e1000: support port hotplug
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 #define EM_EIAC                 0x000DC
60
61 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
62
63
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73                                 int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75                                 struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78                                 struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
80                                 struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
82                                 struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
84 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
85 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
86 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
87                                                         void *param);
88
89 static int em_hw_init(struct e1000_hw *hw);
90 static int em_hardware_init(struct e1000_hw *hw);
91 static void em_hw_control_acquire(struct e1000_hw *hw);
92 static void em_hw_control_release(struct e1000_hw *hw);
93 static void em_init_manageability(struct e1000_hw *hw);
94 static void em_release_manageability(struct e1000_hw *hw);
95
96 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
97
98 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
99                 uint16_t vlan_id, int on);
100 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
101 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
102 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
103 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
105
106 /*
107 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
108                                         uint16_t vlan_id, int on);
109 */
110 static int eth_em_led_on(struct rte_eth_dev *dev);
111 static int eth_em_led_off(struct rte_eth_dev *dev);
112
113 static void em_intr_disable(struct e1000_hw *hw);
114 static int em_get_rx_buffer_size(struct e1000_hw *hw);
115 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
116                 uint32_t index, uint32_t pool);
117 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
118
119 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
120                                    struct ether_addr *mc_addr_set,
121                                    uint32_t nb_mc_addr);
122
123 #define EM_FC_PAUSE_TIME 0x0680
124 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
125 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
126
127 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
128
129 /*
130  * The set of PCI devices this driver supports
131  */
132 static const struct rte_pci_id pci_id_em_map[] = {
133
134 #define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
135 #include "rte_pci_dev_ids.h"
136
137 {0},
138 };
139
140 static const struct eth_dev_ops eth_em_ops = {
141         .dev_configure        = eth_em_configure,
142         .dev_start            = eth_em_start,
143         .dev_stop             = eth_em_stop,
144         .dev_close            = eth_em_close,
145         .promiscuous_enable   = eth_em_promiscuous_enable,
146         .promiscuous_disable  = eth_em_promiscuous_disable,
147         .allmulticast_enable  = eth_em_allmulticast_enable,
148         .allmulticast_disable = eth_em_allmulticast_disable,
149         .link_update          = eth_em_link_update,
150         .stats_get            = eth_em_stats_get,
151         .stats_reset          = eth_em_stats_reset,
152         .dev_infos_get        = eth_em_infos_get,
153         .mtu_set              = eth_em_mtu_set,
154         .vlan_filter_set      = eth_em_vlan_filter_set,
155         .vlan_offload_set     = eth_em_vlan_offload_set,
156         .rx_queue_setup       = eth_em_rx_queue_setup,
157         .rx_queue_release     = eth_em_rx_queue_release,
158         .rx_queue_count       = eth_em_rx_queue_count,
159         .rx_descriptor_done   = eth_em_rx_descriptor_done,
160         .tx_queue_setup       = eth_em_tx_queue_setup,
161         .tx_queue_release     = eth_em_tx_queue_release,
162         .dev_led_on           = eth_em_led_on,
163         .dev_led_off          = eth_em_led_off,
164         .flow_ctrl_get        = eth_em_flow_ctrl_get,
165         .flow_ctrl_set        = eth_em_flow_ctrl_set,
166         .mac_addr_add         = eth_em_rar_set,
167         .mac_addr_remove      = eth_em_rar_clear,
168         .set_mc_addr_list     = eth_em_set_mc_addr_list,
169 };
170
171 /**
172  * Atomically reads the link status information from global
173  * structure rte_eth_dev.
174  *
175  * @param dev
176  *   - Pointer to the structure rte_eth_dev to read from.
177  *   - Pointer to the buffer to be saved with the link status.
178  *
179  * @return
180  *   - On success, zero.
181  *   - On failure, negative value.
182  */
183 static inline int
184 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
185                                 struct rte_eth_link *link)
186 {
187         struct rte_eth_link *dst = link;
188         struct rte_eth_link *src = &(dev->data->dev_link);
189
190         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
191                                         *(uint64_t *)src) == 0)
192                 return -1;
193
194         return 0;
195 }
196
197 /**
198  * Atomically writes the link status information into global
199  * structure rte_eth_dev.
200  *
201  * @param dev
202  *   - Pointer to the structure rte_eth_dev to read from.
203  *   - Pointer to the buffer to be saved with the link status.
204  *
205  * @return
206  *   - On success, zero.
207  *   - On failure, negative value.
