net/enic: avoid error message when no advanced filtering
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
15 #include <rte_pci.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <ethdev_driver.h>
19 #include <ethdev_pci.h>
20 #include <rte_memory.h>
21 #include <rte_eal.h>
22 #include <rte_malloc.h>
23 #include <rte_dev.h>
24
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
28
29 #define EM_EIAC                 0x000DC
30
31 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
32
33
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static int eth_em_stop(struct rte_eth_dev *dev);
37 static int eth_em_close(struct rte_eth_dev *dev);
38 static int eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static int eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static int eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static int eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43                                 int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45                                 struct rte_eth_stats *rte_stats);
46 static int eth_em_stats_reset(struct rte_eth_dev *dev);
47 static int eth_em_infos_get(struct rte_eth_dev *dev,
48                                 struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50                                 struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52                                 struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57                                    struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
59
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
66
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70                 uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
76
77 /*
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79                                         uint16_t vlan_id, int on);
80 */
81
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
87
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
90
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev,
93                         struct rte_ether_addr *mac_addr,
94                         uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97                                          struct rte_ether_addr *addr);
98
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100                                    struct rte_ether_addr *mc_addr_set,
101                                    uint32_t nb_mc_addr);
102
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_em_map[] = {
113         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
114         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
115         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
116         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
117         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
118         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
119         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
120         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
121         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
122         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
123         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
124         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
125         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
126         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
127         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
128         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
129         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
130         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
131         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
132         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
133         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
134         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
135         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
136         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
137         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
138         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
139         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
158         { .vendor_id = 0, /* sentinel */ },
159 };
160
161 static const struct eth_dev_ops eth_em_ops = {
162         .dev_configure        = eth_em_configure,
163         .dev_start            = eth_em_start,
164         .dev_stop             = eth_em_stop,
165         .dev_close            = eth_em_close,
166         .promiscuous_enable   = eth_em_promiscuous_enable,
167         .promiscuous_disable  = eth_em_promiscuous_disable,
168         .allmulticast_enable  = eth_em_allmulticast_enable,
169         .allmulticast_disable = eth_em_allmulticast_disable,
170         .link_update          = eth_em_link_update,
171         .stats_get            = eth_em_stats_get,
172         .stats_reset          = eth_em_stats_reset,
173         .dev_infos_get        = eth_em_infos_get,
174         .mtu_set              = eth_em_mtu_set,
175         .vlan_filter_set      = eth_em_vlan_filter_set,
176         .vlan_offload_set     = eth_em_vlan_offload_set,
177         .rx_queue_setup       = eth_em_rx_queue_setup,
178         .rx_queue_release     = eth_em_rx_queue_release,
179         .tx_queue_setup       = eth_em_tx_queue_setup,
180         .tx_queue_release     = eth_em_tx_queue_release,
181         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
182         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
183         .dev_led_on           = eth_em_led_on,
184         .dev_led_off          = eth_em_led_off,
185         .flow_ctrl_get        = eth_em_flow_ctrl_get,
186         .flow_ctrl_set        = eth_em_flow_ctrl_set,
187         .mac_addr_set         = eth_em_default_mac_addr_set,
188         .mac_addr_add         = eth_em_rar_set,
189         .mac_addr_remove      = eth_em_rar_clear,
190         .set_mc_addr_list     = eth_em_set_mc_addr_list,
191         .rxq_info_get         = em_rxq_info_get,
192         .txq_info_get         = em_txq_info_get,
193 };
194
195
196 /**
197  *  eth_em_dev_is_ich8 - Check for ICH8 device
198  *  @hw: pointer to the HW structure
199  *
200  *  return TRUE for ICH8, otherwise FALSE
201  **/
202 static bool
203 eth_em_dev_is_ich8(struct e1000_hw *hw)
204 {
205         DEBUGFUNC("eth_em_dev_is_ich8");
206
207         switch (hw->device_id) {
208         case E1000_DEV_ID_PCH2_LV_LM:
209         case E1000_DEV_ID_PCH_LPT_I217_LM:
210         case E1000_DEV_ID_PCH_LPT_I217_V:
211         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
212         case E1000_DEV_ID_PCH_LPTLP_I218_V:
213         case E1000_DEV_ID_PCH_I218_V2:
214         case E1000_DEV_ID_PCH_I218_LM2:
215         case E1000_DEV_ID_PCH_I218_V3:
216         case E1000_DEV_ID_PCH_I218_LM3:
217         case E1000_DEV_ID_PCH_SPT_I219_LM:
218         case E1000_DEV_ID_PCH_SPT_I219_V:
219         case E1000_DEV_ID_PCH_SPT_I219_LM2:
220         case E1000_DEV_ID_PCH_SPT_I219_V2:
221         case E1000_DEV_ID_PCH_LBG_I219_LM3:
222         case E1000_DEV_ID_PCH_SPT_I219_LM4:
223         case E1000_DEV_ID_PCH_SPT_I219_V4:
224         case E1000_DEV_ID_PCH_SPT_I219_LM5:
225         case E1000_DEV_ID_PCH_SPT_I219_V5:
226         case E1000_DEV_ID_PCH_CNP_I219_LM6:
227         case E1000_DEV_ID_PCH_CNP_I219_V6:
228         case E1000_DEV_ID_PCH_CNP_I219_LM7:
229         case E1000_DEV_ID_PCH_CNP_I219_V7:
230                 return 1;
231         default:
232                 return 0;
233         }
234 }
235
236 static int
237 eth_em_dev_init(struct rte_eth_dev *eth_dev)
238 {
239         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
240         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
241         struct e1000_adapter *adapter =
