx = ntohs(q->stat->cidx);
1315 int reclaim = hw_cidx - q->cidx;
1320 q->in_use -= reclaim;
1325 * is_imm - check whether a packet can be sent as immediate data
1328 * Returns true if a packet can be sent as a WR with immediate data.
1330 static inline int is_imm(const struct rte_mbuf *mbuf)
1332 return mbuf->pkt_len <= MAX_CTRL_WR_LEN;
1336 * inline_tx_mbuf: inline a packet's data into TX descriptors
1337 * @q: the TX queue where the packet will be inlined
1338 * @from: pointer to data portion of packet
1339 * @to: pointer after cpl where data has to be inlined
1340 * @len: length of data to inline
1342 * Inline a packet's contents directly to TX descriptors, starting at
1343 * the given position within the TX DMA ring.
1344 * Most of the complexity of this operation is dealing with wrap arounds
1345 * in the middle of the packet we want to inline.
1347 static void inline_tx_mbuf(const struct sge_txq *q, caddr_t from, caddr_t *to,
1350 int left = RTE_PTR_DIFF(q->stat, *to);
1352 if (likely((uintptr_t)*to + len <= (uintptr_t)q->stat)) {
1353 rte_memcpy(*to, from, len);
1354 *to = RTE_PTR_ADD(*to, len);
1356 rte_memcpy(*to, from, left);
1357 from = RTE_PTR_ADD(from, left);
1359 rte_memcpy((void *)q->desc, from, left);
1360 *to = RTE_PTR_ADD((void *)q->desc, left);
1365 * ctrl_xmit - send a packet through an SGE control Tx queue
1366 * @q: the control queue
1369 * Send a packet through an SGE control Tx queue. Packets sent through
1370 * a control queue must fit entirely as immediate data.
1372 static int ctrl_xmit(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf)
1375 struct fw_wr_hdr *wr;
1378 if (unlikely(!is_imm(mbuf))) {
1380 rte_pktmbuf_free(mbuf);
1384 reclaim_completed_tx_imm(&q->q);
1385 ndesc = DIV_ROUND_UP(mbuf->pkt_len, sizeof(struct tx_desc));
1386 t4_os_lock(&q->ctrlq_lock);
1388 q->full = txq_avail(&q->q) < ndesc ? 1 : 0;
1389 if (unlikely(q->full)) {
1390 t4_os_unlock(&q->ctrlq_lock);
1394 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1396 inline_tx_mbuf(&q->q, rte_pktmbuf_mtod(mbuf, caddr_t),
1397 &dst, mbuf->data_len);
1399 txq_advance(&q->q, ndesc);
1400 if (unlikely(txq_avail(&q->q) < 64))
1401 wr->lo |= htonl(F_FW_WR_EQUEQ);
1405 ring_tx_db(q->adapter, &q->q);
1406 t4_os_unlock(&q->ctrlq_lock);
1408 rte_pktmbuf_free(mbuf);
1413 * t4_mgmt_tx - send a management message
1414 * @q: the control queue
1415 * @mbuf: the packet containing the management message
1417 * Send a management message through control queue.
1419 int t4_mgmt_tx(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf)
1421 return ctrl_xmit(q, mbuf);
1425 * alloc_ring - allocate resources for an SGE descriptor ring
1426 * @dev: the PCI device's core device
1427 * @nelem: the number of descriptors
1428 * @elem_size: the size of each descriptor
1429 * @sw_size: the size of the SW state associated with each ring element
1430 * @phys: the physical address of the allocated ring
1431 * @metadata: address of the array holding the SW state for the ring
1432 * @stat_size: extra space in HW ring for status information
1433 * @node: preferred node for memory allocations
1435 * Allocates resources for an SGE descriptor ring, such as Tx queues,
1436 * free buffer lists, or response queues. Each SGE ring requires
1437 * space for its HW descriptors plus, optionally, space for the SW state
1438 * associated with each HW entry (the metadata). The function returns
1439 * three values: the virtual address for the HW ring (the return value
1440 * of the function), the bus address of the HW ring, and the address
1443 static void *alloc_ring(size_t nelem, size_t elem_size,
1444 size_t sw_size, dma_addr_t *phys, void *metadata,
1445 size_t stat_size, __rte_unused uint16_t queue_id,
1446 int socket_id, const char *z_name,
1447 const char *z_name_sw)
1449 size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size;
1450 const struct rte_memzone *tz;
1453 dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; "
1454 "stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;"
1455 " z_name_sw = %s\n", __func__, nelem, elem_size, sw_size,
1456 stat_size, queue_id, socket_id, z_name, z_name_sw);
1458 tz = rte_memzone_lookup(z_name);
1460 dev_debug(adapter, "%s: tz exists...returning existing..\n",
1466 * Allocate TX/RX ring hardware descriptors. A memzone large enough to
1467 * handle the maximum ring size is allocated in order to allow for
1468 * resizing in later calls to the queue setup function.