208  */
209 static inline int
210 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
211                                 struct rte_eth_link *link)
212 {
213         struct rte_eth_link *dst = &(dev->data->dev_link);
214         struct rte_eth_link *src = link;
215
216         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
217                                         *(uint64_t *)src) == 0)
218                 return -1;
219
220         return 0;
221 }
222
223 static int
224 eth_em_dev_init(struct rte_eth_dev *eth_dev)
225 {
226         struct rte_pci_device *pci_dev;
227         struct e1000_adapter *adapter =
228                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
229         struct e1000_hw *hw =
230                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
231         struct e1000_vfta * shadow_vfta =
232                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
233
234         pci_dev = eth_dev->pci_dev;
235         eth_dev->dev_ops = &eth_em_ops;
236         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
237         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
238
239         /* for secondary processes, we don't initialise any further as primary
240          * has already done this work. Only check we don't need a different
241          * RX function */
242         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
243                 if (eth_dev->data->scattered_rx)
244                         eth_dev->rx_pkt_burst =
245                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
246                 return 0;
247         }
248
249         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
250         hw->device_id = pci_dev->id.device_id;
251         adapter->stopped = 0;
252
253         /* For ICH8 support we'll need to map the flash memory BAR */
254
255         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
256                         em_hw_init(hw) != 0) {
257                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
258                         "failed to init HW",
259                         eth_dev->data->port_id, pci_dev->id.vendor_id,
260                         pci_dev->id.device_id);
261                 return -(ENODEV);
262         }
263
264         /* Allocate memory for storing MAC addresses */
265         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
266                         hw->mac.rar_entry_count, 0);
267         if (eth_dev->data->mac_addrs == NULL) {
268                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
269                         "store MAC addresses",
270                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
271                 return -(ENOMEM);
272         }
273
274         /* Copy the permanent MAC address */
275         ether_addr_copy((struct ether_addr *) hw->mac.addr,
276                 eth_dev->data->mac_addrs);
277
278         /* initialize the vfta */
279         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
280
281         PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x",
282                      eth_dev->data->port_id, pci_dev->id.vendor_id,
283                      pci_dev->id.device_id);
284
285         rte_intr_callback_register(&(pci_dev->intr_handle),
286                 eth_em_interrupt_handler, (void *)eth_dev);
287
288         return (0);
289 }
290
291 static int
292 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
293 {
294         struct rte_pci_device *pci_dev;
295         struct e1000_adapter *adapter =
296                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
297
298         PMD_INIT_FUNC_TRACE();
299
300         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
301                 return -EPERM;
302
303         pci_dev = eth_dev->pci_dev;
304
305         if (adapter->stopped == 0)
306                 eth_em_close(eth_dev);
307
308         eth_dev->dev_ops = NULL;
309         eth_dev->rx_pkt_burst = NULL;
310         eth_dev->tx_pkt_burst = NULL;
311
312         rte_free(eth_dev->data->mac_addrs);
313         eth_dev->data->mac_addrs = NULL;
314
315         /* disable uio intr before callback unregister */
316         rte_intr_disable(&(pci_dev->intr_handle));
317         rte_intr_callback_unregister(&(pci_dev->intr_handle),
318                 eth_em_interrupt_handler, (void *)eth_dev);
319
320         return 0;
321 }
322
323 static struct eth_driver rte_em_pmd = {
324         .pci_drv = {
325                 .name = "rte_em_pmd",
326                 .id_table = pci_id_em_map,
327                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
328                         RTE_PCI_DRV_DETACHABLE,
329         },
330         .eth_dev_init = eth_em_dev_init,
331         .eth_dev_uninit = eth_em_dev_uninit,
332         .dev_private_size = sizeof(struct e1000_adapter),
333 };
334
335 static int
336 rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
337 {
338         rte_eth_driver_register(&rte_em_pmd);
339         return 0;
340 }
341
342 static int
343 em_hw_init(struct e1000_hw *hw)
344 {
345         int diag;
346
347         diag = hw->mac.ops.init_params(hw);
348         if (diag != 0) {
349                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
350                 return diag;
351         }
352         diag = hw->nvm.ops.init_params(hw);
353         if (diag != 0) {
354                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
355                 return diag;
356         }
357         diag = hw->phy.ops.init_params(hw);
358         if (diag != 0) {
359                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
360                 return diag;
361         }
362         (void) e1000_get_bus_info(hw);
363
364         hw->mac.autoneg = 1;
365         hw->phy.autoneg_wait_to_complete = 0;
366         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
367
368         e1000_init_script_state_82541(hw, TRUE);
369         e1000_set_tbi_compatibility_82543(hw, TRUE);
370
371         /* Copper options */
372         if (hw->phy.media_type == e1000_media_type_copper) {
373                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
374                 hw->phy.disable_polarity_correction = 0;
375                 hw->phy.ms_type = e1000_ms_hw_default;
376         }
377
378         /*
379          * Start from a known state, this is important in reading the nvm
380          * and mac from that.
381          */
382         e1000_reset_hw(hw);
383
384         /* Make sure we have a good EEPROM before we read from it */
385         if (e1000_validate_nvm_checksum(hw) < 0) {
386                 /*
387                  * Some PCI-E parts fail the first check due to
388                  * the link being in sleep state, call it again,
389                  * if it fails a second time its a real issue.
390                  */
391                 diag = e1000_validate_nvm_checksum(hw);
392                 if (diag < 0) {
393                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
394                         goto error;
395                 }
396         }
397
398         /* Read the permanent MAC address out of the EEPROM */
399         diag = e1000_read_mac_addr(hw);
400         if (diag != 0) {
401                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
402                 goto error;
403         }
404
405         /* Now initialize the hardware */
406         diag = em_hardware_init(hw);
407         if (diag != 0) {
408                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
409                 goto error;
410         }
411
412         hw->mac.get_link_status = 1;
413
414         /* Indicate SOL/IDER usage */
415         diag = e1000_check_reset_block(hw);
416         if (diag < 0) {
417                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
418                         "SOL/IDER session");
419         }
420         return (0);
421
422 error:
423         em_hw_control_release(hw);
424         return (diag);
425 }
426
427 static int
428 eth_em_configure(struct rte_eth_dev *dev)
429 {
430         struct e1000_interrupt *intr =
431                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
432
433         PMD_INIT_FUNC_TRACE();
434         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
435         PMD_INIT_FUNC_TRACE();
436
437         return (0);
438 }
439
440 static void
441 em_set_pba(struct e1000_hw *hw)
442 {
443         uint32_t pba;
444
445         /*
446          * Packet Buffer Allocation (PBA)
447          * Writing PBA sets the receive portion of the buffer
448          * the remainder is used for the transmit buffer.