242                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
243         struct e1000_hw *hw =
244                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
245         struct e1000_vfta * shadow_vfta =
246                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
247
248         eth_dev->dev_ops = &eth_em_ops;
249         eth_dev->rx_queue_count = eth_em_rx_queue_count;
250         eth_dev->rx_descriptor_status = eth_em_rx_descriptor_status;
251         eth_dev->tx_descriptor_status = eth_em_tx_descriptor_status;
252         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
253         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
254         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
255
256         /* for secondary processes, we don't initialise any further as primary
257          * has already done this work. Only check we don't need a different
258          * RX function */
259         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
260                 if (eth_dev->data->scattered_rx)
261                         eth_dev->rx_pkt_burst =
262                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
263                 return 0;
264         }
265
266         rte_eth_copy_pci_info(eth_dev, pci_dev);
267
268         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
269         hw->device_id = pci_dev->id.device_id;
270         adapter->stopped = 0;
271
272         /* For ICH8 support we'll need to map the flash memory BAR */
273         if (eth_em_dev_is_ich8(hw))
274                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
275
276         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
277                         em_hw_init(hw) != 0) {
278                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
279                         "failed to init HW",
280                         eth_dev->data->port_id, pci_dev->id.vendor_id,
281                         pci_dev->id.device_id);
282                 return -ENODEV;
283         }
284
285         /* Allocate memory for storing MAC addresses */
286         eth_dev->data->mac_addrs = rte_zmalloc("e1000", RTE_ETHER_ADDR_LEN *
287                         hw->mac.rar_entry_count, 0);
288         if (eth_dev->data->mac_addrs == NULL) {
289                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
290                         "store MAC addresses",
291                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
292                 return -ENOMEM;
293         }
294
295         /* Copy the permanent MAC address */
296         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
297                 eth_dev->data->mac_addrs);
298
299         /* initialize the vfta */
300         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
301
302         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
303                      eth_dev->data->port_id, pci_dev->id.vendor_id,
304                      pci_dev->id.device_id);
305
306         rte_intr_callback_register(intr_handle,
307                                    eth_em_interrupt_handler, eth_dev);
308
309         return 0;
310 }
311
312 static int
313 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
314 {
315         PMD_INIT_FUNC_TRACE();
316
317         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
318                 return 0;
319
320         eth_em_close(eth_dev);
321
322         return 0;
323 }
324
325 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
326         struct rte_pci_device *pci_dev)
327 {
328         return rte_eth_dev_pci_generic_probe(pci_dev,
329                 sizeof(struct e1000_adapter), eth_em_dev_init);
330 }
331
332 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
333 {
334         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
335 }
336
337 static struct rte_pci_driver rte_em_pmd = {
338         .id_table = pci_id_em_map,
339         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
340         .probe = eth_em_pci_probe,
341         .remove = eth_em_pci_remove,
342 };
343
344 static int
345 em_hw_init(struct e1000_hw *hw)
346 {
347         int diag;
348
349         diag = hw->mac.ops.init_params(hw);
350         if (diag != 0) {
351                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
352                 return diag;
353         }
354         diag = hw->nvm.ops.init_params(hw);
355         if (diag != 0) {
356                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
357                 return diag;
358         }
359         diag = hw->phy.ops.init_params(hw);
360         if (diag != 0) {
361                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
362                 return diag;
363         }
364         (void) e1000_get_bus_info(hw);
365
366         hw->mac.autoneg = 1;
367         hw->phy.autoneg_wait_to_complete = 0;
368         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
369
370         e1000_init_script_state_82541(hw, TRUE);
371         e1000_set_tbi_compatibility_82543(hw, TRUE);
372
373         /* Copper options */
374         if (hw->phy.media_type == e1000_media_type_copper) {
375                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
376                 hw->phy.disable_polarity_correction = 0;
377                 hw->phy.ms_type = e1000_ms_hw_default;
378         }
379
380         /*
381          * Start from a known state, this is important in reading the nvm
382          * and mac from that.
383          */
384         e1000_reset_hw(hw);
385
386         /* Make sure we have a good EEPROM before we read from it */
387         if (e1000_validate_nvm_checksum(hw) < 0) {
388                 /*
389                  * Some PCI-E parts fail the first check due to
390                  * the link being in sleep state, call it again,
391                  * if it fails a second time its a real issue.
392                  */
393                 diag = e1000_validate_nvm_checksum(hw);
394                 if (diag < 0) {
395                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
396                         goto error;
397                 }
398         }
399
400         /* Read the permanent MAC address out of the EEPROM */
401         diag = e1000_read_mac_addr(hw);
402         if (diag != 0) {
403                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
404                 goto error;
405         }
406
407         /* Now initialize the hardware */
408         diag = em_hardware_init(hw);
409         if (diag != 0) {
410                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
411                 goto error;
412         }
413
414         hw->mac.get_link_status = 1;
415
416         /* Indicate SOL/IDER usage */
417         diag = e1000_check_reset_block(hw);
418         if (diag < 0) {
419                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
420                         "SOL/IDER session");
421         }
422         return 0;
423
424 error:
425         em_hw_control_release(hw);
426         return diag;
427 }
428
429 static int
430 eth_em_configure(struct rte_eth_dev *dev)
431 {
432         struct e1000_interrupt *intr =
433                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
434
435         PMD_INIT_FUNC_TRACE();
436         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
437
438         PMD_INIT_FUNC_TRACE();
439
440         return 0;
441 }
442
443 static void
444 em_set_pba(struct e1000_hw *hw)
445 {
446         uint32_t pba;
447
448         /*
449          * Packet Buffer Allocation (PBA)
450          * Writing PBA sets the receive portion of the buffer
451          * the remainder is used for the transmit buffer.
452          * Devices before the 82547 had a Packet Buffer of 64K.
453          * After the 82547 the buffer was reduced to 40K.
