52800376e4684e0b3702823ab06d672374aacd51
[dpdk.git] / drivers / net / e1000 / base / e1000_i210.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2020 Intel Corporation
3  */
4
5 #include "e1000_api.h"
6
7
8 STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
9 STATIC void e1000_release_nvm_i210(struct e1000_hw *hw);
10 STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
11 STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
12                                 u16 *data);
13 STATIC s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
14 STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
15
16 /**
17  *  e1000_acquire_nvm_i210 - Request for access to EEPROM
18  *  @hw: pointer to the HW structure
19  *
20  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
21  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
22  *  Return successful if access grant bit set, else clear the request for
23  *  EEPROM access and return -E1000_ERR_NVM (-1).
24  **/
25 STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
26 {
27         s32 ret_val;
28
29         DEBUGFUNC("e1000_acquire_nvm_i210");
30
31         ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
32
33         return ret_val;
34 }
35
36 /**
37  *  e1000_release_nvm_i210 - Release exclusive access to EEPROM
38  *  @hw: pointer to the HW structure
39  *
40  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
41  *  then release the semaphores acquired.
42  **/
43 STATIC void e1000_release_nvm_i210(struct e1000_hw *hw)
44 {
45         DEBUGFUNC("e1000_release_nvm_i210");
46
47         e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
48 }
49
50 /**
51  *  e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
52  *  @hw: pointer to the HW structure
53  *  @mask: specifies which semaphore to acquire
54  *
55  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
56  *  will also specify which port we're acquiring the lock for.
57  **/
58 s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
59 {
60         u32 swfw_sync;
61         u32 swmask = mask;
62         u32 fwmask = mask << 16;
63         s32 ret_val = E1000_SUCCESS;
64         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
65
66         DEBUGFUNC("e1000_acquire_swfw_sync_i210");
67
68         while (i < timeout) {
69                 if (e1000_get_hw_semaphore_i210(hw)) {
70                         ret_val = -E1000_ERR_SWFW_SYNC;
71                         goto out;
72                 }
73
74                 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
75                 if (!(swfw_sync & (fwmask | swmask)))
76                         break;
77
78                 /*
79                  * Firmware currently using resource (fwmask)
80                  * or other software thread using resource (swmask)
81                  */
82                 e1000_put_hw_semaphore_generic(hw);
83                 msec_delay_irq(5);
84                 i++;
85         }
86
87         if (i == timeout) {
88                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
89                 ret_val = -E1000_ERR_SWFW_SYNC;
90                 goto out;
91         }
92
93         swfw_sync |= swmask;
94         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
95
96         e1000_put_hw_semaphore_generic(hw);
97
98 out:
99         return ret_val;
100 }
101
102 /**
103  *  e1000_release_swfw_sync_i210 - Release SW/FW semaphore
104  *  @hw: pointer to the HW structure
105  *  @mask: specifies which semaphore to acquire
106  *
107  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
108  *  will also specify which port we're releasing the lock for.
109  **/
110 void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
111 {
112         u32 swfw_sync;
113
114         DEBUGFUNC("e1000_release_swfw_sync_i210");
115
116         while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
117                 ; /* Empty */
118
119         swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
120         swfw_sync &= (u32)~mask;
121         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
122
123         e1000_put_hw_semaphore_generic(hw);
124 }
125
126 /**
127  *  e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
128  *  @hw: pointer to the HW structure
129  *
130  *  Acquire the HW semaphore to access the PHY or NVM
131  **/
132 STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
133 {
134         u32 swsm;
135         s32 timeout = hw->nvm.word_size + 1;
136         s32 i = 0;
137
138         DEBUGFUNC("e1000_get_hw_semaphore_i210");
139
140         /* Get the SW semaphore */
141         while (i < timeout) {
142                 swsm = E1000_READ_REG(hw, E1000_SWSM);
143                 if (!(swsm & E1000_SWSM_SMBI))
144                         break;
145
146                 usec_delay(50);
147                 i++;
148         }
149
150         if (i == timeout) {
151                 /* In rare circumstances, the SW semaphore may already be held
152                  * unintentionally. Clear the semaphore once before giving up.
