1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <rte_ethdev_driver.h>
19 #include <rte_ethdev_pci.h>
20 #include <rte_memory.h>
22 #include <rte_malloc.h>
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
29 #define EM_EIAC 0x000DC
31 #define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static void eth_em_stop(struct rte_eth_dev *dev);
37 static void eth_em_close(struct rte_eth_dev *dev);
38 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43 int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45 struct rte_eth_stats *rte_stats);
46 static void eth_em_stats_reset(struct rte_eth_dev *dev);
47 static void eth_em_infos_get(struct rte_eth_dev *dev,
48 struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50 struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52 struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57 struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70 uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79 uint16_t vlan_id, int on);
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
93 uint32_t index, uint32_t pool);
94 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
95 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
96 struct ether_addr *addr);
98 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
99 struct ether_addr *mc_addr_set,
100 uint32_t nb_mc_addr);
102 #define EM_FC_PAUSE_TIME 0x0680
103 #define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
104 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
109 * The set of PCI devices this driver supports
111 static const struct rte_pci_id pci_id_em_map[] = {
112 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
113 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
114 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
115 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
116 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
117 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
118 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
119 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
120 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
121 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
122 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
123 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
124 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
125 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
126 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
127 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
128 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
129 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
130 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
131 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
132 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
133 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
134 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
135 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
136 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
137 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
138 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
139 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
140 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
141 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
142 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
143 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
144 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
145 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
146 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
147 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
148 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
149 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
150 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
151 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
152 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
153 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
154 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
155 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
156 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
157 { .vendor_id = 0, /* sentinel */ },
160 static const struct eth_dev_ops eth_em_ops = {
161 .dev_configure = eth_em_configure,
162 .dev_start = eth_em_start,
163 .dev_stop = eth_em_stop,
164 .dev_close = eth_em_close,
165 .promiscuous_enable = eth_em_promiscuous_enable,
166 .promiscuous_disable = eth_em_promiscuous_disable,
167 .allmulticast_enable = eth_em_allmulticast_enable,
168 .allmulticast_disable = eth_em_allmulticast_disable,
169 .link_update = eth_em_link_update,
170 .stats_get = eth_em_stats_get,
171 .stats_reset = eth_em_stats_reset,
172 .dev_infos_get = eth_em_infos_get,
173 .mtu_set = eth_em_mtu_set,
174 .vlan_filter_set = eth_em_vlan_filter_set,
175 .vlan_offload_set = eth_em_vlan_offload_set,
176 .rx_queue_setup = eth_em_rx_queue_setup,
177 .rx_queue_release = eth_em_rx_queue_release,
178 .rx_queue_count = eth_em_rx_queue_count,
179 .rx_descriptor_done = eth_em_rx_descriptor_done,
180 .rx_descriptor_status = eth_em_rx_descriptor_status,
181 .tx_descriptor_status = eth_em_tx_descriptor_status,
182 .tx_queue_setup = eth_em_tx_queue_setup,
183 .tx_queue_release = eth_em_tx_queue_release,
184 .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
185 .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
186 .dev_led_on = eth_em_led_on,
187 .dev_led_off = eth_em_led_off,
188 .flow_ctrl_get = eth_em_flow_ctrl_get,
189 .flow_ctrl_set = eth_em_flow_ctrl_set,
190 .mac_addr_set = eth_em_default_mac_addr_set,
191 .mac_addr_add = eth_em_rar_set,
192 .mac_addr_remove = eth_em_rar_clear,
193 .set_mc_addr_list = eth_em_set_mc_addr_list,
194 .rxq_info_get = em_rxq_info_get,
