1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
15 #include <rte_debug.h>
17 #include <rte_bus_pci.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_memory.h>
23 #include <rte_malloc.h>
26 #include "e1000_logs.h"
27 #include "base/e1000_api.h"
28 #include "e1000_ethdev.h"
30 #define EM_EIAC 0x000DC
32 #define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
35 static int eth_em_configure(struct rte_eth_dev *dev);
36 static int eth_em_start(struct rte_eth_dev *dev);
37 static void eth_em_stop(struct rte_eth_dev *dev);
38 static void eth_em_close(struct rte_eth_dev *dev);
39 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
40 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
41 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
42 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
43 static int eth_em_link_update(struct rte_eth_dev *dev,
44 int wait_to_complete);
45 static int eth_em_stats_get(struct rte_eth_dev *dev,
46 struct rte_eth_stats *rte_stats);
47 static void eth_em_stats_reset(struct rte_eth_dev *dev);
48 static void eth_em_infos_get(struct rte_eth_dev *dev,
49 struct rte_eth_dev_info *dev_info);
50 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
51 struct rte_eth_fc_conf *fc_conf);
52 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
53 struct rte_eth_fc_conf *fc_conf);
54 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
57 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
58 struct rte_intr_handle *handle);
59 static void eth_em_interrupt_handler(void *param);
61 static int em_hw_init(struct e1000_hw *hw);
62 static int em_hardware_init(struct e1000_hw *hw);
63 static void em_hw_control_acquire(struct e1000_hw *hw);
64 static void em_hw_control_release(struct e1000_hw *hw);
65 static void em_init_manageability(struct e1000_hw *hw);
66 static void em_release_manageability(struct e1000_hw *hw);
68 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
70 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
71 uint16_t vlan_id, int on);
72 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
73 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
76 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
79 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
80 uint16_t vlan_id, int on);
83 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
85 static void em_lsc_intr_disable(struct e1000_hw *hw);
86 static void em_rxq_intr_enable(struct e1000_hw *hw);
87 static void em_rxq_intr_disable(struct e1000_hw *hw);
89 static int eth_em_led_on(struct rte_eth_dev *dev);
90 static int eth_em_led_off(struct rte_eth_dev *dev);
92 static int em_get_rx_buffer_size(struct e1000_hw *hw);
93 static int eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
94 uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97 struct ether_addr *addr);
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100 struct ether_addr *mc_addr_set,
101 uint32_t nb_mc_addr);
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
109 int e1000_logtype_init;
110 int e1000_logtype_driver;
113 * The set of PCI devices this driver supports
115 static const struct rte_pci_id pci_id_em_map[] = {
116 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
117 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
118 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
119 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
120 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
121 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
122 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
123 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
124 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
125 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
126 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
127 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
128 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
129 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
130 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
131 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
132 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
133 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
134 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
135 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
136 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
137 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
138 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
139 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
140 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
141 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
142 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
143 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
144 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
145 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
146 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
147 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
148 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
149 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
150 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
151 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
152 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
153 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
154 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
155 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
156 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
157 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
158 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
159 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
160 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
161 { .vendor_id = 0, /* sentinel */ },
164 static const struct eth_dev_ops eth_em_ops = {
165 .dev_configure = eth_em_configure,
166 .dev_start = eth_em_start,
167 .dev_stop = eth_em_stop,
168 .dev_close = eth_em_close,
169 .promiscuous_enable = eth_em_promiscuous_enable,
170 .promiscuous_disable = eth_em_promiscuous_disable,
171 .allmulticast_enable = eth_em_allmulticast_enable,
172 .allmulticast_disable = eth_em_allmulticast_disable,
173 .link_update = eth_em_link_update,
174 .stats_get = eth_em_stats_get,
175 .stats_reset = eth_em_stats_reset,
176 .dev_infos_get = eth_em_infos_get,
177 .mtu_set = eth_em_mtu_set,
178 .vlan_filter_set = eth_em_vlan_filter_set,
179 .vlan_offload_set = eth_em_vlan_offload_set,
180 .rx_queue_setup = eth_em_rx_queue_setup,
181 .rx_queue_release = eth_em_rx_queue_release,