153                  */
154                 if (hw->dev_spec._82575.clear_semaphore_once) {
155                         hw->dev_spec._82575.clear_semaphore_once = false;
156                         e1000_put_hw_semaphore_generic(hw);
157                         for (i = 0; i < timeout; i++) {
158                                 swsm = E1000_READ_REG(hw, E1000_SWSM);
159                                 if (!(swsm & E1000_SWSM_SMBI))
160                                         break;
161
162                                 usec_delay(50);
163                         }
164                 }
165
166                 /* If we do not have the semaphore here, we have to give up. */
167                 if (i == timeout) {
168                         DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
169                         return -E1000_ERR_NVM;
170                 }
171         }
172
173         /* Get the FW semaphore. */
174         for (i = 0; i < timeout; i++) {
175                 swsm = E1000_READ_REG(hw, E1000_SWSM);
176                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
177
178                 /* Semaphore acquired if bit latched */
179                 if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
180                         break;
181
182                 usec_delay(50);
183         }
184
185         if (i == timeout) {
186                 /* Release semaphores */
187                 e1000_put_hw_semaphore_generic(hw);
188                 DEBUGOUT("Driver can't access the NVM\n");
189                 return -E1000_ERR_NVM;
190         }
191
192         return E1000_SUCCESS;
193 }
194
195 /**
196  *  e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
197  *  @hw: pointer to the HW structure
198  *  @offset: offset of word in the Shadow Ram to read
199  *  @words: number of words to read
200  *  @data: word read from the Shadow Ram
201  *
202  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
203  *  Uses necessary synchronization semaphores.
204  **/
205 s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
206                              u16 *data)
207 {
208         s32 status = E1000_SUCCESS;
209         u16 i, count;
210
211         DEBUGFUNC("e1000_read_nvm_srrd_i210");
212
213         /* We cannot hold synchronization semaphores for too long,
214          * because of forceful takeover procedure. However it is more efficient
215          * to read in bursts than synchronizing access for each word. */
216         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
217                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
218                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
219                 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
220                         status = e1000_read_nvm_eerd(hw, offset, count,
221                                                      data + i);
222                         hw->nvm.ops.release(hw);
223                 } else {
224                         status = E1000_ERR_SWFW_SYNC;
225                 }
226
227                 if (status != E1000_SUCCESS)
228                         break;
229         }
230
231         return status;
232 }
233
234 /**
235  *  e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
236  *  @hw: pointer to the HW structure
237  *  @offset: offset within the Shadow RAM to be written to
238  *  @words: number of words to write
239  *  @data: 16 bit word(s) to be written to the Shadow RAM
240  *
241  *  Writes data to Shadow RAM at offset using EEWR register.
242  *
243  *  If e1000_update_nvm_checksum is not called after this function , the
244  *  data will not be committed to FLASH and also Shadow RAM will most likely
245  *  contain an invalid checksum.
246  *
247  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
248  *  partially written.
249  **/
250 s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
251                               u16 *data)
252 {
253         s32 status = E1000_SUCCESS;
254         u16 i, count;
255
256         DEBUGFUNC("e1000_write_nvm_srwr_i210");
257
258         /* We cannot hold synchronization semaphores for too long,
259          * because of forceful takeover procedure. However it is more efficient
260          * to write in bursts than synchronizing access for each word. */
261         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
262                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
263                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
264                 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
265                         status = e1000_write_nvm_srwr(hw, offset, count,
266                                                       data + i);
267                         hw->nvm.ops.release(hw);
268                 } else {
269                         status = E1000_ERR_SWFW_SYNC;
270                 }
271
272                 if (status != E1000_SUCCESS)
273                         break;
274         }
275
276         return status;
277 }
278
279 /**
280  *  e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
281  *  @hw: pointer to the HW structure
282  *  @offset: offset within the Shadow Ram to be written to
283  *  @words: number of words to write
284  *  @data: 16 bit word(s) to be written to the Shadow Ram
285  *
286  *  Writes data to Shadow Ram at offset using EEWR register.
