1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
19 #include <rte_debug.h>
21 #include <rte_bus_pci.h>
22 #include <rte_memory.h>
23 #include <rte_memcpy.h>
24 #include <rte_memzone.h>
25 #include <rte_launch.h>
27 #include <rte_per_lcore.h>
28 #include <rte_lcore.h>
29 #include <rte_atomic.h>
30 #include <rte_branch_prediction.h>
31 #include <rte_mempool.h>
32 #include <rte_malloc.h>
34 #include <rte_ether.h>
35 #include <rte_ethdev_driver.h>
36 #include <rte_prefetch.h>
42 #include <rte_string_fns.h>
44 #include "e1000_logs.h"
45 #include "base/e1000_api.h"
46 #include "e1000_ethdev.h"
47 #include "base/e1000_osdep.h"
49 #define E1000_TXD_VLAN_SHIFT 16
51 #define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
53 #define E1000_TX_OFFLOAD_MASK ( \
60 #define E1000_TX_OFFLOAD_NOTSUP_MASK \
61 (PKT_TX_OFFLOAD_MASK ^ E1000_TX_OFFLOAD_MASK)
63 /* PCI offset for querying configuration status register */
64 #define PCI_CFG_STATUS_REG 0x06
65 #define FLUSH_DESC_REQUIRED 0x100
69 * Structure associated with each descriptor of the RX ring of a RX queue.
72 struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
76 * Structure associated with each descriptor of the TX ring of a TX queue.
79 struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
80 uint16_t next_id; /**< Index of next descriptor in ring. */
81 uint16_t last_id; /**< Index of last scattered descriptor. */
85 * Structure associated with each RX queue.
88 struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
89 volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
90 uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
91 volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
92 volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
93 struct em_rx_entry *sw_ring; /**< address of RX software ring. */
94 struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
95 struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
96 uint64_t offloads; /**< Offloads of DEV_RX_OFFLOAD_* */
97 uint16_t nb_rx_desc; /**< number of RX descriptors. */
98 uint16_t rx_tail; /**< current value of RDT register. */
99 uint16_t nb_rx_hold; /**< number of held free RX desc. */
100 uint16_t rx_free_thresh; /**< max free RX desc to hold. */
101 uint16_t queue_id; /**< RX queue index. */
102 uint16_t port_id; /**< Device port identifier. */
103 uint8_t pthresh; /**< Prefetch threshold register. */
104 uint8_t hthresh; /**< Host threshold register. */
105 uint8_t wthresh; /**< Write-back threshold register. */
106 uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
110 * Hardware context number
113 EM_CTX_0 = 0, /**< CTX0 */
114 EM_CTX_NUM = 1, /**< CTX NUM */
117 /** Offload features */
118 union em_vlan_macip {
121 uint16_t l3_len:9; /**< L3 (IP) Header Length. */
122 uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
124 /**< VLAN Tag Control Identifier (CPU order). */
129 * Compare mask for vlan_macip_len.data,
130 * should be in sync with em_vlan_macip.f layout.
132 #define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
133 #define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
134 #define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
135 /** MAC+IP length. */
136 #define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
139 * Structure to check if new context need be built
142 uint64_t flags; /**< ol_flags related to context build. */
143 uint32_t cmp_mask; /**< compare mask */
144 union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */
148 * Structure associated with each TX queue.
151 volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
152 uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
153 struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */
154 volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
155 uint16_t nb_tx_desc; /**< number of TX descriptors. */
156 uint16_t tx_tail; /**< Current value of TDT register. */
157 /**< Start freeing TX buffers if there are less free descriptors than
159 uint16_t tx_free_thresh;
160 /**< Number of TX descriptors to use before RS bit is set. */
161 uint16_t tx_rs_thresh;
162 /** Number of TX descriptors used since RS bit was set. */
164 /** Index to last TX descriptor to have been cleaned. */
165 uint16_t last_desc_cleaned;
166 /** Total number of TX descriptors ready to be allocated. */
168 uint16_t queue_id; /**< TX queue index. */
169 uint16_t port_id; /**< Device port identifier. */
170 uint8_t pthresh; /**< Prefetch threshold register. */
171 uint8_t hthresh; /**< Host threshold register. */
172 uint8_t wthresh; /**< Write-back threshold register. */
173 struct em_ctx_info ctx_cache;
174 /**< Hardware context history.*/
175 uint64_t offloads; /**< offloads of DEV_TX_OFFLOAD_* */
179 #define RTE_PMD_USE_PREFETCH
182 #ifdef RTE_PMD_USE_PREFETCH
183 #define rte_em_prefetch(p) rte_prefetch0(p)
185 #define rte_em_prefetch(p) do {} while(0)
188 #ifdef RTE_PMD_PACKET_PREFETCH
189 #define rte_packet_prefetch(p) rte_prefetch1(p)
191 #define rte_packet_prefetch(p) do {} while(0)
194 #ifndef DEFAULT_TX_FREE_THRESH
195 #define DEFAULT_TX_FREE_THRESH 32
196 #endif /* DEFAULT_TX_FREE_THRESH */
198 #ifndef DEFAULT_TX_RS_THRESH
199 #define DEFAULT_TX_RS_THRESH 32
200 #endif /* DEFAULT_TX_RS_THRESH */
203 /*********************************************************************
207 **********************************************************************/
210 * Populates TX context descriptor.
213 em_set_xmit_ctx(struct em_tx_queue* txq,
214 volatile struct e1000_context_desc *ctx_txd,
216 union em_vlan_macip hdrlen)
218 uint32_t cmp_mask, cmd_len;
219 uint16_t ipcse, l2len;
220 struct e1000_context_desc ctx;
223 cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
225 l2len = hdrlen.f.l2_len;
226 ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
228 /* setup IPCS* fields */
229 ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
230 ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
231 offsetof(struct rte_ipv4_hdr, hdr_checksum));
234 * When doing checksum or TCP segmentation with IPv6 headers,
235 * IPCSE field should be set t0 0.
237 if (flags & PKT_TX_IP_CKSUM) {
238 ctx.lower_setup.ip_fields.ipcse =
239 (uint16_t)rte_cpu_to_le_16(ipcse - 1);
240 cmd_len |= E1000_TXD_CMD_IP;
241 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
243 ctx.lower_setup.ip_fields.ipcse = 0;
246 /* setup TUCS* fields */
247 ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
248 ctx.upper_setup.tcp_fields.tucse = 0;
250 switch (flags & PKT_TX_L4_MASK) {
251 case PKT_TX_UDP_CKSUM:
252 ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
253 offsetof(struct rte_udp_hdr, dgram_cksum));
254 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
256 case PKT_TX_TCP_CKSUM:
257 ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
258 offsetof(struct rte_tcp_hdr, cksum));
259 cmd_len |= E1000_TXD_CMD_TCP;
260 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
263 ctx.upper_setup.tcp_fields.tucso = 0;
266 ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
267 ctx.tcp_seg_setup.data = 0;
271 txq->ctx_cache.flags = flags;
272 txq->ctx_cache.cmp_mask = cmp_mask;
273 txq->ctx_cache.hdrlen = hdrlen;
277 * Check which hardware context can be used. Use the existing match
278 * or create a new context descriptor.