182 .rx_queue_count = eth_em_rx_queue_count,
183 .rx_descriptor_done = eth_em_rx_descriptor_done,
184 .rx_descriptor_status = eth_em_rx_descriptor_status,
185 .tx_descriptor_status = eth_em_tx_descriptor_status,
186 .tx_queue_setup = eth_em_tx_queue_setup,
187 .tx_queue_release = eth_em_tx_queue_release,
188 .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
189 .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
190 .dev_led_on = eth_em_led_on,
191 .dev_led_off = eth_em_led_off,
192 .flow_ctrl_get = eth_em_flow_ctrl_get,
193 .flow_ctrl_set = eth_em_flow_ctrl_set,
194 .mac_addr_set = eth_em_default_mac_addr_set,
195 .mac_addr_add = eth_em_rar_set,
196 .mac_addr_remove = eth_em_rar_clear,
197 .set_mc_addr_list = eth_em_set_mc_addr_list,
198 .rxq_info_get = em_rxq_info_get,
199 .txq_info_get = em_txq_info_get,
204 * eth_em_dev_is_ich8 - Check for ICH8 device
205 * @hw: pointer to the HW structure
207 * return TRUE for ICH8, otherwise FALSE
210 eth_em_dev_is_ich8(struct e1000_hw *hw)
212 DEBUGFUNC("eth_em_dev_is_ich8");
214 switch (hw->device_id) {
215 case E1000_DEV_ID_PCH2_LV_LM:
216 case E1000_DEV_ID_PCH_LPT_I217_LM:
217 case E1000_DEV_ID_PCH_LPT_I217_V:
218 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
219 case E1000_DEV_ID_PCH_LPTLP_I218_V:
220 case E1000_DEV_ID_PCH_I218_V2:
221 case E1000_DEV_ID_PCH_I218_LM2:
222 case E1000_DEV_ID_PCH_I218_V3:
223 case E1000_DEV_ID_PCH_I218_LM3:
224 case E1000_DEV_ID_PCH_SPT_I219_LM:
225 case E1000_DEV_ID_PCH_SPT_I219_V:
226 case E1000_DEV_ID_PCH_SPT_I219_LM2:
227 case E1000_DEV_ID_PCH_SPT_I219_V2:
228 case E1000_DEV_ID_PCH_LBG_I219_LM3:
229 case E1000_DEV_ID_PCH_SPT_I219_LM4:
230 case E1000_DEV_ID_PCH_SPT_I219_V4:
231 case E1000_DEV_ID_PCH_SPT_I219_LM5:
232 case E1000_DEV_ID_PCH_SPT_I219_V5:
233 case E1000_DEV_ID_PCH_CNP_I219_LM6:
234 case E1000_DEV_ID_PCH_CNP_I219_V6:
235 case E1000_DEV_ID_PCH_CNP_I219_LM7:
236 case E1000_DEV_ID_PCH_CNP_I219_V7:
244 eth_em_dev_init(struct rte_eth_dev *eth_dev)
246 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
247 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
248 struct e1000_adapter *adapter =
249 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
250 struct e1000_hw *hw =
251 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
252 struct e1000_vfta * shadow_vfta =
253 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
255 eth_dev->dev_ops = ð_em_ops;
256 eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts;
257 eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts;
258 eth_dev->tx_pkt_prepare = (eth_tx_prep_t)ð_em_prep_pkts;
260 /* for secondary processes, we don't initialise any further as primary
261 * has already done this work. Only check we don't need a different
263 if (rte_eal_process_type() != RTE_PROC_PRIMARY){
264 if (eth_dev->data->scattered_rx)
265 eth_dev->rx_pkt_burst =
266 (eth_rx_burst_t)ð_em_recv_scattered_pkts;
270 rte_eth_copy_pci_info(eth_dev, pci_dev);
272 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
273 hw->device_id = pci_dev->id.device_id;
274 adapter->stopped = 0;
276 /* For ICH8 support we'll need to map the flash memory BAR */
277 if (eth_em_dev_is_ich8(hw))
278 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
280 if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
281 em_hw_init(hw) != 0) {
282 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
284 eth_dev->data->port_id, pci_dev->id.vendor_id,
285 pci_dev->id.device_id);
289 /* Allocate memory for storing MAC addresses */
290 eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
291 hw->mac.rar_entry_count, 0);
292 if (eth_dev->data->mac_addrs == NULL) {
293 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
294 "store MAC addresses",
295 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
299 /* Copy the permanent MAC address */
300 ether_addr_copy((struct ether_addr *) hw->mac.addr,
301 eth_dev->data->mac_addrs);
303 /* initialize the vfta */
304 memset(shadow_vfta, 0, sizeof(*shadow_vfta));
306 PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
307 eth_dev->data->port_id, pci_dev->id.vendor_id,
308 pci_dev->id.device_id);
310 rte_intr_callback_register(intr_handle,
311 eth_em_interrupt_handler, eth_dev);
317 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
319 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
320 struct e1000_adapter *adapter =
321 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
322 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
324 PMD_INIT_FUNC_TRACE();
326 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
329 if (adapter->stopped == 0)
330 eth_em_close(eth_dev);
332 eth_dev->dev_ops = NULL;
333 eth_dev->rx_pkt_burst = NULL;
334 eth_dev->tx_pkt_burst = NULL;
336 rte_free(eth_dev->data->mac_addrs);
337 eth_dev->data->mac_addrs = NULL;
339 /* disable uio intr before callback unregister */
340 rte_intr_disable(intr_handle);
341 rte_intr_callback_unregister(intr_handle,
342 eth_em_interrupt_handler, eth_dev);
347 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
348 struct rte_pci_device *pci_dev)
350 return rte_eth_dev_pci_generic_probe(pci_dev,
351 sizeof(struct e1000_adapter), eth_em_dev_init);
354 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
356 return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
359 static struct rte_pci_driver rte_em_pmd = {
360 .id_table = pci_id_em_map,
361 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
362 RTE_PCI_DRV_IOVA_AS_VA,
363 .probe = eth_em_pci_probe,
364 .remove = eth_em_pci_remove,
368 em_hw_init(struct e1000_hw *hw)
372 diag = hw->mac.ops.init_params(hw);
374 PMD_INIT_LOG(ERR, "MAC Initialization Error");
377 diag = hw->nvm.ops.init_params(hw);
379 PMD_INIT_LOG(ERR, "NVM Initialization Error");
382 diag = hw->phy.ops.init_params(hw);
384 PMD_INIT_LOG(ERR, "PHY Initialization Error");
387 (void) e1000_get_bus_info(hw);
390 hw->phy.autoneg_wait_to_complete = 0;
391 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
393 e1000_init_script_state_82541(hw, TRUE);
394 e1000_set_tbi_compatibility_82543(hw, TRUE);
397 if (hw->phy.media_type == e1000_media_type_copper) {
398 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
399 hw->phy.disable_polarity_correction = 0;
400 hw->phy.ms_type = e1000_ms_hw_default;
404 * Start from a known state, this is important in reading the nvm
409 /* Make sure we have a good EEPROM before we read from it */
410 if (e1000_validate_nvm_checksum(hw) < 0) {
412 * Some PCI-E parts fail the first check due to
413 * the link being in sleep state, call it again,
414 * if it fails a second time its a real issue.
