d050eb478a48a604c624ff942979810fb969e09c
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
15 #include <rte_pci.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <rte_ethdev_driver.h>
19 #include <rte_ethdev_pci.h>
20 #include <rte_memory.h>
21 #include <rte_eal.h>
22 #include <rte_malloc.h>
23 #include <rte_dev.h>
24
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
28
29 #define EM_EIAC                 0x000DC
30
31 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
32
33
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static void eth_em_stop(struct rte_eth_dev *dev);
37 static int eth_em_close(struct rte_eth_dev *dev);
38 static int eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static int eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static int eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static int eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43                                 int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45                                 struct rte_eth_stats *rte_stats);
46 static int eth_em_stats_reset(struct rte_eth_dev *dev);
47 static int eth_em_infos_get(struct rte_eth_dev *dev,
48                                 struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50                                 struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52                                 struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57                                    struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
59
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
66
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70                 uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
76
77 /*
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79                                         uint16_t vlan_id, int on);
80 */
81
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
87
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
90
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev,
93                         struct rte_ether_addr *mac_addr,
94                         uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97                                          struct rte_ether_addr *addr);
98
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100                                    struct rte_ether_addr *mc_addr_set,
101                                    uint32_t nb_mc_addr);
102
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_em_map[] = {
113         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
114         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
115         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
116         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
117         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
118         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
119         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
120         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
121         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
122         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
123         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
124         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
125         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
126         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
127         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
128         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
129         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
130         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
131         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
132         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
133         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
134         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
135         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
136         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
137         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
138         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
139         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
158         { .vendor_id = 0, /* sentinel */ },
159 };
160
161 static const struct eth_dev_ops eth_em_ops = {
162         .dev_configure        = eth_em_configure,
163         .dev_start            = eth_em_start,
164         .dev_stop             = eth_em_stop,
165         .dev_close            = eth_em_close,
166         .promiscuous_enable   = eth_em_promiscuous_enable,
167         .promiscuous_disable  = eth_em_promiscuous_disable,
168         .allmulticast_enable  = eth_em_allmulticast_enable,
169         .allmulticast_disable = eth_em_allmulticast_disable,
170         .link_update          = eth_em_link_update,
171         .stats_get            = eth_em_stats_get,
172         .stats_reset          = eth_em_stats_reset,
173         .dev_infos_get        = eth_em_infos_get,
174         .mtu_set              = eth_em_mtu_set,
175         .vlan_filter_set      = eth_em_vlan_filter_set,
176         .vlan_offload_set     = eth_em_vlan_offload_set,
177         .rx_queue_setup       = eth_em_rx_queue_setup,
178         .rx_queue_release     = eth_em_rx_queue_release,
179         .tx_queue_setup       = eth_em_tx_queue_setup,
180         .tx_queue_release     = eth_em_tx_queue_release,
181         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
182         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
183         .dev_led_on           = eth_em_led_on,
184         .dev_led_off          = eth_em_led_off,
185         .flow_ctrl_get        = eth_em_flow_ctrl_get,
186         .flow_ctrl_set        = eth_em_flow_ctrl_set,
187         .mac_addr_set         = eth_em_default_mac_addr_set,
188         .mac_addr_add         = eth_em_rar_set,
189         .mac_addr_remove      = eth_em_rar_clear,
190         .set_mc_addr_list     = eth_em_set_mc_addr_list,
191         .rxq_info_get         = em_rxq_info_get,
192         .txq_info_get         = em_txq_info_get,
193 };
194
195
196 /**
197  *  eth_em_dev_is_ich8 - Check for ICH8 device
198  *  @hw: pointer to the HW structure
199  *
200  *  return TRUE for ICH8, otherwise FALSE
201  **/
202 static bool
203 eth_em_dev_is_ich8(struct e1000_hw *hw)
204 {
205         DEBUGFUNC("eth_em_dev_is_ich8");
206
207         switch (hw->device_id) {
208         case E1000_DEV_ID_PCH2_LV_LM:
209         case E1000_DEV_ID_PCH_LPT_I217_LM:
210         case E1000_DEV_ID_PCH_LPT_I217_V:
211         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
212         case E1000_DEV_ID_PCH_LPTLP_I218_V:
213         case E1000_DEV_ID_PCH_I218_V2:
214         case E1000_DEV_ID_PCH_I218_LM2:
215         case E1000_DEV_ID_PCH_I218_V3:
216         case E1000_DEV_ID_PCH_I218_LM3:
217         case E1000_DEV_ID_PCH_SPT_I219_LM:
218         case E1000_DEV_ID_PCH_SPT_I219_V:
219         case E1000_DEV_ID_PCH_SPT_I219_LM2:
220         case E1000_DEV_ID_PCH_SPT_I219_V2:
221         case E1000_DEV_ID_PCH_LBG_I219_LM3:
222         case E1000_DEV_ID_PCH_SPT_I219_LM4:
223         case E1000_DEV_ID_PCH_SPT_I219_V4:
224         case E1000_DEV_ID_PCH_SPT_I219_LM5:
225         case E1000_DEV_ID_PCH_SPT_I219_V5:
226         case E1000_DEV_ID_PCH_CNP_I219_LM6:
227         case E1000_DEV_ID_PCH_CNP_I219_V6:
228         case E1000_DEV_ID_PCH_CNP_I219_LM7:
229         case E1000_DEV_ID_PCH_CNP_I219_V7:
230                 return 1;
231         default:
232                 return 0;
233         }
234 }
235
236 static int
237 eth_em_dev_init(struct rte_eth_dev *eth_dev)
238 {
239         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
240         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
241         struct e1000_adapter *adapter =