1470 tz = rte_memzone_reserve_aligned(z_name, len, socket_id,
1471 RTE_MEMZONE_IOVA_CONTIG, 4096);
1476 memset(tz->addr, 0, len);
1478 s = rte_zmalloc_socket(z_name_sw, nelem * sw_size,
1479 RTE_CACHE_LINE_SIZE, socket_id);
1482 dev_err(adapter, "%s: failed to get sw_ring memory\n",
1488 *(void **)metadata = s;
1490 *phys = (uint64_t)tz->iova;
1494 #define CXGB4_MSG_AN ((void *)1)
1497 * rspq_next - advance to the next entry in a response queue
1500 * Updates the state of a response queue to advance it to the next entry.
1502 static inline void rspq_next(struct sge_rspq *q)
1504 q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len);
1505 if (unlikely(++q->cidx == q->size)) {
1508 q->cur_desc = q->desc;
1512 static inline void cxgbe_set_mbuf_info(struct rte_mbuf *pkt, uint32_t ptype,
1515 pkt->packet_type |= ptype;
1516 pkt->ol_flags |= ol_flags;
1519 static inline void cxgbe_fill_mbuf_info(struct adapter *adap,
1520 const struct cpl_rx_pkt *cpl,
1521 struct rte_mbuf *pkt)
1526 if (adap->params.tp.rx_pkt_encap)
1527 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
1529 err_vec = ntohs(cpl->err_vec);
1531 csum_ok = cpl->csum_calc && !err_vec;
1534 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER_VLAN,
1535 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
1537 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER, 0);
1539 if (cpl->l2info & htonl(F_RXF_IP))
1540 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV4,
1541 csum_ok ? PKT_RX_IP_CKSUM_GOOD :
1542 PKT_RX_IP_CKSUM_BAD);
1543 else if (cpl->l2info & htonl(F_RXF_IP6))
1544 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV6,
1545 csum_ok ? PKT_RX_IP_CKSUM_GOOD :
1546 PKT_RX_IP_CKSUM_BAD);
1548 if (cpl->l2info & htonl(F_RXF_TCP))
1549 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_TCP,
1550 csum_ok ? PKT_RX_L4_CKSUM_GOOD :
1551 PKT_RX_L4_CKSUM_BAD);
1552 else if (cpl->l2info & htonl(F_RXF_UDP))
1553 cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_UDP,
1554 csum_ok ? PKT_RX_L4_CKSUM_GOOD :
1555 PKT_RX_L4_CKSUM_BAD);
1559 * process_responses - process responses from an SGE response queue
1560 * @q: the ingress queue to process
1561 * @budget: how many responses can be processed in this round
1562 * @rx_pkts: mbuf to put the pkts
1564 * Process responses from an SGE response queue up to the supplied budget.
1565 * Responses include received packets as well as control messages from FW
1568 * Additionally choose the interrupt holdoff time for the next interrupt
1569 * on this queue. If the system is under memory shortage use a fairly
1570 * long delay to help recovery.
1572 static int process_responses(struct sge_rspq *q, int budget,
1573 struct rte_mbuf **rx_pkts)
1575 int ret = 0, rsp_type;
1576 int budget_left = budget;
1577 const struct rsp_ctrl *rc;
1578 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1580 while (likely(budget_left)) {
1581 if (q->cidx == ntohs(q->stat->pidx))
1584 rc = (const struct rsp_ctrl *)
1585 ((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc)));
1588 * Ensure response has been read
1591 rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1593 if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) {
1594 struct sge *s = &q->adapter->sge;
1595 unsigned int stat_pidx;
1598 stat_pidx = ntohs(q->stat->pidx);
1599 stat_pidx_diff = P_IDXDIFF(q, stat_pidx);
1600 while (stat_pidx_diff && budget_left) {
1601 const struct rx_sw_desc *rsd =
1602 &rxq->fl.sdesc[rxq->fl.cidx];
1603 const struct rss_header *rss_hdr =
1604 (const void *)q->cur_desc;
1605 const struct cpl_rx_pkt *cpl =
1606 (const void *)&q->cur_desc[1];
1607 struct rte_mbuf *pkt, *npkt;
1610 rc = (const struct rsp_ctrl *)
1611 ((const char *)q->cur_desc +
1612 (q->iqe_len - sizeof(*rc)));
1614 rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1615 if (unlikely(rsp_type != X_RSPD_TYPE_FLBUF))
1618 len = ntohl(rc->pldbuflen_qid);
1619 BUG_ON(!(len & F_RSPD_NEWBUF));
1622 len = G_RSPD_LEN(len);
1625 /* Chain mbufs into len if necessary */
1627 struct rte_mbuf *new_pkt = rsd->buf;
1629 bufsz = min(get_buf_size(q->adapter,
1631 new_pkt->data_len = bufsz;
1632 unmap_rx_buf(&rxq->fl);
1634 npkt->next = new_pkt;
1637 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1642 cxgbe_fill_mbuf_info(q->adapter, cpl, pkt);
1644 if (!rss_hdr->filter_tid &&
1645 rss_hdr->hash_type) {
1646 pkt->ol_flags |= PKT_RX_RSS_HASH;
1648 ntohl(rss_hdr->hash_val);
1652 pkt->vlan_tci = ntohs(cpl->vlan);
1654 rte_pktmbuf_adj(pkt, s->pktshift);
1656 rxq->stats.rx_bytes += pkt->pkt_len;
1657 rx_pkts[budget - budget_left] = pkt;
1664 } else if (likely(rsp_type == X_RSPD_TYPE_CPL)) {
1665 ret = q->handler(q, q->cur_desc, NULL);
1667 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1670 if (unlikely(ret)) {
1671 /* couldn't process descriptor, back off for recovery */
1672 q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1681 * If this is a Response Queue with an associated Free List and
1682 * there's room for another chunk of new Free List buffer pointers,
1683 * refill the Free List.
