net/ionic: log queue counters when tearing down
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_string_fns.h>
12 #include <rte_common.h>
13 #include <rte_interrupts.h>
14 #include <rte_byteorder.h>
15 #include <rte_log.h>
16 #include <rte_debug.h>
17 #include <rte_pci.h>
18 #include <rte_bus_pci.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <ethdev_pci.h>
22 #include <rte_memory.h>
23 #include <rte_eal.h>
24 #include <rte_malloc.h>
25 #include <rte_dev.h>
26
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
30 #include "igb_regs.h"
31
32 /*
33  * Default values for port configuration
34  */
35 #define IGB_DEFAULT_RX_FREE_THRESH  32
36
37 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH      8
39 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
40
41 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH      1
43 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
44
45 /* Bit shift and mask */
46 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
47 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
48 #define IGB_8_BIT_WIDTH  CHAR_BIT
49 #define IGB_8_BIT_MASK   UINT8_MAX
50
51 /* Additional timesync values. */
52 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
53 #define E1000_ETQF_FILTER_1588       3
54 #define IGB_82576_TSYNC_SHIFT        16
55 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
56 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
57 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
58
59 #define E1000_VTIVAR_MISC                0x01740
60 #define E1000_VTIVAR_MISC_MASK           0xFF
61 #define E1000_VTIVAR_VALID               0x80
62 #define E1000_VTIVAR_MISC_MAILBOX        0
63 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
64
65 /* External VLAN Enable bit mask */
66 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
67
68 /* External VLAN Ether Type bit mask and shift */
69 #define E1000_VET_VET_EXT            0xFFFF0000
70 #define E1000_VET_VET_EXT_SHIFT      16
71
72 /* MSI-X other interrupt vector */
73 #define IGB_MSIX_OTHER_INTR_VEC      0
74
75 static int  eth_igb_configure(struct rte_eth_dev *dev);
76 static int  eth_igb_start(struct rte_eth_dev *dev);
77 static int  eth_igb_stop(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
79 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
80 static int eth_igb_close(struct rte_eth_dev *dev);
81 static int eth_igb_reset(struct rte_eth_dev *dev);
82 static int  eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
83 static int  eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
84 static int  eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
85 static int  eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
86 static int  eth_igb_link_update(struct rte_eth_dev *dev,
87                                 int wait_to_complete);
88 static int eth_igb_stats_get(struct rte_eth_dev *dev,
89                                 struct rte_eth_stats *rte_stats);
90 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
91                               struct rte_eth_xstat *xstats, unsigned n);
92 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
93                 const uint64_t *ids,
94                 uint64_t *values, unsigned int n);
95 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
96                                     struct rte_eth_xstat_name *xstats_names,
97                                     unsigned int size);
98 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
99                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
100                 unsigned int limit);
101 static int eth_igb_stats_reset(struct rte_eth_dev *dev);
102 static int eth_igb_xstats_reset(struct rte_eth_dev *dev);
103 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
104                                    char *fw_version, size_t fw_size);
105 static int eth_igb_infos_get(struct rte_eth_dev *dev,
106                               struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static int eth_igbvf_infos_get(struct rte_eth_dev *dev,
109                                 struct rte_eth_dev_info *dev_info);
110 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111                                 struct rte_eth_fc_conf *fc_conf);
112 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113                                 struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
118                                     struct rte_intr_handle *handle);
119 static void eth_igb_interrupt_handler(void *param);
120 static int  igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
125
126 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
127
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129                 uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131                                  enum rte_vlan_type vlan_type,
132                                  uint16_t tpid_id);
133 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
134
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
141
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
144
145 static void igb_intr_disable(struct rte_eth_dev *dev);
146 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static int eth_igb_rar_set(struct rte_eth_dev *dev,
148                            struct rte_ether_addr *mac_addr,
149                            uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152                 struct rte_ether_addr *addr);
153
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static int igbvf_dev_stop(struct rte_eth_dev *dev);
158 static int igbvf_dev_close(struct rte_eth_dev *dev);
159 static int igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static int igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static int igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static int igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
165                                 struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167                                 struct rte_eth_xstat *xstats, unsigned n);
168 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
169                                       struct rte_eth_xstat_name *xstats_names,
170                                       unsigned limit);
171 static int eth_igbvf_stats_reset(struct rte_eth_dev *dev);
172 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
173                 uint16_t vlan_id, int on);
174 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
175 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
176 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
177                 struct rte_ether_addr *addr);
178 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
179 static int igbvf_get_regs(struct rte_eth_dev *dev,
180                 struct rte_dev_reg_info *regs);
181
182 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
183                                    struct rte_eth_rss_reta_entry64 *reta_conf,