242                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
243         struct e1000_hw *hw =
244                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
245         struct e1000_vfta * shadow_vfta =
246                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
247
248         eth_dev->dev_ops = &eth_em_ops;
249         eth_dev->rx_queue_count = eth_em_rx_queue_count;
250         eth_dev->rx_descriptor_done   = eth_em_rx_descriptor_done;
251         eth_dev->rx_descriptor_status = eth_em_rx_descriptor_status;
252         eth_dev->tx_descriptor_status = eth_em_tx_descriptor_status;
253         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
254         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
255         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
256
257         /* for secondary processes, we don't initialise any further as primary
258          * has already done this work. Only check we don't need a different
259          * RX function */
260         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
261                 if (eth_dev->data->scattered_rx)
262                         eth_dev->rx_pkt_burst =
263                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
264                 return 0;
265         }
266
267         rte_eth_copy_pci_info(eth_dev, pci_dev);
268
269         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
270         hw->device_id = pci_dev->id.device_id;
271         adapter->stopped = 0;
272
273         /* For ICH8 support we'll need to map the flash memory BAR */
274         if (eth_em_dev_is_ich8(hw))
275                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
276
277         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
278                         em_hw_init(hw) != 0) {
279                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
280                         "failed to init HW",
281                         eth_dev->data->port_id, pci_dev->id.vendor_id,
282                         pci_dev->id.device_id);
283                 return -ENODEV;
284         }
285
286         /* Allocate memory for storing MAC addresses */
287         eth_dev->data->mac_addrs = rte_zmalloc("e1000", RTE_ETHER_ADDR_LEN *
288                         hw->mac.rar_entry_count, 0);
289         if (eth_dev->data->mac_addrs == NULL) {
290                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
291                         "store MAC addresses",
292                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
293                 return -ENOMEM;
294         }
295
296         /* Copy the permanent MAC address */
297         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
298                 eth_dev->data->mac_addrs);
299
300         /* initialize the vfta */
301         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
302
303         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
304                      eth_dev->data->port_id, pci_dev->id.vendor_id,
305                      pci_dev->id.device_id);
306
307         rte_intr_callback_register(intr_handle,
308                                    eth_em_interrupt_handler, eth_dev);
309
310         return 0;
311 }
312
313 static int
314 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
315 {
316         PMD_INIT_FUNC_TRACE();
317
318         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
319                 return 0;
320
321         eth_em_close(eth_dev);
322
323         return 0;
324 }
325
326 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
327         struct rte_pci_device *pci_dev)
328 {
329         return rte_eth_dev_pci_generic_probe(pci_dev,
330                 sizeof(struct e1000_adapter), eth_em_dev_init);
331 }
332
333 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
334 {
335         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
336 }
337
338 static struct rte_pci_driver rte_em_pmd = {
339         .id_table = pci_id_em_map,
340         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
341         .probe = eth_em_pci_probe,
342         .remove = eth_em_pci_remove,
343 };
344
345 static int
346 em_hw_init(struct e1000_hw *hw)
347 {
348         int diag;
349
350         diag = hw->mac.ops.init_params(hw);
351         if (diag != 0) {
352                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
353                 return diag;
354         }
355         diag = hw->nvm.ops.init_params(hw);
356         if (diag != 0) {
357                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
358                 return diag;
359         }
360         diag = hw->phy.ops.init_params(hw);
361         if (diag != 0) {
362                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
363                 return diag;
364         }
365         (void) e1000_get_bus_info(hw);
366
367         hw->mac.autoneg = 1;
368         hw->phy.autoneg_wait_to_complete = 0;
369         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
370
371         e1000_init_script_state_82541(hw, TRUE);
372         e1000_set_tbi_compatibility_82543(hw, TRUE);
373
374         /* Copper options */
375         if (hw->phy.media_type == e1000_media_type_copper) {
376                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
377                 hw->phy.disable_polarity_correction = 0;
378                 hw->phy.ms_type = e1000_ms_hw_default;
379         }
380
381         /*
382          * Start from a known state, this is important in reading the nvm
383          * and mac from that.
384          */
385         e1000_reset_hw(hw);
386
387         /* Make sure we have a good EEPROM before we read from it */
388         if (e1000_validate_nvm_checksum(hw) < 0) {
389                 /*
390                  * Some PCI-E parts fail the first check due to
391                  * the link being in sleep state, call it again,
392                  * if it fails a second time its a real issue.
393                  */
394                 diag = e1000_validate_nvm_checksum(hw);
395                 if (diag < 0) {
396                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
397                         goto error;
398                 }
399         }
400
401         /* Read the permanent MAC address out of the EEPROM */
402         diag = e1000_read_mac_addr(hw);
403         if (diag != 0) {
404                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
405                 goto error;
406         }
407
408         /* Now initialize the hardware */
409         diag = em_hardware_init(hw);
410         if (diag != 0) {
411                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
412                 goto error;
413         }
414
415         hw->mac.get_link_status = 1;
416
417         /* Indicate SOL/IDER usage */
418         diag = e1000_check_reset_block(hw);
419         if (diag < 0) {
420                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
421                         "SOL/IDER session");
422         }
423         return 0;
424
425 error:
426         em_hw_control_release(hw);
427         return diag;
428 }
429
430 static int
431 eth_em_configure(struct rte_eth_dev *dev)
432 {
433         struct e1000_interrupt *intr =
434                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
435
436         PMD_INIT_FUNC_TRACE();
437         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
438
439         PMD_INIT_FUNC_TRACE();
440
441         return 0;
442 }
443
444 static void
445 em_set_pba(struct e1000_hw *hw)
446 {
447         uint32_t pba;
448
449         /*
450          * Packet Buffer Allocation (PBA)
451          * Writing PBA sets the receive portion of the buffer
452          * the remainder is used for the transmit buffer.
453          * Devices before the 82547 had a Packet Buffer of 64K.
454          * After the 82547 the buffer was reduced to 40K.