287  *
288  *  If e1000_update_nvm_checksum is not called after this function , the
289  *  Shadow Ram will most likely contain an invalid checksum.
290  **/
291 STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
292                                 u16 *data)
293 {
294         struct e1000_nvm_info *nvm = &hw->nvm;
295         u32 i, k, eewr = 0;
296         u32 attempts = 100000;
297         s32 ret_val = E1000_SUCCESS;
298
299         DEBUGFUNC("e1000_write_nvm_srwr");
300
301         /*
302          * A check for invalid values:  offset too large, too many words,
303          * too many words for the offset, and not enough words.
304          */
305         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
306             (words == 0)) {
307                 DEBUGOUT("nvm parameter(s) out of bounds\n");
308                 ret_val = -E1000_ERR_NVM;
309                 goto out;
310         }
311
312         for (i = 0; i < words; i++) {
313                 ret_val = -E1000_ERR_NVM;
314
315                 eewr = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
316                         (data[i] << E1000_NVM_RW_REG_DATA) |
317                         E1000_NVM_RW_REG_START;
318
319                 E1000_WRITE_REG(hw, E1000_SRWR, eewr);
320
321                 for (k = 0; k < attempts; k++) {
322                         if (E1000_NVM_RW_REG_DONE &
323                             E1000_READ_REG(hw, E1000_SRWR)) {
324                                 ret_val = E1000_SUCCESS;
325                                 break;
326                         }
327                         usec_delay(5);
328                 }
329
330                 if (ret_val != E1000_SUCCESS) {
331                         DEBUGOUT("Shadow RAM write EEWR timed out\n");
332                         break;
333                 }
334         }
335
336 out:
337         return ret_val;
338 }
339
340 /** e1000_read_invm_word_i210 - Reads OTP
341  *  @hw: pointer to the HW structure
342  *  @address: the word address (aka eeprom offset) to read
343  *  @data: pointer to the data read
344  *
345  *  Reads 16-bit words from the OTP. Return error when the word is not
346  *  stored in OTP.
347  **/
348 STATIC s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
349 {
350         s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
351         u32 invm_dword;
352         u16 i;
353         u8 record_type, word_address;
354
355         DEBUGFUNC("e1000_read_invm_word_i210");
356
357         for (i = 0; i < E1000_INVM_SIZE; i++) {
358                 invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
359                 /* Get record type */
360                 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
361                 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
362                         break;
363                 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
364                         i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
365                 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
366                         i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
367                 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
368                         word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
369                         if (word_address == address) {
370                                 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
371                                 DEBUGOUT2("Read INVM Word 0x%02x = %x",
372                                           address, *data);
373                                 status = E1000_SUCCESS;
374                                 break;
375                         }
376                 }
377         }
378         if (status != E1000_SUCCESS)
379                 DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
380         return status;
381 }
382
383 /** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
384  *  @hw: pointer to the HW structure
385  *  @address: the word address (aka eeprom offset) to read
386  *  @data: pointer to the data read
387  *
388  *  Wrapper function to return data formerly found in the NVM.