1686 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1687 __refill_fl(q->adapter, &rxq->fl);
1689 return budget - budget_left;
1692 int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts,
1693 unsigned int budget, unsigned int *work_done)
1695 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1696 unsigned int cidx_inc;
1697 unsigned int params;
1700 *work_done = process_responses(q, budget, rx_pkts);
1703 cidx_inc = R_IDXDIFF(q, gts_idx);
1705 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1706 __refill_fl(q->adapter, &rxq->fl);
1708 params = q->intr_params;
1709 q->next_intr_params = params;
1710 val = V_CIDXINC(cidx_inc) | V_SEINTARM(params);
1712 if (unlikely(!q->bar2_addr)) {
1713 u32 reg = is_pf4(q->adapter) ? MYPF_REG(A_SGE_PF_GTS) :
1714 T4VF_SGE_BASE_ADDR +
1717 t4_write_reg(q->adapter, reg,
1718 val | V_INGRESSQID((u32)q->cntxt_id));
1720 writel(val | V_INGRESSQID(q->bar2_qid),
1721 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_GTS));
1722 /* This Write memory Barrier will force the
1723 * write to the User Doorbell area to be
1728 q->gts_idx = q->cidx;
1734 * bar2_address - return the BAR2 address for an SGE Queue's Registers
1735 * @adapter: the adapter
1736 * @qid: the SGE Queue ID
1737 * @qtype: the SGE Queue Type (Egress or Ingress)
1738 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
1740 * Returns the BAR2 address for the SGE Queue Registers associated with
1741 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
1742 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
1743 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
1744 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
1746 static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid,
1747 enum t4_bar2_qtype qtype,
1748 unsigned int *pbar2_qid)
1753 ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid);
1757 return adapter->bar2 + bar2_qoffset;
1760 int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_rspq *rq)
1762 struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1763 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1765 return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0,
1766 rq->cntxt_id, fl_id, 0xffff);
1769 int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_rspq *rq)
1771 struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1772 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1774 return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0,
1775 rq->cntxt_id, fl_id, 0xffff);
1779 * @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
1780 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
1782 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
1783 struct rte_eth_dev *eth_dev, int intr_idx,
1784 struct sge_fl *fl, rspq_handler_t hnd, int cong,
1785 struct rte_mempool *mp, int queue_id, int socket_id)
1789 struct sge *s = &adap->sge;
1790 struct port_info *pi = eth_dev->data->dev_private;
1791 char z_name[RTE_MEMZONE_NAMESIZE];
1792 char z_name_sw[RTE_MEMZONE_NAMESIZE];
1793 unsigned int nb_refill;
1796 /* Size needs to be multiple of 16, including status entry. */
1797 iq->size = cxgbe_roundup(iq->size, 16);
1799 snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s",
1800 eth_dev->data->port_id, queue_id,
1801 fwevtq ? "fwq_ring" : "rx_ring");
1802 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1804 iq->desc = alloc_ring(iq->size, iq->iqe_len, 0, &iq->phys_addr, NULL, 0,
1805 queue_id, socket_id, z_name, z_name_sw);
1809 memset(&c, 0, sizeof(c));
1810 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1811 F_FW_CMD_WRITE | F_FW_CMD_EXEC);
1814 pciechan = pi->tx_chan;