195 .txq_info_get = em_txq_info_get,
200 * eth_em_dev_is_ich8 - Check for ICH8 device
201 * @hw: pointer to the HW structure
203 * return TRUE for ICH8, otherwise FALSE
206 eth_em_dev_is_ich8(struct e1000_hw *hw)
208 DEBUGFUNC("eth_em_dev_is_ich8");
210 switch (hw->device_id) {
211 case E1000_DEV_ID_PCH2_LV_LM:
212 case E1000_DEV_ID_PCH_LPT_I217_LM:
213 case E1000_DEV_ID_PCH_LPT_I217_V:
214 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
215 case E1000_DEV_ID_PCH_LPTLP_I218_V:
216 case E1000_DEV_ID_PCH_I218_V2:
217 case E1000_DEV_ID_PCH_I218_LM2:
218 case E1000_DEV_ID_PCH_I218_V3:
219 case E1000_DEV_ID_PCH_I218_LM3:
220 case E1000_DEV_ID_PCH_SPT_I219_LM:
221 case E1000_DEV_ID_PCH_SPT_I219_V:
222 case E1000_DEV_ID_PCH_SPT_I219_LM2:
223 case E1000_DEV_ID_PCH_SPT_I219_V2:
224 case E1000_DEV_ID_PCH_LBG_I219_LM3:
225 case E1000_DEV_ID_PCH_SPT_I219_LM4:
226 case E1000_DEV_ID_PCH_SPT_I219_V4:
227 case E1000_DEV_ID_PCH_SPT_I219_LM5:
228 case E1000_DEV_ID_PCH_SPT_I219_V5:
229 case E1000_DEV_ID_PCH_CNP_I219_LM6:
230 case E1000_DEV_ID_PCH_CNP_I219_V6:
231 case E1000_DEV_ID_PCH_CNP_I219_LM7:
232 case E1000_DEV_ID_PCH_CNP_I219_V7:
240 eth_em_dev_init(struct rte_eth_dev *eth_dev)
242 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
243 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
244 struct e1000_adapter *adapter =
245 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
246 struct e1000_hw *hw =
247 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
248 struct e1000_vfta * shadow_vfta =
249 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
251 eth_dev->dev_ops = ð_em_ops;
252 eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts;
253 eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts;
254 eth_dev->tx_pkt_prepare = (eth_tx_prep_t)ð_em_prep_pkts;
256 /* for secondary processes, we don't initialise any further as primary
257 * has already done this work. Only check we don't need a different
259 if (rte_eal_process_type() != RTE_PROC_PRIMARY){
260 if (eth_dev->data->scattered_rx)
261 eth_dev->rx_pkt_burst =
262 (eth_rx_burst_t)ð_em_recv_scattered_pkts;
266 rte_eth_copy_pci_info(eth_dev, pci_dev);
268 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
269 hw->device_id = pci_dev->id.device_id;
270 adapter->stopped = 0;
272 /* For ICH8 support we'll need to map the flash memory BAR */
273 if (eth_em_dev_is_ich8(hw))
274 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
276 if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
277 em_hw_init(hw) != 0) {
278 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
280 eth_dev->data->port_id, pci_dev->id.vendor_id,
281 pci_dev->id.device_id);
285 /* Allocate memory for storing MAC addresses */
286 eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
287 hw->mac.rar_entry_count, 0);
288 if (eth_dev->data->mac_addrs == NULL) {
289 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
290 "store MAC addresses",
291 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
295 /* Copy the permanent MAC address */
296 ether_addr_copy((struct ether_addr *) hw->mac.addr,
297 eth_dev->data->mac_addrs);
299 /* initialize the vfta */
300 memset(shadow_vfta, 0, sizeof(*shadow_vfta));
302 PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
303 eth_dev->data->port_id, pci_dev->id.vendor_id,
304 pci_dev->id.device_id);
306 rte_intr_callback_register(intr_handle,
307 eth_em_interrupt_handler, eth_dev);
313 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
315 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
316 struct e1000_adapter *adapter =
317 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
318 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
320 PMD_INIT_FUNC_TRACE();
322 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
325 if (adapter->stopped == 0)
326 eth_em_close(eth_dev);
328 eth_dev->dev_ops = NULL;
329 eth_dev->rx_pkt_burst = NULL;
330 eth_dev->tx_pkt_burst = NULL;
332 rte_free(eth_dev->data->mac_addrs);
333 eth_dev->data->mac_addrs = NULL;
335 /* disable uio intr before callback unregister */
336 rte_intr_disable(intr_handle);
337 rte_intr_callback_unregister(intr_handle,
338 eth_em_interrupt_handler, eth_dev);
343 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
344 struct rte_pci_device *pci_dev)
346 return rte_eth_dev_pci_generic_probe(pci_dev,
347 sizeof(struct e1000_adapter), eth_em_dev_init);
350 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
352 return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
355 static struct rte_pci_driver rte_em_pmd = {
356 .id_table = pci_id_em_map,
357 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
358 RTE_PCI_DRV_IOVA_AS_VA,
359 .probe = eth_em_pci_probe,
360 .remove = eth_em_pci_remove,
364 em_hw_init(struct e1000_hw *hw)
368 diag = hw->mac.ops.init_params(hw);
370 PMD_INIT_LOG(ERR, "MAC Initialization Error");
373 diag = hw->nvm.ops.init_params(hw);
375 PMD_INIT_LOG(ERR, "NVM Initialization Error");
378 diag = hw->phy.ops.init_params(hw);
380 PMD_INIT_LOG(ERR, "PHY Initialization Error");
383 (void) e1000_get_bus_info(hw);
386 hw->phy.autoneg_wait_to_complete = 0;
387 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
389 e1000_init_script_state_82541(hw, TRUE);
390 e1000_set_tbi_compatibility_82543(hw, TRUE);
393 if (hw->phy.media_type == e1000_media_type_copper) {
394 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
395 hw->phy.disable_polarity_correction = 0;
396 hw->phy.ms_type = e1000_ms_hw_default;
400 * Start from a known state, this is important in reading the nvm
405 /* Make sure we have a good EEPROM before we read from it */
406 if (e1000_validate_nvm_checksum(hw) < 0) {
408 * Some PCI-E parts fail the first check due to
409 * the link being in sleep state, call it again,
410 * if it fails a second time its a real issue.