389  **/
390 STATIC s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
391                                 u16 E1000_UNUSEDARG words, u16 *data)
392 {
393         s32 ret_val = E1000_SUCCESS;
394         UNREFERENCED_1PARAMETER(words);
395
396         DEBUGFUNC("e1000_read_invm_i210");
397
398         /* Only the MAC addr is required to be present in the iNVM */
399         switch (offset) {
400         case NVM_MAC_ADDR:
401                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
402                 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset + 1,
403                                                      &data[1]);
404                 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset + 2,
405                                                      &data[2]);
406                 if (ret_val != E1000_SUCCESS)
407                         DEBUGOUT("MAC Addr not found in iNVM\n");
408                 break;
409         case NVM_INIT_CTRL_2:
410                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
411                 if (ret_val != E1000_SUCCESS) {
412                         *data = NVM_INIT_CTRL_2_DEFAULT_I211;
413                         ret_val = E1000_SUCCESS;
414                 }
415                 break;
416         case NVM_INIT_CTRL_4:
417                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
418                 if (ret_val != E1000_SUCCESS) {
419                         *data = NVM_INIT_CTRL_4_DEFAULT_I211;
420                         ret_val = E1000_SUCCESS;
421                 }
422                 break;
423         case NVM_LED_1_CFG:
424                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
425                 if (ret_val != E1000_SUCCESS) {
426                         *data = NVM_LED_1_CFG_DEFAULT_I211;
427                         ret_val = E1000_SUCCESS;
428                 }
429                 break;
430         case NVM_LED_0_2_CFG:
431                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
432                 if (ret_val != E1000_SUCCESS) {
433                         *data = NVM_LED_0_2_CFG_DEFAULT_I211;
434                         ret_val = E1000_SUCCESS;
435                 }
436                 break;
437         case NVM_ID_LED_SETTINGS:
438                 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
439                 if (ret_val != E1000_SUCCESS) {
440                         *data = ID_LED_RESERVED_FFFF;
441                         ret_val = E1000_SUCCESS;
442                 }
443                 break;
444         case NVM_SUB_DEV_ID:
445                 *data = hw->subsystem_device_id;
446                 break;
447         case NVM_SUB_VEN_ID:
448                 *data = hw->subsystem_vendor_id;
449                 break;
450         case NVM_DEV_ID:
451                 *data = hw->device_id;
452                 break;
453         case NVM_VEN_ID:
454                 *data = hw->vendor_id;
455                 break;
456         default:
457                 DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
458                 *data = NVM_RESERVED_WORD;
459                 break;
460         }
461         return ret_val;
462 }
463
464 /**
465  *  e1000_read_invm_version - Reads iNVM version and image type
466  *  @hw: pointer to the HW structure
467  *  @invm_ver: version structure for the version read
468  *
469  *  Reads iNVM version and image type.
470  **/
471 s32 e1000_read_invm_version(struct e1000_hw *hw,
472                             struct e1000_fw_version *invm_ver)
473 {
474         u32 *record = NULL;
475         u32 *next_record = NULL;
476         u32 i = 0;
477         u32 invm_dword = 0;
478         u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
479                                              E1000_INVM_RECORD_SIZE_IN_BYTES);
480         u32 buffer[E1000_INVM_SIZE];
481         s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
482         u16 version = 0;
483
484         DEBUGFUNC("e1000_read_invm_version");
485
486         /* Read iNVM memory */
487         for (i = 0; i < E1000_INVM_SIZE; i++) {
488                 invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
489                 buffer[i] = invm_dword;
490         }
491
492         /* Read version number */
493         for (i = 1; i < invm_blocks; i++) {
494                 record = &buffer[invm_blocks - i];
495                 next_record = &buffer[invm_blocks - i + 1];
496
497                 /* Check if we have first version location used */
498                 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
499                         version = 0;
500                         status = E1000_SUCCESS;
501                         break;
502                 }
503                 /* Check if we have second version location used */
504                 else if ((i == 1) &&
505                          ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
506                         version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
507                         status = E1000_SUCCESS;
508                         break;
509                 }
510                 /*
511                  * Check if we have odd version location
512                  * used and it is the last one used
513                  */
514                 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
515                          ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
516                          (i != 1))) {
517                         version = (*next_record & E1000_INVM_VER_FIELD_TWO)
518                                   >> 13;
519                         status = E1000_SUCCESS;
520                         break;
521                 }
522                 /*
523                  * Check if we have even version location
524                  * used and it is the last one used
525                  */
526                 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
527                          ((*record & 0x3) == 0)) {
528                         version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
529                         status = E1000_SUCCESS;
530                         break;
531                 }
532         }
533
534         if (status == E1000_SUCCESS) {
535                 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
536                                         >> E1000_INVM_MAJOR_SHIFT;
537                 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
538         }
539         /* Read Image Type */
540         for (i = 1; i < invm_blocks; i++) {
541                 record = &buffer[invm_blocks - i];
542                 next_record = &buffer[invm_blocks - i + 1];
543
544                 /* Check if we have image type in first location used */
545                 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
546                         invm_ver->invm_img_type = 0;
547                         status = E1000_SUCCESS;
548                         break;
549                 }
550                 /* Check if we have image type in first location used */
551                 else if ((((*record & 0x3) == 0) &&
552                          ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
553                          ((((*record & 0x3) != 0) && (i != 1)))) {
554                         invm_ver->invm_img_type =
555                                 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
556                         status = E1000_SUCCESS;
557                         break;
558                 }
559         }
560         return status;
561 }
562
563 /**
564  *  e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
565  *  @hw: pointer to the HW structure
566  *
567  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
568  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
569  **/
570 s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
571 {
572         s32 status = E1000_SUCCESS;
573         s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
574
575         DEBUGFUNC("e1000_validate_nvm_checksum_i210");
576
577         if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
578
579                 /*
580                  * Replace the read function with semaphore grabbing with
581                  * the one that skips this for a while.