416 diag = e1000_validate_nvm_checksum(hw);
418 PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
423 /* Read the permanent MAC address out of the EEPROM */
424 diag = e1000_read_mac_addr(hw);
426 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
430 /* Now initialize the hardware */
431 diag = em_hardware_init(hw);
433 PMD_INIT_LOG(ERR, "Hardware initialization failed");
437 hw->mac.get_link_status = 1;
439 /* Indicate SOL/IDER usage */
440 diag = e1000_check_reset_block(hw);
442 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
448 em_hw_control_release(hw);
453 eth_em_configure(struct rte_eth_dev *dev)
455 struct e1000_interrupt *intr =
456 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
458 PMD_INIT_FUNC_TRACE();
459 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
461 PMD_INIT_FUNC_TRACE();
467 em_set_pba(struct e1000_hw *hw)
472 * Packet Buffer Allocation (PBA)
473 * Writing PBA sets the receive portion of the buffer
474 * the remainder is used for the transmit buffer.
475 * Devices before the 82547 had a Packet Buffer of 64K.
476 * After the 82547 the buffer was reduced to 40K.
478 switch (hw->mac.type) {
480 case e1000_82547_rev_2:
481 /* 82547: Total Packet Buffer is 40K */
482 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
486 case e1000_80003es2lan:
487 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
489 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
490 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
494 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
511 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
514 E1000_WRITE_REG(hw, E1000_PBA, pba);
518 eth_em_rxtx_control(struct rte_eth_dev *dev,
521 struct e1000_hw *hw =
522 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
525 tctl = E1000_READ_REG(hw, E1000_TCTL);
526 rctl = E1000_READ_REG(hw, E1000_RCTL);
529 tctl |= E1000_TCTL_EN;
530 rctl |= E1000_RCTL_EN;
533 tctl &= ~E1000_TCTL_EN;
534 rctl &= ~E1000_RCTL_EN;
536 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
537 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
538 E1000_WRITE_FLUSH(hw);
542 eth_em_start(struct rte_eth_dev *dev)
544 struct e1000_adapter *adapter =
545 E1000_DEV_PRIVATE(dev->data->dev_private);
546 struct e1000_hw *hw =
547 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
548 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
549 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
551 uint32_t intr_vector = 0;
556 PMD_INIT_FUNC_TRACE();
560 e1000_power_up_phy(hw);
562 /* Set default PBA value */
565 /* Put the address into the Receive Address Array */
566 e1000_rar_set(hw, hw->mac.addr, 0);
569 * With the 82571 adapter, RAR[0] may be overwritten
570 * when the other port is reset, we make a duplicate
571 * in RAR[14] for that eventuality, this assures
572 * the interface continues to function.
574 if (hw->mac.type == e1000_82571) {
575 e1000_set_laa_state_82571(hw, TRUE);
576 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
579 /* Initialize the hardware */
580 if (em_hardware_init(hw)) {
581 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
585 E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
587 /* Configure for OS presence */
588 em_init_manageability(hw);
590 if (dev->data->dev_conf.intr_conf.rxq != 0) {
591 intr_vector = dev->data->nb_rx_queues;
592 if (rte_intr_efd_enable(intr_handle, intr_vector))
596 if (rte_intr_dp_is_en(intr_handle)) {
597 intr_handle->intr_vec =
598 rte_zmalloc("intr_vec",
599 dev->data->nb_rx_queues * sizeof(int), 0);
600 if (intr_handle->intr_vec == NULL) {
601 PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
602 " intr_vec", dev->data->nb_rx_queues);
606 /* enable rx interrupt */
607 em_rxq_intr_enable(hw);
612 ret = eth_em_rx_init(dev);
614 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
615 em_dev_clear_queues(dev);
619 e1000_clear_hw_cntrs_base_generic(hw);
621 mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
622 ETH_VLAN_EXTEND_MASK;
623 ret = eth_em_vlan_offload_set(dev, mask);
625 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
626 em_dev_clear_queues(dev);
630 /* Set Interrupt Throttling Rate to maximum allowed value. */
631 E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
633 /* Setup link speed and duplex */
634 speeds = &dev->data->dev_conf.link_speeds;
635 if (*speeds == ETH_LINK_SPEED_AUTONEG) {
636 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
640 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
643 hw->phy.autoneg_advertised = 0;
645 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
646 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
647 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
649 goto error_invalid_config;
651 if (*speeds & ETH_LINK_SPEED_10M_HD) {
652 hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
655 if (*speeds & ETH_LINK_SPEED_10M) {
656 hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
659 if (*speeds & ETH_LINK_SPEED_100M_HD) {
660 hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
663 if (*speeds & ETH_LINK_SPEED_100M) {
664 hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
667 if (*speeds & ETH_LINK_SPEED_1G) {
668 hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
671 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
672 goto error_invalid_config;
674 /* Set/reset the mac.autoneg based on the link speed,
679 hw->mac.forced_speed_duplex =
680 hw->phy.autoneg_advertised;
686 e1000_setup_link(hw);
688 if (rte_intr_allow_others(intr_handle)) {
689 /* check if lsc interrupt is enabled */
690 if (dev->data->dev_conf.intr_conf.lsc != 0) {
691 ret = eth_em_interrupt_setup(dev);
693 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
694 em_dev_clear_queues(dev);