449          * Devices before the 82547 had a Packet Buffer of 64K.
450          * After the 82547 the buffer was reduced to 40K.
451          */
452         switch (hw->mac.type) {
453                 case e1000_82547:
454                 case e1000_82547_rev_2:
455                 /* 82547: Total Packet Buffer is 40K */
456                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
457                         break;
458                 case e1000_82571:
459                 case e1000_82572:
460                 case e1000_80003es2lan:
461                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
462                         break;
463                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
464                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
465                         break;
466                 case e1000_82574:
467                 case e1000_82583:
468                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
469                         break;
470                 case e1000_ich8lan:
471                         pba = E1000_PBA_8K;
472                         break;
473                 case e1000_ich9lan:
474                 case e1000_ich10lan:
475                         pba = E1000_PBA_10K;
476                         break;
477                 case e1000_pchlan:
478                 case e1000_pch2lan:
479                         pba = E1000_PBA_26K;
480                         break;
481                 default:
482                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
483         }
484
485         E1000_WRITE_REG(hw, E1000_PBA, pba);
486 }
487
488 static int
489 eth_em_start(struct rte_eth_dev *dev)
490 {
491         struct e1000_adapter *adapter =
492                 E1000_DEV_PRIVATE(dev->data->dev_private);
493         struct e1000_hw *hw =
494                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
495         int ret, mask;
496
497         PMD_INIT_FUNC_TRACE();
498
499         eth_em_stop(dev);
500
501         e1000_power_up_phy(hw);
502
503         /* Set default PBA value */
504         em_set_pba(hw);
505
506         /* Put the address into the Receive Address Array */
507         e1000_rar_set(hw, hw->mac.addr, 0);
508
509         /*
510          * With the 82571 adapter, RAR[0] may be overwritten
511          * when the other port is reset, we make a duplicate
512          * in RAR[14] for that eventuality, this assures
513          * the interface continues to function.
514          */
515         if (hw->mac.type == e1000_82571) {
516                 e1000_set_laa_state_82571(hw, TRUE);
517                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
518         }
519
520         /* Initialize the hardware */
521         if (em_hardware_init(hw)) {
522                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
523                 return (-EIO);
524         }
525
526         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
527
528         /* Configure for OS presence */
529         em_init_manageability(hw);
530
531         eth_em_tx_init(dev);
532
533         ret = eth_em_rx_init(dev);
534         if (ret) {
535                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
536                 em_dev_clear_queues(dev);
537                 return ret;
538         }
539
540         e1000_clear_hw_cntrs_base_generic(hw);
541
542         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
543                         ETH_VLAN_EXTEND_MASK;
544         eth_em_vlan_offload_set(dev, mask);
545
546         /* Set Interrupt Throttling Rate to maximum allowed value. */
547         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
548
549         /* Setup link speed and duplex */
550         switch (dev->data->dev_conf.link_speed) {
551         case ETH_LINK_SPEED_AUTONEG:
552                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
553                         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
554                 else if (dev->data->dev_conf.link_duplex ==
555                                         ETH_LINK_HALF_DUPLEX)
556                         hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
557                 else if (dev->data->dev_conf.link_duplex ==
558                                         ETH_LINK_FULL_DUPLEX)
559                         hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
560                 else
561                         goto error_invalid_config;
562                 break;
563         case ETH_LINK_SPEED_10:
564                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
565                         hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
566                 else if (dev->data->dev_conf.link_duplex ==
567                                         ETH_LINK_HALF_DUPLEX)
568                         hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
569                 else if (dev->data->dev_conf.link_duplex ==
570                                         ETH_LINK_FULL_DUPLEX)
571                         hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
572                 else
573                         goto error_invalid_config;
574                 break;
575         case ETH_LINK_SPEED_100:
576                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
577                         hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
578                 else if (dev->data->dev_conf.link_duplex ==
579                                         ETH_LINK_HALF_DUPLEX)
580                         hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
581                 else if (dev->data->dev_conf.link_duplex ==
582                                         ETH_LINK_FULL_DUPLEX)
583                         hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
584                 else
585                         goto error_invalid_config;
586                 break;
587         case ETH_LINK_SPEED_1000:
588                 if ((dev->data->dev_conf.link_duplex ==
589                                 ETH_LINK_AUTONEG_DUPLEX) ||
590                         (dev->data->dev_conf.link_duplex ==
591                                         ETH_LINK_FULL_DUPLEX))
592                         hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
593                 else
594                         goto error_invalid_config;
595                 break;
596         case ETH_LINK_SPEED_10000:
597         default:
598                 goto error_invalid_config;
599         }
600         e1000_setup_link(hw);
601
602         /* check if lsc interrupt feature is enabled */
603         if (dev->data->dev_conf.intr_conf.lsc != 0) {
604                 ret = eth_em_interrupt_setup(dev);
605                 if (ret) {
606                         PMD_INIT_LOG(ERR, "Unable to setup interrupts");
607                         em_dev_clear_queues(dev);
608                         return ret;
609                 }
610         }
611
612         adapter->stopped = 0;
613
614         PMD_INIT_LOG(DEBUG, "<<");
615
616         return (0);
617
618 error_invalid_config:
619         PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
620                      dev->data->dev_conf.link_speed,
621                      dev->data->dev_conf.link_duplex, dev->data->port_id);
622         em_dev_clear_queues(dev);
623         return (-EINVAL);
624 }
625
626 /*********************************************************************
627  *
628  *  This routine disables all traffic on the adapter by issuing a
629  *  global reset on the MAC.