582                  * We have semaphore taken already here.
583                  */
584                 read_op_ptr = hw->nvm.ops.read;
585                 hw->nvm.ops.read = e1000_read_nvm_eerd;
586
587                 status = e1000_validate_nvm_checksum_generic(hw);
588
589                 /* Revert original read operation. */
590                 hw->nvm.ops.read = read_op_ptr;
591
592                 hw->nvm.ops.release(hw);
593         } else {
594                 status = E1000_ERR_SWFW_SYNC;
595         }
596
597         return status;
598 }
599
600
601 /**
602  *  e1000_update_nvm_checksum_i210 - Update EEPROM checksum
603  *  @hw: pointer to the HW structure
604  *
605  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
606  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
607  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
608  **/
609 s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
610 {
611         s32 ret_val;
612         u16 checksum = 0;
613         u16 i, nvm_data;
614
615         DEBUGFUNC("e1000_update_nvm_checksum_i210");
616
617         /*
618          * Read the first word from the EEPROM. If this times out or fails, do
619          * not continue or we could be in for a very long wait while every
620          * EEPROM read fails
621          */
622         ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
623         if (ret_val != E1000_SUCCESS) {
624                 DEBUGOUT("EEPROM read failed\n");
625                 goto out;
626         }
627
628         if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
629                 /*
630                  * Do not use hw->nvm.ops.write, hw->nvm.ops.read
631                  * because we do not want to take the synchronization
632                  * semaphores twice here.
633                  */
634
635                 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
636                         ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
637                         if (ret_val) {
638                                 hw->nvm.ops.release(hw);
639                                 DEBUGOUT("NVM Read Error while updating checksum.\n");
640                                 goto out;
641                         }
642                         checksum += nvm_data;
643                 }
644                 checksum = (u16) NVM_SUM - checksum;
645                 ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
646                                                 &checksum);
647                 if (ret_val != E1000_SUCCESS) {
648                         hw->nvm.ops.release(hw);
649                         DEBUGOUT("NVM Write Error while updating checksum.\n");
650                         goto out;
651                 }
652
653                 hw->nvm.ops.release(hw);
654
655                 ret_val = e1000_update_flash_i210(hw);
656         } else {
657                 ret_val = E1000_ERR_SWFW_SYNC;
658         }
659 out:
660         return ret_val;
661 }
662
663 /**
664  *  e1000_get_flash_presence_i210 - Check if flash device is detected.