455          */
456         switch (hw->mac.type) {
457                 case e1000_82547:
458                 case e1000_82547_rev_2:
459                 /* 82547: Total Packet Buffer is 40K */
460                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
461                         break;
462                 case e1000_82571:
463                 case e1000_82572:
464                 case e1000_80003es2lan:
465                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
466                         break;
467                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
468                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
469                         break;
470                 case e1000_82574:
471                 case e1000_82583:
472                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
473                         break;
474                 case e1000_ich8lan:
475                         pba = E1000_PBA_8K;
476                         break;
477                 case e1000_ich9lan:
478                 case e1000_ich10lan:
479                         pba = E1000_PBA_10K;
480                         break;
481                 case e1000_pchlan:
482                 case e1000_pch2lan:
483                 case e1000_pch_lpt:
484                 case e1000_pch_spt:
485                 case e1000_pch_cnp:
486                         pba = E1000_PBA_26K;
487                         break;
488                 default:
489                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
490         }
491
492         E1000_WRITE_REG(hw, E1000_PBA, pba);
493 }
494
495 static void
496 eth_em_rxtx_control(struct rte_eth_dev *dev,
497                     bool enable)
498 {
499         struct e1000_hw *hw =
500                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
501         uint32_t tctl, rctl;
502
503         tctl = E1000_READ_REG(hw, E1000_TCTL);
504         rctl = E1000_READ_REG(hw, E1000_RCTL);
505         if (enable) {
506                 /* enable Tx/Rx */
507                 tctl |= E1000_TCTL_EN;
508                 rctl |= E1000_RCTL_EN;
509         } else {
510                 /* disable Tx/Rx */
511                 tctl &= ~E1000_TCTL_EN;
512                 rctl &= ~E1000_RCTL_EN;
513         }
514         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
515         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
516         E1000_WRITE_FLUSH(hw);
517 }
518
519 static int
520 eth_em_start(struct rte_eth_dev *dev)
521 {
522         struct e1000_adapter *adapter =
523                 E1000_DEV_PRIVATE(dev->data->dev_private);
524         struct e1000_hw *hw =
525                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
526         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
527         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
528         int ret, mask;
529         uint32_t intr_vector = 0;
530         uint32_t *speeds;
531         int num_speeds;
532         bool autoneg;
533
534         PMD_INIT_FUNC_TRACE();
535
536         eth_em_stop(dev);
537
538         e1000_power_up_phy(hw);
539
540         /* Set default PBA value */
541         em_set_pba(hw);
542
543         /* Put the address into the Receive Address Array */
544         e1000_rar_set(hw, hw->mac.addr, 0);
545
546         /*
547          * With the 82571 adapter, RAR[0] may be overwritten
548          * when the other port is reset, we make a duplicate
549          * in RAR[14] for that eventuality, this assures
550          * the interface continues to function.
551          */
552         if (hw->mac.type == e1000_82571) {
553                 e1000_set_laa_state_82571(hw, TRUE);
554                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
555         }
556
557         /* Initialize the hardware */
558         if (em_hardware_init(hw)) {
559                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
560                 return -EIO;
561         }
562
563         E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN);
564
565         /* Configure for OS presence */
566         em_init_manageability(hw);
567
568         if (dev->data->dev_conf.intr_conf.rxq != 0) {
569                 intr_vector = dev->data->nb_rx_queues;
570                 if (rte_intr_efd_enable(intr_handle, intr_vector))
571                         return -1;
572         }
573
574         if (rte_intr_dp_is_en(intr_handle)) {
575                 intr_handle->intr_vec =
576                         rte_zmalloc("intr_vec",
577                                         dev->data->nb_rx_queues * sizeof(int), 0);
578                 if (intr_handle->intr_vec == NULL) {
579                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
580                                                 " intr_vec", dev->data->nb_rx_queues);
581                         return -ENOMEM;
582                 }
583
584                 /* enable rx interrupt */
585                 em_rxq_intr_enable(hw);
586         }
587
588         eth_em_tx_init(dev);
589
590         ret = eth_em_rx_init(dev);
591         if (ret) {
592                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
593                 em_dev_clear_queues(dev);
594                 return ret;
595         }
596
597         e1000_clear_hw_cntrs_base_generic(hw);
598
599         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
600                         ETH_VLAN_EXTEND_MASK;
601         ret = eth_em_vlan_offload_set(dev, mask);
602         if (ret) {
603                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
604                 em_dev_clear_queues(dev);
605                 return ret;
606         }
607
608         /* Set Interrupt Throttling Rate to maximum allowed value. */
609         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
610
611         /* Setup link speed and duplex */
612         speeds = &dev->data->dev_conf.link_speeds;
613         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
614                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
615                 hw->mac.autoneg = 1;
616         } else {
617                 num_speeds = 0;
618                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
619
620                 /* Reset */
621                 hw->phy.autoneg_advertised = 0;
622
623                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
624                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
625                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
626                         num_speeds = -1;
627                         goto error_invalid_config;
628                 }
629                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
630                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
631                         num_speeds++;
632                 }
633                 if (*speeds & ETH_LINK_SPEED_10M) {
634                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
635                         num_speeds++;
636                 }
637                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
638                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
639                         num_speeds++;
640                 }
641                 if (*speeds & ETH_LINK_SPEED_100M) {
642                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
643                         num_speeds++;
644                 }
645                 if (*speeds & ETH_LINK_SPEED_1G) {
646                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
647                         num_speeds++;
648                 }
649                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
650                         goto error_invalid_config;
651
652                 /* Set/reset the mac.autoneg based on the link speed,
653                  * fixed or not
654                  */
655                 if (!autoneg) {
656                         hw->mac.autoneg = 0;
657                         hw->mac.forced_speed_duplex =
658                                         hw->phy.autoneg_advertised;
659                 } else {
660                         hw->mac.autoneg = 1;
661                 }
662         }
663
664         e1000_setup_link(hw);
665
666         if (rte_intr_allow_others(intr_handle)) {
667                 /* check if lsc interrupt is enabled */
668                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
669                         ret = eth_em_interrupt_setup(dev);
670                         if (ret) {
671                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
672                                 em_dev_clear_queues(dev);
673                                 return ret;
674                         }
675                 }
676         } else {
677                 rte_intr_callback_unregister(intr_handle,
678                                                 eth_em_interrupt_handler,
679                                                 (void *)dev);
680                 if (dev->data->dev_conf.intr_conf.lsc != 0)
681                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
682                                      " no intr multiplexn");
683         }
684         /* check if rxq interrupt is enabled */
685         if (dev->data->dev_conf.intr_conf.rxq != 0)
686                 eth_em_rxq_interrupt_setup(dev);
687
688         rte_intr_enable(intr_handle);
689
690         adapter->stopped = 0;
691
692         eth_em_rxtx_control(dev, true);
693         eth_em_link_update(dev, 0);
694
695         PMD_INIT_LOG(DEBUG, "<<");
696
697         return 0;
698
699 error_invalid_config:
700         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
701                      dev->data->dev_conf.link_speeds, dev->data->port_id);
702         em_dev_clear_queues(dev);
703         return -EINVAL;
704 }
705
706 /*********************************************************************
707  *
708  *  This routine disables all traffic on the adapter by issuing a
709  *  global reset on the MAC.