454          */
455         switch (hw->mac.type) {
456                 case e1000_82547:
457                 case e1000_82547_rev_2:
458                 /* 82547: Total Packet Buffer is 40K */
459                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
460                         break;
461                 case e1000_82571:
462                 case e1000_82572:
463                 case e1000_80003es2lan:
464                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
465                         break;
466                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
467                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
468                         break;
469                 case e1000_82574:
470                 case e1000_82583:
471                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
472                         break;
473                 case e1000_ich8lan:
474                         pba = E1000_PBA_8K;
475                         break;
476                 case e1000_ich9lan:
477                 case e1000_ich10lan:
478                         pba = E1000_PBA_10K;
479                         break;
480                 case e1000_pchlan:
481                 case e1000_pch2lan:
482                 case e1000_pch_lpt:
483                 case e1000_pch_spt:
484                 case e1000_pch_cnp:
485                         pba = E1000_PBA_26K;
486                         break;
487                 default:
488                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
489         }
490
491         E1000_WRITE_REG(hw, E1000_PBA, pba);
492 }
493
494 static void
495 eth_em_rxtx_control(struct rte_eth_dev *dev,
496                     bool enable)
497 {
498         struct e1000_hw *hw =
499                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
500         uint32_t tctl, rctl;
501
502         tctl = E1000_READ_REG(hw, E1000_TCTL);
503         rctl = E1000_READ_REG(hw, E1000_RCTL);
504         if (enable) {
505                 /* enable Tx/Rx */
506                 tctl |= E1000_TCTL_EN;
507                 rctl |= E1000_RCTL_EN;
508         } else {
509                 /* disable Tx/Rx */
510                 tctl &= ~E1000_TCTL_EN;
511                 rctl &= ~E1000_RCTL_EN;
512         }
513         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
514         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
515         E1000_WRITE_FLUSH(hw);
516 }
517
518 static int
519 eth_em_start(struct rte_eth_dev *dev)
520 {
521         struct e1000_adapter *adapter =
522                 E1000_DEV_PRIVATE(dev->data->dev_private);
523         struct e1000_hw *hw =
524                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
525         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
526         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
527         int ret, mask;
528         uint32_t intr_vector = 0;
529         uint32_t *speeds;
530         int num_speeds;
531         bool autoneg;
532
533         PMD_INIT_FUNC_TRACE();
534
535         ret = eth_em_stop(dev);
536         if (ret != 0)
537                 return ret;
538
539         e1000_power_up_phy(hw);
540
541         /* Set default PBA value */
542         em_set_pba(hw);
543
544         /* Put the address into the Receive Address Array */
545         e1000_rar_set(hw, hw->mac.addr, 0);
546
547         /*
548          * With the 82571 adapter, RAR[0] may be overwritten
549          * when the other port is reset, we make a duplicate
550          * in RAR[14] for that eventuality, this assures
551          * the interface continues to function.
552          */
553         if (hw->mac.type == e1000_82571) {
554                 e1000_set_laa_state_82571(hw, TRUE);
555                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
556         }
557
558         /* Initialize the hardware */
559         if (em_hardware_init(hw)) {
560                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
561                 return -EIO;
562         }
563
564         E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN);
565
566         /* Configure for OS presence */
567         em_init_manageability(hw);
568
569         if (dev->data->dev_conf.intr_conf.rxq != 0) {
570                 intr_vector = dev->data->nb_rx_queues;
571                 if (rte_intr_efd_enable(intr_handle, intr_vector))
572                         return -1;
573         }
574
575         if (rte_intr_dp_is_en(intr_handle)) {
576                 if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
577                                                    dev->data->nb_rx_queues)) {
578                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
579                                      " intr_vec", dev->data->nb_rx_queues);
580                         return -ENOMEM;
581                 }
582
583                 /* enable rx interrupt */
584                 em_rxq_intr_enable(hw);
585         }
586
587         eth_em_tx_init(dev);
588
589         ret = eth_em_rx_init(dev);
590         if (ret) {
591                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
592                 em_dev_clear_queues(dev);
593                 return ret;
594         }
595
596         e1000_clear_hw_cntrs_base_generic(hw);
597
598         mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK |
599                         RTE_ETH_VLAN_EXTEND_MASK;
600         ret = eth_em_vlan_offload_set(dev, mask);
601         if (ret) {
602                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
603                 em_dev_clear_queues(dev);
604                 return ret;
605         }
606
607         /* Set Interrupt Throttling Rate to maximum allowed value. */
608         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
609
610         /* Setup link speed and duplex */
611         speeds = &dev->data->dev_conf.link_speeds;
612         if (*speeds == RTE_ETH_LINK_SPEED_AUTONEG) {
613                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
614                 hw->mac.autoneg = 1;
615         } else {
616                 num_speeds = 0;
617                 autoneg = (*speeds & RTE_ETH_LINK_SPEED_FIXED) == 0;
618
619                 /* Reset */
620                 hw->phy.autoneg_advertised = 0;
621
622                 if (*speeds & ~(RTE_ETH_LINK_SPEED_10M_HD | RTE_ETH_LINK_SPEED_10M |
623                                 RTE_ETH_LINK_SPEED_100M_HD | RTE_ETH_LINK_SPEED_100M |
624                                 RTE_ETH_LINK_SPEED_1G | RTE_ETH_LINK_SPEED_FIXED)) {
625                         num_speeds = -1;
626                         goto error_invalid_config;
627                 }
628                 if (*speeds & RTE_ETH_LINK_SPEED_10M_HD) {
629                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
630                         num_speeds++;
631                 }
632                 if (*speeds & RTE_ETH_LINK_SPEED_10M) {
633                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
634                         num_speeds++;
635                 }
636                 if (*speeds & RTE_ETH_LINK_SPEED_100M_HD) {
637                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
638                         num_speeds++;
639                 }
640                 if (*speeds & RTE_ETH_LINK_SPEED_100M) {
641                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
642                         num_speeds++;
643                 }
644                 if (*speeds & RTE_ETH_LINK_SPEED_1G) {
645                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
646                         num_speeds++;
647                 }
648                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
649                         goto error_invalid_config;
650
651                 /* Set/reset the mac.autoneg based on the link speed,
652                  * fixed or not
653                  */
654                 if (!autoneg) {
655                         hw->mac.autoneg = 0;
656                         hw->mac.forced_speed_duplex =
657                                         hw->phy.autoneg_advertised;
658                 } else {
659                         hw->mac.autoneg = 1;
660                 }
661         }
662
663         e1000_setup_link(hw);
664
665         if (rte_intr_allow_others(intr_handle)) {
666                 /* check if lsc interrupt is enabled */
667                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
668                         ret = eth_em_interrupt_setup(dev);
669                         if (ret) {
670                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
671                                 em_dev_clear_queues(dev);
672                                 return ret;
673                         }
674                 }
675         } else {
676                 rte_intr_callback_unregister(intr_handle,
677                                                 eth_em_interrupt_handler,
678                                                 (void *)dev);
679                 if (dev->data->dev_conf.intr_conf.lsc != 0)
680                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
681                                      " no intr multiplexn");
682         }
683         /* check if rxq interrupt is enabled */
684         if (dev->data->dev_conf.intr_conf.rxq != 0)
685                 eth_em_rxq_interrupt_setup(dev);
686
687         rte_intr_enable(intr_handle);
688
689         adapter->stopped = 0;
690
691         eth_em_rxtx_control(dev, true);
692         eth_em_link_update(dev, 0);
693
694         PMD_INIT_LOG(DEBUG, "<<");
695
696         return 0;
697
698 error_invalid_config:
699         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
700                      dev->data->dev_conf.link_speeds, dev->data->port_id);
701         em_dev_clear_queues(dev);
702         return -EINVAL;
703 }
704
705 /*********************************************************************
706  *
707  *  This routine disables all traffic on the adapter by issuing a
708  *  global reset on the MAC.