665  *  @hw: pointer to the HW structure
666  *
667  **/
668 bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
669 {
670         u32 eec = 0;
671         bool ret_val = false;
672
673         DEBUGFUNC("e1000_get_flash_presence_i210");
674
675         eec = E1000_READ_REG(hw, E1000_EECD);
676
677         if (eec & E1000_EECD_FLASH_DETECTED_I210)
678                 ret_val = true;
679
680         return ret_val;
681 }
682
683 /**
684  *  e1000_update_flash_i210 - Commit EEPROM to the flash
685  *  @hw: pointer to the HW structure
686  *
687  **/
688 s32 e1000_update_flash_i210(struct e1000_hw *hw)
689 {
690         s32 ret_val;
691         u32 flup;
692
693         DEBUGFUNC("e1000_update_flash_i210");
694
695         ret_val = e1000_pool_flash_update_done_i210(hw);
696         if (ret_val == -E1000_ERR_NVM) {
697                 DEBUGOUT("Flash update time out\n");
698                 goto out;
699         }
700
701         flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
702         E1000_WRITE_REG(hw, E1000_EECD, flup);
703
704         ret_val = e1000_pool_flash_update_done_i210(hw);
705         if (ret_val == E1000_SUCCESS)
706                 DEBUGOUT("Flash update complete\n");
707         else
708                 DEBUGOUT("Flash update time out\n");
709
710 out:
711         return ret_val;
712 }
713
714 /**
715  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
716  *  @hw: pointer to the HW structure
717  *
718  **/
719 s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
720 {
721         s32 ret_val = -E1000_ERR_NVM;
722         u32 i, reg;
723
724         DEBUGFUNC("e1000_pool_flash_update_done_i210");
725
726         for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
727                 reg = E1000_READ_REG(hw, E1000_EECD);
728                 if (reg & E1000_EECD_FLUDONE_I210) {
729                         ret_val = E1000_SUCCESS;
730                         break;
731                 }
732                 usec_delay(5);
733         }
734
735         return ret_val;
736 }
737
738 /**
739  *  e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
740  *  @hw: pointer to the HW structure
741  *
742  *  Initialize the i210/i211 NVM parameters and function pointers.
743  **/
744 STATIC s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
745 {
746         s32 ret_val;
747         struct e1000_nvm_info *nvm = &hw->nvm;
748
749         DEBUGFUNC("e1000_init_nvm_params_i210");
750
751         ret_val = e1000_init_nvm_params_82575(hw);
752         nvm->ops.acquire = e1000_acquire_nvm_i210;
753         nvm->ops.release = e1000_release_nvm_i210;
754         nvm->ops.valid_led_default = e1000_valid_led_default_i210;
755         if (e1000_get_flash_presence_i210(hw)) {
756                 hw->nvm.type = e1000_nvm_flash_hw;
757                 nvm->ops.read    = e1000_read_nvm_srrd_i210;
758                 nvm->ops.write   = e1000_write_nvm_srwr_i210;
759                 nvm->ops.validate = e1000_validate_nvm_checksum_i210;
760                 nvm->ops.update   = e1000_update_nvm_checksum_i210;
761         } else {
762                 hw->nvm.type = e1000_nvm_invm;
763                 nvm->ops.read     = e1000_read_invm_i210;
764                 nvm->ops.write    = e1000_null_write_nvm;
765                 nvm->ops.validate = e1000_null_ops_generic;
766                 nvm->ops.update   = e1000_null_ops_generic;
767         }
768         return ret_val;
769 }
770
771 /**
772  *  e1000_init_function_pointers_i210 - Init func ptrs.
773  *  @hw: pointer to the HW structure
774  *
775  *  Called to initialize all function pointers and parameters.
776  **/
777 void e1000_init_function_pointers_i210(struct e1000_hw *hw)
778 {
779         e1000_init_function_pointers_82575(hw);
780         hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
781 }
782
783 /**
784  *  e1000_valid_led_default_i210 - Verify a valid default LED config
785  *  @hw: pointer to the HW structure
786  *  @data: pointer to the NVM (EEPROM)
787  *
788  *  Read the EEPROM for the current default LED configuration.  If the
789  *  LED configuration is not valid, set to a valid LED configuration.
790  **/
791 STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
792 {
793         s32 ret_val;
794
795         DEBUGFUNC("e1000_valid_led_default_i210");
796
797         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
798         if (ret_val) {
799                 DEBUGOUT("NVM Read Error\n");
800                 goto out;
801         }
802
803         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
804                 switch (hw->phy.media_type) {
805                 case e1000_media_type_internal_serdes:
806                         *data = ID_LED_DEFAULT_I210_SERDES;
807                         break;
808                 case e1000_media_type_copper:
809                 default:
810                         *data = ID_LED_DEFAULT_I210;
811                         break;
812                 }
813         }
814 out:
815         return ret_val;
816 }
817
818 /**
819  * e1000_pll_workaround_i210
820  * @hw: pointer to the HW structure
821  *
822  * Works around an errata in the PLL circuit where it occasionally
823  * provides the wrong clock frequency after power up.