280 static inline uint32_t
281 what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
282 union em_vlan_macip hdrlen)
284 /* If match with the current context */
285 if (likely (txq->ctx_cache.flags == flags &&
286 ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
287 txq->ctx_cache.cmp_mask) == 0))
294 /* Reset transmit descriptors after they have been used */
296 em_xmit_cleanup(struct em_tx_queue *txq)
298 struct em_tx_entry *sw_ring = txq->sw_ring;
299 volatile struct e1000_data_desc *txr = txq->tx_ring;
300 uint16_t last_desc_cleaned = txq->last_desc_cleaned;
301 uint16_t nb_tx_desc = txq->nb_tx_desc;
302 uint16_t desc_to_clean_to;
303 uint16_t nb_tx_to_clean;
305 /* Determine the last descriptor needing to be cleaned */
306 desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
307 if (desc_to_clean_to >= nb_tx_desc)
308 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
310 /* Check to make sure the last descriptor to clean is done */
311 desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
312 if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
314 PMD_TX_FREE_LOG(DEBUG,
315 "TX descriptor %4u is not done"
316 "(port=%d queue=%d)", desc_to_clean_to,
317 txq->port_id, txq->queue_id);
318 /* Failed to clean any descriptors, better luck next time */
322 /* Figure out how many descriptors will be cleaned */
323 if (last_desc_cleaned > desc_to_clean_to)
324 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
327 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
330 PMD_TX_FREE_LOG(DEBUG,
331 "Cleaning %4u TX descriptors: %4u to %4u "
332 "(port=%d queue=%d)", nb_tx_to_clean,
333 last_desc_cleaned, desc_to_clean_to, txq->port_id,
337 * The last descriptor to clean is done, so that means all the
338 * descriptors from the last descriptor that was cleaned
339 * up to the last descriptor with the RS bit set
340 * are done. Only reset the threshold descriptor.
342 txr[desc_to_clean_to].upper.fields.status = 0;
344 /* Update the txq to reflect the last descriptor that was cleaned */
345 txq->last_desc_cleaned = desc_to_clean_to;
346 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
352 static inline uint32_t
353 tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
355 static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
356 static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
359 tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
360 tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
365 eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
368 struct em_tx_queue *txq;
369 struct em_tx_entry *sw_ring;
370 struct em_tx_entry *txe, *txn;
371 volatile struct e1000_data_desc *txr;
372 volatile struct e1000_data_desc *txd;
373 struct rte_mbuf *tx_pkt;
374 struct rte_mbuf *m_seg;
375 uint64_t buf_dma_addr;
377 uint32_t cmd_type_len;
387 union em_vlan_macip hdrlen;
390 sw_ring = txq->sw_ring;
392 tx_id = txq->tx_tail;
393 txe = &sw_ring[tx_id];
395 /* Determine if the descriptor ring needs to be cleaned. */
396 if (txq->nb_tx_free < txq->tx_free_thresh)
397 em_xmit_cleanup(txq);
400 for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
404 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
407 * Determine how many (if any) context descriptors
408 * are needed for offload functionality.
410 ol_flags = tx_pkt->ol_flags;
412 /* If hardware offload required */
413 tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
415 hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
416 hdrlen.f.l2_len = tx_pkt->l2_len;
417 hdrlen.f.l3_len = tx_pkt->l3_len;
418 /* If new context to be built or reuse the exist ctx. */
419 ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
421 /* Only allocate context descriptor if required*/
422 new_ctx = (ctx == EM_CTX_NUM);
426 * Keep track of how many descriptors are used this loop
427 * This will always be the number of segments + the number of
428 * Context descriptors required to transmit the packet
430 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
433 * The number of descriptors that must be allocated for a
434 * packet is the number of segments of that packet, plus 1
435 * Context Descriptor for the hardware offload, if any.
436 * Determine the last TX descriptor to allocate in the TX ring
437 * for the packet, starting from the current position (tx_id)
440 tx_last = (uint16_t) (tx_id + nb_used - 1);
443 if (tx_last >= txq->nb_tx_desc)
444 tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
446 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
447 " tx_first=%u tx_last=%u",
448 (unsigned) txq->port_id,
449 (unsigned) txq->queue_id,
450 (unsigned) tx_pkt->pkt_len,
455 * Make sure there are enough TX descriptors available to
456 * transmit the entire packet.
457 * nb_used better be less than or equal to txq->tx_rs_thresh
459 while (unlikely (nb_used > txq->nb_tx_free)) {
460 PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors "
461 "nb_used=%4u nb_free=%4u "
462 "(port=%d queue=%d)",
463 nb_used, txq->nb_tx_free,
464 txq->port_id, txq->queue_id);
466 if (em_xmit_cleanup(txq) != 0) {
467 /* Could not clean any descriptors */
475 * By now there are enough free TX descriptors to transmit
480 * Set common flags of all TX Data Descriptors.
482 * The following bits must be set in all Data Descriptors:
483 * - E1000_TXD_DTYP_DATA
484 * - E1000_TXD_DTYP_DEXT
486 * The following bits must be set in the first Data Descriptor
487 * and are ignored in the other ones:
488 * - E1000_TXD_POPTS_IXSM
489 * - E1000_TXD_POPTS_TXSM
491 * The following bits must be set in the last Data Descriptor
492 * and are ignored in the other ones:
493 * - E1000_TXD_CMD_VLE
494 * - E1000_TXD_CMD_IFCS
496 * The following bits must only be set in the last Data
498 * - E1000_TXD_CMD_EOP
500 * The following bits can be set in any Data Descriptor, but
501 * are only set in the last Data Descriptor:
504 cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
508 /* Set VLAN Tag offload fields. */
509 if (ol_flags & PKT_TX_VLAN_PKT) {
510 cmd_type_len |= E1000_TXD_CMD_VLE;
511 popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
516 * Setup the TX Context Descriptor if required
519 volatile struct e1000_context_desc *ctx_txd;
521 ctx_txd = (volatile struct e1000_context_desc *)
524 txn = &sw_ring[txe->next_id];
525 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
527 if (txe->mbuf != NULL) {
528 rte_pktmbuf_free_seg(txe->mbuf);
532 em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
535 txe->last_id = tx_last;
536 tx_id = txe->next_id;
541 * Setup the TX Data Descriptor,
542 * This path will go through
543 * whatever new/reuse the context descriptor
545 popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
551 txn = &sw_ring[txe->next_id];
553 if (txe->mbuf != NULL)
554 rte_pktmbuf_free_seg(txe->mbuf);
558 * Set up Transmit Data Descriptor.