184                                    uint16_t reta_size);
185 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
186                                   struct rte_eth_rss_reta_entry64 *reta_conf,
187                                   uint16_t reta_size);
188
189 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
190                         struct rte_eth_ntuple_filter *ntuple_filter);
191 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
192                         struct rte_eth_ntuple_filter *ntuple_filter);
193 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
194                         struct rte_eth_ntuple_filter *ntuple_filter);
195 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
196                         struct rte_eth_ntuple_filter *ntuple_filter);
197 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
198                      enum rte_filter_type filter_type,
199                      enum rte_filter_op filter_op,
200                      void *arg);
201 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
202 static int eth_igb_get_regs(struct rte_eth_dev *dev,
203                 struct rte_dev_reg_info *regs);
204 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
205 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
206                 struct rte_dev_eeprom_info *eeprom);
207 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
208                 struct rte_dev_eeprom_info *eeprom);
209 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
210                                    struct rte_eth_dev_module_info *modinfo);
211 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
212                                      struct rte_dev_eeprom_info *info);
213 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
214                                     struct rte_ether_addr *mc_addr_set,
215                                     uint32_t nb_mc_addr);
216 static int igb_timesync_enable(struct rte_eth_dev *dev);
217 static int igb_timesync_disable(struct rte_eth_dev *dev);
218 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
219                                           struct timespec *timestamp,
220                                           uint32_t flags);
221 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
222                                           struct timespec *timestamp);
223 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
224 static int igb_timesync_read_time(struct rte_eth_dev *dev,
225                                   struct timespec *timestamp);
226 static int igb_timesync_write_time(struct rte_eth_dev *dev,
227                                    const struct timespec *timestamp);
228 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
229                                         uint16_t queue_id);
230 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
231                                          uint16_t queue_id);
232 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
233                                        uint8_t queue, uint8_t msix_vector);
234 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
235                                uint8_t index, uint8_t offset);
236 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
237 static void eth_igbvf_interrupt_handler(void *param);
238 static void igbvf_mbx_process(struct rte_eth_dev *dev);
239 static int igb_filter_restore(struct rte_eth_dev *dev);
240
241 /*
242  * Define VF Stats MACRO for Non "cleared on read" register
243  */
244 #define UPDATE_VF_STAT(reg, last, cur)            \
245 {                                                 \
246         u32 latest = E1000_READ_REG(hw, reg);     \
247         cur += (latest - last) & UINT_MAX;        \
248         last = latest;                            \
249 }
250
251 #define IGB_FC_PAUSE_TIME 0x0680
252 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
253 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
254
255 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
256
257 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
258
259 /*
260  * The set of PCI devices this driver supports
261  */
262 static const struct rte_pci_id pci_id_igb_map[] = {
263         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
264         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
265         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
266         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
267         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
268         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
269         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
270         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
271
272         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
273         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
274         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
275
276         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
277         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
278         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
279         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
280         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
281         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
282
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
291         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
302         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
304         { .vendor_id = 0, /* sentinel */ },
305 };
306
307 /*
308  * The set of PCI devices this driver supports (for 82576&I350 VF)
309  */
310 static const struct rte_pci_id pci_id_igbvf_map[] = {
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
315         { .vendor_id = 0, /* sentinel */ },
316 };
317
318 static const struct rte_eth_desc_lim rx_desc_lim = {
319         .nb_max = E1000_MAX_RING_DESC,
320         .nb_min = E1000_MIN_RING_DESC,
321         .nb_align = IGB_RXD_ALIGN,
322 };
323
324 static const struct rte_eth_desc_lim tx_desc_lim = {
325         .nb_max = E1000_MAX_RING_DESC,
326         .nb_min = E1000_MIN_RING_DESC,
327         .nb_align = IGB_RXD_ALIGN,
328         .nb_seg_max = IGB_TX_MAX_SEG,
329         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
330 };
331
332 static const struct eth_dev_ops eth_igb_ops = {
333         .dev_configure        = eth_igb_configure,
334         .dev_start            = eth_igb_start,
335         .dev_stop             = eth_igb_stop,
336         .dev_set_link_up      = eth_igb_dev_set_link_up,
337         .dev_set_link_down    = eth_igb_dev_set_link_down,
338         .dev_close            = eth_igb_close,
339         .dev_reset            = eth_igb_reset,
340         .promiscuous_enable   = eth_igb_promiscuous_enable,
341         .promiscuous_disable  = eth_igb_promiscuous_disable,
342         .allmulticast_enable  = eth_igb_allmulticast_enable,
343         .allmulticast_disable = eth_igb_allmulticast_disable,