1815 c.op_to_vfn |= htonl(V_FW_IQ_CMD_PFN(adap->pf) |
1816 V_FW_IQ_CMD_VFN(0));
1818 c.iqns_to_fl0congen =
1819 htonl(F_FW_IQ_CMD_IQFLINTCONGEN |
1820 V_FW_IQ_CMD_IQTYPE(cong ?
1822 FW_IQ_IQTYPE_OFLD) |
1825 pciechan = pi->port_id;
1828 c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1830 c.type_to_iqandstindex =
1831 htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1832 V_FW_IQ_CMD_IQASYNCH(fwevtq) |
1833 V_FW_IQ_CMD_VIID(pi->viid) |
1834 V_FW_IQ_CMD_IQANDST(intr_idx < 0) |
1835 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_STATUS_PAGE) |
1836 V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
1838 c.iqdroprss_to_iqesize =
1839 htons(V_FW_IQ_CMD_IQPCIECH(pciechan) |
1840 F_FW_IQ_CMD_IQGTSMODE |
1841 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
1842 V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
1843 c.iqsize = htons(iq->size);
1844 c.iqaddr = cpu_to_be64(iq->phys_addr);
1847 struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq,
1849 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1852 * Allocate the ring for the hardware free list (with space
1853 * for its status page) along with the associated software
1854 * descriptor ring. The free list size needs to be a multiple
1855 * of the Egress Queue Unit and at least 2 Egress Units larger
1856 * than the SGE's Egress Congrestion Threshold
1857 * (fl_starve_thres - 1).
1859 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
1860 fl->size = s->fl_starve_thres - 1 + 2 * 8;
1861 fl->size = cxgbe_roundup(fl->size, 8);
1863 snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s",
1864 eth_dev->data->port_id, queue_id,
1865 fwevtq ? "fwq_ring" : "fl_ring");
1866 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1868 fl->desc = alloc_ring(fl->size, sizeof(__be64),
1869 sizeof(struct rx_sw_desc),
1870 &fl->addr, &fl->sdesc, s->stat_len,
1871 queue_id, socket_id, z_name, z_name_sw);
1876 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
1877 c.iqns_to_fl0congen |=
1878 htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1879 (unlikely(rxq->usembufs) ?
1880 0 : F_FW_IQ_CMD_FL0PACKEN) |
1881 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1882 F_FW_IQ_CMD_FL0PADEN);
1883 if (is_pf4(adap) && cong >= 0)
1884 c.iqns_to_fl0congen |=
1885 htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1886 F_FW_IQ_CMD_FL0CONGCIF |
1887 F_FW_IQ_CMD_FL0CONGEN);
1889 /* In T6, for egress queue type FL there is internal overhead
1890 * of 16B for header going into FLM module.
1891 * Hence maximum allowed burst size will be 448 bytes.
1893 c.fl0dcaen_to_fl0cidxfthresh =
1894 htons(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ?
1895 X_FETCHBURSTMIN_128B :
1896 X_FETCHBURSTMIN_64B) |
1897 V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ?
1898 X_FETCHBURSTMAX_512B :
1899 X_FETCHBURSTMAX_256B));
1900 c.fl0size = htons(flsz);
1901 c.fl0addr = cpu_to_be64(fl->addr);
1905 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
1907 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
1911 iq->cur_desc = iq->desc;
1915 iq->next_intr_params = iq->intr_params;
1916 iq->cntxt_id = ntohs(c.iqid);
1917 iq->abs_id = ntohs(c.physiqid);
1918 iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS,
1920 iq->size--; /* subtract status entry */
1921 iq->stat = (void *)&iq->desc[iq->size * 8];
1922 iq->eth_dev = eth_dev;
1924 iq->port_id = pi->pidx;
1927 /* set offset to -1 to distinguish ingress queues without FL */
1928 iq->offset = fl ? 0 : -1;
1931 fl->cntxt_id = ntohs(c.fl0id);
1936 fl->alloc_failed = 0;
1939 * Note, we must initialize the BAR2 Free List User Doorbell
1940 * information before refilling the Free List!
1942 fl->bar2_addr = bar2_address(adap, fl->cntxt_id,
1943 T4_BAR2_QTYPE_EGRESS,
1946 nb_refill = refill_fl(adap, fl, fl_cap(fl));
1947 if (nb_refill != fl_cap(fl)) {
1949 dev_err(adap, "%s: mbuf alloc failed with error: %d\n",
1956 * For T5 and later we attempt to set up the Congestion Manager values
1957 * of the new RX Ethernet Queue. This should really be handled by
1958 * firmware because it's more complex than any host driver wants to
1959 * get involved with and it's different per chip and this is almost
1960 * certainly wrong. Formware would be wrong as well, but it would be
1961 * a lot easier to fix in one place ... For now we do something very
1962 * simple (and hopefully less wrong).
