1 /*******************************************************************************
3 Copyright (c) 2001-2015, Intel Corporation
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
32 ***************************************************************************/
35 * 82543GC Gigabit Ethernet Controller (Fiber)
36 * 82543GC Gigabit Ethernet Controller (Copper)
37 * 82544EI Gigabit Ethernet Controller (Copper)
38 * 82544EI Gigabit Ethernet Controller (Fiber)
39 * 82544GC Gigabit Ethernet Controller (Copper)
40 * 82544GC Gigabit Ethernet Controller (LOM)
43 #include "e1000_api.h"
45 STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw);
46 STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw);
47 STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw);
48 STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
50 STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
52 STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
53 STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw);
54 STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw);
55 STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw);
56 STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw);
57 STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw);
58 STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw);
59 STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw);
60 STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
61 STATIC s32 e1000_led_on_82543(struct e1000_hw *hw);
62 STATIC s32 e1000_led_off_82543(struct e1000_hw *hw);
63 STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
65 STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
66 STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
67 STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
68 STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
69 STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
70 STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
71 STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
72 STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
74 STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
75 STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
78 * e1000_init_phy_params_82543 - Init PHY func ptrs.
79 * @hw: pointer to the HW structure
81 STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
83 struct e1000_phy_info *phy = &hw->phy;
84 s32 ret_val = E1000_SUCCESS;
86 DEBUGFUNC("e1000_init_phy_params_82543");
88 if (hw->phy.media_type != e1000_media_type_copper) {
89 phy->type = e1000_phy_none;
92 phy->ops.power_up = e1000_power_up_phy_copper;
93 phy->ops.power_down = e1000_power_down_phy_copper;
97 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
98 phy->reset_delay_us = 10000;
99 phy->type = e1000_phy_m88;
101 /* Function Pointers */
102 phy->ops.check_polarity = e1000_check_polarity_m88;
103 phy->ops.commit = e1000_phy_sw_reset_generic;
104 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
105 phy->ops.get_cable_length = e1000_get_cable_length_m88;
106 phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
107 phy->ops.read_reg = (hw->mac.type == e1000_82543)
108 ? e1000_read_phy_reg_82543
109 : e1000_read_phy_reg_m88;
110 phy->ops.reset = (hw->mac.type == e1000_82543)
111 ? e1000_phy_hw_reset_82543
112 : e1000_phy_hw_reset_generic;
113 phy->ops.write_reg = (hw->mac.type == e1000_82543)
114 ? e1000_write_phy_reg_82543
115 : e1000_write_phy_reg_m88;
116 phy->ops.get_info = e1000_get_phy_info_m88;
119 * The external PHY of the 82543 can be in a funky state.
120 * Resetting helps us read the PHY registers for acquiring
123 if (!e1000_init_phy_disabled_82543(hw)) {
124 ret_val = phy->ops.reset(hw);
126 DEBUGOUT("Resetting PHY during init failed.\n");
132 ret_val = e1000_get_phy_id(hw);
137 switch (hw->mac.type) {
139 if (phy->id != M88E1000_E_PHY_ID) {
140 ret_val = -E1000_ERR_PHY;
145 if (phy->id != M88E1000_I_PHY_ID) {
146 ret_val = -E1000_ERR_PHY;
151 ret_val = -E1000_ERR_PHY;
161 * e1000_init_nvm_params_82543 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
164 STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
166 struct e1000_nvm_info *nvm = &hw->nvm;
168 DEBUGFUNC("e1000_init_nvm_params_82543");
170 nvm->type = e1000_nvm_eeprom_microwire;
172 nvm->delay_usec = 50;
173 nvm->address_bits = 6;
174 nvm->opcode_bits = 3;
176 /* Function Pointers */
177 nvm->ops.read = e1000_read_nvm_microwire;
178 nvm->ops.update = e1000_update_nvm_checksum_generic;
179 nvm->ops.valid_led_default = e1000_valid_led_default_generic;
180 nvm->ops.validate = e1000_validate_nvm_checksum_generic;
181 nvm->ops.write = e1000_write_nvm_microwire;
183 return E1000_SUCCESS;
187 * e1000_init_mac_params_82543 - Init MAC func ptrs.