344         .link_update          = eth_igb_link_update,
345         .stats_get            = eth_igb_stats_get,
346         .xstats_get           = eth_igb_xstats_get,
347         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
348         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
349         .xstats_get_names     = eth_igb_xstats_get_names,
350         .stats_reset          = eth_igb_stats_reset,
351         .xstats_reset         = eth_igb_xstats_reset,
352         .fw_version_get       = eth_igb_fw_version_get,
353         .dev_infos_get        = eth_igb_infos_get,
354         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
355         .mtu_set              = eth_igb_mtu_set,
356         .vlan_filter_set      = eth_igb_vlan_filter_set,
357         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
358         .vlan_offload_set     = eth_igb_vlan_offload_set,
359         .rx_queue_setup       = eth_igb_rx_queue_setup,
360         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
361         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
362         .rx_queue_release     = eth_igb_rx_queue_release,
363         .tx_queue_setup       = eth_igb_tx_queue_setup,
364         .tx_queue_release     = eth_igb_tx_queue_release,
365         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
366         .dev_led_on           = eth_igb_led_on,
367         .dev_led_off          = eth_igb_led_off,
368         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
369         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
370         .mac_addr_add         = eth_igb_rar_set,
371         .mac_addr_remove      = eth_igb_rar_clear,
372         .mac_addr_set         = eth_igb_default_mac_addr_set,
373         .reta_update          = eth_igb_rss_reta_update,
374         .reta_query           = eth_igb_rss_reta_query,
375         .rss_hash_update      = eth_igb_rss_hash_update,
376         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
377         .filter_ctrl          = eth_igb_filter_ctrl,
378         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
379         .rxq_info_get         = igb_rxq_info_get,
380         .txq_info_get         = igb_txq_info_get,
381         .timesync_enable      = igb_timesync_enable,
382         .timesync_disable     = igb_timesync_disable,
383         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
384         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
385         .get_reg              = eth_igb_get_regs,
386         .get_eeprom_length    = eth_igb_get_eeprom_length,
387         .get_eeprom           = eth_igb_get_eeprom,
388         .set_eeprom           = eth_igb_set_eeprom,
389         .get_module_info      = eth_igb_get_module_info,
390         .get_module_eeprom    = eth_igb_get_module_eeprom,
391         .timesync_adjust_time = igb_timesync_adjust_time,
392         .timesync_read_time   = igb_timesync_read_time,
393         .timesync_write_time  = igb_timesync_write_time,
394 };
395
396 /*
397  * dev_ops for virtual function, bare necessities for basic vf
398  * operation have been implemented
399  */
400 static const struct eth_dev_ops igbvf_eth_dev_ops = {
401         .dev_configure        = igbvf_dev_configure,
402         .dev_start            = igbvf_dev_start,
403         .dev_stop             = igbvf_dev_stop,
404         .dev_close            = igbvf_dev_close,
405         .promiscuous_enable   = igbvf_promiscuous_enable,
406         .promiscuous_disable  = igbvf_promiscuous_disable,
407         .allmulticast_enable  = igbvf_allmulticast_enable,
408         .allmulticast_disable = igbvf_allmulticast_disable,
409         .link_update          = eth_igb_link_update,
410         .stats_get            = eth_igbvf_stats_get,
411         .xstats_get           = eth_igbvf_xstats_get,
412         .xstats_get_names     = eth_igbvf_xstats_get_names,
413         .stats_reset          = eth_igbvf_stats_reset,
414         .xstats_reset         = eth_igbvf_stats_reset,
415         .vlan_filter_set      = igbvf_vlan_filter_set,
416         .dev_infos_get        = eth_igbvf_infos_get,
417         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
418         .rx_queue_setup       = eth_igb_rx_queue_setup,
419         .rx_queue_release     = eth_igb_rx_queue_release,
420         .tx_queue_setup       = eth_igb_tx_queue_setup,
421         .tx_queue_release     = eth_igb_tx_queue_release,
422         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
423         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
424         .rxq_info_get         = igb_rxq_info_get,
425         .txq_info_get         = igb_txq_info_get,
426         .mac_addr_set         = igbvf_default_mac_addr_set,
427         .get_reg              = igbvf_get_regs,
428 };
429
430 /* store statistics names and its offset in stats structure */
431 struct rte_igb_xstats_name_off {
432         char name[RTE_ETH_XSTATS_NAME_SIZE];
433         unsigned offset;
434 };
435
436 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
437         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
438         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
439         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
440         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
441         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
442         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
443         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
444                 ecol)},
445         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
446         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
447         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
448         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
449         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
450         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
451         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
452         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
453         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
454         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
455         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
456                 fcruc)},
457         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
458         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
459         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
460         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
461         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
462                 prc1023)},
463         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
464                 prc1522)},
465         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
466         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
467         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
468         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