630  *
631  **********************************************************************/
632 static void
633 eth_em_stop(struct rte_eth_dev *dev)
634 {
635         struct rte_eth_link link;
636         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
637
638         em_intr_disable(hw);
639         e1000_reset_hw(hw);
640         if (hw->mac.type >= e1000_82544)
641                 E1000_WRITE_REG(hw, E1000_WUC, 0);
642
643         /* Power down the phy. Needed to make the link go down */
644         e1000_power_down_phy(hw);
645
646         em_dev_clear_queues(dev);
647
648         /* clear the recorded link status */
649         memset(&link, 0, sizeof(link));
650         rte_em_dev_atomic_write_link_status(dev, &link);
651 }
652
653 static void
654 eth_em_close(struct rte_eth_dev *dev)
655 {
656         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
657         struct e1000_adapter *adapter =
658                 E1000_DEV_PRIVATE(dev->data->dev_private);
659
660         eth_em_stop(dev);
661         adapter->stopped = 1;
662         e1000_phy_hw_reset(hw);
663         em_release_manageability(hw);
664         em_hw_control_release(hw);
665 }
666
667 static int
668 em_get_rx_buffer_size(struct e1000_hw *hw)
669 {
670         uint32_t rx_buf_size;
671
672         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
673         return rx_buf_size;
674 }
675
676 /*********************************************************************
677  *
678  *  Initialize the hardware
679  *
680  **********************************************************************/
681 static int
682 em_hardware_init(struct e1000_hw *hw)
683 {
684         uint32_t rx_buf_size;
685         int diag;
686
687         /* Issue a global reset */
688         e1000_reset_hw(hw);
689
690         /* Let the firmware know the OS is in control */
691         em_hw_control_acquire(hw);
692
693         /*
694          * These parameters control the automatic generation (Tx) and
695          * response (Rx) to Ethernet PAUSE frames.
696          * - High water mark should allow for at least two standard size (1518)
697          *   frames to be received after sending an XOFF.
698          * - Low water mark works best when it is very near the high water mark.
699          *   This allows the receiver to restart by sending XON when it has
700          *   drained a bit. Here we use an arbitrary value of 1500 which will
701          *   restart after one full frame is pulled from the buffer. There
702          *   could be several smaller frames in the buffer and if so they will
703          *   not trigger the XON until their total number reduces the buffer
704          *   by 1500.
705          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
706          */
707         rx_buf_size = em_get_rx_buffer_size(hw);
708
709         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
710         hw->fc.low_water = hw->fc.high_water - 1500;
711
712         if (hw->mac.type == e1000_80003es2lan)
713                 hw->fc.pause_time = UINT16_MAX;
714         else
715                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
716
717         hw->fc.send_xon = 1;
718
719         /* Set Flow control, use the tunable location if sane */
720         if (em_fc_setting <= e1000_fc_full)
721                 hw->fc.requested_mode = em_fc_setting;
722         else
723                 hw->fc.requested_mode = e1000_fc_none;
724
725         /* Workaround: no TX flow ctrl for PCH */
726         if (hw->mac.type == e1000_pchlan)
727                 hw->fc.requested_mode = e1000_fc_rx_pause;
728
729         /* Override - settings for PCH2LAN, ya its magic :) */
730         if (hw->mac.type == e1000_pch2lan) {
731                 hw->fc.high_water = 0x5C20;
732                 hw->fc.low_water = 0x5048;
733                 hw->fc.pause_time = 0x0650;
734                 hw->fc.refresh_time = 0x0400;
735         }
736
737         diag = e1000_init_hw(hw);
738         if (diag < 0)
739                 return (diag);
740         e1000_check_for_link(hw);
741         return (0);
742 }
743
744 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
745 static void
746 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
747 {
748         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
749         struct e1000_hw_stats *stats =
750                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
751         int pause_frames;
752
753         if(hw->phy.media_type == e1000_media_type_copper ||
754                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
755                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
756                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
757         }
758
759         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
760         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
761         stats->scc += E1000_READ_REG(hw, E1000_SCC);
762         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
763
764         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
765         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
766         stats->colc += E1000_READ_REG(hw, E1000_COLC);
767         stats->dc += E1000_READ_REG(hw, E1000_DC);
768         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
769         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
770         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
771
772         /*
773          * For watchdog management we need to know if we have been
774          * paused during the last interval, so capture that here.
775          */
776         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
777         stats->xoffrxc += pause_frames;
778         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
779         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
780         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
781         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
782         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
783         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
784         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
785         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
786         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
787         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
788         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
789         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
790
791         /*
792          * For the 64-bit byte counters the low dword must be read first.
793          * Both registers clear on the read of the high dword.