188 * @hw: pointer to the HW structure
190 STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
192 struct e1000_mac_info *mac = &hw->mac;
194 DEBUGFUNC("e1000_init_mac_params_82543");
197 switch (hw->device_id) {
198 case E1000_DEV_ID_82543GC_FIBER:
199 case E1000_DEV_ID_82544EI_FIBER:
200 hw->phy.media_type = e1000_media_type_fiber;
203 hw->phy.media_type = e1000_media_type_copper;
207 /* Set mta register count */
208 mac->mta_reg_count = 128;
209 /* Set rar entry count */
210 mac->rar_entry_count = E1000_RAR_ENTRIES;
212 /* Function pointers */
214 /* bus type/speed/width */
215 mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
217 mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
219 mac->ops.reset_hw = e1000_reset_hw_82543;
220 /* hw initialization */
221 mac->ops.init_hw = e1000_init_hw_82543;
223 mac->ops.setup_link = e1000_setup_link_82543;
224 /* physical interface setup */
225 mac->ops.setup_physical_interface =
226 (hw->phy.media_type == e1000_media_type_copper)
227 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
229 mac->ops.check_for_link =
230 (hw->phy.media_type == e1000_media_type_copper)
231 ? e1000_check_for_copper_link_82543
232 : e1000_check_for_fiber_link_82543;
234 mac->ops.get_link_up_info =
235 (hw->phy.media_type == e1000_media_type_copper)
236 ? e1000_get_speed_and_duplex_copper_generic
237 : e1000_get_speed_and_duplex_fiber_serdes_generic;
238 /* multicast address update */
239 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
241 mac->ops.write_vfta = e1000_write_vfta_82543;
243 mac->ops.clear_vfta = e1000_clear_vfta_generic;
244 /* turn on/off LED */
245 mac->ops.led_on = e1000_led_on_82543;
246 mac->ops.led_off = e1000_led_off_82543;
247 /* clear hardware counters */
248 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
250 /* Set tbi compatibility */
251 if ((hw->mac.type != e1000_82543) ||
252 (hw->phy.media_type == e1000_media_type_fiber))
253 e1000_set_tbi_compatibility_82543(hw, false);
255 return E1000_SUCCESS;
259 * e1000_init_function_pointers_82543 - Init func ptrs.
260 * @hw: pointer to the HW structure
262 * Called to initialize all function pointers and parameters.
264 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
266 DEBUGFUNC("e1000_init_function_pointers_82543");
268 hw->mac.ops.init_params = e1000_init_mac_params_82543;
269 hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
270 hw->phy.ops.init_params = e1000_init_phy_params_82543;
274 * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
275 * @hw: pointer to the HW structure
277 * Returns the current status of 10-bit Interface (TBI) compatibility
278 * (enabled/disabled).
280 STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
282 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
285 DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
287 if (hw->mac.type != e1000_82543) {
288 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
292 state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
299 * e1000_set_tbi_compatibility_82543 - Set TBI compatibility
300 * @hw: pointer to the HW structure
301 * @state: enable/disable TBI compatibility
303 * Enables or disabled 10-bit Interface (TBI) compatibility.
305 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
307 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
309 DEBUGFUNC("e1000_set_tbi_compatibility_82543");
311 if (hw->mac.type != e1000_82543) {
312 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
317 dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
319 dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
326 * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
327 * @hw: pointer to the HW structure
329 * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
330 * (enabled/disabled).
332 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
334 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
337 DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
339 if (hw->mac.type != e1000_82543) {
340 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
344 state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
351 * e1000_set_tbi_sbp_82543 - Set TBI SBP
352 * @hw: pointer to the HW structure
353 * @state: enable/disable TBI store bad packet
355 * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
357 STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
359 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
361 DEBUGFUNC("e1000_set_tbi_sbp_82543");
363 if (state && e1000_tbi_compatibility_enabled_82543(hw))
364 dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
366 dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
372 * e1000_init_phy_disabled_82543 - Returns init PHY status
373 * @hw: pointer to the HW structure
375 * Returns the current status of whether PHY initialization is disabled.
376 * True if PHY initialization is disabled else false.