560 slen = m_seg->data_len;
561 buf_dma_addr = rte_mbuf_data_iova(m_seg);
563 txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
564 txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
565 txd->upper.data = rte_cpu_to_le_32(popts_spec);
567 txe->last_id = tx_last;
568 tx_id = txe->next_id;
571 } while (m_seg != NULL);
574 * The last packet data descriptor needs End Of Packet (EOP)
576 cmd_type_len |= E1000_TXD_CMD_EOP;
577 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
578 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
580 /* Set RS bit only on threshold packets' last descriptor */
581 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
582 PMD_TX_FREE_LOG(DEBUG,
583 "Setting RS bit on TXD id=%4u "
584 "(port=%d queue=%d)",
585 tx_last, txq->port_id, txq->queue_id);
587 cmd_type_len |= E1000_TXD_CMD_RS;
589 /* Update txq RS bit counters */
592 txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
598 * Set the Transmit Descriptor Tail (TDT)
600 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
601 (unsigned) txq->port_id, (unsigned) txq->queue_id,
602 (unsigned) tx_id, (unsigned) nb_tx);
603 E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
604 txq->tx_tail = tx_id;
609 /*********************************************************************
613 **********************************************************************/
615 eth_em_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
621 for (i = 0; i < nb_pkts; i++) {
624 if (m->ol_flags & E1000_TX_OFFLOAD_NOTSUP_MASK) {
629 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
630 ret = rte_validate_tx_offload(m);
636 ret = rte_net_intel_cksum_prepare(m);
646 /*********************************************************************
650 **********************************************************************/
652 static inline uint64_t
653 rx_desc_status_to_pkt_flags(uint32_t rx_status)
657 /* Check if VLAN present */
658 pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
659 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
664 static inline uint64_t
665 rx_desc_error_to_pkt_flags(uint32_t rx_error)
667 uint64_t pkt_flags = 0;
669 if (rx_error & E1000_RXD_ERR_IPE)
670 pkt_flags |= PKT_RX_IP_CKSUM_BAD;
671 if (rx_error & E1000_RXD_ERR_TCPE)
672 pkt_flags |= PKT_RX_L4_CKSUM_BAD;
677 eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
680 volatile struct e1000_rx_desc *rx_ring;
681 volatile struct e1000_rx_desc *rxdp;
682 struct em_rx_queue *rxq;
683 struct em_rx_entry *sw_ring;
684 struct em_rx_entry *rxe;
685 struct rte_mbuf *rxm;
686 struct rte_mbuf *nmb;
687 struct e1000_rx_desc rxd;
699 rx_id = rxq->rx_tail;
700 rx_ring = rxq->rx_ring;
701 sw_ring = rxq->sw_ring;
702 while (nb_rx < nb_pkts) {
704 * The order of operations here is important as the DD status
705 * bit must not be read after any other descriptor fields.
706 * rx_ring and rxdp are pointing to volatile data so the order
707 * of accesses cannot be reordered by the compiler. If they were
708 * not volatile, they could be reordered which could lead to
709 * using invalid descriptor fields when read from rxd.
711 rxdp = &rx_ring[rx_id];
712 status = rxdp->status;
713 if (! (status & E1000_RXD_STAT_DD))
720 * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
721 * likely to be invalid and to be dropped by the various
722 * validation checks performed by the network stack.
724 * Allocate a new mbuf to replenish the RX ring descriptor.
725 * If the allocation fails:
726 * - arrange for that RX descriptor to be the first one
727 * being parsed the next time the receive function is
728 * invoked [on the same queue].
730 * - Stop parsing the RX ring and return immediately.
732 * This policy do not drop the packet received in the RX
733 * descriptor for which the allocation of a new mbuf failed.
734 * Thus, it allows that packet to be later retrieved if
735 * mbuf have been freed in the mean time.
736 * As a side effect, holding RX descriptors instead of
737 * systematically giving them back to the NIC may lead to
738 * RX ring exhaustion situations.
739 * However, the NIC can gracefully prevent such situations
740 * to happen by sending specific "back-pressure" flow control
741 * frames to its peer(s).
743 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
744 "status=0x%x pkt_len=%u",
745 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
746 (unsigned) rx_id, (unsigned) status,
747 (unsigned) rte_le_to_cpu_16(rxd.length));
749 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
751 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
753 (unsigned) rxq->port_id,
754 (unsigned) rxq->queue_id);
755 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
760 rxe = &sw_ring[rx_id];
762 if (rx_id == rxq->nb_rx_desc)
765 /* Prefetch next mbuf while processing current one. */
766 rte_em_prefetch(sw_ring[rx_id].mbuf);
769 * When next RX descriptor is on a cache-line boundary,
770 * prefetch the next 4 RX descriptors and the next 8 pointers
773 if ((rx_id & 0x3) == 0) {
774 rte_em_prefetch(&rx_ring[rx_id]);
775 rte_em_prefetch(&sw_ring[rx_id]);
778 /* Rearm RXD: attach new mbuf and reset status to zero. */
783 rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
784 rxdp->buffer_addr = dma_addr;
788 * Initialize the returned mbuf.
789 * 1) setup generic mbuf fields:
790 * - number of segments,
793 * - RX port identifier.
794 * 2) integrate hardware offload data, if any:
796 * - IP checksum flag,
797 * - VLAN TCI, if any,
800 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
802 rxm->data_off = RTE_PKTMBUF_HEADROOM;
803 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
806 rxm->pkt_len = pkt_len;
807 rxm->data_len = pkt_len;
808 rxm->port = rxq->port_id;
810 rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
811 rxm->ol_flags = rxm->ol_flags |
812 rx_desc_error_to_pkt_flags(rxd.errors);
814 /* Only valid if PKT_RX_VLAN set in pkt_flags */
815 rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
818 * Store the mbuf address into the next entry of the array
819 * of returned packets.
821 rx_pkts[nb_rx++] = rxm;
823 rxq->rx_tail = rx_id;
826 * If the number of free RX descriptors is greater than the RX free
827 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
829 * Update the RDT with the value of the last processed RX descriptor
830 * minus 1, to guarantee that the RDT register is never equal to the
831 * RDH register, which creates a "full" ring situtation from the
832 * hardware point of view...
834 nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
835 if (nb_hold > rxq->rx_free_thresh) {
836 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
837 "nb_hold=%u nb_rx=%u",
838 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
839 (unsigned) rx_id, (unsigned) nb_hold,
841 rx_id = (uint16_t) ((rx_id == 0) ?
842 (rxq->nb_rx_desc - 1) : (rx_id - 1));
843 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
846 rxq->nb_rx_hold = nb_hold;
851 eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
854 struct em_rx_queue *rxq;
855 volatile struct e1000_rx_desc *rx_ring;
856 volatile struct e1000_rx_desc *rxdp;
857 struct em_rx_entry *sw_ring;
858 struct em_rx_entry *rxe;
859 struct rte_mbuf *first_seg;
860 struct rte_mbuf *last_seg;
861 struct rte_mbuf *rxm;
862 struct rte_mbuf *nmb;
863 struct e1000_rx_desc rxd;
864 uint64_t dma; /* Physical address of mbuf data buffer */
875 rx_id = rxq->rx_tail;
876 rx_ring = rxq->rx_ring;
877 sw_ring = rxq->sw_ring;
880 * Retrieve RX context of current packet, if any.