699 rte_intr_callback_unregister(intr_handle,
700 eth_em_interrupt_handler,
702 if (dev->data->dev_conf.intr_conf.lsc != 0)
703 PMD_INIT_LOG(INFO, "lsc won't enable because of"
704 " no intr multiplexn");
706 /* check if rxq interrupt is enabled */
707 if (dev->data->dev_conf.intr_conf.rxq != 0)
708 eth_em_rxq_interrupt_setup(dev);
710 rte_intr_enable(intr_handle);
712 adapter->stopped = 0;
714 eth_em_rxtx_control(dev, true);
715 eth_em_link_update(dev, 0);
717 PMD_INIT_LOG(DEBUG, "<<");
721 error_invalid_config:
722 PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
723 dev->data->dev_conf.link_speeds, dev->data->port_id);
724 em_dev_clear_queues(dev);
728 /*********************************************************************
730 * This routine disables all traffic on the adapter by issuing a
731 * global reset on the MAC.
733 **********************************************************************/
735 eth_em_stop(struct rte_eth_dev *dev)
737 struct rte_eth_link link;
738 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
739 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
740 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
742 eth_em_rxtx_control(dev, false);
743 em_rxq_intr_disable(hw);
744 em_lsc_intr_disable(hw);
747 if (hw->mac.type >= e1000_82544)
748 E1000_WRITE_REG(hw, E1000_WUC, 0);
750 /* Power down the phy. Needed to make the link go down */
751 e1000_power_down_phy(hw);
753 em_dev_clear_queues(dev);
755 /* clear the recorded link status */
756 memset(&link, 0, sizeof(link));
757 rte_eth_linkstatus_set(dev, &link);
759 if (!rte_intr_allow_others(intr_handle))
760 /* resume to the default handler */
761 rte_intr_callback_register(intr_handle,
762 eth_em_interrupt_handler,
765 /* Clean datapath event and queue/vec mapping */
766 rte_intr_efd_disable(intr_handle);
767 if (intr_handle->intr_vec != NULL) {
768 rte_free(intr_handle->intr_vec);
769 intr_handle->intr_vec = NULL;
774 eth_em_close(struct rte_eth_dev *dev)
776 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
777 struct e1000_adapter *adapter =
778 E1000_DEV_PRIVATE(dev->data->dev_private);
781 adapter->stopped = 1;
782 em_dev_free_queues(dev);
783 e1000_phy_hw_reset(hw);
784 em_release_manageability(hw);
785 em_hw_control_release(hw);
789 em_get_rx_buffer_size(struct e1000_hw *hw)
791 uint32_t rx_buf_size;
793 rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
797 /*********************************************************************
799 * Initialize the hardware
801 **********************************************************************/
803 em_hardware_init(struct e1000_hw *hw)
805 uint32_t rx_buf_size;
808 /* Issue a global reset */
811 /* Let the firmware know the OS is in control */
812 em_hw_control_acquire(hw);
815 * These parameters control the automatic generation (Tx) and
816 * response (Rx) to Ethernet PAUSE frames.
817 * - High water mark should allow for at least two standard size (1518)
818 * frames to be received after sending an XOFF.
819 * - Low water mark works best when it is very near the high water mark.
820 * This allows the receiver to restart by sending XON when it has
821 * drained a bit. Here we use an arbitrary value of 1500 which will
822 * restart after one full frame is pulled from the buffer. There
823 * could be several smaller frames in the buffer and if so they will
824 * not trigger the XON until their total number reduces the buffer
826 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
828 rx_buf_size = em_get_rx_buffer_size(hw);
830 hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
831 hw->fc.low_water = hw->fc.high_water - 1500;
833 if (hw->mac.type == e1000_80003es2lan)
834 hw->fc.pause_time = UINT16_MAX;
836 hw->fc.pause_time = EM_FC_PAUSE_TIME;
840 /* Set Flow control, use the tunable location if sane */
841 if (em_fc_setting <= e1000_fc_full)
842 hw->fc.requested_mode = em_fc_setting;
844 hw->fc.requested_mode = e1000_fc_none;
846 /* Workaround: no TX flow ctrl for PCH */
847 if (hw->mac.type == e1000_pchlan)
848 hw->fc.requested_mode = e1000_fc_rx_pause;
850 /* Override - settings for PCH2LAN, ya its magic :) */
851 if (hw->mac.type == e1000_pch2lan) {
852 hw->fc.high_water = 0x5C20;
853 hw->fc.low_water = 0x5048;
854 hw->fc.pause_time = 0x0650;
855 hw->fc.refresh_time = 0x0400;
856 } else if (hw->mac.type == e1000_pch_lpt ||
857 hw->mac.type == e1000_pch_spt ||
858 hw->mac.type == e1000_pch_cnp) {
859 hw->fc.requested_mode = e1000_fc_full;
862 diag = e1000_init_hw(hw);
865 e1000_check_for_link(hw);
869 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
871 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
873 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
874 struct e1000_hw_stats *stats =
875 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
878 if(hw->phy.media_type == e1000_media_type_copper ||
879 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
880 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
881 stats->sec += E1000_READ_REG(hw, E1000_SEC);
884 stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
885 stats->mpc += E1000_READ_REG(hw, E1000_MPC);
886 stats->scc += E1000_READ_REG(hw, E1000_SCC);
887 stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
889 stats->mcc += E1000_READ_REG(hw, E1000_MCC);
890 stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
891 stats->colc += E1000_READ_REG(hw, E1000_COLC);
892 stats->dc += E1000_READ_REG(hw, E1000_DC);
893 stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
894 stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
895 stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
898 * For watchdog management we need to know if we have been
899 * paused during the last interval, so capture that here.