378 STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
380 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
383 DEBUGFUNC("e1000_init_phy_disabled_82543");
385 if (hw->mac.type != e1000_82543) {
390 ret_val = dev_spec->init_phy_disabled;
397 * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
398 * @hw: pointer to the HW structure
399 * @stats: Struct containing statistic register values
400 * @frame_len: The length of the frame in question
401 * @mac_addr: The Ethernet destination address of the frame in question
402 * @max_frame_size: The maximum frame size
404 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
406 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
407 struct e1000_hw_stats *stats, u32 frame_len,
408 u8 *mac_addr, u32 max_frame_size)
410 if (!(e1000_tbi_sbp_enabled_82543(hw)))
413 /* First adjust the frame length. */
416 * We need to adjust the statistics counters, since the hardware
417 * counters overcount this packet as a CRC error and undercount
418 * the packet as a good packet
420 /* This packet should not be counted as a CRC error. */
422 /* This packet does count as a Good Packet Received. */
425 /* Adjust the Good Octets received counters */
426 stats->gorc += frame_len;
429 * Is this a broadcast or multicast? Check broadcast first,
430 * since the test for a multicast frame will test positive on
433 if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
434 /* Broadcast packet */
436 else if (*mac_addr & 0x01)
437 /* Multicast packet */
441 * In this case, the hardware has over counted the number of
444 if ((frame_len == max_frame_size) && (stats->roc > 0))
448 * Adjust the bin counters when the extra byte put the frame in the
449 * wrong bin. Remember that the frame_len was adjusted above.
451 if (frame_len == 64) {
454 } else if (frame_len == 127) {
457 } else if (frame_len == 255) {
460 } else if (frame_len == 511) {
463 } else if (frame_len == 1023) {
466 } else if (frame_len == 1522) {
475 * e1000_read_phy_reg_82543 - Read PHY register
476 * @hw: pointer to the HW structure
477 * @offset: register offset to be read
478 * @data: pointer to the read data
480 * Reads the PHY at offset and stores the information read to data.
482 STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
485 s32 ret_val = E1000_SUCCESS;
487 DEBUGFUNC("e1000_read_phy_reg_82543");
489 if (offset > MAX_PHY_REG_ADDRESS) {
490 DEBUGOUT1("PHY Address %d is out of range\n", offset);
491 ret_val = -E1000_ERR_PARAM;
496 * We must first send a preamble through the MDIO pin to signal the
497 * beginning of an MII instruction. This is done by sending 32
498 * consecutive "1" bits.
500 e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
503 * Now combine the next few fields that are required for a read
504 * operation. We use this method instead of calling the
505 * e1000_shift_out_mdi_bits routine five different times. The format
506 * of an MII read instruction consists of a shift out of 14 bits and
507 * is defined as follows:
508 * <Preamble><SOF><Op Code><Phy Addr><Offset>
509 * followed by a shift in of 18 bits. This first two bits shifted in
510 * are TurnAround bits used to avoid contention on the MDIO pin when a
511 * READ operation is performed. These two bits are thrown away
512 * followed by a shift in of 16 bits which contains the desired data.
514 mdic = (offset | (hw->phy.addr << 5) |
515 (PHY_OP_READ << 10) | (PHY_SOF << 12));
517 e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
520 * Now that we've shifted out the read command to the MII, we need to
521 * "shift in" the 16-bit value (18 total bits) of the requested PHY
524 *data = e1000_shift_in_mdi_bits_82543(hw);
531 * e1000_write_phy_reg_82543 - Write PHY register
532 * @hw: pointer to the HW structure
533 * @offset: register offset to be written
534 * @data: pointer to the data to be written at offset
536 * Writes data to the PHY at offset.
538 STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
541 s32 ret_val = E1000_SUCCESS;
543 DEBUGFUNC("e1000_write_phy_reg_82543");
545 if (offset > MAX_PHY_REG_ADDRESS) {
546 DEBUGOUT1("PHY Address %d is out of range\n", offset);
547 ret_val = -E1000_ERR_PARAM;
552 * We'll need to use the SW defined pins to shift the write command
553 * out to the PHY. We first send a preamble to the PHY to signal the
554 * beginning of the MII instruction. This is done by sending 32
555 * consecutive "1" bits.
557 e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
560 * Now combine the remaining required fields that will indicate a
561 * write operation. We use this method instead of calling the
562 * e1000_shift_out_mdi_bits routine for each field in the command. The
563 * format of a MII write instruction is as follows:
564 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
566 mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
567 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
571 e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
578 * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
579 * @hw: pointer to the HW structure
580 * @ctrl: pointer to the control register
582 * Raise the management data input clock by setting the MDC bit in the control
585 STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
588 * Raise the clock input to the Management Data Clock (by setting the
589 * MDC bit), and then delay a sufficient amount of time.
591 E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
592 E1000_WRITE_FLUSH(hw);
597 * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
598 * @hw: pointer to the HW structure
599 * @ctrl: pointer to the control register
601 * Lower the management data input clock by clearing the MDC bit in the
604 STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
607 * Lower the clock input to the Management Data Clock (by clearing the
608 * MDC bit), and then delay a sufficient amount of time.