882 first_seg = rxq->pkt_first_seg;
883 last_seg = rxq->pkt_last_seg;
885 while (nb_rx < nb_pkts) {
888 * The order of operations here is important as the DD status
889 * bit must not be read after any other descriptor fields.
890 * rx_ring and rxdp are pointing to volatile data so the order
891 * of accesses cannot be reordered by the compiler. If they were
892 * not volatile, they could be reordered which could lead to
893 * using invalid descriptor fields when read from rxd.
895 rxdp = &rx_ring[rx_id];
896 status = rxdp->status;
897 if (! (status & E1000_RXD_STAT_DD))
904 * Allocate a new mbuf to replenish the RX ring descriptor.
905 * If the allocation fails:
906 * - arrange for that RX descriptor to be the first one
907 * being parsed the next time the receive function is
908 * invoked [on the same queue].
910 * - Stop parsing the RX ring and return immediately.
912 * This policy does not drop the packet received in the RX
913 * descriptor for which the allocation of a new mbuf failed.
914 * Thus, it allows that packet to be later retrieved if
915 * mbuf have been freed in the mean time.
916 * As a side effect, holding RX descriptors instead of
917 * systematically giving them back to the NIC may lead to
918 * RX ring exhaustion situations.
919 * However, the NIC can gracefully prevent such situations
920 * to happen by sending specific "back-pressure" flow control
921 * frames to its peer(s).
923 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
924 "status=0x%x data_len=%u",
925 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
926 (unsigned) rx_id, (unsigned) status,
927 (unsigned) rte_le_to_cpu_16(rxd.length));
929 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
931 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
932 "queue_id=%u", (unsigned) rxq->port_id,
933 (unsigned) rxq->queue_id);
934 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
939 rxe = &sw_ring[rx_id];
941 if (rx_id == rxq->nb_rx_desc)
944 /* Prefetch next mbuf while processing current one. */
945 rte_em_prefetch(sw_ring[rx_id].mbuf);
948 * When next RX descriptor is on a cache-line boundary,
949 * prefetch the next 4 RX descriptors and the next 8 pointers
952 if ((rx_id & 0x3) == 0) {
953 rte_em_prefetch(&rx_ring[rx_id]);
954 rte_em_prefetch(&sw_ring[rx_id]);
958 * Update RX descriptor with the physical address of the new
959 * data buffer of the new allocated mbuf.
963 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
964 rxdp->buffer_addr = dma;
968 * Set data length & data buffer address of mbuf.
970 data_len = rte_le_to_cpu_16(rxd.length);
971 rxm->data_len = data_len;
972 rxm->data_off = RTE_PKTMBUF_HEADROOM;
975 * If this is the first buffer of the received packet,
976 * set the pointer to the first mbuf of the packet and
977 * initialize its context.
978 * Otherwise, update the total length and the number of segments
979 * of the current scattered packet, and update the pointer to
980 * the last mbuf of the current packet.
982 if (first_seg == NULL) {
984 first_seg->pkt_len = data_len;
985 first_seg->nb_segs = 1;
987 first_seg->pkt_len += data_len;
988 first_seg->nb_segs++;
989 last_seg->next = rxm;
993 * If this is not the last buffer of the received packet,
994 * update the pointer to the last mbuf of the current scattered
995 * packet and continue to parse the RX ring.
997 if (! (status & E1000_RXD_STAT_EOP)) {
1003 * This is the last buffer of the received packet.
1004 * If the CRC is not stripped by the hardware:
1005 * - Subtract the CRC length from the total packet length.
1006 * - If the last buffer only contains the whole CRC or a part
1007 * of it, free the mbuf associated to the last buffer.
1008 * If part of the CRC is also contained in the previous
1009 * mbuf, subtract the length of that CRC part from the
1010 * data length of the previous mbuf.
1013 if (unlikely(rxq->crc_len > 0)) {
1014 first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1015 if (data_len <= RTE_ETHER_CRC_LEN) {
1016 rte_pktmbuf_free_seg(rxm);
1017 first_seg->nb_segs--;
1018 last_seg->data_len = (uint16_t)
1019 (last_seg->data_len -
1020 (RTE_ETHER_CRC_LEN - data_len));
1021 last_seg->next = NULL;
1023 rxm->data_len = (uint16_t)
1024 (data_len - RTE_ETHER_CRC_LEN);
1028 * Initialize the first mbuf of the returned packet:
1029 * - RX port identifier,
1030 * - hardware offload data, if any:
1031 * - IP checksum flag,
1034 first_seg->port = rxq->port_id;
1036 first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
1037 first_seg->ol_flags = first_seg->ol_flags |
1038 rx_desc_error_to_pkt_flags(rxd.errors);
1040 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1041 rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
1043 /* Prefetch data of first segment, if configured to do so. */
1044 rte_packet_prefetch((char *)first_seg->buf_addr +
1045 first_seg->data_off);
1048 * Store the mbuf address into the next entry of the array
1049 * of returned packets.
1051 rx_pkts[nb_rx++] = first_seg;
1054 * Setup receipt context for a new packet.
1060 * Record index of the next RX descriptor to probe.
1062 rxq->rx_tail = rx_id;
1065 * Save receive context.
1067 rxq->pkt_first_seg = first_seg;
1068 rxq->pkt_last_seg = last_seg;
1071 * If the number of free RX descriptors is greater than the RX free
1072 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1074 * Update the RDT with the value of the last processed RX descriptor
1075 * minus 1, to guarantee that the RDT register is never equal to the
1076 * RDH register, which creates a "full" ring situtation from the
1077 * hardware point of view...
1079 nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1080 if (nb_hold > rxq->rx_free_thresh) {
1081 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1082 "nb_hold=%u nb_rx=%u",
1083 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1084 (unsigned) rx_id, (unsigned) nb_hold,
1086 rx_id = (uint16_t) ((rx_id == 0) ?