469         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
470         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
471         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
472         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
473         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
474         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
475         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
476         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
477         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
478         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
479         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
480         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
481         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
482         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
483                 ptc1023)},
484         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
485                 ptc1522)},
486         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
487         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
488         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
489         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
490         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
491         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
492         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
493
494         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
495 };
496
497 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
498                 sizeof(rte_igb_stats_strings[0]))
499
500 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
501         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
502         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
503         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
504         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
505         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
506 };
507
508 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
509                 sizeof(rte_igbvf_stats_strings[0]))
510
511
512 static inline void
513 igb_intr_enable(struct rte_eth_dev *dev)
514 {
515         struct e1000_interrupt *intr =
516                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
517         struct e1000_hw *hw =
518                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
519         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
520         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
521
522         if (rte_intr_allow_others(intr_handle) &&
523                 dev->data->dev_conf.intr_conf.lsc != 0) {
524                 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
525         }
526
527         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
528         E1000_WRITE_FLUSH(hw);
529 }
530
531 static void
532 igb_intr_disable(struct rte_eth_dev *dev)
533 {
534         struct e1000_hw *hw =
535                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
536         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
537         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
538
539         if (rte_intr_allow_others(intr_handle) &&
540                 dev->data->dev_conf.intr_conf.lsc != 0) {
541                 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
542         }
543
544         E1000_WRITE_REG(hw, E1000_IMC, ~0);
545         E1000_WRITE_FLUSH(hw);
546 }
547
548 static inline void
549 igbvf_intr_enable(struct rte_eth_dev *dev)
550 {
551         struct e1000_hw *hw =
552                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
553
554         /* only for mailbox */
555         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
556         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
557         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
558         E1000_WRITE_FLUSH(hw);
559 }
560
561 /* only for mailbox now. If RX/TX needed, should extend this function.  */
562 static void
563 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
564 {
565         uint32_t tmp = 0;
566
567         /* mailbox */
568         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
569         tmp |= E1000_VTIVAR_VALID;
570         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
571 }
572
573 static void
574 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
575 {
576         struct e1000_hw *hw =
577                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
578
579         /* Configure VF other cause ivar */
580         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
581 }
582
583 static inline int32_t
584 igb_pf_reset_hw(struct e1000_hw *hw)
585 {
586         uint32_t ctrl_ext;
587         int32_t status;
588
589         status = e1000_reset_hw(hw);
590
591         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
592         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
593         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
594         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
595         E1000_WRITE_FLUSH(hw);
596
597         return status;
598 }
599
600 static void
601 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
602 {
603         struct e1000_hw *hw =
604                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
605
606
607         hw->vendor_id = pci_dev->id.vendor_id;
608         hw->device_id = pci_dev->id.device_id;
609         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
610         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
611
612         e1000_set_mac_type(hw);
613
614         /* need to check if it is a vf device below */
615 }
616
617 static int
618 igb_reset_swfw_lock(struct e1000_hw *hw)
619 {
620         int ret_val;
621
622         /*
623          * Do mac ops initialization manually here, since we will need
624          * some function pointers set by this call.
625          */
626         ret_val = e1000_init_mac_params(hw);
627         if (ret_val)
628                 return ret_val;
629
630         /*
631          * SMBI lock should not fail in this early stage. If this is the case,
632          * it is due to an improper exit of the application.
633          * So force the release of the faulty lock.
634          */
635         if (e1000_get_hw_semaphore_generic(hw) < 0) {
636                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
637         }
638         e1000_put_hw_semaphore_generic(hw);
639
640         if (hw->mac.ops.acquire_swfw_sync != NULL) {
641                 uint16_t mask;
642
643                 /*
644                  * Phy lock should not fail in this early stage. If this is the case,
645                  * it is due to an improper exit of the application.
646                  * So force the release of the faulty lock.