709  *
710  **********************************************************************/
711 static int
712 eth_em_stop(struct rte_eth_dev *dev)
713 {
714         struct rte_eth_link link;
715         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
716         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
717         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
718
719         dev->data->dev_started = 0;
720
721         eth_em_rxtx_control(dev, false);
722         em_rxq_intr_disable(hw);
723         em_lsc_intr_disable(hw);
724
725         e1000_reset_hw(hw);
726
727         /* Flush desc rings for i219 */
728         if (hw->mac.type == e1000_pch_spt || hw->mac.type == e1000_pch_cnp)
729                 em_flush_desc_rings(dev);
730
731         if (hw->mac.type >= e1000_82544)
732                 E1000_WRITE_REG(hw, E1000_WUC, 0);
733
734         /* Power down the phy. Needed to make the link go down */
735         e1000_power_down_phy(hw);
736
737         em_dev_clear_queues(dev);
738
739         /* clear the recorded link status */
740         memset(&link, 0, sizeof(link));
741         rte_eth_linkstatus_set(dev, &link);
742
743         if (!rte_intr_allow_others(intr_handle))
744                 /* resume to the default handler */
745                 rte_intr_callback_register(intr_handle,
746                                            eth_em_interrupt_handler,
747                                            (void *)dev);
748
749         /* Clean datapath event and queue/vec mapping */
750         rte_intr_efd_disable(intr_handle);
751         rte_intr_vec_list_free(intr_handle);
752
753         return 0;
754 }
755
756 static int
757 eth_em_close(struct rte_eth_dev *dev)
758 {
759         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
760         struct e1000_adapter *adapter =
761                 E1000_DEV_PRIVATE(dev->data->dev_private);
762         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
763         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
764         int ret;
765
766         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
767                 return 0;
768
769         ret = eth_em_stop(dev);
770         adapter->stopped = 1;
771         em_dev_free_queues(dev);
772         e1000_phy_hw_reset(hw);
773         em_release_manageability(hw);
774         em_hw_control_release(hw);
775
776         /* disable uio intr before callback unregister */
777         rte_intr_disable(intr_handle);
778         rte_intr_callback_unregister(intr_handle,
779                                      eth_em_interrupt_handler, dev);
780
781         return ret;
782 }
783
784 static int
785 em_get_rx_buffer_size(struct e1000_hw *hw)
786 {
787         uint32_t rx_buf_size;
788
789         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
790         return rx_buf_size;
791 }
792
793 /*********************************************************************
794  *
795  *  Initialize the hardware
796  *
797  **********************************************************************/
798 static int
799 em_hardware_init(struct e1000_hw *hw)
800 {
801         uint32_t rx_buf_size;
802         int diag;
803
804         /* Issue a global reset */
805         e1000_reset_hw(hw);
806
807         /* Let the firmware know the OS is in control */
808         em_hw_control_acquire(hw);
809
810         /*
811          * These parameters control the automatic generation (Tx) and
812          * response (Rx) to Ethernet PAUSE frames.
813          * - High water mark should allow for at least two standard size (1518)
814          *   frames to be received after sending an XOFF.
815          * - Low water mark works best when it is very near the high water mark.
816          *   This allows the receiver to restart by sending XON when it has
817          *   drained a bit. Here we use an arbitrary value of 1500 which will
818          *   restart after one full frame is pulled from the buffer. There
819          *   could be several smaller frames in the buffer and if so they will
820          *   not trigger the XON until their total number reduces the buffer
821          *   by 1500.
822          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
823          */
824         rx_buf_size = em_get_rx_buffer_size(hw);
825
826         hw->fc.high_water = rx_buf_size -
827                 PMD_ROUNDUP(RTE_ETHER_MAX_LEN * 2, 1024);
828         hw->fc.low_water = hw->fc.high_water - 1500;
829
830         if (hw->mac.type == e1000_80003es2lan)
831                 hw->fc.pause_time = UINT16_MAX;
832         else
833                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
834
835         hw->fc.send_xon = 1;
836
837         /* Set Flow control, use the tunable location if sane */
838         if (em_fc_setting <= e1000_fc_full)
839                 hw->fc.requested_mode = em_fc_setting;
840         else
841                 hw->fc.requested_mode = e1000_fc_none;
842
843         /* Workaround: no TX flow ctrl for PCH */
844         if (hw->mac.type == e1000_pchlan)
845                 hw->fc.requested_mode = e1000_fc_rx_pause;
846
847         /* Override - settings for PCH2LAN, ya its magic :) */
848         if (hw->mac.type == e1000_pch2lan) {
849                 hw->fc.high_water = 0x5C20;
850                 hw->fc.low_water = 0x5048;
851                 hw->fc.pause_time = 0x0650;
852                 hw->fc.refresh_time = 0x0400;
853         } else if (hw->mac.type == e1000_pch_lpt ||
854                    hw->mac.type == e1000_pch_spt ||
855                    hw->mac.type == e1000_pch_cnp) {
856                 hw->fc.requested_mode = e1000_fc_full;
857         }
858
859         diag = e1000_init_hw(hw);
860         if (diag < 0)
861                 return diag;
862         e1000_check_for_link(hw);
863         return 0;
864 }
865
866 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
867 static int
868 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
869 {
870         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
871         struct e1000_hw_stats *stats =
872                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
873         int pause_frames;
874
875         if(hw->phy.media_type == e1000_media_type_copper ||
876                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
877                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
878                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
879         }
880
881         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
882         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
883         stats->scc += E1000_READ_REG(hw, E1000_SCC);
884         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
885
886         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
887         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
888         stats->colc += E1000_READ_REG(hw, E1000_COLC);
889         stats->dc += E1000_READ_REG(hw, E1000_DC);
890         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
891         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
892         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
893
894         /*
895          * For watchdog management we need to know if we have been
896          * paused during the last interval, so capture that here.