1087 (rxq->nb_rx_desc - 1) : (rx_id - 1));
1088 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1091 rxq->nb_rx_hold = nb_hold;
1095 #define EM_MAX_BUF_SIZE 16384
1096 #define EM_RCTL_FLXBUF_STEP 1024
1099 em_tx_queue_release_mbufs(struct em_tx_queue *txq)
1103 if (txq->sw_ring != NULL) {
1104 for (i = 0; i != txq->nb_tx_desc; i++) {
1105 if (txq->sw_ring[i].mbuf != NULL) {
1106 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1107 txq->sw_ring[i].mbuf = NULL;
1114 em_tx_queue_release(struct em_tx_queue *txq)
1117 em_tx_queue_release_mbufs(txq);
1118 rte_free(txq->sw_ring);
1124 eth_em_tx_queue_release(void *txq)
1126 em_tx_queue_release(txq);
1129 /* (Re)set dynamic em_tx_queue fields to defaults */
1131 em_reset_tx_queue(struct em_tx_queue *txq)
1133 uint16_t i, nb_desc, prev;
1134 static const struct e1000_data_desc txd_init = {
1135 .upper.fields = {.status = E1000_TXD_STAT_DD},
1138 nb_desc = txq->nb_tx_desc;
1140 /* Initialize ring entries */
1142 prev = (uint16_t) (nb_desc - 1);
1144 for (i = 0; i < nb_desc; i++) {
1145 txq->tx_ring[i] = txd_init;
1146 txq->sw_ring[i].mbuf = NULL;
1147 txq->sw_ring[i].last_id = i;
1148 txq->sw_ring[prev].next_id = i;
1153 * Always allow 1 descriptor to be un-allocated to avoid
1154 * a H/W race condition
1156 txq->nb_tx_free = (uint16_t)(nb_desc - 1);
1157 txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
1158 txq->nb_tx_used = 0;
1161 memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
1165 em_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1167 uint64_t tx_offload_capa;
1171 DEV_TX_OFFLOAD_MULTI_SEGS |
1172 DEV_TX_OFFLOAD_VLAN_INSERT |
1173 DEV_TX_OFFLOAD_IPV4_CKSUM |
1174 DEV_TX_OFFLOAD_UDP_CKSUM |
1175 DEV_TX_OFFLOAD_TCP_CKSUM;
1177 return tx_offload_capa;
1181 em_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1183 uint64_t tx_queue_offload_capa;
1186 * As only one Tx queue can be used, let per queue offloading
1187 * capability be same to per port queue offloading capability
1188 * for better convenience.
1190 tx_queue_offload_capa = em_get_tx_port_offloads_capa(dev);
1192 return tx_queue_offload_capa;
1196 eth_em_tx_queue_setup(struct rte_eth_dev *dev,
1199 unsigned int socket_id,
1200 const struct rte_eth_txconf *tx_conf)
1202 const struct rte_memzone *tz;
1203 struct em_tx_queue *txq;
1204 struct e1000_hw *hw;
1206 uint16_t tx_rs_thresh, tx_free_thresh;
1209 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1211 offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1214 * Validate number of transmit descriptors.
1215 * It must not exceed hardware maximum, and must be multiple
1218 if (nb_desc % EM_TXD_ALIGN != 0 ||
1219 (nb_desc > E1000_MAX_RING_DESC) ||
1220 (nb_desc < E1000_MIN_RING_DESC)) {
1224 tx_free_thresh = tx_conf->tx_free_thresh;
1225 if (tx_free_thresh == 0)
1226 tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
1227 DEFAULT_TX_FREE_THRESH);
1229 tx_rs_thresh = tx_conf->tx_rs_thresh;
1230 if (tx_rs_thresh == 0)
1231 tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
1232 DEFAULT_TX_RS_THRESH);
1234 if (tx_free_thresh >= (nb_desc - 3)) {
1235 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
1236 "number of TX descriptors minus 3. "
1237 "(tx_free_thresh=%u port=%d queue=%d)",
1238 (unsigned int)tx_free_thresh,
1239 (int)dev->data->port_id, (int)queue_idx);
1242 if (tx_rs_thresh > tx_free_thresh) {
1243 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
1244 "tx_free_thresh. (tx_free_thresh=%u "
1245 "tx_rs_thresh=%u port=%d queue=%d)",
1246 (unsigned int)tx_free_thresh,
1247 (unsigned int)tx_rs_thresh,
1248 (int)dev->data->port_id,
1254 * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
1255 * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
1256 * by the NIC and all descriptors are written back after the NIC
1257 * accumulates WTHRESH descriptors.
1259 if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
1260 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1261 "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
1262 "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
1263 (int)dev->data->port_id, (int)queue_idx);
1267 /* Free memory prior to re-allocation if needed... */
1268 if (dev->data->tx_queues[queue_idx] != NULL) {
1269 em_tx_queue_release(dev->data->tx_queues[queue_idx]);
1270 dev->data->tx_queues[queue_idx] = NULL;
1274 * Allocate TX ring hardware descriptors. A memzone large enough to
1275 * handle the maximum ring size is allocated in order to allow for
1276 * resizing in later calls to the queue setup function.
1278 tsize = sizeof(txq->tx_ring[0]) * E1000_MAX_RING_DESC;
1279 tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
1280 RTE_CACHE_LINE_SIZE, socket_id);
1284 /* Allocate the tx queue data structure. */
1285 if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
1286 RTE_CACHE_LINE_SIZE)) == NULL)
1289 /* Allocate software ring */
1290 if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
1291 sizeof(txq->sw_ring[0]) * nb_desc,
1292 RTE_CACHE_LINE_SIZE)) == NULL) {
1293 em_tx_queue_release(txq);
1297 txq->nb_tx_desc = nb_desc;
1298 txq->tx_free_thresh = tx_free_thresh;
1299 txq->tx_rs_thresh = tx_rs_thresh;
1300 txq->pthresh = tx_conf->tx_thresh.pthresh;
1301 txq->hthresh = tx_conf->tx_thresh.hthresh;
1302 txq->wthresh = tx_conf->tx_thresh.wthresh;
1303 txq->queue_id = queue_idx;
1304 txq->port_id = dev->data->port_id;
1306 txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
1307 txq->tx_ring_phys_addr = tz->iova;
1308 txq->tx_ring = (struct e1000_data_desc *) tz->addr;
1310 PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1311 txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1313 em_reset_tx_queue(txq);
1315 dev->data->tx_queues[queue_idx] = txq;
1316 txq->offloads = offloads;
1321 em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
1325 if (rxq->sw_ring != NULL) {
1326 for (i = 0; i != rxq->nb_rx_desc; i++) {
1327 if (rxq->sw_ring[i].mbuf != NULL) {
1328 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1329 rxq->sw_ring[i].mbuf = NULL;
1336 em_rx_queue_release(struct em_rx_queue *rxq)
1339 em_rx_queue_release_mbufs(rxq);
1340 rte_free(rxq->sw_ring);
1346 eth_em_rx_queue_release(void *rxq)
1348 em_rx_queue_release(rxq);
1351 /* Reset dynamic em_rx_queue fields back to defaults */
1353 em_reset_rx_queue(struct em_rx_queue *rxq)
1356 rxq->nb_rx_hold = 0;
1357 rxq->pkt_first_seg = NULL;
1358 rxq->pkt_last_seg = NULL;
1362 em_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
1364 uint64_t rx_offload_capa;
1365 uint32_t max_rx_pktlen;
1367 max_rx_pktlen = em_get_max_pktlen(dev);
1370 DEV_RX_OFFLOAD_VLAN_STRIP |
1371 DEV_RX_OFFLOAD_VLAN_FILTER |
1372 DEV_RX_OFFLOAD_IPV4_CKSUM |
1373 DEV_RX_OFFLOAD_UDP_CKSUM |
1374 DEV_RX_OFFLOAD_TCP_CKSUM |
1375 DEV_RX_OFFLOAD_KEEP_CRC |
1376 DEV_RX_OFFLOAD_SCATTER;
1377 if (max_rx_pktlen > RTE_ETHER_MAX_LEN)
1378 rx_offload_capa |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1380 return rx_offload_capa;
1384 em_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
1386 uint64_t rx_queue_offload_capa;
1389 * As only one Rx queue can be used, let per queue offloading
1390 * capability be same to per port queue offloading capability
1391 * for better convenience.