794          */
795
796         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
797         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
798         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
799         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
800
801         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
802         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
803         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
804         stats->roc += E1000_READ_REG(hw, E1000_ROC);
805         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
806
807         stats->tor += E1000_READ_REG(hw, E1000_TORH);
808         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
809
810         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
811         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
812         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
813         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
814         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
815         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
816         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
817         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
818         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
819         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
820
821         /* Interrupt Counts */
822
823         if (hw->mac.type >= e1000_82571) {
824                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
825                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
826                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
827                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
828                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
829                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
830                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
831                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
832                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
833         }
834
835         if (hw->mac.type >= e1000_82543) {
836                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
837                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
838                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
839                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
840                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
841                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
842         }
843
844         if (rte_stats == NULL)
845                 return;
846
847         /* Rx Errors */
848         rte_stats->ibadcrc = stats->crcerrs;
849         rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
850         rte_stats->imissed = stats->mpc;
851         rte_stats->ierrors = rte_stats->ibadcrc +
852                              rte_stats->ibadlen +
853                              rte_stats->imissed +
854                              stats->rxerrc + stats->algnerrc + stats->cexterr;
855
856         /* Tx Errors */
857         rte_stats->oerrors = stats->ecol + stats->latecol;
858
859         rte_stats->ipackets = stats->gprc;
860         rte_stats->opackets = stats->gptc;
861         rte_stats->ibytes   = stats->gorc;
862         rte_stats->obytes   = stats->gotc;
863
864         /* XON/XOFF pause frames stats registers */
865         rte_stats->tx_pause_xon  = stats->xontxc;
866         rte_stats->rx_pause_xon  = stats->xonrxc;
867         rte_stats->tx_pause_xoff = stats->xofftxc;
868         rte_stats->rx_pause_xoff = stats->xoffrxc;
869 }
870
871 static void
872 eth_em_stats_reset(struct rte_eth_dev *dev)
873 {
874         struct e1000_hw_stats *hw_stats =
875                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
876
877         /* HW registers are cleared on read */
878         eth_em_stats_get(dev, NULL);
879
880         /* Reset software totals */
881         memset(hw_stats, 0, sizeof(*hw_stats));
882 }
883
884 static uint32_t
885 em_get_max_pktlen(const struct e1000_hw *hw)
886 {
887         switch (hw->mac.type) {
888         case e1000_82571:
889         case e1000_82572:
890         case e1000_ich9lan:
891         case e1000_ich10lan:
892         case e1000_pch2lan:
893         case e1000_82574:
894         case e1000_80003es2lan: /* 9K Jumbo Frame size */
895                 return (0x2412);
896         case e1000_pchlan:
897                 return (0x1000);
898         /* Adapters that do not support jumbo frames */
899         case e1000_82583:
900         case e1000_ich8lan:
901                 return (ETHER_MAX_LEN);
902         default:
903                 return (MAX_JUMBO_FRAME_SIZE);
904         }
905 }
906
907 static void
908 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
909 {
910         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
911
912         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
913         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
914         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
915
916         /*
917          * Starting with 631xESB hw supports 2 TX/RX queues per port.
918          * Unfortunatelly, all these nics have just one TX context.
919          * So we have few choises for TX:
920          * - Use just one TX queue.
921          * - Allow cksum offload only for one TX queue.
922          * - Don't allow TX cksum offload at all.
923          * For now, option #1 was chosen.
924          * To use second RX queue we have to use extended RX descriptor
925          * (Multiple Receive Queues are mutually exclusive with UDP
926          * fragmentation and are not supported when a legacy receive
927          * descriptor format is used).
928          * Which means separate RX routinies - as legacy nics (82540, 82545)
929          * don't support extended RXD.
930          * To avoid it we support just one RX queue for now (no RSS).
931          */
932
933         dev_info->max_rx_queues = 1;
934         dev_info->max_tx_queues = 1;
935 }
936
937 /* return 0 means link status changed, -1 means not changed */
938 static int
939 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
940 {
941         struct e1000_hw *hw =
942                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
943         struct rte_eth_link link, old;
944         int link_check, count;
945
946         link_check = 0;
947         hw->mac.get_link_status = 1;
948
949         /* possible wait-to-complete in up to 9 seconds */
950         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
951                 /* Read the real link status */
952                 switch (hw->phy.media_type) {
953                 case e1000_media_type_copper:
954                         /* Do the work to read phy */
955                         e1000_check_for_link(hw);
956                         link_check = !hw->mac.get_link_status;
957                         break;
958
959                 case e1000_media_type_fiber:
960                         e1000_check_for_link(hw);
961                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
962                                         E1000_STATUS_LU);
963                         break;
964
965                 case e1000_media_type_internal_serdes:
966                         e1000_check_for_link(hw);
967                         link_check = hw->mac.serdes_has_link;
968                         break;
969
970                 default:
971                         break;
972                 }
973                 if (link_check || wait_to_complete == 0)
974                         break;
975                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
976         }
977         memset(&link, 0, sizeof(link));
978         rte_em_dev_atomic_read_link_status(dev, &link);
979         old = link;
980
981         /* Now we check if a transition has happened */
982         if (link_check && (link.link_status == 0)) {
983                 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
984                         &link.link_duplex);
985                 link.link_status = 1;
986         } else if (!link_check && (link.link_status == 1)) {
987                 link.link_speed = 0;
988                 link.link_duplex = 0;
989                 link.link_status = 0;
990         }
991         rte_em_dev_atomic_write_link_status(dev, &link);
992
993         /* not changed */
994         if (old.link_status == link.link_status)
995                 return -1;
996
997         /* changed */
998         return 0;
999 }
1000
1001 /*
1002  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1003  * For ASF and Pass Through versions of f/w this means
1004  * that the driver is loaded. For AMT version type f/w
1005  * this means that the network i/f is open.