1964 if (is_pf4(adap) && !is_t4(adap->params.chip) && cong >= 0) {
1968 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1969 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1970 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id));
1972 val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE);
1974 val = V_CONMCTXT_CNGTPMODE(
1975 X_CONMCTXT_CNGTPMODE_CHANNEL);
1976 for (i = 0; i < 4; i++) {
1977 if (cong & (1 << i))
1978 val |= V_CONMCTXT_CNGCHMAP(1 <<
1982 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1985 dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n",
1986 iq->cntxt_id, -ret);
1992 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
1993 iq->cntxt_id, fl->cntxt_id, 0xffff);
2002 if (fl && fl->desc) {
2003 rte_free(fl->sdesc);
2011 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id,
2012 unsigned int abs_id)
2016 q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS,
2023 q->coalesce.idx = 0;
2024 q->coalesce.len = 0;
2025 q->coalesce.flits = 0;
2026 q->last_coal_idx = 0;
2028 q->stat = (void *)&q->desc[q->size];
2031 int t4_sge_eth_txq_start(struct sge_eth_txq *txq)
2034 * TODO: For flow-control, queue may be stopped waiting to reclaim
2036 * Ensure queue is in EQ_STOPPED state before starting it.
2038 if (!(txq->flags & EQ_STOPPED))
2041 txq->flags &= ~EQ_STOPPED;
2046 int t4_sge_eth_txq_stop(struct sge_eth_txq *txq)
2048 txq->flags |= EQ_STOPPED;
2053 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2054 struct rte_eth_dev *eth_dev, uint16_t queue_id,
2055 unsigned int iqid, int socket_id)
2058 struct fw_eq_eth_cmd c;
2059 struct sge *s = &adap->sge;
2060 struct port_info *pi = eth_dev->data->dev_private;
2061 char z_name[RTE_MEMZONE_NAMESIZE];
2062 char z_name_sw[RTE_MEMZONE_NAMESIZE];
2065 /* Add status entries */
2066 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2068 snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s",
2069 eth_dev->data->port_id, queue_id, "tx_ring");
2070 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
2072 txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc),
2073 sizeof(struct tx_sw_desc), &txq->q.phys_addr,
2074 &txq->q.sdesc, s->stat_len, queue_id,
2075 socket_id, z_name, z_name_sw);
2079 memset(&c, 0, sizeof(c));
2080 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2081 F_FW_CMD_WRITE | F_FW_CMD_EXEC);
2083 pciechan = pi->tx_chan;
2084 c.op_to_vfn |= htonl(V_FW_EQ_ETH_CMD_PFN(adap->pf) |
2085 V_FW_EQ_ETH_CMD_VFN(0));
2087 pciechan = pi->port_id;
2090 c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC |
2091 F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16));
2092 c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE |
2093 V_FW_EQ_ETH_CMD_VIID(pi->viid));
2094 c.fetchszm_to_iqid =
2095 htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
2096 V_FW_EQ_ETH_CMD_PCIECHN(pciechan) |
2097 F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid));
2099 htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2100 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2101 V_FW_EQ_ETH_CMD_EQSIZE(nentries));
2102 c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr);
2105 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2107 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
2109 rte_free(txq->q.sdesc);
2110 txq->q.sdesc = NULL;
2115 init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)),
2116 G_FW_EQ_ETH_CMD_PHYSEQID(ntohl(c.physeqid_pkd)));
2118 txq->stats.pkts = 0;
2119 txq->stats.tx_cso = 0;
2120 txq->stats.coal_wr = 0;
2121 txq->stats.vlan_ins = 0;
2122 txq->stats.tx_bytes = 0;
2123 txq->stats.coal_pkts = 0;
2124 txq->stats.mapping_err = 0;
2125 txq->flags |= EQ_STOPPED;
2126 txq->eth_dev = eth_dev;
2127 txq->data = eth_dev->data;
2128 t4_os_lock_init(&txq->txq_lock);
2132 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2133 struct rte_eth_dev *eth_dev, uint16_t queue_id,
2134 unsigned int iqid, int socket_id)
2137 struct fw_eq_ctrl_cmd c;
2138 struct sge *s = &adap->sge;
2139 struct port_info *pi = eth_dev->data->dev_private;
2140 char z_name[RTE_MEMZONE_NAMESIZE];
2141 char z_name_sw[RTE_MEMZONE_NAMESIZE];
2143 /* Add status entries */
2144 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2146 snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s",
2147 eth_dev->data->port_id, queue_id, "ctrl_tx_ring");
2148 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
2150 txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc),
2151 0, &txq->q.phys_addr,
2153 socket_id, z_name, z_name_sw);
2157 memset(&c, 0, sizeof(c));
2158 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2159 F_FW_CMD_WRITE | F_FW_CMD_EXEC |
2160 V_FW_EQ_CTRL_CMD_PFN(adap->pf) |
2161 V_FW_EQ_CTRL_CMD_VFN(0));
2162 c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_ALLOC |
2163 F_FW_EQ_CTRL_CMD_EQSTART | (sizeof(c) / 16));
2164 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(0));
2165 c.physeqid_pkd = htonl(0);
2166 c.fetchszm_to_iqid =
2167 htonl(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
2168 V_FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2169 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(iqid));
2171 htonl(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2172 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2173 V_FW_EQ_CTRL_CMD_EQSIZE(nentries));
2174 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2176 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2182 init_txq(adap, &txq->q, G_FW_EQ_CTRL_CMD_EQID(ntohl(c.cmpliqid_eqid)),
2183 G_FW_EQ_CTRL_CMD_EQID(ntohl(c. physeqid_pkd)));
2184 txq->adapter = adap;
2189 static void free_txq(struct sge_txq *q)
2196 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2199 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2201 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
2202 rq->cntxt_id, fl_id, 0xffff);
2208 free_rx_bufs(fl, fl->avail);
2209 rte_free(fl->sdesc);
2217 * Clear all queues of the port
2219 * Note: This function must only be called after rx and tx path
2220 * of the port have been disabled.