1393 rx_queue_offload_capa = em_get_rx_port_offloads_capa(dev);
1395 return rx_queue_offload_capa;
1399 eth_em_rx_queue_setup(struct rte_eth_dev *dev,
1402 unsigned int socket_id,
1403 const struct rte_eth_rxconf *rx_conf,
1404 struct rte_mempool *mp)
1406 const struct rte_memzone *rz;
1407 struct em_rx_queue *rxq;
1408 struct e1000_hw *hw;
1412 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1414 offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1417 * Validate number of receive descriptors.
1418 * It must not exceed hardware maximum, and must be multiple
1421 if (nb_desc % EM_RXD_ALIGN != 0 ||
1422 (nb_desc > E1000_MAX_RING_DESC) ||
1423 (nb_desc < E1000_MIN_RING_DESC)) {
1428 * EM devices don't support drop_en functionality.
1429 * It's an optimization that does nothing on single-queue devices,
1430 * so just log the issue and carry on.
1432 if (rx_conf->rx_drop_en) {
1433 PMD_INIT_LOG(NOTICE, "drop_en functionality not supported by "
1437 /* Free memory prior to re-allocation if needed. */
1438 if (dev->data->rx_queues[queue_idx] != NULL) {
1439 em_rx_queue_release(dev->data->rx_queues[queue_idx]);
1440 dev->data->rx_queues[queue_idx] = NULL;
1443 /* Allocate RX ring for max possible mumber of hardware descriptors. */
1444 rsize = sizeof(rxq->rx_ring[0]) * E1000_MAX_RING_DESC;
1445 rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
1446 RTE_CACHE_LINE_SIZE, socket_id);
1450 /* Allocate the RX queue data structure. */
1451 if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
1452 RTE_CACHE_LINE_SIZE)) == NULL)
1455 /* Allocate software ring. */
1456 if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1457 sizeof (rxq->sw_ring[0]) * nb_desc,
1458 RTE_CACHE_LINE_SIZE)) == NULL) {
1459 em_rx_queue_release(rxq);
1464 rxq->nb_rx_desc = nb_desc;
1465 rxq->pthresh = rx_conf->rx_thresh.pthresh;
1466 rxq->hthresh = rx_conf->rx_thresh.hthresh;
1467 rxq->wthresh = rx_conf->rx_thresh.wthresh;
1468 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1469 rxq->queue_id = queue_idx;
1470 rxq->port_id = dev->data->port_id;
1471 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1472 rxq->crc_len = RTE_ETHER_CRC_LEN;
1476 rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
1477 rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
1478 rxq->rx_ring_phys_addr = rz->iova;
1479 rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
1481 PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1482 rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1484 dev->data->rx_queues[queue_idx] = rxq;
1485 em_reset_rx_queue(rxq);
1486 rxq->offloads = offloads;
1492 eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1494 #define EM_RXQ_SCAN_INTERVAL 4
1495 volatile struct e1000_rx_desc *rxdp;
1496 struct em_rx_queue *rxq;
1499 rxq = dev->data->rx_queues[rx_queue_id];
1500 rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1502 while ((desc < rxq->nb_rx_desc) &&
1503 (rxdp->status & E1000_RXD_STAT_DD)) {
1504 desc += EM_RXQ_SCAN_INTERVAL;
1505 rxdp += EM_RXQ_SCAN_INTERVAL;
1506 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1507 rxdp = &(rxq->rx_ring[rxq->rx_tail +
1508 desc - rxq->nb_rx_desc]);
1515 eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
1517 volatile struct e1000_rx_desc *rxdp;
1518 struct em_rx_queue *rxq = rx_queue;
1521 if (unlikely(offset >= rxq->nb_rx_desc))
1523 desc = rxq->rx_tail + offset;
1524 if (desc >= rxq->nb_rx_desc)
1525 desc -= rxq->nb_rx_desc;
1527 rxdp = &rxq->rx_ring[desc];
1528 return !!(rxdp->status & E1000_RXD_STAT_DD);
1532 eth_em_rx_descriptor_status(void *rx_queue, uint16_t offset)
1534 struct em_rx_queue *rxq = rx_queue;
1535 volatile uint8_t *status;
1538 if (unlikely(offset >= rxq->nb_rx_desc))
1541 if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1542 return RTE_ETH_RX_DESC_UNAVAIL;
1544 desc = rxq->rx_tail + offset;
1545 if (desc >= rxq->nb_rx_desc)
1546 desc -= rxq->nb_rx_desc;
1548 status = &rxq->rx_ring[desc].status;
1549 if (*status & E1000_RXD_STAT_DD)
1550 return RTE_ETH_RX_DESC_DONE;
1552 return RTE_ETH_RX_DESC_AVAIL;
1556 eth_em_tx_descriptor_status(void *tx_queue, uint16_t offset)
1558 struct em_tx_queue *txq = tx_queue;
1559 volatile uint8_t *status;
1562 if (unlikely(offset >= txq->nb_tx_desc))
1565 desc = txq->tx_tail + offset;
1566 /* go to next desc that has the RS bit */
1567 desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
1569 if (desc >= txq->nb_tx_desc) {
1570 desc -= txq->nb_tx_desc;
1571 if (desc >= txq->nb_tx_desc)
1572 desc -= txq->nb_tx_desc;
1575 status = &txq->tx_ring[desc].upper.fields.status;
1576 if (*status & E1000_TXD_STAT_DD)
1577 return RTE_ETH_TX_DESC_DONE;
1579 return RTE_ETH_TX_DESC_FULL;
1583 em_dev_clear_queues(struct rte_eth_dev *dev)
1586 struct em_tx_queue *txq;
1587 struct em_rx_queue *rxq;
1589 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1590 txq = dev->data->tx_queues[i];
1592 em_tx_queue_release_mbufs(txq);
1593 em_reset_tx_queue(txq);
1597 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1598 rxq = dev->data->rx_queues[i];
1600 em_rx_queue_release_mbufs(rxq);
1601 em_reset_rx_queue(rxq);
1607 em_dev_free_queues(struct rte_eth_dev *dev)
1611 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1612 eth_em_rx_queue_release(dev->data->rx_queues[i]);
1613 dev->data->rx_queues[i] = NULL;
1615 dev->data->nb_rx_queues = 0;
1617 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1618 eth_em_tx_queue_release(dev->data->tx_queues[i]);
1619 dev->data->tx_queues[i] = NULL;
1621 dev->data->nb_tx_queues = 0;
1625 * Takes as input/output parameter RX buffer size.