897          */
898         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
899         stats->xoffrxc += pause_frames;
900         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
901         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
902         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
903         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
904         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
905         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
906         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
907         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
908         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
909         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
910         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
911         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
912
913         /*
914          * For the 64-bit byte counters the low dword must be read first.
915          * Both registers clear on the read of the high dword.
916          */
917
918         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
919         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
920         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
921         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
922
923         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
924         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
925         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
926         stats->roc += E1000_READ_REG(hw, E1000_ROC);
927         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
928
929         stats->tor += E1000_READ_REG(hw, E1000_TORH);
930         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
931
932         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
933         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
934         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
935         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
936         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
937         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
938         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
939         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
940         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
941         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
942
943         /* Interrupt Counts */
944
945         if (hw->mac.type >= e1000_82571) {
946                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
947                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
948                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
949                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
950                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
951                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
952                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
953                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
954                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
955         }
956
957         if (hw->mac.type >= e1000_82543) {
958                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
959                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
960                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
961                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
962                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
963                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
964         }
965
966         if (rte_stats == NULL)
967                 return -EINVAL;
968
969         /* Rx Errors */
970         rte_stats->imissed = stats->mpc;
971         rte_stats->ierrors = stats->crcerrs + stats->rlec +
972                              stats->rxerrc + stats->algnerrc + stats->cexterr;
973
974         /* Tx Errors */
975         rte_stats->oerrors = stats->ecol + stats->latecol;
976
977         rte_stats->ipackets = stats->gprc;
978         rte_stats->opackets = stats->gptc;
979         rte_stats->ibytes   = stats->gorc;
980         rte_stats->obytes   = stats->gotc;
981         return 0;
982 }
983
984 static int
985 eth_em_stats_reset(struct rte_eth_dev *dev)
986 {
987         struct e1000_hw_stats *hw_stats =
988                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
989
990         /* HW registers are cleared on read */
991         eth_em_stats_get(dev, NULL);
992
993         /* Reset software totals */
994         memset(hw_stats, 0, sizeof(*hw_stats));
995
996         return 0;
997 }
998
999 static int
1000 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1001 {
1002         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1003         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1004         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1005
1006         em_rxq_intr_enable(hw);
1007         rte_intr_ack(intr_handle);
1008
1009         return 0;
1010 }
1011
1012 static int
1013 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1014 {
1015         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1016
1017         em_rxq_intr_disable(hw);
1018
1019         return 0;
1020 }
1021
1022 uint32_t
1023 em_get_max_pktlen(struct rte_eth_dev *dev)
1024 {
1025         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1026
1027         switch (hw->mac.type) {
1028         case e1000_82571:
1029         case e1000_82572:
1030         case e1000_ich9lan:
1031         case e1000_ich10lan:
1032         case e1000_pch2lan:
1033         case e1000_pch_lpt:
1034         case e1000_pch_spt:
1035         case e1000_pch_cnp:
1036         case e1000_82574:
1037         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1038         case e1000_82583:
1039                 return 0x2412;
1040         case e1000_pchlan:
1041                 return 0x1000;
1042         /* Adapters that do not support jumbo frames */
1043         case e1000_ich8lan:
1044                 return RTE_ETHER_MAX_LEN;
1045         default:
1046                 return MAX_JUMBO_FRAME_SIZE;
1047         }
1048 }
1049
1050 static int
1051 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1052 {
1053         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1054
1055         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1056         dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1057         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1058
1059         /*
1060          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1061          * Unfortunatelly, all these nics have just one TX context.
1062          * So we have few choises for TX:
1063          * - Use just one TX queue.
1064          * - Allow cksum offload only for one TX queue.
1065          * - Don't allow TX cksum offload at all.
1066          * For now, option #1 was chosen.
1067          * To use second RX queue we have to use extended RX descriptor
1068          * (Multiple Receive Queues are mutually exclusive with UDP
1069          * fragmentation and are not supported when a legacy receive
1070          * descriptor format is used).
1071          * Which means separate RX routinies - as legacy nics (82540, 82545)
1072          * don't support extended RXD.
1073          * To avoid it we support just one RX queue for now (no RSS).
1074          */
1075
1076         dev_info->max_rx_queues = 1;
1077         dev_info->max_tx_queues = 1;
1078
1079         dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa();
1080         dev_info->rx_offload_capa = em_get_rx_port_offloads_capa() |
1081                                     dev_info->rx_queue_offload_capa;
1082         dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1083         dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1084                                     dev_info->tx_queue_offload_capa;
1085
1086         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1087                 .nb_max = E1000_MAX_RING_DESC,
1088                 .nb_min = E1000_MIN_RING_DESC,
1089                 .nb_align = EM_RXD_ALIGN,
1090         };
1091
1092         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1093                 .nb_max = E1000_MAX_RING_DESC,
1094                 .nb_min = E1000_MIN_RING_DESC,
1095                 .nb_align = EM_TXD_ALIGN,
1096                 .nb_seg_max = EM_TX_MAX_SEG,
1097                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1098         };
1099
1100         dev_info->speed_capa = RTE_ETH_LINK_SPEED_10M_HD | RTE_ETH_LINK_SPEED_10M |
1101                         RTE_ETH_LINK_SPEED_100M_HD | RTE_ETH_LINK_SPEED_100M |
1102                         RTE_ETH_LINK_SPEED_1G;
1103
1104         dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
1105
1106         /* Preferred queue parameters */
1107         dev_info->default_rxportconf.nb_queues = 1;
1108         dev_info->default_txportconf.nb_queues = 1;
1109         dev_info->default_txportconf.ring_size = 256;
1110         dev_info->default_rxportconf.ring_size = 256;
1111
1112         return 0;
1113 }
1114
1115 /* return 0 means link status changed, -1 means not changed */
1116 static int
1117 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1118 {
1119         struct e1000_hw *hw =
1120                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1121         struct rte_eth_link link;
1122         int link_up, count;
1123
1124         link_up = 0;
1125         hw->mac.get_link_status = 1;
1126
1127         /* possible wait-to-complete in up to 9 seconds */
1128         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1129                 /* Read the real link status */
1130                 switch (hw->phy.media_type) {
1131                 case e1000_media_type_copper:
1132                         /* Do the work to read phy */
1133                         e1000_check_for_link(hw);
1134                         link_up = !hw->mac.get_link_status;
1135                         break;
1136
1137                 case e1000_media_type_fiber:
1138                         e1000_check_for_link(hw);
1139                         link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1140                                         E1000_STATUS_LU);
1141                         break;
1142
1143                 case e1000_media_type_internal_serdes:
1144                         e1000_check_for_link(hw);
1145                         link_up = hw->mac.serdes_has_link;
1146                         break;
1147
1148                 default:
1149                         break;
1150                 }
1151                 if (link_up || wait_to_complete == 0)
1152                         break;
1153                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1154         }
1155         memset(&link, 0, sizeof(link));
1156
1157         /* Now we check if a transition has happened */
1158         if (link_up) {
1159                 uint16_t duplex, speed;
1160                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1161                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1162                                 RTE_ETH_LINK_FULL_DUPLEX :
1163                                 RTE_ETH_LINK_HALF_DUPLEX;
1164                 link.link_speed = speed;
1165                 link.link_status = RTE_ETH_LINK_UP;
1166                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1167                                 RTE_ETH_LINK_SPEED_FIXED);
1168         } else {
1169                 link.link_speed = RTE_ETH_SPEED_NUM_NONE;
1170                 link.link_duplex = RTE_ETH_LINK_HALF_DUPLEX;
1171                 link.link_status = RTE_ETH_LINK_DOWN;
1172                 link.link_autoneg = RTE_ETH_LINK_FIXED;
1173         }
1174
1175         return rte_eth_linkstatus_set(dev, &link);
1176 }
1177
1178 /*
1179  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1180  * For ASF and Pass Through versions of f/w this means
1181  * that the driver is loaded. For AMT version type f/w
1182  * this means that the network i/f is open.