2222 void t4_sge_eth_clear_queues(struct port_info *pi)
2225 struct adapter *adap = pi->adapter;
2226 struct sge_eth_rxq *rxq = &adap->sge.ethrxq[pi->first_qset];
2227 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
2229 for (i = 0; i < pi->n_rx_qsets; i++, rxq++) {
2231 t4_sge_eth_rxq_stop(adap, &rxq->rspq);
2233 for (i = 0; i < pi->n_tx_qsets; i++, txq++) {
2235 struct sge_txq *q = &txq->q;
2237 t4_sge_eth_txq_stop(txq);
2238 reclaim_completed_tx(q);
2239 free_tx_desc(q, q->size);
2240 q->equeidx = q->pidx;
2245 void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq)
2247 if (rxq->rspq.desc) {
2248 t4_sge_eth_rxq_stop(adap, &rxq->rspq);
2249 free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL);
2253 void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq)
2256 t4_sge_eth_txq_stop(txq);
2257 reclaim_completed_tx(&txq->q);
2258 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id);
2259 free_tx_desc(&txq->q, txq->q.size);
2260 rte_free(txq->q.sdesc);
2265 void t4_sge_tx_monitor_start(struct adapter *adap)
2267 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
2270 void t4_sge_tx_monitor_stop(struct adapter *adap)
2272 rte_eal_alarm_cancel(tx_timer_cb, (void *)adap);
2276 * t4_free_sge_resources - free SGE resources
2277 * @adap: the adapter
2279 * Frees resources used by the SGE queue sets.
2281 void t4_free_sge_resources(struct adapter *adap)
2284 struct sge_eth_rxq *rxq = &adap->sge.ethrxq[0];
2285 struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
2287 /* clean up Ethernet Tx/Rx queues */
2288 for (i = 0; i < adap->sge.max_ethqsets; i++, rxq++, txq++) {
2289 /* Free only the queues allocated */
2290 if (rxq->rspq.desc) {
2291 t4_sge_eth_rxq_release(adap, rxq);
2292 rxq->rspq.eth_dev = NULL;
2295 t4_sge_eth_txq_release(adap, txq);
2296 txq->eth_dev = NULL;
2300 /* clean up control Tx queues */
2301 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2302 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2305 reclaim_completed_tx_imm(&cq->q);
2306 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
2312 if (adap->sge.fw_evtq.desc)
2313 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2317 * t4_sge_init - initialize SGE
2318 * @adap: the adapter
2320 * Performs SGE initialization needed every time after a chip reset.
2321 * We do not initialize any of the queues here, instead the driver
2322 * top-level must request those individually.
2324 * Called in two different modes:
2326 * 1. Perform actual hardware initialization and record hard-coded
2327 * parameters which were used. This gets used when we're the
2328 * Master PF and the Firmware Configuration File support didn't
2329 * work for some reason.
2331 * 2. We're not the Master PF or initialization was performed with
2332 * a Firmware Configuration File. In this case we need to grab
2333 * any of the SGE operating parameters that we need to have in
2334 * order to do our job and make sure we can live with them ...
2336 static int t4_sge_init_soft(struct adapter *adap)
2338 struct sge *s = &adap->sge;
2339 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2340 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2341 u32 ingress_rx_threshold;
2344 * Verify that CPL messages are going to the Ingress Queue for
2345 * process_responses() and that only packet data is going to the
2348 if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) !=
2349 V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2350 dev_err(adap, "bad SGE CPL MODE\n");
2355 * Validate the Host Buffer Register Array indices that we want to
2358 * XXX Note that we should really read through the Host Buffer Size
2359 * XXX register array and find the indices of the Buffer Sizes which
2360 * XXX meet our needs!
2362 #define READ_FL_BUF(x) \
2363 t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32))
2365 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2366 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2367 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2368 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2371 * We only bother using the Large Page logic if the Large Page Buffer
2372 * is larger than our Page Size Buffer.