901 pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
902 stats->xoffrxc += pause_frames;
903 stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
904 stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
905 stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
906 stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
907 stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
908 stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
909 stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
910 stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
911 stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
912 stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
913 stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
914 stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
917 * For the 64-bit byte counters the low dword must be read first.
918 * Both registers clear on the read of the high dword.
921 stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
922 stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
923 stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
924 stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
926 stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
927 stats->ruc += E1000_READ_REG(hw, E1000_RUC);
928 stats->rfc += E1000_READ_REG(hw, E1000_RFC);
929 stats->roc += E1000_READ_REG(hw, E1000_ROC);
930 stats->rjc += E1000_READ_REG(hw, E1000_RJC);
932 stats->tor += E1000_READ_REG(hw, E1000_TORH);
933 stats->tot += E1000_READ_REG(hw, E1000_TOTH);
935 stats->tpr += E1000_READ_REG(hw, E1000_TPR);
936 stats->tpt += E1000_READ_REG(hw, E1000_TPT);
937 stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
938 stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
939 stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
940 stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
941 stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
942 stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
943 stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
944 stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
946 /* Interrupt Counts */
948 if (hw->mac.type >= e1000_82571) {
949 stats->iac += E1000_READ_REG(hw, E1000_IAC);
950 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
951 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
952 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
953 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
954 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
955 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
956 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
957 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
960 if (hw->mac.type >= e1000_82543) {
961 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
962 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
963 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
964 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
965 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
966 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
969 if (rte_stats == NULL)
973 rte_stats->imissed = stats->mpc;
974 rte_stats->ierrors = stats->crcerrs +
975 stats->rlec + stats->ruc + stats->roc +
976 stats->rxerrc + stats->algnerrc + stats->cexterr;
979 rte_stats->oerrors = stats->ecol + stats->latecol;
981 rte_stats->ipackets = stats->gprc;
982 rte_stats->opackets = stats->gptc;
983 rte_stats->ibytes = stats->gorc;
984 rte_stats->obytes = stats->gotc;
989 eth_em_stats_reset(struct rte_eth_dev *dev)
991 struct e1000_hw_stats *hw_stats =
992 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
994 /* HW registers are cleared on read */
995 eth_em_stats_get(dev, NULL);
997 /* Reset software totals */
998 memset(hw_stats, 0, sizeof(*hw_stats));
1002 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1004 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1005 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1006 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1008 em_rxq_intr_enable(hw);
1009 rte_intr_enable(intr_handle);
1015 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1017 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1019 em_rxq_intr_disable(hw);
1025 em_get_max_pktlen(struct rte_eth_dev *dev)
1027 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1029 switch (hw->mac.type) {
1033 case e1000_ich10lan:
1039 case e1000_80003es2lan: /* 9K Jumbo Frame size */
1044 /* Adapters that do not support jumbo frames */
1046 return ETHER_MAX_LEN;
1048 return MAX_JUMBO_FRAME_SIZE;
1053 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1055 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1057 dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1058 dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1059 dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1062 * Starting with 631xESB hw supports 2 TX/RX queues per port.
1063 * Unfortunatelly, all these nics have just one TX context.
1064 * So we have few choises for TX:
1065 * - Use just one TX queue.
1066 * - Allow cksum offload only for one TX queue.
1067 * - Don't allow TX cksum offload at all.
1068 * For now, option #1 was chosen.
1069 * To use second RX queue we have to use extended RX descriptor
1070 * (Multiple Receive Queues are mutually exclusive with UDP
1071 * fragmentation and are not supported when a legacy receive
1072 * descriptor format is used).
1073 * Which means separate RX routinies - as legacy nics (82540, 82545)
1074 * don't support extended RXD.
1075 * To avoid it we support just one RX queue for now (no RSS).