1183  */
1184 static void
1185 em_hw_control_acquire(struct e1000_hw *hw)
1186 {
1187         uint32_t ctrl_ext, swsm;
1188
1189         /* Let firmware know the driver has taken over */
1190         if (hw->mac.type == e1000_82573) {
1191                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1192                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1193
1194         } else {
1195                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1196                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1197                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1198         }
1199 }
1200
1201 /*
1202  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1203  * For ASF and Pass Through versions of f/w this means that the
1204  * driver is no longer loaded. For AMT versions of the
1205  * f/w this means that the network i/f is closed.
1206  */
1207 static void
1208 em_hw_control_release(struct e1000_hw *hw)
1209 {
1210         uint32_t ctrl_ext, swsm;
1211
1212         /* Let firmware taken over control of h/w */
1213         if (hw->mac.type == e1000_82573) {
1214                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1215                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1216         } else {
1217                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1218                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1219                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1220         }
1221 }
1222
1223 /*
1224  * Bit of a misnomer, what this really means is
1225  * to enable OS management of the system... aka
1226  * to disable special hardware management features.
1227  */
1228 static void
1229 em_init_manageability(struct e1000_hw *hw)
1230 {
1231         if (e1000_enable_mng_pass_thru(hw)) {
1232                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1233                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1234
1235                 /* disable hardware interception of ARP */
1236                 manc &= ~(E1000_MANC_ARP_EN);
1237
1238                 /* enable receiving management packets to the host */
1239                 manc |= E1000_MANC_EN_MNG2HOST;
1240                 manc2h |= 1 << 5;  /* Mng Port 623 */
1241                 manc2h |= 1 << 6;  /* Mng Port 664 */
1242                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1243                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1244         }
1245 }
1246
1247 /*
1248  * Give control back to hardware management
1249  * controller if there is one.
1250  */
1251 static void
1252 em_release_manageability(struct e1000_hw *hw)
1253 {
1254         uint32_t manc;
1255
1256         if (e1000_enable_mng_pass_thru(hw)) {
1257                 manc = E1000_READ_REG(hw, E1000_MANC);
1258
1259                 /* re-enable hardware interception of ARP */
1260                 manc |= E1000_MANC_ARP_EN;
1261                 manc &= ~E1000_MANC_EN_MNG2HOST;
1262
1263                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1264         }
1265 }
1266
1267 static int
1268 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1269 {
1270         struct e1000_hw *hw =
1271                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1272         uint32_t rctl;
1273
1274         rctl = E1000_READ_REG(hw, E1000_RCTL);
1275         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1276         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1277
1278         return 0;
1279 }
1280
1281 static int
1282 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1283 {
1284         struct e1000_hw *hw =
1285                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1286         uint32_t rctl;
1287
1288         rctl = E1000_READ_REG(hw, E1000_RCTL);
1289         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1290         if (dev->data->all_multicast == 1)
1291                 rctl |= E1000_RCTL_MPE;
1292         else
1293                 rctl &= (~E1000_RCTL_MPE);
1294         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1295
1296         return 0;
1297 }
1298
1299 static int
1300 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1301 {
1302         struct e1000_hw *hw =
1303                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1304         uint32_t rctl;
1305
1306         rctl = E1000_READ_REG(hw, E1000_RCTL);
1307         rctl |= E1000_RCTL_MPE;
1308         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1309
1310         return 0;
1311 }
1312
1313 static int
1314 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1315 {
1316         struct e1000_hw *hw =
1317                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1318         uint32_t rctl;
1319
1320         if (dev->data->promiscuous == 1)
1321                 return 0; /* must remain in all_multicast mode */
1322         rctl = E1000_READ_REG(hw, E1000_RCTL);
1323         rctl &= (~E1000_RCTL_MPE);
1324         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1325
1326         return 0;
1327 }
1328
1329 static int
1330 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1331 {
1332         struct e1000_hw *hw =
1333                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1334         struct e1000_vfta * shadow_vfta =
1335                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1336         uint32_t vfta;
1337         uint32_t vid_idx;
1338         uint32_t vid_bit;
1339
1340         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1341                               E1000_VFTA_ENTRY_MASK);
1342         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1343         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1344         if (on)
1345                 vfta |= vid_bit;
1346         else
1347                 vfta &= ~vid_bit;
1348         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1349
1350         /* update local VFTA copy */
1351         shadow_vfta->vfta[vid_idx] = vfta;
1352
1353         return 0;
1354 }
1355
1356 static void
1357 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1358 {
1359         struct e1000_hw *hw =
1360                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1361         uint32_t reg;
1362
1363         /* Filter Table Disable */
1364         reg = E1000_READ_REG(hw, E1000_RCTL);
1365         reg &= ~E1000_RCTL_CFIEN;
1366         reg &= ~E1000_RCTL_VFE;
1367         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1368 }
1369
1370 static void
1371 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1372 {
1373         struct e1000_hw *hw =
1374                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1375         struct e1000_vfta * shadow_vfta =
1376                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1377         uint32_t reg;
1378         int i;