1006  */
1007 static void
1008 em_hw_control_acquire(struct e1000_hw *hw)
1009 {
1010         uint32_t ctrl_ext, swsm;
1011
1012         /* Let firmware know the driver has taken over */
1013         if (hw->mac.type == e1000_82573) {
1014                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1015                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1016
1017         } else {
1018                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1019                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1020                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1021         }
1022 }
1023
1024 /*
1025  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1026  * For ASF and Pass Through versions of f/w this means that the
1027  * driver is no longer loaded. For AMT versions of the
1028  * f/w this means that the network i/f is closed.
1029  */
1030 static void
1031 em_hw_control_release(struct e1000_hw *hw)
1032 {
1033         uint32_t ctrl_ext, swsm;
1034
1035         /* Let firmware taken over control of h/w */
1036         if (hw->mac.type == e1000_82573) {
1037                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1038                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1039         } else {
1040                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1041                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1042                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1043         }
1044 }
1045
1046 /*
1047  * Bit of a misnomer, what this really means is
1048  * to enable OS management of the system... aka
1049  * to disable special hardware management features.
1050  */
1051 static void
1052 em_init_manageability(struct e1000_hw *hw)
1053 {
1054         if (e1000_enable_mng_pass_thru(hw)) {
1055                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1056                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1057
1058                 /* disable hardware interception of ARP */
1059                 manc &= ~(E1000_MANC_ARP_EN);
1060
1061                 /* enable receiving management packets to the host */
1062                 manc |= E1000_MANC_EN_MNG2HOST;
1063                 manc2h |= 1 << 5;  /* Mng Port 623 */
1064                 manc2h |= 1 << 6;  /* Mng Port 664 */
1065                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1066                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1067         }
1068 }
1069
1070 /*
1071  * Give control back to hardware management
1072  * controller if there is one.
1073  */
1074 static void
1075 em_release_manageability(struct e1000_hw *hw)
1076 {
1077         uint32_t manc;
1078
1079         if (e1000_enable_mng_pass_thru(hw)) {
1080                 manc = E1000_READ_REG(hw, E1000_MANC);
1081
1082                 /* re-enable hardware interception of ARP */
1083                 manc |= E1000_MANC_ARP_EN;
1084                 manc &= ~E1000_MANC_EN_MNG2HOST;
1085
1086                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1087         }
1088 }
1089
1090 static void
1091 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1092 {
1093         struct e1000_hw *hw =
1094                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1095         uint32_t rctl;
1096
1097         rctl = E1000_READ_REG(hw, E1000_RCTL);
1098         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1099         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1100 }
1101
1102 static void
1103 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1104 {
1105         struct e1000_hw *hw =
1106                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1107         uint32_t rctl;
1108
1109         rctl = E1000_READ_REG(hw, E1000_RCTL);
1110         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1111         if (dev->data->all_multicast == 1)
1112                 rctl |= E1000_RCTL_MPE;
1113         else
1114                 rctl &= (~E1000_RCTL_MPE);
1115         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1116 }
1117
1118 static void
1119 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1120 {
1121         struct e1000_hw *hw =
1122                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1123         uint32_t rctl;
1124
1125         rctl = E1000_READ_REG(hw, E1000_RCTL);
1126         rctl |= E1000_RCTL_MPE;
1127         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1128 }
1129
1130 static void
1131 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1132 {
1133         struct e1000_hw *hw =
1134                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1135         uint32_t rctl;
1136
1137         if (dev->data->promiscuous == 1)
1138                 return; /* must remain in all_multicast mode */
1139         rctl = E1000_READ_REG(hw, E1000_RCTL);
1140         rctl &= (~E1000_RCTL_MPE);
1141         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1142 }
1143
1144 static int
1145 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1146 {
1147         struct e1000_hw *hw =
1148                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1149         struct e1000_vfta * shadow_vfta =
1150                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1151         uint32_t vfta;
1152         uint32_t vid_idx;
1153         uint32_t vid_bit;
1154
1155         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1156                               E1000_VFTA_ENTRY_MASK);
1157         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1158         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1159         if (on)
1160                 vfta |= vid_bit;
1161         else
1162                 vfta &= ~vid_bit;
1163         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1164
1165         /* update local VFTA copy */
1166         shadow_vfta->vfta[vid_idx] = vfta;
1167
1168         return 0;
1169 }
1170
1171 static void
1172 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1173 {
1174         struct e1000_hw *hw =
1175                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1176         uint32_t reg;
1177
1178         /* Filter Table Disable */
1179         reg = E1000_READ_REG(hw, E1000_RCTL);
1180         reg &= ~E1000_RCTL_CFIEN;
1181         reg &= ~E1000_RCTL_VFE;
1182         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1183 }
1184
1185 static void
1186 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1187 {
1188         struct e1000_hw *hw =
1189                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1190         struct e1000_vfta * shadow_vfta =
1191                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1192         uint32_t reg;
1193         int i;
1194
1195         /* Filter Table Enable, CFI not used for packet acceptance */
1196         reg = E1000_READ_REG(hw, E1000_RCTL);
1197         reg &= ~E1000_RCTL_CFIEN;
1198         reg |= E1000_RCTL_VFE;
1199         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1200
1201         /* restore vfta from local copy */
1202         for (i = 0; i < IGB_VFTA_SIZE; i++)
1203                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1204 }
1205
1206 static void
1207 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1208 {
1209         struct e1000_hw *hw =
1210                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1211         uint32_t reg;
1212
1213         /* VLAN Mode Disable */
1214         reg = E1000_READ_REG(hw, E1000_CTRL);
1215         reg &= ~E1000_CTRL_VME;
1216         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1217
1218 }
1219
1220 static void
1221 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1222 {
1223         struct e1000_hw *hw =
1224                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1225         uint32_t reg;
1226
1227         /* VLAN Mode Enable */
1228         reg = E1000_READ_REG(hw, E1000_CTRL);
1229         reg |= E1000_CTRL_VME;
1230         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1231 }
1232
1233 static void
1234 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1235 {
1236         if(mask & ETH_VLAN_STRIP_MASK){
1237                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1238                         em_vlan_hw_strip_enable(dev);
1239                 else
1240                         em_vlan_hw_strip_disable(dev);
1241         }
1242
1243         if(mask & ETH_VLAN_FILTER_MASK){
1244                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1245                         em_vlan_hw_filter_enable(dev);
1246                 else
1247                         em_vlan_hw_filter_disable(dev);
1248         }
1249 }
1250
1251 static void
1252 em_intr_disable(struct e1000_hw *hw)
1253 {
1254         E1000_WRITE_REG(hw, E1000_IMC, ~0);
1255 }
1256
1257 /**
1258  * It enables the interrupt mask and then enable the interrupt.