610 E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
611 E1000_WRITE_FLUSH(hw);
616 * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
617 * @hw: pointer to the HW structure
618 * @data: data to send to the PHY
619 * @count: number of bits to shift out
621 * We need to shift 'count' bits out to the PHY. So, the value in the
622 * "data" parameter will be shifted out to the PHY one bit at a time.
623 * In order to do this, "data" must be broken down into bits.
625 STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
631 * We need to shift "count" number of bits out to the PHY. So, the
632 * value in the "data" parameter will be shifted out to the PHY one
633 * bit at a time. In order to do this, "data" must be broken down
637 mask <<= (count - 1);
639 ctrl = E1000_READ_REG(hw, E1000_CTRL);
641 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
642 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
646 * A "1" is shifted out to the PHY by setting the MDIO bit to
647 * "1" and then raising and lowering the Management Data Clock.
648 * A "0" is shifted out to the PHY by setting the MDIO bit to
649 * "0" and then raising and lowering the clock.
652 ctrl |= E1000_CTRL_MDIO;
654 ctrl &= ~E1000_CTRL_MDIO;
656 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
657 E1000_WRITE_FLUSH(hw);
661 e1000_raise_mdi_clk_82543(hw, &ctrl);
662 e1000_lower_mdi_clk_82543(hw, &ctrl);
669 * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
670 * @hw: pointer to the HW structure
672 * In order to read a register from the PHY, we need to shift 18 bits
673 * in from the PHY. Bits are "shifted in" by raising the clock input to
674 * the PHY (setting the MDC bit), and then reading the value of the data out
677 STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
684 * In order to read a register from the PHY, we need to shift in a
685 * total of 18 bits from the PHY. The first two bit (turnaround)
686 * times are used to avoid contention on the MDIO pin when a read
687 * operation is performed. These two bits are ignored by us and
688 * thrown away. Bits are "shifted in" by raising the input to the
689 * Management Data Clock (setting the MDC bit) and then reading the
690 * value of the MDIO bit.
692 ctrl = E1000_READ_REG(hw, E1000_CTRL);
695 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
698 ctrl &= ~E1000_CTRL_MDIO_DIR;
699 ctrl &= ~E1000_CTRL_MDIO;
701 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
702 E1000_WRITE_FLUSH(hw);
705 * Raise and lower the clock before reading in the data. This accounts
706 * for the turnaround bits. The first clock occurred when we clocked
707 * out the last bit of the Register Address.
709 e1000_raise_mdi_clk_82543(hw, &ctrl);
710 e1000_lower_mdi_clk_82543(hw, &ctrl);
712 for (data = 0, i = 0; i < 16; i++) {
714 e1000_raise_mdi_clk_82543(hw, &ctrl);
715 ctrl = E1000_READ_REG(hw, E1000_CTRL);
716 /* Check to see if we shifted in a "1". */
717 if (ctrl & E1000_CTRL_MDIO)
719 e1000_lower_mdi_clk_82543(hw, &ctrl);
722 e1000_raise_mdi_clk_82543(hw, &ctrl);
723 e1000_lower_mdi_clk_82543(hw, &ctrl);
729 * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
730 * @hw: pointer to the HW structure
732 * Calls the function to force speed and duplex for the m88 PHY, and
733 * if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
734 * then call the function for polarity reversal workaround.
736 STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
740 DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
742 ret_val = e1000_phy_force_speed_duplex_m88(hw);
746 if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
748 ret_val = e1000_polarity_reversal_workaround_82543(hw);
755 * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
756 * @hw: pointer to the HW structure
758 * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
759 * inadvertently. To workaround the issue, we disable the transmitter on
760 * the PHY until we have established the link partner's link parameters.
762 STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
764 s32 ret_val = E1000_SUCCESS;
769 if (!(hw->phy.ops.write_reg))
772 /* Polarity reversal workaround for forced 10F/10H links. */
774 /* Disable the transmitter on the PHY */
776 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
779 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
783 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
788 * This loop will early-out if the NO link condition has been met.
789 * In other words, DO NOT use e1000_phy_has_link_generic() here.