647                  */
648                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
649                 if (hw->bus.func > E1000_FUNC_1)
650                         mask <<= 2;
651                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
652                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
653                                     hw->bus.func);
654                 }
655                 hw->mac.ops.release_swfw_sync(hw, mask);
656
657                 /*
658                  * This one is more tricky since it is common to all ports; but
659                  * swfw_sync retries last long enough (1s) to be almost sure that if
660                  * lock can not be taken it is due to an improper lock of the
661                  * semaphore.
662                  */
663                 mask = E1000_SWFW_EEP_SM;
664                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
665                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
666                 }
667                 hw->mac.ops.release_swfw_sync(hw, mask);
668         }
669
670         return E1000_SUCCESS;
671 }
672
673 /* Remove all ntuple filters of the device */
674 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
675 {
676         struct e1000_filter_info *filter_info =
677                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
678         struct e1000_5tuple_filter *p_5tuple;
679         struct e1000_2tuple_filter *p_2tuple;
680
681         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
682                 TAILQ_REMOVE(&filter_info->fivetuple_list,
683                         p_5tuple, entries);
684                         rte_free(p_5tuple);
685         }
686         filter_info->fivetuple_mask = 0;
687         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
688                 TAILQ_REMOVE(&filter_info->twotuple_list,
689                         p_2tuple, entries);
690                         rte_free(p_2tuple);
691         }
692         filter_info->twotuple_mask = 0;
693
694         return 0;
695 }
696
697 /* Remove all flex filters of the device */
698 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
699 {
700         struct e1000_filter_info *filter_info =
701                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
702         struct e1000_flex_filter *p_flex;
703
704         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
705                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
706                 rte_free(p_flex);
707         }
708         filter_info->flex_mask = 0;
709
710         return 0;
711 }
712
713 static int
714 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
715 {
716         int error = 0;
717         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
718         struct e1000_hw *hw =
719                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
720         struct e1000_vfta * shadow_vfta =
721                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
722         struct e1000_filter_info *filter_info =
723                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
724         struct e1000_adapter *adapter =
725                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
726
727         uint32_t ctrl_ext;
728
729         eth_dev->dev_ops = &eth_igb_ops;
730         eth_dev->rx_queue_count = eth_igb_rx_queue_count;
731         eth_dev->rx_descriptor_done   = eth_igb_rx_descriptor_done;
732         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
733         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
734         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
735         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
736         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
737
738         /* for secondary processes, we don't initialise any further as primary
739          * has already done this work. Only check we don't need a different
740          * RX function */
741         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
742                 if (eth_dev->data->scattered_rx)
743                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
744                 return 0;
745         }
746
747         rte_eth_copy_pci_info(eth_dev, pci_dev);
748         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
749
750         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
751
752         igb_identify_hardware(eth_dev, pci_dev);
753         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
754                 error = -EIO;
755                 goto err_late;
756         }
757
758         e1000_get_bus_info(hw);
759
760         /* Reset any pending lock */
761         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
762                 error = -EIO;
763                 goto err_late;
764         }
765
766         /* Finish initialization */
767         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
768                 error = -EIO;
769                 goto err_late;
770         }
771
772         hw->mac.autoneg = 1;
773         hw->phy.autoneg_wait_to_complete = 0;
774         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
775
776         /* Copper options */
777         if (hw->phy.media_type == e1000_media_type_copper) {
778                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
779                 hw->phy.disable_polarity_correction = 0;
780                 hw->phy.ms_type = e1000_ms_hw_default;
781         }
782
783         /*
784          * Start from a known state, this is important in reading the nvm
785          * and mac from that.
786          */
787         igb_pf_reset_hw(hw);
788
789         /* Make sure we have a good EEPROM before we read from it */
790         if (e1000_validate_nvm_checksum(hw) < 0) {
791                 /*
792                  * Some PCI-E parts fail the first check due to
793                  * the link being in sleep state, call it again,
794                  * if it fails a second time its a real issue.