1259  *
1260  * @param dev
1261  *  Pointer to struct rte_eth_dev.
1262  *
1263  * @return
1264  *  - On success, zero.
1265  *  - On failure, a negative value.
1266  */
1267 static int
1268 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1269 {
1270         struct e1000_hw *hw =
1271                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1272
1273         E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
1274         rte_intr_enable(&(dev->pci_dev->intr_handle));
1275         return (0);
1276 }
1277
1278 /*
1279  * It reads ICR and gets interrupt causes, check it and set a bit flag
1280  * to update link status.
1281  *
1282  * @param dev
1283  *  Pointer to struct rte_eth_dev.
1284  *
1285  * @return
1286  *  - On success, zero.
1287  *  - On failure, a negative value.
1288  */
1289 static int
1290 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1291 {
1292         uint32_t icr;
1293         struct e1000_hw *hw =
1294                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1295         struct e1000_interrupt *intr =
1296                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1297
1298         /* read-on-clear nic registers here */
1299         icr = E1000_READ_REG(hw, E1000_ICR);
1300         if (icr & E1000_ICR_LSC) {
1301                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1302         }
1303
1304         return 0;
1305 }
1306
1307 /*
1308  * It executes link_update after knowing an interrupt is prsent.
1309  *
1310  * @param dev
1311  *  Pointer to struct rte_eth_dev.
1312  *
1313  * @return
1314  *  - On success, zero.
1315  *  - On failure, a negative value.
1316  */
1317 static int
1318 eth_em_interrupt_action(struct rte_eth_dev *dev)
1319 {
1320         struct e1000_hw *hw =
1321                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1322         struct e1000_interrupt *intr =
1323                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1324         uint32_t tctl, rctl;
1325         struct rte_eth_link link;
1326         int ret;
1327
1328         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1329                 return -1;
1330
1331         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1332         rte_intr_enable(&(dev->pci_dev->intr_handle));
1333
1334         /* set get_link_status to check register later */
1335         hw->mac.get_link_status = 1;
1336         ret = eth_em_link_update(dev, 0);
1337
1338         /* check if link has changed */
1339         if (ret < 0)
1340                 return 0;
1341
1342         memset(&link, 0, sizeof(link));
1343         rte_em_dev_atomic_read_link_status(dev, &link);
1344         if (link.link_status) {
1345                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1346                              dev->data->port_id, (unsigned)link.link_speed,
1347                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1348                              "full-duplex" : "half-duplex");
1349         } else {
1350                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1351         }
1352         PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
1353                      dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
1354                      dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
1355         tctl = E1000_READ_REG(hw, E1000_TCTL);
1356         rctl = E1000_READ_REG(hw, E1000_RCTL);
1357         if (link.link_status) {
1358                 /* enable Tx/Rx */
1359                 tctl |= E1000_TCTL_EN;
1360                 rctl |= E1000_RCTL_EN;
1361         } else {
1362                 /* disable Tx/Rx */
1363                 tctl &= ~E1000_TCTL_EN;
1364                 rctl &= ~E1000_RCTL_EN;
1365         }
1366         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1367         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1368         E1000_WRITE_FLUSH(hw);
1369
1370         return 0;
1371 }
1372
1373 /**
1374  * Interrupt handler which shall be registered at first.
1375  *
1376  * @param handle
1377  *  Pointer to interrupt handle.