791 for (i = PHY_FORCE_TIME; i > 0; i--) {
793 * Read the MII Status Register and wait for Link Status bit
797 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
801 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
805 if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
810 /* Recommended delay time after link has been lost */
811 msec_delay_irq(1000);
813 /* Now we will re-enable the transmitter on the PHY */
815 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
819 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
823 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
827 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
831 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
836 * Read the MII Status Register and wait for Link Status bit
839 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
848 * e1000_phy_hw_reset_82543 - PHY hardware reset
849 * @hw: pointer to the HW structure
851 * Sets the PHY_RESET_DIR bit in the extended device control register
852 * to put the PHY into a reset and waits for completion. Once the reset
853 * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
856 STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
861 DEBUGFUNC("e1000_phy_hw_reset_82543");
864 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
865 * bit to put the PHY into reset...
867 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
868 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
869 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
870 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
871 E1000_WRITE_FLUSH(hw);
875 /* ...then take it out of reset. */
876 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
877 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
878 E1000_WRITE_FLUSH(hw);
882 if (!(hw->phy.ops.get_cfg_done))
883 return E1000_SUCCESS;
885 ret_val = hw->phy.ops.get_cfg_done(hw);
891 * e1000_reset_hw_82543 - Reset hardware
892 * @hw: pointer to the HW structure
894 * This resets the hardware into a known state.
896 STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw)
899 s32 ret_val = E1000_SUCCESS;
901 DEBUGFUNC("e1000_reset_hw_82543");
903 DEBUGOUT("Masking off all interrupts\n");
904 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
906 E1000_WRITE_REG(hw, E1000_RCTL, 0);
907 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
908 E1000_WRITE_FLUSH(hw);
910 e1000_set_tbi_sbp_82543(hw, false);
913 * Delay to allow any outstanding PCI transactions to complete before
914 * resetting the device
918 ctrl = E1000_READ_REG(hw, E1000_CTRL);
920 DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
921 if (hw->mac.type == e1000_82543) {
922 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
925 * The 82544 can't ACK the 64-bit write when issuing the
926 * reset, so use IO-mapping as a workaround.
928 E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
932 * After MAC reset, force reload of NVM to restore power-on
933 * settings to device.
935 hw->nvm.ops.reload(hw);
938 /* Masking off and clearing any pending interrupts */
939 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
940 E1000_READ_REG(hw, E1000_ICR);
946 * e1000_init_hw_82543 - Initialize hardware
947 * @hw: pointer to the HW structure
949 * This inits the hardware readying it for operation.
951 STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw)
953 struct e1000_mac_info *mac = &hw->mac;
954 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
959 DEBUGFUNC("e1000_init_hw_82543");
961 /* Disabling VLAN filtering */
962 E1000_WRITE_REG(hw, E1000_VET, 0);
963 mac->ops.clear_vfta(hw);
965 /* Setup the receive address. */
966 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
968 /* Zero out the Multicast HASH table */
969 DEBUGOUT("Zeroing the MTA\n");
970 for (i = 0; i < mac->mta_reg_count; i++) {
971 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
972 E1000_WRITE_FLUSH(hw);
976 * Set the PCI priority bit correctly in the CTRL register. This
977 * determines if the adapter gives priority to receives, or if it
978 * gives equal priority to transmits and receives.
980 if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
981 ctrl = E1000_READ_REG(hw, E1000_CTRL);
982 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
985 e1000_pcix_mmrbc_workaround_generic(hw);
987 /* Setup link and flow control */
988 ret_val = mac->ops.setup_link(hw);
991 * Clear all of the statistics registers (clear on read). It is
992 * important that we do this after we have tried to establish link
993 * because the symbol error count will increment wildly if there
996 e1000_clear_hw_cntrs_82543(hw);
1002 * e1000_setup_link_82543 - Setup flow control and link settings
1003 * @hw: pointer to the HW structure
1005 * Read the EEPROM to determine the initial polarity value and write the
1006 * extended device control register with the information before calling
1007 * the generic setup link function, which does the following:
1008 * Determines which flow control settings to use, then configures flow
1009 * control. Calls the appropriate media-specific link configuration
1010 * function. Assuming the adapter has a valid link partner, a valid link
1011 * should be established. Assumes the hardware has previously been reset
1012 * and the transmitter and receiver are not enabled.
1014 STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw)
1020 DEBUGFUNC("e1000_setup_link_82543");
1023 * Take the 4 bits from NVM word 0xF that determine the initial
1024 * polarity value for the SW controlled pins, and setup the
1025 * Extended Device Control reg with that info.
1026 * This is needed because one of the SW controlled pins is used for
1027 * signal detection. So this should be done before phy setup.