412 diag = e1000_validate_nvm_checksum(hw);
414 PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
419 /* Read the permanent MAC address out of the EEPROM */
420 diag = e1000_read_mac_addr(hw);
422 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
426 /* Now initialize the hardware */
427 diag = em_hardware_init(hw);
429 PMD_INIT_LOG(ERR, "Hardware initialization failed");
433 hw->mac.get_link_status = 1;
435 /* Indicate SOL/IDER usage */
436 diag = e1000_check_reset_block(hw);
438 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
444 em_hw_control_release(hw);
449 eth_em_configure(struct rte_eth_dev *dev)
451 struct e1000_interrupt *intr =
452 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
454 PMD_INIT_FUNC_TRACE();
455 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
457 PMD_INIT_FUNC_TRACE();
463 em_set_pba(struct e1000_hw *hw)
468 * Packet Buffer Allocation (PBA)
469 * Writing PBA sets the receive portion of the buffer
470 * the remainder is used for the transmit buffer.
471 * Devices before the 82547 had a Packet Buffer of 64K.
472 * After the 82547 the buffer was reduced to 40K.
474 switch (hw->mac.type) {
476 case e1000_82547_rev_2:
477 /* 82547: Total Packet Buffer is 40K */
478 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
482 case e1000_80003es2lan:
483 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
485 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
486 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
490 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
507 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
510 E1000_WRITE_REG(hw, E1000_PBA, pba);
514 eth_em_rxtx_control(struct rte_eth_dev *dev,
517 struct e1000_hw *hw =
518 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
521 tctl = E1000_READ_REG(hw, E1000_TCTL);
522 rctl = E1000_READ_REG(hw, E1000_RCTL);
525 tctl |= E1000_TCTL_EN;
526 rctl |= E1000_RCTL_EN;
529 tctl &= ~E1000_TCTL_EN;
530 rctl &= ~E1000_RCTL_EN;
532 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
533 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
534 E1000_WRITE_FLUSH(hw);
538 eth_em_start(struct rte_eth_dev *dev)
540 struct e1000_adapter *adapter =
541 E1000_DEV_PRIVATE(dev->data->dev_private);
542 struct e1000_hw *hw =
543 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
544 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
545 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
547 uint32_t intr_vector = 0;
552 PMD_INIT_FUNC_TRACE();
556 e1000_power_up_phy(hw);
558 /* Set default PBA value */
561 /* Put the address into the Receive Address Array */
562 e1000_rar_set(hw, hw->mac.addr, 0);
565 * With the 82571 adapter, RAR[0] may be overwritten
566 * when the other port is reset, we make a duplicate
567 * in RAR[14] for that eventuality, this assures
568 * the interface continues to function.
570 if (hw->mac.type == e1000_82571) {
571 e1000_set_laa_state_82571(hw, TRUE);
572 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
575 /* Initialize the hardware */
576 if (em_hardware_init(hw)) {
577 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
581 E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
583 /* Configure for OS presence */
584 em_init_manageability(hw);
586 if (dev->data->dev_conf.intr_conf.rxq != 0) {
587 intr_vector = dev->data->nb_rx_queues;
588 if (rte_intr_efd_enable(intr_handle, intr_vector))
592 if (rte_intr_dp_is_en(intr_handle)) {
593 intr_handle->intr_vec =
594 rte_zmalloc("intr_vec",
595 dev->data->nb_rx_queues * sizeof(int), 0);
596 if (intr_handle->intr_vec == NULL) {
597 PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
598 " intr_vec", dev->data->nb_rx_queues);
602 /* enable rx interrupt */
603 em_rxq_intr_enable(hw);
608 ret = eth_em_rx_init(dev);
610 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
611 em_dev_clear_queues(dev);
615 e1000_clear_hw_cntrs_base_generic(hw);
617 mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
618 ETH_VLAN_EXTEND_MASK;
619 ret = eth_em_vlan_offload_set(dev, mask);
621 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
622 em_dev_clear_queues(dev);
626 /* Set Interrupt Throttling Rate to maximum allowed value. */
627 E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
629 /* Setup link speed and duplex */
630 speeds = &dev->data->dev_conf.link_speeds;
631 if (*speeds == ETH_LINK_SPEED_AUTONEG) {
632 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
636 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
639 hw->phy.autoneg_advertised = 0;
641 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
642 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
643 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
645 goto error_invalid_config;
647 if (*speeds & ETH_LINK_SPEED_10M_HD) {
648 hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
651 if (*speeds & ETH_LINK_SPEED_10M) {
652 hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
655 if (*speeds & ETH_LINK_SPEED_100M_HD) {
656 hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
659 if (*speeds & ETH_LINK_SPEED_100M) {
660 hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
663 if (*speeds & ETH_LINK_SPEED_1G) {
664 hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
667 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
668 goto error_invalid_config;
670 /* Set/reset the mac.autoneg based on the link speed,
675 hw->mac.forced_speed_duplex =
676 hw->phy.autoneg_advertised;
682 e1000_setup_link(hw);
684 if (rte_intr_allow_others(intr_handle)) {
685 /* check if lsc interrupt is enabled */
686 if (dev->data->dev_conf.intr_conf.lsc != 0) {
687 ret = eth_em_interrupt_setup(dev);
689 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
690 em_dev_clear_queues(dev);
695 rte_intr_callback_unregister(intr_handle,
696 eth_em_interrupt_handler,
698 if (dev->data->dev_conf.intr_conf.lsc != 0)
699 PMD_INIT_LOG(INFO, "lsc won't enable because of"
700 " no intr multiplexn");
702 /* check if rxq interrupt is enabled */
703 if (dev->data->dev_conf.intr_conf.rxq != 0)
704 eth_em_rxq_interrupt_setup(dev);
706 rte_intr_enable(intr_handle);
708 adapter->stopped = 0;
710 eth_em_rxtx_control(dev, true);
711 eth_em_link_update(dev, 0);
713 PMD_INIT_LOG(DEBUG, "<<");
717 error_invalid_config:
718 PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
719 dev->data->dev_conf.link_speeds, dev->data->port_id);
720 em_dev_clear_queues(dev);
724 /*********************************************************************
726 * This routine disables all traffic on the adapter by issuing a
727 * global reset on the MAC.