2374 if (fl_large_pg <= fl_small_pg)
2380 * The Page Size Buffer must be exactly equal to our Page Size and the
2381 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2383 if (fl_small_pg != CXGBE_PAGE_SIZE ||
2384 (fl_large_pg & (fl_large_pg - 1)) != 0) {
2385 dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n",
2386 fl_small_pg, fl_large_pg);
2390 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2392 if (adap->use_unpacked_mode) {
2395 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) {
2396 dev_err(adap, "bad SGE FL small MTU %d\n",
2400 if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2401 dev_err(adap, "bad SGE FL large MTU %d\n",
2410 * Retrieve our RX interrupt holdoff timer values and counter
2411 * threshold values from the SGE parameters.
2413 timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1);
2414 timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3);
2415 timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5);
2416 s->timer_val[0] = core_ticks_to_us(adap,
2417 G_TIMERVALUE0(timer_value_0_and_1));
2418 s->timer_val[1] = core_ticks_to_us(adap,
2419 G_TIMERVALUE1(timer_value_0_and_1));
2420 s->timer_val[2] = core_ticks_to_us(adap,
2421 G_TIMERVALUE2(timer_value_2_and_3));
2422 s->timer_val[3] = core_ticks_to_us(adap,
2423 G_TIMERVALUE3(timer_value_2_and_3));
2424 s->timer_val[4] = core_ticks_to_us(adap,
2425 G_TIMERVALUE4(timer_value_4_and_5));
2426 s->timer_val[5] = core_ticks_to_us(adap,
2427 G_TIMERVALUE5(timer_value_4_and_5));
2429 ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD);
2430 s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold);
2431 s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold);
2432 s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold);
2433 s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold);
2438 int t4_sge_init(struct adapter *adap)
2440 struct sge *s = &adap->sge;
2441 u32 sge_control, sge_conm_ctrl;
2442 int ret, egress_threshold;
2445 * Ingress Padding Boundary and Egress Status Page Size are set up by
2446 * t4_fixup_host_params().
2448 sge_control = t4_read_reg(adap, A_SGE_CONTROL);
2449 s->pktshift = G_PKTSHIFT(sge_control);
2450 s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
2451 s->fl_align = t4_fl_pkt_align(adap);
2452 ret = t4_sge_init_soft(adap);
2454 dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n",
2460 * A FL with <= fl_starve_thres buffers is starving and a periodic
2461 * timer will attempt to refill it. This needs to be larger than the
2462 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2463 * stuck waiting for new packets while the SGE is waiting for us to
2464 * give it more Free List entries. (Note that the SGE's Egress
2465 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2466 * there was only a single field to control this. For T5 there's the
2467 * original field which now only applies to Unpacked Mode Free List
2468 * buffers and a new field which only applies to Packed Mode Free List
2471 sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL);
2472 if (is_t4(adap->params.chip) || adap->use_unpacked_mode)
2473 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
2475 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
2476 s->fl_starve_thres = 2 * egress_threshold + 1;
2481 int t4vf_sge_init(struct adapter *adap)
2483 struct sge_params *sge_params = &adap->params.sge;
2484 u32 sge_ingress_queues_per_page;
2485 u32 sge_egress_queues_per_page;
2486 u32 sge_control, sge_control2;
2487 u32 fl_small_pg, fl_large_pg;
2488 u32 sge_ingress_rx_threshold;
2489 u32 sge_timer_value_0_and_1;
2490 u32 sge_timer_value_2_and_3;
2491 u32 sge_timer_value_4_and_5;
2492 u32 sge_congestion_control;
2493 struct sge *s = &adap->sge;
2494 unsigned int s_hps, s_qpp;
2495 u32 sge_host_page_size;
2496 u32 params[7], vals[7];
2499 /* query basic params from fw */
2500 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2501 V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL));
2502 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2503 V_FW_PARAMS_PARAM_XYZ(A_SGE_HOST_PAGE_SIZE));
2504 params[2] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2505 V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE0));
2506 params[3] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2507 V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE1));
2508 params[4] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2509 V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_0_AND_1));
2510 params[5] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2511 V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_2_AND_3));
2512 params[6] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2513 V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_4_AND_5));
2514 v = t4vf_query_params(adap, 7, params, vals);
2515 if (v != FW_SUCCESS)
2518 sge_control = vals[0];
2519 sge_host_page_size = vals[1];
2520 fl_small_pg = vals[2];
2521 fl_large_pg = vals[3];
2522 sge_timer_value_0_and_1 = vals[4];
2523 sge_timer_value_2_and_3 = vals[5];
2524 sge_timer_value_4_and_5 = vals[6];
2527 * Start by vetting the basic SGE parameters which have been set up by
2528 * the Physical Function Driver.
2531 /* We only bother using the Large Page logic if the Large Page Buffer
2532 * is larger than our Page Size Buffer.