710  *
711  **********************************************************************/
712 static void
713 eth_em_stop(struct rte_eth_dev *dev)
714 {
715         struct rte_eth_link link;
716         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
717         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
718         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
719
720         eth_em_rxtx_control(dev, false);
721         em_rxq_intr_disable(hw);
722         em_lsc_intr_disable(hw);
723
724         e1000_reset_hw(hw);
725
726         /* Flush desc rings for i219 */
727         if (hw->mac.type == e1000_pch_spt || hw->mac.type == e1000_pch_cnp)
728                 em_flush_desc_rings(dev);
729
730         if (hw->mac.type >= e1000_82544)
731                 E1000_WRITE_REG(hw, E1000_WUC, 0);
732
733         /* Power down the phy. Needed to make the link go down */
734         e1000_power_down_phy(hw);
735
736         em_dev_clear_queues(dev);
737
738         /* clear the recorded link status */
739         memset(&link, 0, sizeof(link));
740         rte_eth_linkstatus_set(dev, &link);
741
742         if (!rte_intr_allow_others(intr_handle))
743                 /* resume to the default handler */
744                 rte_intr_callback_register(intr_handle,
745                                            eth_em_interrupt_handler,
746                                            (void *)dev);
747
748         /* Clean datapath event and queue/vec mapping */
749         rte_intr_efd_disable(intr_handle);
750         if (intr_handle->intr_vec != NULL) {
751                 rte_free(intr_handle->intr_vec);
752                 intr_handle->intr_vec = NULL;
753         }
754 }
755
756 static int
757 eth_em_close(struct rte_eth_dev *dev)
758 {
759         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
760         struct e1000_adapter *adapter =
761                 E1000_DEV_PRIVATE(dev->data->dev_private);
762         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
763         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
764
765         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
766                 return 0;
767
768         eth_em_stop(dev);
769         adapter->stopped = 1;
770         em_dev_free_queues(dev);
771         e1000_phy_hw_reset(hw);
772         em_release_manageability(hw);
773         em_hw_control_release(hw);
774
775         dev->dev_ops = NULL;
776         dev->rx_pkt_burst = NULL;
777         dev->tx_pkt_burst = NULL;
778
779         /* disable uio intr before callback unregister */
780         rte_intr_disable(intr_handle);
781         rte_intr_callback_unregister(intr_handle,
782                                      eth_em_interrupt_handler, dev);
783
784         return 0;
785 }
786
787 static int
788 em_get_rx_buffer_size(struct e1000_hw *hw)
789 {
790         uint32_t rx_buf_size;
791
792         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
793         return rx_buf_size;
794 }
795
796 /*********************************************************************
797  *
798  *  Initialize the hardware
799  *
800  **********************************************************************/
801 static int
802 em_hardware_init(struct e1000_hw *hw)
803 {
804         uint32_t rx_buf_size;
805         int diag;
806
807         /* Issue a global reset */
808         e1000_reset_hw(hw);
809
810         /* Let the firmware know the OS is in control */
811         em_hw_control_acquire(hw);
812
813         /*
814          * These parameters control the automatic generation (Tx) and
815          * response (Rx) to Ethernet PAUSE frames.
816          * - High water mark should allow for at least two standard size (1518)
817          *   frames to be received after sending an XOFF.
818          * - Low water mark works best when it is very near the high water mark.
819          *   This allows the receiver to restart by sending XON when it has
820          *   drained a bit. Here we use an arbitrary value of 1500 which will
821          *   restart after one full frame is pulled from the buffer. There
822          *   could be several smaller frames in the buffer and if so they will
823          *   not trigger the XON until their total number reduces the buffer
824          *   by 1500.
825          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
826          */
827         rx_buf_size = em_get_rx_buffer_size(hw);
828
829         hw->fc.high_water = rx_buf_size -
830                 PMD_ROUNDUP(RTE_ETHER_MAX_LEN * 2, 1024);
831         hw->fc.low_water = hw->fc.high_water - 1500;
832
833         if (hw->mac.type == e1000_80003es2lan)
834                 hw->fc.pause_time = UINT16_MAX;
835         else
836                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
837
838         hw->fc.send_xon = 1;
839
840         /* Set Flow control, use the tunable location if sane */
841         if (em_fc_setting <= e1000_fc_full)
842                 hw->fc.requested_mode = em_fc_setting;
843         else
844                 hw->fc.requested_mode = e1000_fc_none;
845
846         /* Workaround: no TX flow ctrl for PCH */
847         if (hw->mac.type == e1000_pchlan)
848                 hw->fc.requested_mode = e1000_fc_rx_pause;
849
850         /* Override - settings for PCH2LAN, ya its magic :) */
851         if (hw->mac.type == e1000_pch2lan) {
852                 hw->fc.high_water = 0x5C20;
853                 hw->fc.low_water = 0x5048;
854                 hw->fc.pause_time = 0x0650;
855                 hw->fc.refresh_time = 0x0400;
856         } else if (hw->mac.type == e1000_pch_lpt ||
857                    hw->mac.type == e1000_pch_spt ||
858                    hw->mac.type == e1000_pch_cnp) {
859                 hw->fc.requested_mode = e1000_fc_full;
860         }
861
862         diag = e1000_init_hw(hw);
863         if (diag < 0)
864                 return diag;
865         e1000_check_for_link(hw);
866         return 0;
867 }
868
869 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
870 static int
871 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
872 {
873         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
874         struct e1000_hw_stats *stats =
875                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
876         int pause_frames;
877
878         if(hw->phy.media_type == e1000_media_type_copper ||
879                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
880                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
881                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
882         }
883
884         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
885         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
886         stats->scc += E1000_READ_REG(hw, E1000_SCC);
887         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
888
889         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
890         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
891         stats->colc += E1000_READ_REG(hw, E1000_COLC);
892         stats->dc += E1000_READ_REG(hw, E1000_DC);
893         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
894         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
895         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
896
897         /*
898          * For watchdog management we need to know if we have been
899          * paused during the last interval, so capture that here.
900          */
901         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
902         stats->xoffrxc += pause_frames;
903         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
904         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
905         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
906         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
907         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
908         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
909         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
910         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
911         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
912         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
913         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
914         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
915
916         /*
917          * For the 64-bit byte counters the low dword must be read first.
918          * Both registers clear on the read of the high dword.