1379
1380         /* Filter Table Enable, CFI not used for packet acceptance */
1381         reg = E1000_READ_REG(hw, E1000_RCTL);
1382         reg &= ~E1000_RCTL_CFIEN;
1383         reg |= E1000_RCTL_VFE;
1384         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1385
1386         /* restore vfta from local copy */
1387         for (i = 0; i < IGB_VFTA_SIZE; i++)
1388                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1389 }
1390
1391 static void
1392 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1393 {
1394         struct e1000_hw *hw =
1395                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1396         uint32_t reg;
1397
1398         /* VLAN Mode Disable */
1399         reg = E1000_READ_REG(hw, E1000_CTRL);
1400         reg &= ~E1000_CTRL_VME;
1401         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1402
1403 }
1404
1405 static void
1406 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1407 {
1408         struct e1000_hw *hw =
1409                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1410         uint32_t reg;
1411
1412         /* VLAN Mode Enable */
1413         reg = E1000_READ_REG(hw, E1000_CTRL);
1414         reg |= E1000_CTRL_VME;
1415         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1416 }
1417
1418 static int
1419 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1420 {
1421         struct rte_eth_rxmode *rxmode;
1422
1423         rxmode = &dev->data->dev_conf.rxmode;
1424         if (mask & RTE_ETH_VLAN_STRIP_MASK) {
1425                 if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
1426                         em_vlan_hw_strip_enable(dev);
1427                 else
1428                         em_vlan_hw_strip_disable(dev);
1429         }
1430
1431         if (mask & RTE_ETH_VLAN_FILTER_MASK) {
1432                 if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)
1433                         em_vlan_hw_filter_enable(dev);
1434                 else
1435                         em_vlan_hw_filter_disable(dev);
1436         }
1437
1438         return 0;
1439 }
1440
1441 /*
1442  * It enables the interrupt mask and then enable the interrupt.
1443  *
1444  * @param dev
1445  *  Pointer to struct rte_eth_dev.
1446  *
1447  * @return
1448  *  - On success, zero.
1449  *  - On failure, a negative value.
1450  */
1451 static int
1452 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1453 {
1454         uint32_t regval;
1455         struct e1000_hw *hw =
1456                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1457
1458         /* clear interrupt */
1459         E1000_READ_REG(hw, E1000_ICR);
1460         regval = E1000_READ_REG(hw, E1000_IMS);
1461         E1000_WRITE_REG(hw, E1000_IMS,
1462                         regval | E1000_ICR_LSC | E1000_ICR_OTHER);
1463         return 0;
1464 }
1465
1466 /*
1467  * It clears the interrupt causes and enables the interrupt.
1468  * It will be called once only during nic initialized.
1469  *
1470  * @param dev
1471  *  Pointer to struct rte_eth_dev.
1472  *
1473  * @return
1474  *  - On success, zero.
1475  *  - On failure, a negative value.
1476  */
1477 static int
1478 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1479 {
1480         struct e1000_hw *hw =
1481         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1482
1483         E1000_READ_REG(hw, E1000_ICR);
1484         em_rxq_intr_enable(hw);
1485         return 0;
1486 }
1487
1488 /*
1489  * It enable receive packet interrupt.
1490  * @param hw
1491  * Pointer to struct e1000_hw
1492  *
1493  * @return
1494  */
1495 static void
1496 em_rxq_intr_enable(struct e1000_hw *hw)
1497 {
1498         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1499         E1000_WRITE_FLUSH(hw);
1500 }
1501
1502 /*
1503  * It disabled lsc interrupt.
1504  * @param hw
1505  * Pointer to struct e1000_hw
1506  *
1507  * @return
1508  */
1509 static void
1510 em_lsc_intr_disable(struct e1000_hw *hw)
1511 {
1512         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC | E1000_IMS_OTHER);
1513         E1000_WRITE_FLUSH(hw);
1514 }
1515
1516 /*
1517  * It disabled receive packet interrupt.
1518  * @param hw
1519  * Pointer to struct e1000_hw
1520  *
1521  * @return
1522  */
1523 static void
1524 em_rxq_intr_disable(struct e1000_hw *hw)
1525 {
1526         E1000_READ_REG(hw, E1000_ICR);
1527         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1528         E1000_WRITE_FLUSH(hw);
1529 }
1530
1531 /*
1532  * It reads ICR and gets interrupt causes, check it and set a bit flag
1533  * to update link status.
1534  *
1535  * @param dev
1536  *  Pointer to struct rte_eth_dev.
1537  *
1538  * @return
1539  *  - On success, zero.
1540  *  - On failure, a negative value.
1541  */
1542 static int
1543 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1544 {
1545         uint32_t icr;
1546         struct e1000_hw *hw =
1547                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1548         struct e1000_interrupt *intr =
1549                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1550
1551         /* read-on-clear nic registers here */
1552         icr = E1000_READ_REG(hw, E1000_ICR);
1553         if (icr & E1000_ICR_LSC) {
1554                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1555         }
1556
1557         return 0;
1558 }
1559
1560 /*
1561  * It executes link_update after knowing an interrupt is prsent.
1562  *
1563  * @param dev
1564  *  Pointer to struct rte_eth_dev.
1565  *
1566  * @return
1567  *  - On success, zero.
1568  *  - On failure, a negative value.
1569  */
1570 static int
1571 eth_em_interrupt_action(struct rte_eth_dev *dev,
1572                         struct rte_intr_handle *intr_handle)
1573 {
1574         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1575         struct e1000_hw *hw =
1576                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1577         struct e1000_interrupt *intr =
1578                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1579         struct rte_eth_link link;
1580         int ret;
1581
1582         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1583                 return -1;
1584
1585         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1586         rte_intr_ack(intr_handle);
1587
1588         /* set get_link_status to check register later */
1589         hw->mac.get_link_status = 1;
1590         ret = eth_em_link_update(dev, 0);
1591
1592         /* check if link has changed */
1593         if (ret < 0)
1594                 return 0;
1595
1596         rte_eth_linkstatus_get(dev, &link);
1597
1598         if (link.link_status) {
1599                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1600                              dev->data->port_id, link.link_speed,
1601                              link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX ?