1626 * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
1629 em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
1632 * For BSIZE & BSEX all configurable sizes are:
1633 * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
1634 * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
1635 * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
1636 * 2048: rctl |= E1000_RCTL_SZ_2048;
1637 * 1024: rctl |= E1000_RCTL_SZ_1024;
1638 * 512: rctl |= E1000_RCTL_SZ_512;
1639 * 256: rctl |= E1000_RCTL_SZ_256;
1641 static const struct {
1644 } bufsz_to_rctl[] = {
1645 {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
1646 {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)},
1647 {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)},
1648 {2048, E1000_RCTL_SZ_2048},
1649 {1024, E1000_RCTL_SZ_1024},
1650 {512, E1000_RCTL_SZ_512},
1651 {256, E1000_RCTL_SZ_256},
1655 uint32_t rctl_bsize;
1657 rctl_bsize = *bufsz;
1660 * Starting from 82571 it is possible to specify RX buffer size
1661 * by RCTL.FLXBUF. When this field is different from zero, the
1662 * RX buffer size = RCTL.FLXBUF * 1K
1663 * (e.g. t is possible to specify RX buffer size 1,2,...,15KB).
1664 * It is working ok on real HW, but by some reason doesn't work
1665 * on VMware emulated 82574L.
1666 * So for now, always use BSIZE/BSEX to setup RX buffer size.
1667 * If you don't plan to use it on VMware emulated 82574L and
1668 * would like to specify RX buffer size in 1K granularity,
1669 * uncomment the following lines:
1670 * ***************************************************************
1671 * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
1672 * rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
1673 * rctl_bsize /= EM_RCTL_FLXBUF_STEP;
1674 * *bufsz = rctl_bsize;
1675 * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
1676 * E1000_RCTL_FLXBUF_MASK);
1678 * ***************************************************************
1681 for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
1683 if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
1684 *bufsz = bufsz_to_rctl[i].bufsz;
1685 return bufsz_to_rctl[i].rctl;
1689 /* Should never happen. */
1694 em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
1696 struct em_rx_entry *rxe = rxq->sw_ring;
1699 static const struct e1000_rx_desc rxd_init = {
1703 /* Initialize software ring entries */
1704 for (i = 0; i < rxq->nb_rx_desc; i++) {
1705 volatile struct e1000_rx_desc *rxd;
1706 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
1709 PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
1710 "queue_id=%hu", rxq->queue_id);
1715 rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
1717 /* Clear HW ring memory */
1718 rxq->rx_ring[i] = rxd_init;
1720 rxd = &rxq->rx_ring[i];
1721 rxd->buffer_addr = dma_addr;
1728 /*********************************************************************
1730 * Enable receive unit.
1732 **********************************************************************/
1734 eth_em_rx_init(struct rte_eth_dev *dev)
1736 struct e1000_hw *hw;
1737 struct em_rx_queue *rxq;
1738 struct rte_eth_rxmode *rxmode;
1742 uint32_t rctl_bsize;
1746 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1747 rxmode = &dev->data->dev_conf.rxmode;
1750 * Make sure receives are disabled while setting
1751 * up the descriptor ring.
1753 rctl = E1000_READ_REG(hw, E1000_RCTL);
1754 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
1756 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
1758 /* Disable extended descriptor type. */
1759 rfctl &= ~E1000_RFCTL_EXTEN;
1760 /* Disable accelerated acknowledge */
1761 if (hw->mac.type == e1000_82574)
1762 rfctl |= E1000_RFCTL_ACK_DIS;
1764 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
1767 * XXX TEMPORARY WORKAROUND: on some systems with 82573
1768 * long latencies are observed, like Lenovo X60. This
1769 * change eliminates the problem, but since having positive
1770 * values in RDTR is a known source of problems on other
1771 * platforms another solution is being sought.
1773 if (hw->mac.type == e1000_82573)
1774 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
1776 dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
1778 /* Determine RX bufsize. */
1779 rctl_bsize = EM_MAX_BUF_SIZE;
1780 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1783 rxq = dev->data->rx_queues[i];
1784 buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
1785 RTE_PKTMBUF_HEADROOM;
1786 rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
1789 rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
1791 /* Configure and enable each RX queue. */
1792 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1796 rxq = dev->data->rx_queues[i];
1798 /* Allocate buffers for descriptor rings and setup queue */
1799 ret = em_alloc_rx_queue_mbufs(rxq);
1804 * Reset crc_len in case it was changed after queue setup by a
1807 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1808 rxq->crc_len = RTE_ETHER_CRC_LEN;
1812 bus_addr = rxq->rx_ring_phys_addr;
1813 E1000_WRITE_REG(hw, E1000_RDLEN(i),
1815 sizeof(*rxq->rx_ring));
1816 E1000_WRITE_REG(hw, E1000_RDBAH(i),
1817 (uint32_t)(bus_addr >> 32));
1818 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
1820 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
1821 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
1823 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
1824 rxdctl &= 0xFE000000;
1825 rxdctl |= rxq->pthresh & 0x3F;
1826 rxdctl |= (rxq->hthresh & 0x3F) << 8;
1827 rxdctl |= (rxq->wthresh & 0x3F) << 16;
1828 rxdctl |= E1000_RXDCTL_GRAN;
1829 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
1832 * Due to EM devices not having any sort of hardware
1833 * limit for packet length, jumbo frame of any size
1834 * can be accepted, thus we have to enable scattered
1835 * rx if jumbo frames are enabled (or if buffer size
1836 * is too small to accommodate non-jumbo packets)
1837 * to avoid splitting packets that don't fit into
1840 if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME ||
1841 rctl_bsize < RTE_ETHER_MAX_LEN) {
1842 if (!dev->data->scattered_rx)
1843 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
1845 (eth_rx_burst_t)eth_em_recv_scattered_pkts;
1846 dev->data->scattered_rx = 1;
1850 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
1851 if (!dev->data->scattered_rx)
1852 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
1853 dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
1854 dev->data->scattered_rx = 1;
1858 * Setup the Checksum Register.
1859 * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
1861 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
1863 if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
1864 rxcsum |= E1000_RXCSUM_IPOFL;
1866 rxcsum &= ~E1000_RXCSUM_IPOFL;
1867 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
1869 /* No MRQ or RSS support for now */
1871 /* Set early receive threshold on appropriate hw */
1872 if ((hw->mac.type == e1000_ich9lan ||
1873 hw->mac.type == e1000_pch2lan ||
1874 hw->mac.type == e1000_ich10lan) &&
1875 rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1876 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
1877 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
1878 E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
1881 if (hw->mac.type == e1000_pch2lan) {
1882 if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
1883 e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
1885 e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
1888 /* Setup the Receive Control Register. */
1889 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1890 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
1892 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
1894 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1895 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1896 E1000_RCTL_RDMTS_HALF |
1897 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1899 /* Make sure VLAN Filters are off. */
1900 rctl &= ~E1000_RCTL_VFE;
1901 /* Don't store bad packets. */
1902 rctl &= ~E1000_RCTL_SBP;
1903 /* Legacy descriptor type. */
1904 rctl &= ~E1000_RCTL_DTYP_MASK;
1907 * Configure support of jumbo frames, if any.