1378  * @param param
1379  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1380  *
1381  * @return
1382  *  void
1383  */
1384 static void
1385 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1386                                                         void *param)
1387 {
1388         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1389
1390         eth_em_interrupt_get_status(dev);
1391         eth_em_interrupt_action(dev);
1392         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1393 }
1394
1395 static int
1396 eth_em_led_on(struct rte_eth_dev *dev)
1397 {
1398         struct e1000_hw *hw;
1399
1400         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1401         return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1402 }
1403
1404 static int
1405 eth_em_led_off(struct rte_eth_dev *dev)
1406 {
1407         struct e1000_hw *hw;
1408
1409         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1410         return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1411 }
1412
1413 static int
1414 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1415 {
1416         struct e1000_hw *hw;
1417         uint32_t ctrl;
1418         int tx_pause;
1419         int rx_pause;
1420
1421         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1422         fc_conf->pause_time = hw->fc.pause_time;
1423         fc_conf->high_water = hw->fc.high_water;
1424         fc_conf->low_water = hw->fc.low_water;
1425         fc_conf->send_xon = hw->fc.send_xon;
1426         fc_conf->autoneg = hw->mac.autoneg;
1427
1428         /*
1429          * Return rx_pause and tx_pause status according to actual setting of
1430          * the TFCE and RFCE bits in the CTRL register.
1431          */
1432         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1433         if (ctrl & E1000_CTRL_TFCE)
1434                 tx_pause = 1;
1435         else
1436                 tx_pause = 0;
1437
1438         if (ctrl & E1000_CTRL_RFCE)
1439                 rx_pause = 1;
1440         else
1441                 rx_pause = 0;
1442
1443         if (rx_pause && tx_pause)
1444                 fc_conf->mode = RTE_FC_FULL;
1445         else if (rx_pause)
1446                 fc_conf->mode = RTE_FC_RX_PAUSE;
1447         else if (tx_pause)
1448                 fc_conf->mode = RTE_FC_TX_PAUSE;
1449         else
1450                 fc_conf->mode = RTE_FC_NONE;
1451
1452         return 0;
1453 }
1454
1455 static int
1456 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1457 {
1458         struct e1000_hw *hw;
1459         int err;
1460         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1461                 e1000_fc_none,
1462                 e1000_fc_rx_pause,
1463                 e1000_fc_tx_pause,
1464                 e1000_fc_full
1465         };
1466         uint32_t rx_buf_size;
1467         uint32_t max_high_water;
1468         uint32_t rctl;
1469
1470         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1471         if (fc_conf->autoneg != hw->mac.autoneg)
1472                 return -ENOTSUP;
1473         rx_buf_size = em_get_rx_buffer_size(hw);
1474         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1475
1476         /* At least reserve one Ethernet frame for watermark */
1477         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1478         if ((fc_conf->high_water > max_high_water) ||
1479             (fc_conf->high_water < fc_conf->low_water)) {
1480                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1481                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1482                 return (-EINVAL);
1483         }
1484
1485         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1486         hw->fc.pause_time     = fc_conf->pause_time;
1487         hw->fc.high_water     = fc_conf->high_water;
1488         hw->fc.low_water      = fc_conf->low_water;
1489         hw->fc.send_xon       = fc_conf->send_xon;
1490
1491         err = e1000_setup_link_generic(hw);
1492         if (err == E1000_SUCCESS) {
1493
1494                 /* check if we want to forward MAC frames - driver doesn't have native
1495                  * capability to do that, so we'll write the registers ourselves */
1496
1497                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1498
1499                 /* set or clear MFLCN.PMCF bit depending on configuration */
1500                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1501                         rctl |= E1000_RCTL_PMCF;
1502                 else
1503                         rctl &= ~E1000_RCTL_PMCF;
1504
1505                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1506                 E1000_WRITE_FLUSH(hw);
1507
1508                 return 0;
1509         }
1510
1511         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1512         return (-EIO);
1513 }
1514
1515 static void
1516 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1517                 uint32_t index, __rte_unused uint32_t pool)
1518 {
1519         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1520
1521         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1522 }
1523
1524 static void
1525 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1526 {
1527         uint8_t addr[ETHER_ADDR_LEN];
1528         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1529
1530         memset(addr, 0, sizeof(addr));
1531
1532         e1000_rar_set(hw, addr, index);
1533 }
1534
1535 static int
1536 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1537 {
1538         struct rte_eth_dev_info dev_info;
1539         struct e1000_hw *hw;
1540         uint32_t frame_size;
1541         uint32_t rctl;
1542
1543         eth_em_infos_get(dev, &dev_info);
1544         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1545
1546         /* check that mtu is within the allowed range */
1547         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1548                 return -EINVAL;
1549
1550         /* refuse mtu that requires the support of scattered packets when this
1551          * feature has not been enabled before. */
1552         if (!dev->data->scattered_rx &&
1553             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1554                 return -EINVAL;
1555
1556         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1557         rctl = E1000_READ_REG(hw, E1000_RCTL);
1558
1559         /* switch to jumbo mode if needed */
1560         if (frame_size > ETHER_MAX_LEN) {
1561                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1562                 rctl |= E1000_RCTL_LPE;
1563         } else {
1564                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1565                 rctl &= ~E1000_RCTL_LPE;
1566         }
1567         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1568
1569         /* update max frame size */
1570         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1571         return 0;
1572 }
1573
1574 static int
1575 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1576                         struct ether_addr *mc_addr_set,
1577                         uint32_t nb_mc_addr)
1578 {
1579         struct e1000_hw *hw;
1580
1581         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1582         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1583         return 0;
1584 }
1585
1586 struct rte_driver em_pmd_drv = {
1587         .type = PMD_PDEV,
1588         .init = rte_em_pmd_init,
1589 };
1590
1591 PMD_REGISTER_DRIVER(em_pmd_drv);