919          */
920
921         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
922         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
923         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
924         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
925
926         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
927         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
928         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
929         stats->roc += E1000_READ_REG(hw, E1000_ROC);
930         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
931
932         stats->tor += E1000_READ_REG(hw, E1000_TORH);
933         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
934
935         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
936         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
937         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
938         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
939         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
940         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
941         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
942         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
943         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
944         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
945
946         /* Interrupt Counts */
947
948         if (hw->mac.type >= e1000_82571) {
949                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
950                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
951                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
952                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
953                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
954                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
955                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
956                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
957                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
958         }
959
960         if (hw->mac.type >= e1000_82543) {
961                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
962                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
963                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
964                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
965                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
966                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
967         }
968
969         if (rte_stats == NULL)
970                 return -EINVAL;
971
972         /* Rx Errors */
973         rte_stats->imissed = stats->mpc;
974         rte_stats->ierrors = stats->crcerrs +
975                              stats->rlec + stats->ruc + stats->roc +
976                              stats->rxerrc + stats->algnerrc + stats->cexterr;
977
978         /* Tx Errors */
979         rte_stats->oerrors = stats->ecol + stats->latecol;
980
981         rte_stats->ipackets = stats->gprc;
982         rte_stats->opackets = stats->gptc;
983         rte_stats->ibytes   = stats->gorc;
984         rte_stats->obytes   = stats->gotc;
985         return 0;
986 }
987
988 static int
989 eth_em_stats_reset(struct rte_eth_dev *dev)
990 {
991         struct e1000_hw_stats *hw_stats =
992                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
993
994         /* HW registers are cleared on read */
995         eth_em_stats_get(dev, NULL);
996
997         /* Reset software totals */
998         memset(hw_stats, 0, sizeof(*hw_stats));
999
1000         return 0;
1001 }
1002
1003 static int
1004 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1005 {
1006         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1007         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1008         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1009
1010         em_rxq_intr_enable(hw);
1011         rte_intr_ack(intr_handle);
1012
1013         return 0;
1014 }
1015
1016 static int
1017 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1018 {
1019         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1020
1021         em_rxq_intr_disable(hw);
1022
1023         return 0;
1024 }
1025
1026 uint32_t
1027 em_get_max_pktlen(struct rte_eth_dev *dev)
1028 {
1029         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1030
1031         switch (hw->mac.type) {
1032         case e1000_82571:
1033         case e1000_82572:
1034         case e1000_ich9lan:
1035         case e1000_ich10lan:
1036         case e1000_pch2lan:
1037         case e1000_pch_lpt:
1038         case e1000_pch_spt:
1039         case e1000_pch_cnp:
1040         case e1000_82574:
1041         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1042         case e1000_82583:
1043                 return 0x2412;
1044         case e1000_pchlan:
1045                 return 0x1000;
1046         /* Adapters that do not support jumbo frames */
1047         case e1000_ich8lan:
1048                 return RTE_ETHER_MAX_LEN;
1049         default:
1050                 return MAX_JUMBO_FRAME_SIZE;
1051         }
1052 }
1053
1054 static int
1055 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1056 {
1057         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1058
1059         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1060         dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1061         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1062
1063         /*
1064          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1065          * Unfortunatelly, all these nics have just one TX context.
1066          * So we have few choises for TX:
1067          * - Use just one TX queue.
1068          * - Allow cksum offload only for one TX queue.
1069          * - Don't allow TX cksum offload at all.
1070          * For now, option #1 was chosen.
1071          * To use second RX queue we have to use extended RX descriptor
1072          * (Multiple Receive Queues are mutually exclusive with UDP
1073          * fragmentation and are not supported when a legacy receive
1074          * descriptor format is used).
1075          * Which means separate RX routinies - as legacy nics (82540, 82545)
1076          * don't support extended RXD.
1077          * To avoid it we support just one RX queue for now (no RSS).
1078          */
1079
1080         dev_info->max_rx_queues = 1;
1081         dev_info->max_tx_queues = 1;
1082
1083         dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1084         dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1085                                     dev_info->rx_queue_offload_capa;
1086         dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1087         dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1088                                     dev_info->tx_queue_offload_capa;
1089
1090         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1091                 .nb_max = E1000_MAX_RING_DESC,
1092                 .nb_min = E1000_MIN_RING_DESC,
1093                 .nb_align = EM_RXD_ALIGN,
1094         };
1095
1096         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1097                 .nb_max = E1000_MAX_RING_DESC,
1098                 .nb_min = E1000_MIN_RING_DESC,
1099                 .nb_align = EM_TXD_ALIGN,
1100                 .nb_seg_max = EM_TX_MAX_SEG,
1101                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1102         };
1103
1104         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1105                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1106                         ETH_LINK_SPEED_1G;
1107
1108         /* Preferred queue parameters */
1109         dev_info->default_rxportconf.nb_queues = 1;
1110         dev_info->default_txportconf.nb_queues = 1;
1111         dev_info->default_txportconf.ring_size = 256;
1112         dev_info->default_rxportconf.ring_size = 256;
1113
1114         return 0;
1115 }
1116
1117 /* return 0 means link status changed, -1 means not changed */
1118 static int
1119 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1120 {
1121         struct e1000_hw *hw =
1122                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1123         struct rte_eth_link link;
1124         int link_up, count;
1125
1126         link_up = 0;
1127         hw->mac.get_link_status = 1;
1128
1129         /* possible wait-to-complete in up to 9 seconds */
1130         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1131                 /* Read the real link status */
1132                 switch (hw->phy.media_type) {
1133                 case e1000_media_type_copper:
1134                         /* Do the work to read phy */
1135                         e1000_check_for_link(hw);
1136                         link_up = !hw->mac.get_link_status;
1137                         break;
1138
1139                 case e1000_media_type_fiber:
1140                         e1000_check_for_link(hw);
1141                         link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1142                                         E1000_STATUS_LU);
1143                         break;
1144
1145                 case e1000_media_type_internal_serdes:
1146                         e1000_check_for_link(hw);
1147                         link_up = hw->mac.serdes_has_link;
1148                         break;
1149
1150                 default:
1151                         break;
1152                 }
1153                 if (link_up || wait_to_complete == 0)
1154                         break;
1155                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1156         }
1157         memset(&link, 0, sizeof(link));
1158
1159         /* Now we check if a transition has happened */
1160         if (link_up) {
1161                 uint16_t duplex, speed;
1162                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1163                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1164                                 ETH_LINK_FULL_DUPLEX :
1165                                 ETH_LINK_HALF_DUPLEX;
1166                 link.link_speed = speed;
1167                 link.link_status = ETH_LINK_UP;
1168                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1169                                 ETH_LINK_SPEED_FIXED);
1170         } else {
1171                 link.link_speed = ETH_SPEED_NUM_NONE;
1172                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1173                 link.link_status = ETH_LINK_DOWN;
1174                 link.link_autoneg = ETH_LINK_FIXED;
1175         }
1176
1177         return rte_eth_linkstatus_set(dev, &link);
1178 }
1179
1180 /*
1181  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1182  * For ASF and Pass Through versions of f/w this means
1183  * that the driver is loaded. For AMT version type f/w
1184  * this means that the network i/f is open.