1078 dev_info->max_rx_queues = 1;
1079 dev_info->max_tx_queues = 1;
1081 dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1082 dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1083 dev_info->rx_queue_offload_capa;
1084 dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1085 dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1086 dev_info->tx_queue_offload_capa;
1088 dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1089 .nb_max = E1000_MAX_RING_DESC,
1090 .nb_min = E1000_MIN_RING_DESC,
1091 .nb_align = EM_RXD_ALIGN,
1094 dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1095 .nb_max = E1000_MAX_RING_DESC,
1096 .nb_min = E1000_MIN_RING_DESC,
1097 .nb_align = EM_TXD_ALIGN,
1098 .nb_seg_max = EM_TX_MAX_SEG,
1099 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1102 dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1103 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1106 /* Preferred queue parameters */
1107 dev_info->default_rxportconf.nb_queues = 1;
1108 dev_info->default_txportconf.nb_queues = 1;
1109 dev_info->default_txportconf.ring_size = 256;
1110 dev_info->default_rxportconf.ring_size = 256;
1113 /* return 0 means link status changed, -1 means not changed */
1115 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1117 struct e1000_hw *hw =
1118 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1119 struct rte_eth_link link;
1120 int link_check, count;
1123 hw->mac.get_link_status = 1;
1125 /* possible wait-to-complete in up to 9 seconds */
1126 for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1127 /* Read the real link status */
1128 switch (hw->phy.media_type) {
1129 case e1000_media_type_copper:
1130 /* Do the work to read phy */
1131 e1000_check_for_link(hw);
1132 link_check = !hw->mac.get_link_status;
1135 case e1000_media_type_fiber:
1136 e1000_check_for_link(hw);
1137 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1141 case e1000_media_type_internal_serdes:
1142 e1000_check_for_link(hw);
1143 link_check = hw->mac.serdes_has_link;
1149 if (link_check || wait_to_complete == 0)
1151 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1153 memset(&link, 0, sizeof(link));
1155 /* Now we check if a transition has happened */
1156 if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1157 uint16_t duplex, speed;
1158 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1159 link.link_duplex = (duplex == FULL_DUPLEX) ?
1160 ETH_LINK_FULL_DUPLEX :
1161 ETH_LINK_HALF_DUPLEX;
1162 link.link_speed = speed;
1163 link.link_status = ETH_LINK_UP;
1164 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1165 ETH_LINK_SPEED_FIXED);
1166 } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1167 link.link_speed = ETH_SPEED_NUM_NONE;
1168 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1169 link.link_status = ETH_LINK_DOWN;
1170 link.link_autoneg = ETH_LINK_FIXED;
1173 return rte_eth_linkstatus_set(dev, &link);
1177 * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1178 * For ASF and Pass Through versions of f/w this means
1179 * that the driver is loaded. For AMT version type f/w
1180 * this means that the network i/f is open.
1183 em_hw_control_acquire(struct e1000_hw *hw)
1185 uint32_t ctrl_ext, swsm;
1187 /* Let firmware know the driver has taken over */
1188 if (hw->mac.type == e1000_82573) {
1189 swsm = E1000_READ_REG(hw, E1000_SWSM);
1190 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1193 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1194 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1195 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1200 * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1201 * For ASF and Pass Through versions of f/w this means that the
1202 * driver is no longer loaded. For AMT versions of the
1203 * f/w this means that the network i/f is closed.
1206 em_hw_control_release(struct e1000_hw *hw)
1208 uint32_t ctrl_ext, swsm;
1210 /* Let firmware taken over control of h/w */
1211 if (hw->mac.type == e1000_82573) {
1212 swsm = E1000_READ_REG(hw, E1000_SWSM);
1213 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1215 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1216 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1217 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1222 * Bit of a misnomer, what this really means is
1223 * to enable OS management of the system... aka
1224 * to disable special hardware management features.
1227 em_init_manageability(struct e1000_hw *hw)
1229 if (e1000_enable_mng_pass_thru(hw)) {
1230 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1231 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1233 /* disable hardware interception of ARP */
1234 manc &= ~(E1000_MANC_ARP_EN);
1236 /* enable receiving management packets to the host */
1237 manc |= E1000_MANC_EN_MNG2HOST;
1238 manc2h |= 1 << 5; /* Mng Port 623 */
1239 manc2h |= 1 << 6; /* Mng Port 664 */
1240 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1241 E1000_WRITE_REG(hw, E1000_MANC, manc);
1246 * Give control back to hardware management
1247 * controller if there is one.