2534 if (fl_large_pg <= fl_small_pg)
2537 /* The Page Size Buffer must be exactly equal to our Page Size and the
2538 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2540 if (fl_small_pg != CXGBE_PAGE_SIZE ||
2541 (fl_large_pg & (fl_large_pg - 1)) != 0) {
2542 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2543 fl_small_pg, fl_large_pg);
2547 if ((sge_control & F_RXPKTCPLMODE) !=
2548 V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2549 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2554 /* Grab ingress packing boundary from SGE_CONTROL2 for */
2555 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2556 V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL2));
2557 v = t4vf_query_params(adap, 1, params, vals);
2558 if (v != FW_SUCCESS) {
2559 dev_err(adapter, "Unable to get SGE Control2; "
2560 "probably old firmware.\n");
2563 sge_control2 = vals[0];
2565 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2566 V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_RX_THRESHOLD));
2567 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2568 V_FW_PARAMS_PARAM_XYZ(A_SGE_CONM_CTRL));
2569 v = t4vf_query_params(adap, 2, params, vals);
2570 if (v != FW_SUCCESS)
2572 sge_ingress_rx_threshold = vals[0];
2573 sge_congestion_control = vals[1];
2574 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2575 V_FW_PARAMS_PARAM_XYZ(A_SGE_EGRESS_QUEUES_PER_PAGE_VF));
2576 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
2577 V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_QUEUES_PER_PAGE_VF));
2578 v = t4vf_query_params(adap, 2, params, vals);
2579 if (v != FW_SUCCESS) {
2580 dev_warn(adap, "Unable to get VF SGE Queues/Page; "
2581 "probably old firmware.\n");
2584 sge_egress_queues_per_page = vals[0];
2585 sge_ingress_queues_per_page = vals[1];
2588 * We need the Queues/Page for our VF. This is based on the
2589 * PF from which we're instantiated and is indexed in the
2590 * register we just read.
2592 s_hps = (S_HOSTPAGESIZEPF0 +
2593 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adap->pf);
2595 ((sge_host_page_size >> s_hps) & M_HOSTPAGESIZEPF0);
2597 s_qpp = (S_QUEUESPERPAGEPF0 +
2598 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adap->pf);
2599 sge_params->eq_qpp =
2600 ((sge_egress_queues_per_page >> s_qpp)
2601 & M_QUEUESPERPAGEPF0);
2602 sge_params->iq_qpp =
2603 ((sge_ingress_queues_per_page >> s_qpp)
2604 & M_QUEUESPERPAGEPF0);
2607 * Now translate the queried parameters into our internal forms.
2610 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2611 s->stat_len = ((sge_control & F_EGRSTATUSPAGESIZE)
2613 s->pktshift = G_PKTSHIFT(sge_control);
2614 s->fl_align = t4vf_fl_pkt_align(adap, sge_control, sge_control2);
2617 * A FL with <= fl_starve_thres buffers is starving and a periodic
2618 * timer will attempt to refill it. This needs to be larger than the
2619 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2620 * stuck waiting for new packets while the SGE is waiting for us to
2621 * give it more Free List entries. (Note that the SGE's Egress
2622 * Congestion Threshold is in units of 2 Free List pointers.)
2624 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
2626 s->fl_starve_thres =
2627 G_EGRTHRESHOLDPACKING(sge_congestion_control);
2631 s->fl_starve_thres =
2632 G_T6_EGRTHRESHOLDPACKING(sge_congestion_control);
2635 s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2638 * Save RX interrupt holdoff timer values and counter
2639 * threshold values from the SGE parameters.
2641 s->timer_val[0] = core_ticks_to_us(adap,
2642 G_TIMERVALUE0(sge_timer_value_0_and_1));
2643 s->timer_val[1] = core_ticks_to_us(adap,
2644 G_TIMERVALUE1(sge_timer_value_0_and_1));
2645 s->timer_val[2] = core_ticks_to_us(adap,
2646 G_TIMERVALUE2(sge_timer_value_2_and_3));
2647 s->timer_val[3] = core_ticks_to_us(adap,
2648 G_TIMERVALUE3(sge_timer_value_2_and_3));
2649 s->timer_val[4] = core_ticks_to_us(adap,
2650 G_TIMERVALUE4(sge_timer_value_4_and_5));
2651 s->timer_val[5] = core_ticks_to_us(adap,
2652 G_TIMERVALUE5(sge_timer_value_4_and_5));
2653 s->counter_val[0] = G_THRESHOLD_0(sge_ingress_rx_threshold);
2654 s->counter_val[1] = G_THRESHOLD_1(sge_ingress_rx_threshold);
2655 s->counter_val[2] = G_THRESHOLD_2(sge_ingress_rx_threshold);
2656 s->counter_val[3] = G_THRESHOLD_3(sge_ingress_rx_threshold);