729 **********************************************************************/
731 eth_em_stop(struct rte_eth_dev *dev)
733 struct rte_eth_link link;
734 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
735 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
736 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
738 eth_em_rxtx_control(dev, false);
739 em_rxq_intr_disable(hw);
740 em_lsc_intr_disable(hw);
743 if (hw->mac.type >= e1000_82544)
744 E1000_WRITE_REG(hw, E1000_WUC, 0);
746 /* Power down the phy. Needed to make the link go down */
747 e1000_power_down_phy(hw);
749 em_dev_clear_queues(dev);
751 /* clear the recorded link status */
752 memset(&link, 0, sizeof(link));
753 rte_eth_linkstatus_set(dev, &link);
755 if (!rte_intr_allow_others(intr_handle))
756 /* resume to the default handler */
757 rte_intr_callback_register(intr_handle,
758 eth_em_interrupt_handler,
761 /* Clean datapath event and queue/vec mapping */
762 rte_intr_efd_disable(intr_handle);
763 if (intr_handle->intr_vec != NULL) {
764 rte_free(intr_handle->intr_vec);
765 intr_handle->intr_vec = NULL;
770 eth_em_close(struct rte_eth_dev *dev)
772 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
773 struct e1000_adapter *adapter =
774 E1000_DEV_PRIVATE(dev->data->dev_private);
777 adapter->stopped = 1;
778 em_dev_free_queues(dev);
779 e1000_phy_hw_reset(hw);
780 em_release_manageability(hw);
781 em_hw_control_release(hw);
785 em_get_rx_buffer_size(struct e1000_hw *hw)
787 uint32_t rx_buf_size;
789 rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
793 /*********************************************************************
795 * Initialize the hardware
797 **********************************************************************/
799 em_hardware_init(struct e1000_hw *hw)
801 uint32_t rx_buf_size;
804 /* Issue a global reset */
807 /* Let the firmware know the OS is in control */
808 em_hw_control_acquire(hw);
811 * These parameters control the automatic generation (Tx) and
812 * response (Rx) to Ethernet PAUSE frames.
813 * - High water mark should allow for at least two standard size (1518)
814 * frames to be received after sending an XOFF.
815 * - Low water mark works best when it is very near the high water mark.
816 * This allows the receiver to restart by sending XON when it has
817 * drained a bit. Here we use an arbitrary value of 1500 which will
818 * restart after one full frame is pulled from the buffer. There
819 * could be several smaller frames in the buffer and if so they will
820 * not trigger the XON until their total number reduces the buffer
822 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
824 rx_buf_size = em_get_rx_buffer_size(hw);
826 hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
827 hw->fc.low_water = hw->fc.high_water - 1500;
829 if (hw->mac.type == e1000_80003es2lan)
830 hw->fc.pause_time = UINT16_MAX;
832 hw->fc.pause_time = EM_FC_PAUSE_TIME;
836 /* Set Flow control, use the tunable location if sane */
837 if (em_fc_setting <= e1000_fc_full)
838 hw->fc.requested_mode = em_fc_setting;
840 hw->fc.requested_mode = e1000_fc_none;
842 /* Workaround: no TX flow ctrl for PCH */
843 if (hw->mac.type == e1000_pchlan)
844 hw->fc.requested_mode = e1000_fc_rx_pause;
846 /* Override - settings for PCH2LAN, ya its magic :) */
847 if (hw->mac.type == e1000_pch2lan) {
848 hw->fc.high_water = 0x5C20;
849 hw->fc.low_water = 0x5048;
850 hw->fc.pause_time = 0x0650;
851 hw->fc.refresh_time = 0x0400;
852 } else if (hw->mac.type == e1000_pch_lpt ||
853 hw->mac.type == e1000_pch_spt ||
854 hw->mac.type == e1000_pch_cnp) {
855 hw->fc.requested_mode = e1000_fc_full;
858 diag = e1000_init_hw(hw);
861 e1000_check_for_link(hw);
865 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
867 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
869 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
870 struct e1000_hw_stats *stats =
871 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
874 if(hw->phy.media_type == e1000_media_type_copper ||
875 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
876 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
877 stats->sec += E1000_READ_REG(hw, E1000_SEC);
880 stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
881 stats->mpc += E1000_READ_REG(hw, E1000_MPC);
882 stats->scc += E1000_READ_REG(hw, E1000_SCC);
883 stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
885 stats->mcc += E1000_READ_REG(hw, E1000_MCC);
886 stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
887 stats->colc += E1000_READ_REG(hw, E1000_COLC);
888 stats->dc += E1000_READ_REG(hw, E1000_DC);
889 stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
890 stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
891 stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
894 * For watchdog management we need to know if we have been
895 * paused during the last interval, so capture that here.