1029 if (hw->mac.type == e1000_82543) {
1030 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1032 DEBUGOUT("NVM Read Error\n");
1033 ret_val = -E1000_ERR_NVM;
1036 ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1037 NVM_SWDPIO_EXT_SHIFT);
1038 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1041 ret_val = e1000_setup_link_generic(hw);
1048 * e1000_setup_copper_link_82543 - Configure copper link settings
1049 * @hw: pointer to the HW structure
1051 * Configures the link for auto-neg or forced speed and duplex. Then we check
1052 * for link, once link is established calls to configure collision distance
1053 * and flow control are called.
1055 STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1061 DEBUGFUNC("e1000_setup_copper_link_82543");
1063 ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1065 * With 82543, we need to force speed and duplex on the MAC
1066 * equal to what the PHY speed and duplex configuration is.
1067 * In addition, we need to perform a hardware reset on the
1068 * PHY to take it out of reset.
1070 if (hw->mac.type == e1000_82543) {
1071 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1072 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1073 ret_val = hw->phy.ops.reset(hw);
1077 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1078 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1081 /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1082 ret_val = e1000_copper_link_setup_m88(hw);
1086 if (hw->mac.autoneg) {
1088 * Setup autoneg and flow control advertisement and perform
1091 ret_val = e1000_copper_link_autoneg(hw);
1096 * PHY will be set to 10H, 10F, 100H or 100F
1097 * depending on user settings.
1099 DEBUGOUT("Forcing Speed and Duplex\n");
1100 ret_val = e1000_phy_force_speed_duplex_82543(hw);
1102 DEBUGOUT("Error Forcing Speed and Duplex\n");
1108 * Check link status. Wait up to 100 microseconds for link to become
1111 ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1118 DEBUGOUT("Valid link established!!!\n");
1119 /* Config the MAC and PHY after link is up */
1120 if (hw->mac.type == e1000_82544) {
1121 hw->mac.ops.config_collision_dist(hw);
1123 ret_val = e1000_config_mac_to_phy_82543(hw);
1127 ret_val = e1000_config_fc_after_link_up_generic(hw);
1129 DEBUGOUT("Unable to establish link!!!\n");
1137 * e1000_setup_fiber_link_82543 - Setup link for fiber
1138 * @hw: pointer to the HW structure
1140 * Configures collision distance and flow control for fiber links. Upon
1141 * successful setup, poll for link.
1143 STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1148 DEBUGFUNC("e1000_setup_fiber_link_82543");
1150 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1152 /* Take the link out of reset */
1153 ctrl &= ~E1000_CTRL_LRST;
1155 hw->mac.ops.config_collision_dist(hw);
1157 ret_val = e1000_commit_fc_settings_generic(hw);
1161 DEBUGOUT("Auto-negotiation enabled\n");
1163 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1164 E1000_WRITE_FLUSH(hw);
1168 * For these adapters, the SW definable pin 1 is cleared when the
1169 * optics detect a signal. If we have a signal, then poll for a
1170 * "Link-Up" indication.
1172 if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
1173 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1175 DEBUGOUT("No signal detected\n");
1182 * e1000_check_for_copper_link_82543 - Check for link (Copper)
1183 * @hw: pointer to the HW structure
1185 * Checks the phy for link, if link exists, do the following:
1186 * - check for downshift
1187 * - do polarity workaround (if necessary)
1188 * - configure collision distance
1189 * - configure flow control after link up
1190 * - configure tbi compatibility
1192 STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1194 struct e1000_mac_info *mac = &hw->mac;
1200 DEBUGFUNC("e1000_check_for_copper_link_82543");
1202 if (!mac->get_link_status) {
1203 ret_val = E1000_SUCCESS;
1207 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1212 goto out; /* No link detected */
1214 mac->get_link_status = false;
1216 e1000_check_downshift_generic(hw);
1219 * If we are forcing speed/duplex, then we can return since
1220 * we have already determined whether we have link or not.
1222 if (!mac->autoneg) {
1224 * If speed and duplex are forced to 10H or 10F, then we will
1225 * implement the polarity reversal workaround. We disable
1226 * interrupts first, and upon returning, place the devices
1227 * interrupt state to its previous value except for the link
1228 * status change interrupt which will happened due to the
1229 * execution of this workaround.