1185  */
1186 static void
1187 em_hw_control_acquire(struct e1000_hw *hw)
1188 {
1189         uint32_t ctrl_ext, swsm;
1190
1191         /* Let firmware know the driver has taken over */
1192         if (hw->mac.type == e1000_82573) {
1193                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1194                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1195
1196         } else {
1197                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1198                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1199                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1200         }
1201 }
1202
1203 /*
1204  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1205  * For ASF and Pass Through versions of f/w this means that the
1206  * driver is no longer loaded. For AMT versions of the
1207  * f/w this means that the network i/f is closed.
1208  */
1209 static void
1210 em_hw_control_release(struct e1000_hw *hw)
1211 {
1212         uint32_t ctrl_ext, swsm;
1213
1214         /* Let firmware taken over control of h/w */
1215         if (hw->mac.type == e1000_82573) {
1216                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1217                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1218         } else {
1219                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1220                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1221                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1222         }
1223 }
1224
1225 /*
1226  * Bit of a misnomer, what this really means is
1227  * to enable OS management of the system... aka
1228  * to disable special hardware management features.
1229  */
1230 static void
1231 em_init_manageability(struct e1000_hw *hw)
1232 {
1233         if (e1000_enable_mng_pass_thru(hw)) {
1234                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1235                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1236
1237                 /* disable hardware interception of ARP */
1238                 manc &= ~(E1000_MANC_ARP_EN);
1239
1240                 /* enable receiving management packets to the host */
1241                 manc |= E1000_MANC_EN_MNG2HOST;
1242                 manc2h |= 1 << 5;  /* Mng Port 623 */
1243                 manc2h |= 1 << 6;  /* Mng Port 664 */
1244                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1245                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1246         }
1247 }
1248
1249 /*
1250  * Give control back to hardware management
1251  * controller if there is one.
1252  */
1253 static void
1254 em_release_manageability(struct e1000_hw *hw)
1255 {
1256         uint32_t manc;
1257
1258         if (e1000_enable_mng_pass_thru(hw)) {
1259                 manc = E1000_READ_REG(hw, E1000_MANC);
1260
1261                 /* re-enable hardware interception of ARP */
1262                 manc |= E1000_MANC_ARP_EN;
1263                 manc &= ~E1000_MANC_EN_MNG2HOST;
1264
1265                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1266         }
1267 }
1268
1269 static int
1270 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1271 {
1272         struct e1000_hw *hw =
1273                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1274         uint32_t rctl;
1275
1276         rctl = E1000_READ_REG(hw, E1000_RCTL);
1277         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1278         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1279
1280         return 0;
1281 }
1282
1283 static int
1284 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1285 {
1286         struct e1000_hw *hw =
1287                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1288         uint32_t rctl;
1289
1290         rctl = E1000_READ_REG(hw, E1000_RCTL);
1291         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1292         if (dev->data->all_multicast == 1)
1293                 rctl |= E1000_RCTL_MPE;
1294         else
1295                 rctl &= (~E1000_RCTL_MPE);
1296         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1297
1298         return 0;
1299 }
1300
1301 static int
1302 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1303 {
1304         struct e1000_hw *hw =
1305                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1306         uint32_t rctl;
1307
1308         rctl = E1000_READ_REG(hw, E1000_RCTL);
1309         rctl |= E1000_RCTL_MPE;
1310         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1311
1312         return 0;
1313 }
1314
1315 static int
1316 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1317 {
1318         struct e1000_hw *hw =
1319                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1320         uint32_t rctl;
1321
1322         if (dev->data->promiscuous == 1)
1323                 return 0; /* must remain in all_multicast mode */
1324         rctl = E1000_READ_REG(hw, E1000_RCTL);
1325         rctl &= (~E1000_RCTL_MPE);
1326         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1327
1328         return 0;
1329 }
1330
1331 static int
1332 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1333 {
1334         struct e1000_hw *hw =
1335                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1336         struct e1000_vfta * shadow_vfta =
1337                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1338         uint32_t vfta;
1339         uint32_t vid_idx;
1340         uint32_t vid_bit;
1341
1342         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1343                               E1000_VFTA_ENTRY_MASK);
1344         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1345         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1346         if (on)
1347                 vfta |= vid_bit;
1348         else
1349                 vfta &= ~vid_bit;
1350         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1351
1352         /* update local VFTA copy */
1353         shadow_vfta->vfta[vid_idx] = vfta;
1354
1355         return 0;
1356 }
1357
1358 static void
1359 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1360 {
1361         struct e1000_hw *hw =
1362                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1363         uint32_t reg;
1364
1365         /* Filter Table Disable */
1366         reg = E1000_READ_REG(hw, E1000_RCTL);
1367         reg &= ~E1000_RCTL_CFIEN;
1368         reg &= ~E1000_RCTL_VFE;
1369         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1370 }
1371
1372 static void
1373 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1374 {
1375         struct e1000_hw *hw =
1376                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1377         struct e1000_vfta * shadow_vfta =
1378                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1379         uint32_t reg;
1380         int i;
1381
1382         /* Filter Table Enable, CFI not used for packet acceptance */
1383         reg = E1000_READ_REG(hw, E1000_RCTL);
1384         reg &= ~E1000_RCTL_CFIEN;
1385         reg |= E1000_RCTL_VFE;
1386         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1387
1388         /* restore vfta from local copy */
1389         for (i = 0; i < IGB_VFTA_SIZE; i++)
1390                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1391 }
1392
1393 static void
1394 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1395 {
1396         struct e1000_hw *hw =
1397                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1398         uint32_t reg;
1399
1400         /* VLAN Mode Disable */
1401         reg = E1000_READ_REG(hw, E1000_CTRL);
1402         reg &= ~E1000_CTRL_VME;
1403         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1404
1405 }
1406
1407 static void
1408 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1409 {
1410         struct e1000_hw *hw =
1411                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1412         uint32_t reg;
1413
1414         /* VLAN Mode Enable */
1415         reg = E1000_READ_REG(hw, E1000_CTRL);
1416         reg |= E1000_CTRL_VME;
1417         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1418 }
1419
1420 static int
1421 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1422 {
1423         struct rte_eth_rxmode *rxmode;
1424
1425         rxmode = &dev->data->dev_conf.rxmode;
1426         if(mask & ETH_VLAN_STRIP_MASK){
1427                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1428                         em_vlan_hw_strip_enable(dev);
1429                 else
1430                         em_vlan_hw_strip_disable(dev);
1431         }
1432
1433         if(mask & ETH_VLAN_FILTER_MASK){
1434                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1435                         em_vlan_hw_filter_enable(dev);
1436                 else
1437                         em_vlan_hw_filter_disable(dev);
1438         }
1439
1440         return 0;
1441 }
1442
1443 /*
1444  * It enables the interrupt mask and then enable the interrupt.