1250 em_release_manageability(struct e1000_hw *hw)
1254 if (e1000_enable_mng_pass_thru(hw)) {
1255 manc = E1000_READ_REG(hw, E1000_MANC);
1257 /* re-enable hardware interception of ARP */
1258 manc |= E1000_MANC_ARP_EN;
1259 manc &= ~E1000_MANC_EN_MNG2HOST;
1261 E1000_WRITE_REG(hw, E1000_MANC, manc);
1266 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1268 struct e1000_hw *hw =
1269 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1272 rctl = E1000_READ_REG(hw, E1000_RCTL);
1273 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1274 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1278 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1280 struct e1000_hw *hw =
1281 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1284 rctl = E1000_READ_REG(hw, E1000_RCTL);
1285 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1286 if (dev->data->all_multicast == 1)
1287 rctl |= E1000_RCTL_MPE;
1289 rctl &= (~E1000_RCTL_MPE);
1290 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1294 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1296 struct e1000_hw *hw =
1297 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1300 rctl = E1000_READ_REG(hw, E1000_RCTL);
1301 rctl |= E1000_RCTL_MPE;
1302 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1306 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1308 struct e1000_hw *hw =
1309 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1312 if (dev->data->promiscuous == 1)
1313 return; /* must remain in all_multicast mode */
1314 rctl = E1000_READ_REG(hw, E1000_RCTL);
1315 rctl &= (~E1000_RCTL_MPE);
1316 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1320 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1322 struct e1000_hw *hw =
1323 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1324 struct e1000_vfta * shadow_vfta =
1325 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1330 vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1331 E1000_VFTA_ENTRY_MASK);
1332 vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1333 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1338 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1340 /* update local VFTA copy */
1341 shadow_vfta->vfta[vid_idx] = vfta;
1347 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1349 struct e1000_hw *hw =
1350 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1353 /* Filter Table Disable */
1354 reg = E1000_READ_REG(hw, E1000_RCTL);
1355 reg &= ~E1000_RCTL_CFIEN;
1356 reg &= ~E1000_RCTL_VFE;
1357 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1361 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1363 struct e1000_hw *hw =
1364 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1365 struct e1000_vfta * shadow_vfta =
1366 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1370 /* Filter Table Enable, CFI not used for packet acceptance */
1371 reg = E1000_READ_REG(hw, E1000_RCTL);
1372 reg &= ~E1000_RCTL_CFIEN;
1373 reg |= E1000_RCTL_VFE;
1374 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1376 /* restore vfta from local copy */
1377 for (i = 0; i < IGB_VFTA_SIZE; i++)
1378 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1382 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1384 struct e1000_hw *hw =
1385 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1388 /* VLAN Mode Disable */
1389 reg = E1000_READ_REG(hw, E1000_CTRL);
1390 reg &= ~E1000_CTRL_VME;
1391 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1396 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1398 struct e1000_hw *hw =
1399 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1402 /* VLAN Mode Enable */
1403 reg = E1000_READ_REG(hw, E1000_CTRL);
1404 reg |= E1000_CTRL_VME;
1405 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1409 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1411 struct rte_eth_rxmode *rxmode;
1413 rxmode = &dev->data->dev_conf.rxmode;
1414 if(mask & ETH_VLAN_STRIP_MASK){
1415 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1416 em_vlan_hw_strip_enable(dev);
1418 em_vlan_hw_strip_disable(dev);
1421 if(mask & ETH_VLAN_FILTER_MASK){
1422 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1423 em_vlan_hw_filter_enable(dev);
1425 em_vlan_hw_filter_disable(dev);
1432 * It enables the interrupt mask and then enable the interrupt.
1435 * Pointer to struct rte_eth_dev.
1438 * - On success, zero.
1439 * - On failure, a negative value.
1442 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1445 struct e1000_hw *hw =
1446 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1448 /* clear interrupt */
1449 E1000_READ_REG(hw, E1000_ICR);
1450 regval = E1000_READ_REG(hw, E1000_IMS);
1451 E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1456 * It clears the interrupt causes and enables the interrupt.
1457 * It will be called once only during nic initialized.
1460 * Pointer to struct rte_eth_dev.
1463 * - On success, zero.
1464 * - On failure, a negative value.
1467 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1469 struct e1000_hw *hw =
1470 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1472 E1000_READ_REG(hw, E1000_ICR);
1473 em_rxq_intr_enable(hw);
1478 * It enable receive packet interrupt.
1480 * Pointer to struct e1000_hw
1485 em_rxq_intr_enable(struct e1000_hw *hw)
1487 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1488 E1000_WRITE_FLUSH(hw);
1492 * It disabled lsc interrupt.
1494 * Pointer to struct e1000_hw
1499 em_lsc_intr_disable(struct e1000_hw *hw)
1501 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1502 E1000_WRITE_FLUSH(hw);
1506 * It disabled receive packet interrupt.
1508 * Pointer to struct e1000_hw
1513 em_rxq_intr_disable(struct e1000_hw *hw)
1515 E1000_READ_REG(hw, E1000_ICR);
1516 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1517 E1000_WRITE_FLUSH(hw);
1521 * It reads ICR and gets interrupt causes, check it and set a bit flag
1522 * to update link status.
1525 * Pointer to struct rte_eth_dev.
1528 * - On success, zero.
1529 * - On failure, a negative value.
1532 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1535 struct e1000_hw *hw =
1536 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1537 struct e1000_interrupt *intr =
1538 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1540 /* read-on-clear nic registers here */
1541 icr = E1000_READ_REG(hw, E1000_ICR);
1542 if (icr & E1000_ICR_LSC) {
1543 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1550 * It executes link_update after knowing an interrupt is prsent.
1553 * Pointer to struct rte_eth_dev.
1556 * - On success, zero.
1557 * - On failure, a negative value.
1560 eth_em_interrupt_action(struct rte_eth_dev *dev,
1561 struct rte_intr_handle *intr_handle)
1563 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1564 struct e1000_hw *hw =
1565 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1566 struct e1000_interrupt *intr =
1567 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1568 struct rte_eth_link link;
1571 if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1574 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1575 rte_intr_enable(intr_handle);
1577 /* set get_link_status to check register later */
1578 hw->mac.get_link_status = 1;
1579 ret = eth_em_link_update(dev, 0);
1581 /* check if link has changed */
1585 rte_eth_linkstatus_get(dev, &link);
1587 if (link.link_status) {
1588 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1589 dev->data->port_id, link.link_speed,
1590 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1591 "full-duplex" : "half-duplex");
1593 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1595 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1596 pci_dev->addr.domain, pci_dev->addr.bus,
1597 pci_dev->addr.devid, pci_dev->addr.function);
1603 * Interrupt handler which shall be registered at first.