897 pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
898 stats->xoffrxc += pause_frames;
899 stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
900 stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
901 stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
902 stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
903 stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
904 stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
905 stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
906 stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
907 stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
908 stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
909 stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
910 stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
913 * For the 64-bit byte counters the low dword must be read first.
914 * Both registers clear on the read of the high dword.
917 stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
918 stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
919 stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
920 stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
922 stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
923 stats->ruc += E1000_READ_REG(hw, E1000_RUC);
924 stats->rfc += E1000_READ_REG(hw, E1000_RFC);
925 stats->roc += E1000_READ_REG(hw, E1000_ROC);
926 stats->rjc += E1000_READ_REG(hw, E1000_RJC);
928 stats->tor += E1000_READ_REG(hw, E1000_TORH);
929 stats->tot += E1000_READ_REG(hw, E1000_TOTH);
931 stats->tpr += E1000_READ_REG(hw, E1000_TPR);
932 stats->tpt += E1000_READ_REG(hw, E1000_TPT);
933 stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
934 stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
935 stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
936 stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
937 stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
938 stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
939 stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
940 stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
942 /* Interrupt Counts */
944 if (hw->mac.type >= e1000_82571) {
945 stats->iac += E1000_READ_REG(hw, E1000_IAC);
946 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
947 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
948 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
949 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
950 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
951 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
952 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
953 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
956 if (hw->mac.type >= e1000_82543) {
957 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
958 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
959 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
960 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
961 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
962 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
965 if (rte_stats == NULL)
969 rte_stats->imissed = stats->mpc;
970 rte_stats->ierrors = stats->crcerrs +
971 stats->rlec + stats->ruc + stats->roc +
972 stats->rxerrc + stats->algnerrc + stats->cexterr;
975 rte_stats->oerrors = stats->ecol + stats->latecol;
977 rte_stats->ipackets = stats->gprc;
978 rte_stats->opackets = stats->gptc;
979 rte_stats->ibytes = stats->gorc;
980 rte_stats->obytes = stats->gotc;
985 eth_em_stats_reset(struct rte_eth_dev *dev)
987 struct e1000_hw_stats *hw_stats =
988 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
990 /* HW registers are cleared on read */
991 eth_em_stats_get(dev, NULL);
993 /* Reset software totals */
994 memset(hw_stats, 0, sizeof(*hw_stats));
998 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1000 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1001 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1002 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1004 em_rxq_intr_enable(hw);
1005 rte_intr_enable(intr_handle);
1011 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1013 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1015 em_rxq_intr_disable(hw);
1021 em_get_max_pktlen(struct rte_eth_dev *dev)
1023 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1025 switch (hw->mac.type) {
1029 case e1000_ich10lan:
1035 case e1000_80003es2lan: /* 9K Jumbo Frame size */
1040 /* Adapters that do not support jumbo frames */
1042 return ETHER_MAX_LEN;
1044 return MAX_JUMBO_FRAME_SIZE;
1049 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1051 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1053 dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1054 dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1055 dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1058 * Starting with 631xESB hw supports 2 TX/RX queues per port.
1059 * Unfortunatelly, all these nics have just one TX context.
1060 * So we have few choises for TX:
1061 * - Use just one TX queue.
1062 * - Allow cksum offload only for one TX queue.
1063 * - Don't allow TX cksum offload at all.
1064 * For now, option #1 was chosen.
1065 * To use second RX queue we have to use extended RX descriptor
1066 * (Multiple Receive Queues are mutually exclusive with UDP
1067 * fragmentation and are not supported when a legacy receive
1068 * descriptor format is used).
1069 * Which means separate RX routinies - as legacy nics (82540, 82545)
1070 * don't support extended RXD.
1071 * To avoid it we support just one RX queue for now (no RSS).