824  **/
825 STATIC s32 e1000_pll_workaround_i210(struct e1000_hw *hw)
826 {
827         s32 ret_val;
828         u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
829         u16 nvm_word, phy_word, pci_word, tmp_nvm;
830         int i;
831
832         /* Get PHY semaphore */
833         hw->phy.ops.acquire(hw);
834         /* Get and set needed register values */
835         wuc = E1000_READ_REG(hw, E1000_WUC);
836         mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
837         reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
838         E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val);
839
840         /* Get data from NVM, or set default */
841         ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
842                                             &nvm_word);
843         if (ret_val != E1000_SUCCESS)
844                 nvm_word = E1000_INVM_DEFAULT_AL;
845         tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
846         phy_word = E1000_PHY_PLL_UNCONF;
847         for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
848                 /* check current state directly from internal PHY */
849                 e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, 0xFC);
850                 usec_delay(20);
851                 e1000_read_phy_reg_mdic(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
852                 usec_delay(20);
853                 e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, 0);
854                 if ((phy_word & E1000_PHY_PLL_UNCONF)
855                     != E1000_PHY_PLL_UNCONF) {
856                         ret_val = E1000_SUCCESS;
857                         break;
858                 } else {
859                         ret_val = -E1000_ERR_PHY;
860                 }
861                 /* directly reset the internal PHY */
862                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
863                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
864
865                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
866                 ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
867                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
868
869                 E1000_WRITE_REG(hw, E1000_WUC, 0);
870                 reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
871                 E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
872
873                 e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
874                 pci_word |= E1000_PCI_PMCSR_D3;
875                 e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
876                 msec_delay(1);
877                 pci_word &= ~E1000_PCI_PMCSR_D3;
878                 e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
879                 reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
880                 E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
881
882                 /* restore WUC register */
883                 E1000_WRITE_REG(hw, E1000_WUC, wuc);
884         }
885         /* restore MDICNFG setting */
886         E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
887         /* Release PHY semaphore */
888         hw->phy.ops.release(hw);
889         return ret_val;
890 }
891
892 /**
893  *  e1000_get_cfg_done_i210 - Read config done bit
894  *  @hw: pointer to the HW structure
895  *
896  *  Read the management control register for the config done bit for
897  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
898  *  to read the config done bit, so an error is *ONLY* logged and returns
899  *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
900  *  would not be able to be reset or change link.
901  **/
902 STATIC s32 e1000_get_cfg_done_i210(struct e1000_hw *hw)
903 {
904         s32 timeout = PHY_CFG_TIMEOUT;
905         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
906
907         DEBUGFUNC("e1000_get_cfg_done_i210");
908
909         while (timeout) {
910                 if (E1000_READ_REG(hw, E1000_EEMNGCTL_I210) & mask)
911                         break;
912                 msec_delay(1);
913                 timeout--;
914         }
915         if (!timeout)
916                 DEBUGOUT("MNG configuration cycle has not completed.\n");
917
918         return E1000_SUCCESS;
919 }
920
921 /**
922  *  e1000_init_hw_i210 - Init hw for I210/I211
923  *  @hw: pointer to the HW structure
924  *
925  *  Called to initialize hw for i210 hw family.
926  **/
927 s32 e1000_init_hw_i210(struct e1000_hw *hw)
928 {
929         s32 ret_val;
930         struct e1000_mac_info *mac = &hw->mac;
931
932         DEBUGFUNC("e1000_init_hw_i210");
933         if ((hw->mac.type >= e1000_i210) &&
934             !(e1000_get_flash_presence_i210(hw))) {
935                 ret_val = e1000_pll_workaround_i210(hw);
936                 if (ret_val != E1000_SUCCESS)
937                         return ret_val;
938         }
939         hw->phy.ops.get_cfg_done = e1000_get_cfg_done_i210;
940
941         /* Initialize identification LED */
942         ret_val = mac->ops.id_led_init(hw);
943
944         ret_val = e1000_init_hw_base(hw);
945         return ret_val;
946 }