1606 * Pointer to interrupt handle.
1608 * The address of parameter (struct rte_eth_dev *) regsitered before.
1614 eth_em_interrupt_handler(void *param)
1616 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1618 eth_em_interrupt_get_status(dev);
1619 eth_em_interrupt_action(dev, dev->intr_handle);
1620 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1624 eth_em_led_on(struct rte_eth_dev *dev)
1626 struct e1000_hw *hw;
1628 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1629 return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1633 eth_em_led_off(struct rte_eth_dev *dev)
1635 struct e1000_hw *hw;
1637 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1638 return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1642 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1644 struct e1000_hw *hw;
1649 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1650 fc_conf->pause_time = hw->fc.pause_time;
1651 fc_conf->high_water = hw->fc.high_water;
1652 fc_conf->low_water = hw->fc.low_water;
1653 fc_conf->send_xon = hw->fc.send_xon;
1654 fc_conf->autoneg = hw->mac.autoneg;
1657 * Return rx_pause and tx_pause status according to actual setting of
1658 * the TFCE and RFCE bits in the CTRL register.
1660 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1661 if (ctrl & E1000_CTRL_TFCE)
1666 if (ctrl & E1000_CTRL_RFCE)
1671 if (rx_pause && tx_pause)
1672 fc_conf->mode = RTE_FC_FULL;
1674 fc_conf->mode = RTE_FC_RX_PAUSE;
1676 fc_conf->mode = RTE_FC_TX_PAUSE;
1678 fc_conf->mode = RTE_FC_NONE;
1684 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1686 struct e1000_hw *hw;
1688 enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1694 uint32_t rx_buf_size;
1695 uint32_t max_high_water;
1698 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1699 if (fc_conf->autoneg != hw->mac.autoneg)
1701 rx_buf_size = em_get_rx_buffer_size(hw);
1702 PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1704 /* At least reserve one Ethernet frame for watermark */
1705 max_high_water = rx_buf_size - ETHER_MAX_LEN;
1706 if ((fc_conf->high_water > max_high_water) ||
1707 (fc_conf->high_water < fc_conf->low_water)) {
1708 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1709 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1713 hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1714 hw->fc.pause_time = fc_conf->pause_time;
1715 hw->fc.high_water = fc_conf->high_water;
1716 hw->fc.low_water = fc_conf->low_water;
1717 hw->fc.send_xon = fc_conf->send_xon;
1719 err = e1000_setup_link_generic(hw);
1720 if (err == E1000_SUCCESS) {
1722 /* check if we want to forward MAC frames - driver doesn't have native
1723 * capability to do that, so we'll write the registers ourselves */
1725 rctl = E1000_READ_REG(hw, E1000_RCTL);
1727 /* set or clear MFLCN.PMCF bit depending on configuration */
1728 if (fc_conf->mac_ctrl_frame_fwd != 0)
1729 rctl |= E1000_RCTL_PMCF;
1731 rctl &= ~E1000_RCTL_PMCF;
1733 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1734 E1000_WRITE_FLUSH(hw);
1739 PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1744 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1745 uint32_t index, __rte_unused uint32_t pool)
1747 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1749 return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1753 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1755 uint8_t addr[ETHER_ADDR_LEN];
1756 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1758 memset(addr, 0, sizeof(addr));
1760 e1000_rar_set(hw, addr, index);
1764 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1765 struct ether_addr *addr)
1767 eth_em_rar_clear(dev, 0);
1769 return eth_em_rar_set(dev, (void *)addr, 0, 0);
1773 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1775 struct rte_eth_dev_info dev_info;
1776 struct e1000_hw *hw;
1777 uint32_t frame_size;
1780 eth_em_infos_get(dev, &dev_info);
1781 frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1783 /* check that mtu is within the allowed range */
1784 if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1787 /* refuse mtu that requires the support of scattered packets when this
1788 * feature has not been enabled before. */
1789 if (!dev->data->scattered_rx &&
1790 frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1793 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1794 rctl = E1000_READ_REG(hw, E1000_RCTL);
1796 /* switch to jumbo mode if needed */
1797 if (frame_size > ETHER_MAX_LEN) {
1798 dev->data->dev_conf.rxmode.offloads |=
1799 DEV_RX_OFFLOAD_JUMBO_FRAME;
1800 rctl |= E1000_RCTL_LPE;
1802 dev->data->dev_conf.rxmode.offloads &=
1803 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1804 rctl &= ~E1000_RCTL_LPE;
1806 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1808 /* update max frame size */
1809 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1814 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1815 struct ether_addr *mc_addr_set,
1816 uint32_t nb_mc_addr)
1818 struct e1000_hw *hw;
1820 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1821 e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1825 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1826 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1827 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1829 RTE_INIT(e1000_init_log);
1831 e1000_init_log(void)
1833 e1000_logtype_init = rte_log_register("pmd.net.e1000.init");
1834 if (e1000_logtype_init >= 0)
1835 rte_log_set_level(e1000_logtype_init, RTE_LOG_NOTICE);
1836 e1000_logtype_driver = rte_log_register("pmd.net.e1000.driver");
1837 if (e1000_logtype_driver >= 0)
1838 rte_log_set_level(e1000_logtype_driver, RTE_LOG_NOTICE);