1231 if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1232 E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1233 ret_val = e1000_polarity_reversal_workaround_82543(hw);
1234 icr = E1000_READ_REG(hw, E1000_ICR);
1235 E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1236 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1239 ret_val = -E1000_ERR_CONFIG;
1244 * We have a M88E1000 PHY and Auto-Neg is enabled. If we
1245 * have Si on board that is 82544 or newer, Auto
1246 * Speed Detection takes care of MAC speed/duplex
1247 * configuration. So we only need to configure Collision
1248 * Distance in the MAC. Otherwise, we need to force
1249 * speed/duplex on the MAC to the current PHY speed/duplex
1252 if (mac->type == e1000_82544)
1253 hw->mac.ops.config_collision_dist(hw);
1255 ret_val = e1000_config_mac_to_phy_82543(hw);
1257 DEBUGOUT("Error configuring MAC to PHY settings\n");
1263 * Configure Flow Control now that Auto-Neg has completed.
1264 * First, we need to restore the desired flow control
1265 * settings because we may have had to re-autoneg with a
1266 * different link partner.
1268 ret_val = e1000_config_fc_after_link_up_generic(hw);
1270 DEBUGOUT("Error configuring flow control\n");
1273 * At this point we know that we are on copper and we have
1274 * auto-negotiated link. These are conditions for checking the link
1275 * partner capability register. We use the link speed to determine if
1276 * TBI compatibility needs to be turned on or off. If the link is not
1277 * at gigabit speed, then TBI compatibility is not needed. If we are
1278 * at gigabit speed, we turn on TBI compatibility.
1280 if (e1000_tbi_compatibility_enabled_82543(hw)) {
1281 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1283 DEBUGOUT("Error getting link speed and duplex\n");
1286 if (speed != SPEED_1000) {
1288 * If link speed is not set to gigabit speed,
1289 * we do not need to enable TBI compatibility.
1291 if (e1000_tbi_sbp_enabled_82543(hw)) {
1293 * If we previously were in the mode,
1296 e1000_set_tbi_sbp_82543(hw, false);
1297 rctl = E1000_READ_REG(hw, E1000_RCTL);
1298 rctl &= ~E1000_RCTL_SBP;
1299 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1303 * If TBI compatibility is was previously off,
1304 * turn it on. For compatibility with a TBI link
1305 * partner, we will store bad packets. Some
1306 * frames have an additional byte on the end and
1307 * will look like CRC errors to to the hardware.
1309 if (!e1000_tbi_sbp_enabled_82543(hw)) {
1310 e1000_set_tbi_sbp_82543(hw, true);
1311 rctl = E1000_READ_REG(hw, E1000_RCTL);
1312 rctl |= E1000_RCTL_SBP;
1313 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1322 * e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1323 * @hw: pointer to the HW structure
1325 * Checks for link up on the hardware. If link is not up and we have
1326 * a signal, then we need to force link up.
1328 STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1330 struct e1000_mac_info *mac = &hw->mac;
1331 u32 rxcw, ctrl, status;
1332 s32 ret_val = E1000_SUCCESS;
1334 DEBUGFUNC("e1000_check_for_fiber_link_82543");
1336 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1337 status = E1000_READ_REG(hw, E1000_STATUS);
1338 rxcw = E1000_READ_REG(hw, E1000_RXCW);
1341 * If we don't have link (auto-negotiation failed or link partner
1342 * cannot auto-negotiate), the cable is plugged in (we have signal),
1343 * and our link partner is not trying to auto-negotiate with us (we
1344 * are receiving idles or data), we need to force link up. We also
1345 * need to give auto-negotiation time to complete, in case the cable
1346 * was just plugged in. The autoneg_failed flag does this.
1348 /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1349 if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1350 (!(status & E1000_STATUS_LU)) &&
1351 (!(rxcw & E1000_RXCW_C))) {
1352 if (!mac->autoneg_failed) {
1353 mac->autoneg_failed = true;
1357 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1359 /* Disable auto-negotiation in the TXCW register */
1360 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1362 /* Force link-up and also force full-duplex. */
1363 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1364 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1365 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1367 /* Configure Flow Control after forcing link up. */
1368 ret_val = e1000_config_fc_after_link_up_generic(hw);
1370 DEBUGOUT("Error configuring flow control\n");
1373 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1375 * If we are forcing link and we are receiving /C/ ordered
1376 * sets, re-enable auto-negotiation in the TXCW register
1377 * and disable forced link in the Device Control register
1378 * in an attempt to auto-negotiate with our link partner.
1380 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1381 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1382 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1384 mac->serdes_has_link = true;
1392 * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1393 * @hw: pointer to the HW structure
1395 * For the 82543 silicon, we need to set the MAC to match the settings
1396 * of the PHY, even if the PHY is auto-negotiating.