1602                              "full-duplex" : "half-duplex");
1603         } else {
1604                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1605         }
1606         PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
1607                      pci_dev->addr.domain, pci_dev->addr.bus,
1608                      pci_dev->addr.devid, pci_dev->addr.function);
1609
1610         return 0;
1611 }
1612
1613 /**
1614  * Interrupt handler which shall be registered at first.
1615  *
1616  * @param handle
1617  *  Pointer to interrupt handle.
1618  * @param param
1619  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1620  *
1621  * @return
1622  *  void
1623  */
1624 static void
1625 eth_em_interrupt_handler(void *param)
1626 {
1627         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1628
1629         eth_em_interrupt_get_status(dev);
1630         eth_em_interrupt_action(dev, dev->intr_handle);
1631         rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1632 }
1633
1634 static int
1635 eth_em_led_on(struct rte_eth_dev *dev)
1636 {
1637         struct e1000_hw *hw;
1638
1639         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1640         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1641 }
1642
1643 static int
1644 eth_em_led_off(struct rte_eth_dev *dev)
1645 {
1646         struct e1000_hw *hw;
1647
1648         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1649         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1650 }
1651
1652 static int
1653 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1654 {
1655         struct e1000_hw *hw;
1656         uint32_t ctrl;
1657         int tx_pause;
1658         int rx_pause;
1659
1660         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1661         fc_conf->pause_time = hw->fc.pause_time;
1662         fc_conf->high_water = hw->fc.high_water;
1663         fc_conf->low_water = hw->fc.low_water;
1664         fc_conf->send_xon = hw->fc.send_xon;
1665         fc_conf->autoneg = hw->mac.autoneg;
1666
1667         /*
1668          * Return rx_pause and tx_pause status according to actual setting of
1669          * the TFCE and RFCE bits in the CTRL register.
1670          */
1671         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1672         if (ctrl & E1000_CTRL_TFCE)
1673                 tx_pause = 1;
1674         else
1675                 tx_pause = 0;
1676
1677         if (ctrl & E1000_CTRL_RFCE)
1678                 rx_pause = 1;
1679         else
1680                 rx_pause = 0;
1681
1682         if (rx_pause && tx_pause)
1683                 fc_conf->mode = RTE_ETH_FC_FULL;
1684         else if (rx_pause)
1685                 fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
1686         else if (tx_pause)
1687                 fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
1688         else
1689                 fc_conf->mode = RTE_ETH_FC_NONE;
1690
1691         return 0;
1692 }
1693
1694 static int
1695 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1696 {
1697         struct e1000_hw *hw;
1698         int err;
1699         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1700                 e1000_fc_none,
1701                 e1000_fc_rx_pause,
1702                 e1000_fc_tx_pause,
1703                 e1000_fc_full
1704         };
1705         uint32_t rx_buf_size;
1706         uint32_t max_high_water;
1707         uint32_t rctl;
1708
1709         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1710         if (fc_conf->autoneg != hw->mac.autoneg)
1711                 return -ENOTSUP;
1712         rx_buf_size = em_get_rx_buffer_size(hw);
1713         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1714
1715         /* At least reserve one Ethernet frame for watermark */
1716         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
1717         if ((fc_conf->high_water > max_high_water) ||
1718             (fc_conf->high_water < fc_conf->low_water)) {
1719                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1720                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1721                 return -EINVAL;
1722         }
1723
1724         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1725         hw->fc.pause_time     = fc_conf->pause_time;
1726         hw->fc.high_water     = fc_conf->high_water;
1727         hw->fc.low_water      = fc_conf->low_water;
1728         hw->fc.send_xon       = fc_conf->send_xon;
1729
1730         err = e1000_setup_link_generic(hw);
1731         if (err == E1000_SUCCESS) {
1732
1733                 /* check if we want to forward MAC frames - driver doesn't have native
1734                  * capability to do that, so we'll write the registers ourselves */
1735
1736                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1737
1738                 /* set or clear MFLCN.PMCF bit depending on configuration */
1739                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1740                         rctl |= E1000_RCTL_PMCF;
1741                 else
1742                         rctl &= ~E1000_RCTL_PMCF;
1743
1744                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1745                 E1000_WRITE_FLUSH(hw);
1746
1747                 return 0;
1748         }
1749
1750         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1751         return -EIO;
1752 }
1753
1754 static int
1755 eth_em_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1756                 uint32_t index, __rte_unused uint32_t pool)
1757 {
1758         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1759
1760         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1761 }
1762
1763 static void
1764 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1765 {
1766         uint8_t addr[RTE_ETHER_ADDR_LEN];
1767         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1768
1769         memset(addr, 0, sizeof(addr));
1770
1771         e1000_rar_set(hw, addr, index);
1772 }
1773
1774 static int
1775 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1776                             struct rte_ether_addr *addr)
1777 {
1778         eth_em_rar_clear(dev, 0);
1779
1780         return eth_em_rar_set(dev, (void *)addr, 0, 0);
1781 }
1782
1783 static int
1784 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1785 {
1786         struct e1000_hw *hw;
1787         uint32_t frame_size;
1788         uint32_t rctl;
1789
1790         frame_size = mtu + E1000_ETH_OVERHEAD;
1791
1792         /*
1793          * If device is started, refuse mtu that requires the support of
1794          * scattered packets when this feature has not been enabled before.
1795          */
1796         if (dev->data->dev_started && !dev->data->scattered_rx &&
1797             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
1798                 PMD_INIT_LOG(ERR, "Stop port first.");
1799                 return -EINVAL;
1800         }
1801
1802         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1803         rctl = E1000_READ_REG(hw, E1000_RCTL);
1804
1805         /* switch to jumbo mode if needed */
1806         if (mtu > RTE_ETHER_MTU)
1807                 rctl |= E1000_RCTL_LPE;
1808         else
1809                 rctl &= ~E1000_RCTL_LPE;
1810         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1811
1812         return 0;
1813 }
1814
1815 static int
1816 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1817                         struct rte_ether_addr *mc_addr_set,
1818                         uint32_t nb_mc_addr)
1819 {
1820         struct e1000_hw *hw;
1821
1822         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1823         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1824         return 0;
1825 }
1826
1827 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1828 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1829 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");