1074 dev_info->max_rx_queues = 1;
1075 dev_info->max_tx_queues = 1;
1077 dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1078 dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1079 dev_info->rx_queue_offload_capa;
1080 dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1081 dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1082 dev_info->tx_queue_offload_capa;
1084 dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1085 .nb_max = E1000_MAX_RING_DESC,
1086 .nb_min = E1000_MIN_RING_DESC,
1087 .nb_align = EM_RXD_ALIGN,
1090 dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1091 .nb_max = E1000_MAX_RING_DESC,
1092 .nb_min = E1000_MIN_RING_DESC,
1093 .nb_align = EM_TXD_ALIGN,
1094 .nb_seg_max = EM_TX_MAX_SEG,
1095 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1098 dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1099 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1102 /* Preferred queue parameters */
1103 dev_info->default_rxportconf.nb_queues = 1;
1104 dev_info->default_txportconf.nb_queues = 1;
1105 dev_info->default_txportconf.ring_size = 256;
1106 dev_info->default_rxportconf.ring_size = 256;
1109 /* return 0 means link status changed, -1 means not changed */
1111 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1113 struct e1000_hw *hw =
1114 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1115 struct rte_eth_link link;
1116 int link_check, count;
1119 hw->mac.get_link_status = 1;
1121 /* possible wait-to-complete in up to 9 seconds */
1122 for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1123 /* Read the real link status */
1124 switch (hw->phy.media_type) {
1125 case e1000_media_type_copper:
1126 /* Do the work to read phy */
1127 e1000_check_for_link(hw);
1128 link_check = !hw->mac.get_link_status;
1131 case e1000_media_type_fiber:
1132 e1000_check_for_link(hw);
1133 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1137 case e1000_media_type_internal_serdes:
1138 e1000_check_for_link(hw);
1139 link_check = hw->mac.serdes_has_link;
1145 if (link_check || wait_to_complete == 0)
1147 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1149 memset(&link, 0, sizeof(link));
1151 /* Now we check if a transition has happened */
1152 if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1153 uint16_t duplex, speed;
1154 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1155 link.link_duplex = (duplex == FULL_DUPLEX) ?
1156 ETH_LINK_FULL_DUPLEX :
1157 ETH_LINK_HALF_DUPLEX;
1158 link.link_speed = speed;
1159 link.link_status = ETH_LINK_UP;
1160 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1161 ETH_LINK_SPEED_FIXED);
1162 } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1163 link.link_speed = ETH_SPEED_NUM_NONE;
1164 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1165 link.link_status = ETH_LINK_DOWN;
1166 link.link_autoneg = ETH_LINK_FIXED;
1169 return rte_eth_linkstatus_set(dev, &link);
1173 * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1174 * For ASF and Pass Through versions of f/w this means
1175 * that the driver is loaded. For AMT version type f/w
1176 * this means that the network i/f is open.
1179 em_hw_control_acquire(struct e1000_hw *hw)
1181 uint32_t ctrl_ext, swsm;
1183 /* Let firmware know the driver has taken over */
1184 if (hw->mac.type == e1000_82573) {
1185 swsm = E1000_READ_REG(hw, E1000_SWSM);
1186 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1189 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1190 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1191 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1196 * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1197 * For ASF and Pass Through versions of f/w this means that the
1198 * driver is no longer loaded. For AMT versions of the
1199 * f/w this means that the network i/f is closed.
1202 em_hw_control_release(struct e1000_hw *hw)
1204 uint32_t ctrl_ext, swsm;
1206 /* Let firmware taken over control of h/w */
1207 if (hw->mac.type == e1000_82573) {
1208 swsm = E1000_READ_REG(hw, E1000_SWSM);
1209 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1211 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1212 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1213 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1218 * Bit of a misnomer, what this really means is
1219 * to enable OS management of the system... aka
1220 * to disable special hardware management features.
1223 em_init_manageability(struct e1000_hw *hw)
1225 if (e1000_enable_mng_pass_thru(hw)) {
1226 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1227 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1229 /* disable hardware interception of ARP */
1230 manc &= ~(E1000_MANC_ARP_EN);
1232 /* enable receiving management packets to the host */
1233 manc |= E1000_MANC_EN_MNG2HOST;
1234 manc2h |= 1 << 5; /* Mng Port 623 */
1235 manc2h |= 1 << 6; /* Mng Port 664 */
1236 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1237 E1000_WRITE_REG(hw, E1000_MANC, manc);
1242 * Give control back to hardware management
1243 * controller if there is one.