1445  *
1446  * @param dev
1447  *  Pointer to struct rte_eth_dev.
1448  *
1449  * @return
1450  *  - On success, zero.
1451  *  - On failure, a negative value.
1452  */
1453 static int
1454 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1455 {
1456         uint32_t regval;
1457         struct e1000_hw *hw =
1458                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1459
1460         /* clear interrupt */
1461         E1000_READ_REG(hw, E1000_ICR);
1462         regval = E1000_READ_REG(hw, E1000_IMS);
1463         E1000_WRITE_REG(hw, E1000_IMS,
1464                         regval | E1000_ICR_LSC | E1000_ICR_OTHER);
1465         return 0;
1466 }
1467
1468 /*
1469  * It clears the interrupt causes and enables the interrupt.
1470  * It will be called once only during nic initialized.
1471  *
1472  * @param dev
1473  *  Pointer to struct rte_eth_dev.
1474  *
1475  * @return
1476  *  - On success, zero.
1477  *  - On failure, a negative value.
1478  */
1479 static int
1480 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1481 {
1482         struct e1000_hw *hw =
1483         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1484
1485         E1000_READ_REG(hw, E1000_ICR);
1486         em_rxq_intr_enable(hw);
1487         return 0;
1488 }
1489
1490 /*
1491  * It enable receive packet interrupt.
1492  * @param hw
1493  * Pointer to struct e1000_hw
1494  *
1495  * @return
1496  */
1497 static void
1498 em_rxq_intr_enable(struct e1000_hw *hw)
1499 {
1500         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1501         E1000_WRITE_FLUSH(hw);
1502 }
1503
1504 /*
1505  * It disabled lsc interrupt.
1506  * @param hw
1507  * Pointer to struct e1000_hw
1508  *
1509  * @return
1510  */
1511 static void
1512 em_lsc_intr_disable(struct e1000_hw *hw)
1513 {
1514         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC | E1000_IMS_OTHER);
1515         E1000_WRITE_FLUSH(hw);
1516 }
1517
1518 /*
1519  * It disabled receive packet interrupt.
1520  * @param hw
1521  * Pointer to struct e1000_hw
1522  *
1523  * @return
1524  */
1525 static void
1526 em_rxq_intr_disable(struct e1000_hw *hw)
1527 {
1528         E1000_READ_REG(hw, E1000_ICR);
1529         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1530         E1000_WRITE_FLUSH(hw);
1531 }
1532
1533 /*
1534  * It reads ICR and gets interrupt causes, check it and set a bit flag
1535  * to update link status.
1536  *
1537  * @param dev
1538  *  Pointer to struct rte_eth_dev.
1539  *
1540  * @return
1541  *  - On success, zero.
1542  *  - On failure, a negative value.
1543  */
1544 static int
1545 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1546 {
1547         uint32_t icr;
1548         struct e1000_hw *hw =
1549                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1550         struct e1000_interrupt *intr =
1551                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1552
1553         /* read-on-clear nic registers here */
1554         icr = E1000_READ_REG(hw, E1000_ICR);
1555         if (icr & E1000_ICR_LSC) {
1556                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1557         }
1558
1559         return 0;
1560 }
1561
1562 /*
1563  * It executes link_update after knowing an interrupt is prsent.
1564  *
1565  * @param dev
1566  *  Pointer to struct rte_eth_dev.
1567  *
1568  * @return
1569  *  - On success, zero.
1570  *  - On failure, a negative value.
1571  */
1572 static int
1573 eth_em_interrupt_action(struct rte_eth_dev *dev,
1574                         struct rte_intr_handle *intr_handle)
1575 {
1576         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1577         struct e1000_hw *hw =
1578                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1579         struct e1000_interrupt *intr =
1580                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1581         struct rte_eth_link link;
1582         int ret;
1583
1584         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1585                 return -1;
1586
1587         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1588         rte_intr_ack(intr_handle);
1589
1590         /* set get_link_status to check register later */
1591         hw->mac.get_link_status = 1;
1592         ret = eth_em_link_update(dev, 0);
1593
1594         /* check if link has changed */
1595         if (ret < 0)
1596                 return 0;
1597
1598         rte_eth_linkstatus_get(dev, &link);
1599
1600         if (link.link_status) {
1601                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1602                              dev->data->port_id, link.link_speed,
1603                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1604                              "full-duplex" : "half-duplex");
1605         } else {
1606                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1607         }
1608         PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
1609                      pci_dev->addr.domain, pci_dev->addr.bus,
1610                      pci_dev->addr.devid, pci_dev->addr.function);
1611
1612         return 0;
1613 }
1614
1615 /**
1616  * Interrupt handler which shall be registered at first.
1617  *
1618  * @param handle
1619  *  Pointer to interrupt handle.