1398 STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1401 s32 ret_val = E1000_SUCCESS;
1404 DEBUGFUNC("e1000_config_mac_to_phy_82543");
1406 if (!(hw->phy.ops.read_reg))
1409 /* Set the bits to force speed and duplex */
1410 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1411 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1412 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1415 * Set up duplex in the Device Control and Transmit Control
1416 * registers depending on negotiated values.
1418 ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1422 ctrl &= ~E1000_CTRL_FD;
1423 if (phy_data & M88E1000_PSSR_DPLX)
1424 ctrl |= E1000_CTRL_FD;
1426 hw->mac.ops.config_collision_dist(hw);
1429 * Set up speed in the Device Control register depending on
1430 * negotiated values.
1432 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1433 ctrl |= E1000_CTRL_SPD_1000;
1434 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1435 ctrl |= E1000_CTRL_SPD_100;
1437 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1444 * e1000_write_vfta_82543 - Write value to VLAN filter table
1445 * @hw: pointer to the HW structure
1446 * @offset: the 32-bit offset in which to write the value to.
1447 * @value: the 32-bit value to write at location offset.
1449 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
1452 STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1456 DEBUGFUNC("e1000_write_vfta_82543");
1458 if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1459 temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1460 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1461 E1000_WRITE_FLUSH(hw);
1462 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1463 E1000_WRITE_FLUSH(hw);
1465 e1000_write_vfta_generic(hw, offset, value);
1470 * e1000_led_on_82543 - Turn on SW controllable LED
1471 * @hw: pointer to the HW structure
1473 * Turns the SW defined LED on.
1475 STATIC s32 e1000_led_on_82543(struct e1000_hw *hw)
1477 u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1479 DEBUGFUNC("e1000_led_on_82543");
1481 if (hw->mac.type == e1000_82544 &&
1482 hw->phy.media_type == e1000_media_type_copper) {
1483 /* Clear SW-definable Pin 0 to turn on the LED */
1484 ctrl &= ~E1000_CTRL_SWDPIN0;
1485 ctrl |= E1000_CTRL_SWDPIO0;
1487 /* Fiber 82544 and all 82543 use this method */
1488 ctrl |= E1000_CTRL_SWDPIN0;
1489 ctrl |= E1000_CTRL_SWDPIO0;
1491 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1493 return E1000_SUCCESS;
1497 * e1000_led_off_82543 - Turn off SW controllable LED
1498 * @hw: pointer to the HW structure
1500 * Turns the SW defined LED off.
1502 STATIC s32 e1000_led_off_82543(struct e1000_hw *hw)
1504 u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1506 DEBUGFUNC("e1000_led_off_82543");
1508 if (hw->mac.type == e1000_82544 &&
1509 hw->phy.media_type == e1000_media_type_copper) {
1510 /* Set SW-definable Pin 0 to turn off the LED */
1511 ctrl |= E1000_CTRL_SWDPIN0;
1512 ctrl |= E1000_CTRL_SWDPIO0;
1514 ctrl &= ~E1000_CTRL_SWDPIN0;
1515 ctrl |= E1000_CTRL_SWDPIO0;
1517 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1519 return E1000_SUCCESS;
1523 * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1524 * @hw: pointer to the HW structure
1526 * Clears the hardware counters by reading the counter registers.
1528 STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1530 DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1532 e1000_clear_hw_cntrs_base_generic(hw);
1534 E1000_READ_REG(hw, E1000_PRC64);
1535 E1000_READ_REG(hw, E1000_PRC127);
1536 E1000_READ_REG(hw, E1000_PRC255);
1537 E1000_READ_REG(hw, E1000_PRC511);
1538 E1000_READ_REG(hw, E1000_PRC1023);
1539 E1000_READ_REG(hw, E1000_PRC1522);
1540 E1000_READ_REG(hw, E1000_PTC64);
1541 E1000_READ_REG(hw, E1000_PTC127);
1542 E1000_READ_REG(hw, E1000_PTC255);
1543 E1000_READ_REG(hw, E1000_PTC511);
1544 E1000_READ_REG(hw, E1000_PTC1023);
1545 E1000_READ_REG(hw, E1000_PTC1522);
1547 E1000_READ_REG(hw, E1000_ALGNERRC);
1548 E1000_READ_REG(hw, E1000_RXERRC);
1549 E1000_READ_REG(hw, E1000_TNCRS);
1550 E1000_READ_REG(hw, E1000_CEXTERR);
1551 E1000_READ_REG(hw, E1000_TSCTC);
1552 E1000_READ_REG(hw, E1000_TSCTFC);