1246 em_release_manageability(struct e1000_hw *hw)
1250 if (e1000_enable_mng_pass_thru(hw)) {
1251 manc = E1000_READ_REG(hw, E1000_MANC);
1253 /* re-enable hardware interception of ARP */
1254 manc |= E1000_MANC_ARP_EN;
1255 manc &= ~E1000_MANC_EN_MNG2HOST;
1257 E1000_WRITE_REG(hw, E1000_MANC, manc);
1262 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1264 struct e1000_hw *hw =
1265 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1268 rctl = E1000_READ_REG(hw, E1000_RCTL);
1269 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1270 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1274 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1276 struct e1000_hw *hw =
1277 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1280 rctl = E1000_READ_REG(hw, E1000_RCTL);
1281 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1282 if (dev->data->all_multicast == 1)
1283 rctl |= E1000_RCTL_MPE;
1285 rctl &= (~E1000_RCTL_MPE);
1286 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1290 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1292 struct e1000_hw *hw =
1293 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1296 rctl = E1000_READ_REG(hw, E1000_RCTL);
1297 rctl |= E1000_RCTL_MPE;
1298 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1302 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1304 struct e1000_hw *hw =
1305 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1308 if (dev->data->promiscuous == 1)
1309 return; /* must remain in all_multicast mode */
1310 rctl = E1000_READ_REG(hw, E1000_RCTL);
1311 rctl &= (~E1000_RCTL_MPE);
1312 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1316 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1318 struct e1000_hw *hw =
1319 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1320 struct e1000_vfta * shadow_vfta =
1321 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1326 vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1327 E1000_VFTA_ENTRY_MASK);
1328 vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1329 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1334 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1336 /* update local VFTA copy */
1337 shadow_vfta->vfta[vid_idx] = vfta;
1343 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1345 struct e1000_hw *hw =
1346 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1349 /* Filter Table Disable */
1350 reg = E1000_READ_REG(hw, E1000_RCTL);
1351 reg &= ~E1000_RCTL_CFIEN;
1352 reg &= ~E1000_RCTL_VFE;
1353 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1357 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1359 struct e1000_hw *hw =
1360 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1361 struct e1000_vfta * shadow_vfta =
1362 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1366 /* Filter Table Enable, CFI not used for packet acceptance */
1367 reg = E1000_READ_REG(hw, E1000_RCTL);
1368 reg &= ~E1000_RCTL_CFIEN;
1369 reg |= E1000_RCTL_VFE;
1370 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1372 /* restore vfta from local copy */
1373 for (i = 0; i < IGB_VFTA_SIZE; i++)
1374 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1378 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1380 struct e1000_hw *hw =
1381 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1384 /* VLAN Mode Disable */
1385 reg = E1000_READ_REG(hw, E1000_CTRL);
1386 reg &= ~E1000_CTRL_VME;
1387 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1392 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1394 struct e1000_hw *hw =
1395 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1398 /* VLAN Mode Enable */
1399 reg = E1000_READ_REG(hw, E1000_CTRL);
1400 reg |= E1000_CTRL_VME;
1401 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1405 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1407 struct rte_eth_rxmode *rxmode;
1409 rxmode = &dev->data->dev_conf.rxmode;
1410 if(mask & ETH_VLAN_STRIP_MASK){
1411 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1412 em_vlan_hw_strip_enable(dev);
1414 em_vlan_hw_strip_disable(dev);
1417 if(mask & ETH_VLAN_FILTER_MASK){
1418 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1419 em_vlan_hw_filter_enable(dev);
1421 em_vlan_hw_filter_disable(dev);
1428 * It enables the interrupt mask and then enable the interrupt.
1431 * Pointer to struct rte_eth_dev.
1434 * - On success, zero.
1435 * - On failure, a negative value.
1438 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1441 struct e1000_hw *hw =
1442 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1444 /* clear interrupt */
1445 E1000_READ_REG(hw, E1000_ICR);
1446 regval = E1000_READ_REG(hw, E1000_IMS);
1447 E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1452 * It clears the interrupt causes and enables the interrupt.
1453 * It will be called once only during nic initialized.
1456 * Pointer to struct rte_eth_dev.
1459 * - On success, zero.
1460 * - On failure, a negative value.
1463 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1465 struct e1000_hw *hw =
1466 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1468 E1000_READ_REG(hw, E1000_ICR);
1469 em_rxq_intr_enable(hw);
1474 * It enable receive packet interrupt.
1476 * Pointer to struct e1000_hw
1481 em_rxq_intr_enable(struct e1000_hw *hw)
1483 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1484 E1000_WRITE_FLUSH(hw);
1488 * It disabled lsc interrupt.
1490 * Pointer to struct e1000_hw
1495 em_lsc_intr_disable(struct e1000_hw *hw)
1497 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1498 E1000_WRITE_FLUSH(hw);
1502 * It disabled receive packet interrupt.
1504 * Pointer to struct e1000_hw
1509 em_rxq_intr_disable(struct e1000_hw *hw)
1511 E1000_READ_REG(hw, E1000_ICR);
1512 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1513 E1000_WRITE_FLUSH(hw);
1517 * It reads ICR and gets interrupt causes, check it and set a bit flag
1518 * to update link status.
1521 * Pointer to struct rte_eth_dev.
1524 * - On success, zero.
1525 * - On failure, a negative value.
1528 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1531 struct e1000_hw *hw =
1532 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1533 struct e1000_interrupt *intr =
1534 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1536 /* read-on-clear nic registers here */
1537 icr = E1000_READ_REG(hw, E1000_ICR);
1538 if (icr & E1000_ICR_LSC) {
1539 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1546 * It executes link_update after knowing an interrupt is prsent.
1549 * Pointer to struct rte_eth_dev.
1552 * - On success, zero.
1553 * - On failure, a negative value.
1556 eth_em_interrupt_action(struct rte_eth_dev *dev,
1557 struct rte_intr_handle *intr_handle)
1559 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1560 struct e1000_hw *hw =
1561 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1562 struct e1000_interrupt *intr =
1563 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1564 struct rte_eth_link link;
1567 if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1570 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1571 rte_intr_enable(intr_handle);
1573 /* set get_link_status to check register later */
1574 hw->mac.get_link_status = 1;
1575 ret = eth_em_link_update(dev, 0);
1577 /* check if link has changed */
1581 rte_eth_linkstatus_get(dev, &link);
1583 if (link.link_status) {
1584 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1585 dev->data->port_id, link.link_speed,
1586 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1587 "full-duplex" : "half-duplex");
1589 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1591 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1592 pci_dev->addr.domain, pci_dev->addr.bus,
1593 pci_dev->addr.devid, pci_dev->addr.function);
1599 * Interrupt handler which shall be registered at first.