1620  * @param param
1621  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1622  *
1623  * @return
1624  *  void
1625  */
1626 static void
1627 eth_em_interrupt_handler(void *param)
1628 {
1629         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1630
1631         eth_em_interrupt_get_status(dev);
1632         eth_em_interrupt_action(dev, dev->intr_handle);
1633         rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1634 }
1635
1636 static int
1637 eth_em_led_on(struct rte_eth_dev *dev)
1638 {
1639         struct e1000_hw *hw;
1640
1641         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1642         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1643 }
1644
1645 static int
1646 eth_em_led_off(struct rte_eth_dev *dev)
1647 {
1648         struct e1000_hw *hw;
1649
1650         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1651         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1652 }
1653
1654 static int
1655 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1656 {
1657         struct e1000_hw *hw;
1658         uint32_t ctrl;
1659         int tx_pause;
1660         int rx_pause;
1661
1662         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1663         fc_conf->pause_time = hw->fc.pause_time;
1664         fc_conf->high_water = hw->fc.high_water;
1665         fc_conf->low_water = hw->fc.low_water;
1666         fc_conf->send_xon = hw->fc.send_xon;
1667         fc_conf->autoneg = hw->mac.autoneg;
1668
1669         /*
1670          * Return rx_pause and tx_pause status according to actual setting of
1671          * the TFCE and RFCE bits in the CTRL register.
1672          */
1673         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1674         if (ctrl & E1000_CTRL_TFCE)
1675                 tx_pause = 1;
1676         else
1677                 tx_pause = 0;
1678
1679         if (ctrl & E1000_CTRL_RFCE)
1680                 rx_pause = 1;
1681         else
1682                 rx_pause = 0;
1683
1684         if (rx_pause && tx_pause)
1685                 fc_conf->mode = RTE_FC_FULL;
1686         else if (rx_pause)
1687                 fc_conf->mode = RTE_FC_RX_PAUSE;
1688         else if (tx_pause)
1689                 fc_conf->mode = RTE_FC_TX_PAUSE;
1690         else
1691                 fc_conf->mode = RTE_FC_NONE;
1692
1693         return 0;
1694 }
1695
1696 static int
1697 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1698 {
1699         struct e1000_hw *hw;
1700         int err;
1701         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1702                 e1000_fc_none,
1703                 e1000_fc_rx_pause,
1704                 e1000_fc_tx_pause,
1705                 e1000_fc_full
1706         };
1707         uint32_t rx_buf_size;
1708         uint32_t max_high_water;
1709         uint32_t rctl;
1710
1711         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1712         if (fc_conf->autoneg != hw->mac.autoneg)
1713                 return -ENOTSUP;
1714         rx_buf_size = em_get_rx_buffer_size(hw);
1715         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1716
1717         /* At least reserve one Ethernet frame for watermark */
1718         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
1719         if ((fc_conf->high_water > max_high_water) ||
1720             (fc_conf->high_water < fc_conf->low_water)) {
1721                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1722                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1723                 return -EINVAL;
1724         }
1725
1726         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1727         hw->fc.pause_time     = fc_conf->pause_time;
1728         hw->fc.high_water     = fc_conf->high_water;
1729         hw->fc.low_water      = fc_conf->low_water;
1730         hw->fc.send_xon       = fc_conf->send_xon;
1731
1732         err = e1000_setup_link_generic(hw);
1733         if (err == E1000_SUCCESS) {
1734
1735                 /* check if we want to forward MAC frames - driver doesn't have native
1736                  * capability to do that, so we'll write the registers ourselves */
1737
1738                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1739
1740                 /* set or clear MFLCN.PMCF bit depending on configuration */
1741                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1742                         rctl |= E1000_RCTL_PMCF;
1743                 else
1744                         rctl &= ~E1000_RCTL_PMCF;
1745
1746                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1747                 E1000_WRITE_FLUSH(hw);
1748
1749                 return 0;
1750         }
1751
1752         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1753         return -EIO;
1754 }
1755
1756 static int
1757 eth_em_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1758                 uint32_t index, __rte_unused uint32_t pool)
1759 {
1760         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1761
1762         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1763 }
1764
1765 static void
1766 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1767 {
1768         uint8_t addr[RTE_ETHER_ADDR_LEN];
1769         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1770
1771         memset(addr, 0, sizeof(addr));
1772
1773         e1000_rar_set(hw, addr, index);
1774 }
1775
1776 static int
1777 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1778                             struct rte_ether_addr *addr)
1779 {
1780         eth_em_rar_clear(dev, 0);
1781
1782         return eth_em_rar_set(dev, (void *)addr, 0, 0);
1783 }
1784
1785 static int
1786 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1787 {
1788         struct rte_eth_dev_info dev_info;
1789         struct e1000_hw *hw;
1790         uint32_t frame_size;
1791         uint32_t rctl;
1792         int ret;
1793
1794         ret = eth_em_infos_get(dev, &dev_info);
1795         if (ret != 0)
1796                 return ret;
1797
1798         frame_size = mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1799                 VLAN_TAG_SIZE;
1800
1801         /* check that mtu is within the allowed range */
1802         if (mtu < RTE_ETHER_MIN_MTU || frame_size > dev_info.max_rx_pktlen)
1803                 return -EINVAL;
1804
1805         /* refuse mtu that requires the support of scattered packets when this
1806          * feature has not been enabled before. */
1807         if (!dev->data->scattered_rx &&
1808             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1809                 return -EINVAL;
1810
1811         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1812         rctl = E1000_READ_REG(hw, E1000_RCTL);
1813
1814         /* switch to jumbo mode if needed */
1815         if (frame_size > RTE_ETHER_MAX_LEN) {
1816                 dev->data->dev_conf.rxmode.offloads |=
1817                         DEV_RX_OFFLOAD_JUMBO_FRAME;
1818                 rctl |= E1000_RCTL_LPE;
1819         } else {
1820                 dev->data->dev_conf.rxmode.offloads &=
1821                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1822                 rctl &= ~E1000_RCTL_LPE;
1823         }
1824         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1825
1826         /* update max frame size */
1827         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1828         return 0;
1829 }
1830
1831 static int
1832 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1833                         struct rte_ether_addr *mc_addr_set,
1834                         uint32_t nb_mc_addr)
1835 {
1836         struct e1000_hw *hw;
1837
1838         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1839         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1840         return 0;
1841 }
1842
1843 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1844 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1845 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1846
1847 /* see e1000_logs.c */
1848 RTE_INIT(igb_init_log)
1849 {
1850         e1000_igb_init_log();
1851 }