1909 if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
1910 rctl |= E1000_RCTL_LPE;
1912 rctl &= ~E1000_RCTL_LPE;
1914 /* Enable Receives. */
1915 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1920 /*********************************************************************
1922 * Enable transmit unit.
1924 **********************************************************************/
1926 eth_em_tx_init(struct rte_eth_dev *dev)
1928 struct e1000_hw *hw;
1929 struct em_tx_queue *txq;
1934 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1936 /* Setup the Base and Length of the Tx Descriptor Rings. */
1937 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1940 txq = dev->data->tx_queues[i];
1941 bus_addr = txq->tx_ring_phys_addr;
1942 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1944 sizeof(*txq->tx_ring));
1945 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1946 (uint32_t)(bus_addr >> 32));
1947 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
1949 /* Setup the HW Tx Head and Tail descriptor pointers. */
1950 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1951 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1953 /* Setup Transmit threshold registers. */
1954 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
1956 * bit 22 is reserved, on some models should always be 0,
1957 * on others - always 1.
1959 txdctl &= E1000_TXDCTL_COUNT_DESC;
1960 txdctl |= txq->pthresh & 0x3F;
1961 txdctl |= (txq->hthresh & 0x3F) << 8;
1962 txdctl |= (txq->wthresh & 0x3F) << 16;
1963 txdctl |= E1000_TXDCTL_GRAN;
1964 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1967 /* Program the Transmit Control Register. */
1968 tctl = E1000_READ_REG(hw, E1000_TCTL);
1969 tctl &= ~E1000_TCTL_CT;
1970 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1971 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1973 /* SPT and CNP Si errata workaround to avoid data corruption */
1974 if (hw->mac.type == e1000_pch_spt) {
1976 reg_val = E1000_READ_REG(hw, E1000_IOSFPC);
1977 reg_val |= E1000_RCTL_RDMTS_HEX;
1978 E1000_WRITE_REG(hw, E1000_IOSFPC, reg_val);
1980 /* Dropping the number of outstanding requests from
1981 * 3 to 2 in order to avoid a buffer overrun.
1983 reg_val = E1000_READ_REG(hw, E1000_TARC(0));
1984 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
1985 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
1986 E1000_WRITE_REG(hw, E1000_TARC(0), reg_val);
1989 /* This write will effectively turn on the transmit unit. */
1990 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1994 em_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1995 struct rte_eth_rxq_info *qinfo)
1997 struct em_rx_queue *rxq;
1999 rxq = dev->data->rx_queues[queue_id];
2001 qinfo->mp = rxq->mb_pool;
2002 qinfo->scattered_rx = dev->data->scattered_rx;
2003 qinfo->nb_desc = rxq->nb_rx_desc;
2004 qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2005 qinfo->conf.offloads = rxq->offloads;
2009 em_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2010 struct rte_eth_txq_info *qinfo)
2012 struct em_tx_queue *txq;
2014 txq = dev->data->tx_queues[queue_id];
2016 qinfo->nb_desc = txq->nb_tx_desc;
2018 qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2019 qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2020 qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2021 qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2022 qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2023 qinfo->conf.offloads = txq->offloads;
2027 e1000_flush_tx_ring(struct rte_eth_dev *dev)
2029 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2030 volatile struct e1000_data_desc *tx_desc;
2031 volatile uint32_t *tdt_reg_addr;
2032 uint32_t tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
2033 uint16_t size = 512;
2034 struct em_tx_queue *txq;
2037 if (dev->data->tx_queues == NULL)
2039 tctl = E1000_READ_REG(hw, E1000_TCTL);
2040 E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2041 for (i = 0; i < dev->data->nb_tx_queues &&
2042 i < E1000_I219_MAX_TX_QUEUE_NUM; i++) {
2043 txq = dev->data->tx_queues[i];
2044 tdt = E1000_READ_REG(hw, E1000_TDT(i));
2045 if (tdt != txq->tx_tail)
2047 tx_desc = &txq->tx_ring[txq->tx_tail];
2048 tx_desc->buffer_addr = rte_cpu_to_le_64(txq->tx_ring_phys_addr);
2049 tx_desc->lower.data = rte_cpu_to_le_32(txd_lower | size);
2050 tx_desc->upper.data = 0;
2054 if (txq->tx_tail == txq->nb_tx_desc)
2056 tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(i));
2057 E1000_PCI_REG_WRITE(tdt_reg_addr, txq->tx_tail);
2063 e1000_flush_rx_ring(struct rte_eth_dev *dev)
2065 uint32_t rctl, rxdctl;
2066 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2069 rctl = E1000_READ_REG(hw, E1000_RCTL);
2070 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2071 E1000_WRITE_FLUSH(hw);
2074 for (i = 0; i < dev->data->nb_rx_queues &&
2075 i < E1000_I219_MAX_RX_QUEUE_NUM; i++) {
2076 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2077 /* zero the lower 14 bits (prefetch and host thresholds) */
2078 rxdctl &= 0xffffc000;
2080 /* update thresholds: prefetch threshold to 31,
2081 * host threshold to 1 and make sure the granularity
2082 * is "descriptors" and not "cache lines"
2084 rxdctl |= (0x1F | (1UL << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
2086 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2088 /* momentarily enable the RX ring for the changes to take effect */
2089 E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
2090 E1000_WRITE_FLUSH(hw);
2092 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2096 * em_flush_desc_rings - remove all descriptors from the descriptor rings
2098 * In i219, the descriptor rings must be emptied before resetting/closing the
2099 * HW. Failure to do this will cause the HW to enter a unit hang state which
2100 * can only be released by PCI reset on the device
2105 em_flush_desc_rings(struct rte_eth_dev *dev)
2107 uint32_t fextnvm11, tdlen;
2108 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2109 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2110 uint16_t pci_cfg_status = 0;
2113 fextnvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2114 E1000_WRITE_REG(hw, E1000_FEXTNVM11,
2115 fextnvm11 | E1000_FEXTNVM11_DISABLE_MULR_FIX);
2116 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2117 ret = rte_pci_read_config(pci_dev, &pci_cfg_status,
2118 sizeof(pci_cfg_status), PCI_CFG_STATUS_REG);
2120 PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x",
2121 PCI_CFG_STATUS_REG);
2125 /* do nothing if we're not in faulty state, or if the queue is empty */
2126 if ((pci_cfg_status & FLUSH_DESC_REQUIRED) && tdlen) {
2127 /* flush desc ring */
2128 e1000_flush_tx_ring(dev);
2129 ret = rte_pci_read_config(pci_dev, &pci_cfg_status,
2130 sizeof(pci_cfg_status), PCI_CFG_STATUS_REG);
2132 PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x",
2133 PCI_CFG_STATUS_REG);
2137 if (pci_cfg_status & FLUSH_DESC_REQUIRED)
2138 e1000_flush_rx_ring(dev);