1602 * Pointer to interrupt handle.
1604 * The address of parameter (struct rte_eth_dev *) regsitered before.
1610 eth_em_interrupt_handler(void *param)
1612 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1614 eth_em_interrupt_get_status(dev);
1615 eth_em_interrupt_action(dev, dev->intr_handle);
1616 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1620 eth_em_led_on(struct rte_eth_dev *dev)
1622 struct e1000_hw *hw;
1624 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1625 return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1629 eth_em_led_off(struct rte_eth_dev *dev)
1631 struct e1000_hw *hw;
1633 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1634 return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1638 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1640 struct e1000_hw *hw;
1645 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1646 fc_conf->pause_time = hw->fc.pause_time;
1647 fc_conf->high_water = hw->fc.high_water;
1648 fc_conf->low_water = hw->fc.low_water;
1649 fc_conf->send_xon = hw->fc.send_xon;
1650 fc_conf->autoneg = hw->mac.autoneg;
1653 * Return rx_pause and tx_pause status according to actual setting of
1654 * the TFCE and RFCE bits in the CTRL register.
1656 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1657 if (ctrl & E1000_CTRL_TFCE)
1662 if (ctrl & E1000_CTRL_RFCE)
1667 if (rx_pause && tx_pause)
1668 fc_conf->mode = RTE_FC_FULL;
1670 fc_conf->mode = RTE_FC_RX_PAUSE;
1672 fc_conf->mode = RTE_FC_TX_PAUSE;
1674 fc_conf->mode = RTE_FC_NONE;
1680 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1682 struct e1000_hw *hw;
1684 enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1690 uint32_t rx_buf_size;
1691 uint32_t max_high_water;
1694 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1695 if (fc_conf->autoneg != hw->mac.autoneg)
1697 rx_buf_size = em_get_rx_buffer_size(hw);
1698 PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1700 /* At least reserve one Ethernet frame for watermark */
1701 max_high_water = rx_buf_size - ETHER_MAX_LEN;
1702 if ((fc_conf->high_water > max_high_water) ||
1703 (fc_conf->high_water < fc_conf->low_water)) {
1704 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1705 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1709 hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1710 hw->fc.pause_time = fc_conf->pause_time;
1711 hw->fc.high_water = fc_conf->high_water;
1712 hw->fc.low_water = fc_conf->low_water;
1713 hw->fc.send_xon = fc_conf->send_xon;
1715 err = e1000_setup_link_generic(hw);
1716 if (err == E1000_SUCCESS) {
1718 /* check if we want to forward MAC frames - driver doesn't have native
1719 * capability to do that, so we'll write the registers ourselves */
1721 rctl = E1000_READ_REG(hw, E1000_RCTL);
1723 /* set or clear MFLCN.PMCF bit depending on configuration */
1724 if (fc_conf->mac_ctrl_frame_fwd != 0)
1725 rctl |= E1000_RCTL_PMCF;
1727 rctl &= ~E1000_RCTL_PMCF;
1729 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1730 E1000_WRITE_FLUSH(hw);
1735 PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1740 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1741 uint32_t index, __rte_unused uint32_t pool)
1743 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1745 return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1749 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1751 uint8_t addr[ETHER_ADDR_LEN];
1752 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1754 memset(addr, 0, sizeof(addr));
1756 e1000_rar_set(hw, addr, index);
1760 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1761 struct ether_addr *addr)
1763 eth_em_rar_clear(dev, 0);
1765 return eth_em_rar_set(dev, (void *)addr, 0, 0);
1769 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1771 struct rte_eth_dev_info dev_info;
1772 struct e1000_hw *hw;
1773 uint32_t frame_size;
1776 eth_em_infos_get(dev, &dev_info);
1777 frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1779 /* check that mtu is within the allowed range */
1780 if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1783 /* refuse mtu that requires the support of scattered packets when this
1784 * feature has not been enabled before. */
1785 if (!dev->data->scattered_rx &&
1786 frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1789 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1790 rctl = E1000_READ_REG(hw, E1000_RCTL);
1792 /* switch to jumbo mode if needed */
1793 if (frame_size > ETHER_MAX_LEN) {
1794 dev->data->dev_conf.rxmode.offloads |=
1795 DEV_RX_OFFLOAD_JUMBO_FRAME;
1796 rctl |= E1000_RCTL_LPE;
1798 dev->data->dev_conf.rxmode.offloads &=
1799 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1800 rctl &= ~E1000_RCTL_LPE;
1802 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1804 /* update max frame size */
1805 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1810 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1811 struct ether_addr *mc_addr_set,
1812 uint32_t nb_mc_addr)
1814 struct e1000_hw *hw;
1816 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1817 e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1821 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1822 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1823 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1825 /* see e1000_logs.c */
1826 RTE_INIT(igb_init_log);
1830 e1000_igb_init_log();