795                  */
796                 if (e1000_validate_nvm_checksum(hw) < 0) {
797                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
798                         error = -EIO;
799                         goto err_late;
800                 }
801         }
802
803         /* Read the permanent MAC address out of the EEPROM */
804         if (e1000_read_mac_addr(hw) != 0) {
805                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
806                 error = -EIO;
807                 goto err_late;
808         }
809
810         /* Allocate memory for storing MAC addresses */
811         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
812                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
813         if (eth_dev->data->mac_addrs == NULL) {
814                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
815                                                 "store MAC addresses",
816                                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
817                 error = -ENOMEM;
818                 goto err_late;
819         }
820
821         /* Copy the permanent MAC address */
822         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
823                         &eth_dev->data->mac_addrs[0]);
824
825         /* initialize the vfta */
826         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
827
828         /* Now initialize the hardware */
829         if (igb_hardware_init(hw) != 0) {
830                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
831                 rte_free(eth_dev->data->mac_addrs);
832                 eth_dev->data->mac_addrs = NULL;
833                 error = -ENODEV;
834                 goto err_late;
835         }
836         hw->mac.get_link_status = 1;
837         adapter->stopped = 0;
838
839         /* Indicate SOL/IDER usage */
840         if (e1000_check_reset_block(hw) < 0) {
841                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
842                                         "SOL/IDER session");
843         }
844
845         /* initialize PF if max_vfs not zero */
846         igb_pf_host_init(eth_dev);
847
848         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
849         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
850         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
851         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
852         E1000_WRITE_FLUSH(hw);
853
854         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
855                      eth_dev->data->port_id, pci_dev->id.vendor_id,
856                      pci_dev->id.device_id);
857
858         rte_intr_callback_register(&pci_dev->intr_handle,
859                                    eth_igb_interrupt_handler,
860                                    (void *)eth_dev);
861
862         /* enable uio/vfio intr/eventfd mapping */
863         rte_intr_enable(&pci_dev->intr_handle);
864
865         /* enable support intr */
866         igb_intr_enable(eth_dev);
867
868         eth_igb_dev_set_link_down(eth_dev);
869
870         /* initialize filter info */
871         memset(filter_info, 0,
872                sizeof(struct e1000_filter_info));
873
874         TAILQ_INIT(&filter_info->flex_list);
875         TAILQ_INIT(&filter_info->twotuple_list);
876         TAILQ_INIT(&filter_info->fivetuple_list);
877
878         TAILQ_INIT(&igb_filter_ntuple_list);
879         TAILQ_INIT(&igb_filter_ethertype_list);
880         TAILQ_INIT(&igb_filter_syn_list);
881         TAILQ_INIT(&igb_filter_flex_list);
882         TAILQ_INIT(&igb_filter_rss_list);
883         TAILQ_INIT(&igb_flow_list);
884
885         return 0;
886
887 err_late:
888         igb_hw_control_release(hw);
889
890         return error;
891 }
892
893 static int
894 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
895 {
896         PMD_INIT_FUNC_TRACE();
897
898         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
899                 return 0;
900
901         eth_igb_close(eth_dev);
902
903         return 0;
904 }
905
906 /*
907  * Virtual Function device init
908  */
909 static int
910 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
911 {
912         struct rte_pci_device *pci_dev;
913         struct rte_intr_handle *intr_handle;
914         struct e1000_adapter *adapter =
915                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
916         struct e1000_hw *hw =
917                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
918         int diag;
919         struct rte_ether_addr *perm_addr =
920                 (struct rte_ether_addr *)hw->mac.perm_addr;
921
922         PMD_INIT_FUNC_TRACE();
923
924         eth_dev->dev_ops = &igbvf_eth_dev_ops;
925         eth_dev->rx_descriptor_done   = eth_igb_rx_descriptor_done;
926         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
927         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
928         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
929         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
930         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
931
932         /* for secondary processes, we don't initialise any further as primary
933          * has already done this work. Only check we don't need a different
934          * RX function */
935         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
936                 if (eth_dev->data->scattered_rx)
937                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
938                 return 0;
939         }
940
941         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
942         rte_eth_copy_pci_info(eth_dev, pci_dev);
943         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
944
945         hw->device_id = pci_dev->id.device_id;
946         hw->vendor_id = pci_dev->id.vendor_id;
947         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
948         adapter->stopped = 0;
949
950         /* Initialize the shared code (base driver) */
951         diag = e1000_setup_init_funcs(hw, TRUE);
952         if (diag != 0) {
953                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
954                         diag);
955                 return -EIO;
956         }
957
958         /* init_mailbox_params */
959         hw->mbx.ops.init_params(hw);
960
961         /* Disable the interrupts for VF */
962         igbvf_intr_disable(hw);
963
964         diag = hw->mac.ops.reset_hw(hw);
965
966         /* Allocate memory for storing MAC addresses */
967         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN *
968                 hw->mac.rar_entry_count, 0);
969         if (eth_dev->data->mac_addrs == NULL) {
970                 PMD_INIT_LOG(ERR,
971                         "Failed to allocate %d bytes needed to store MAC "
972                         "addresses",
973                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
974                 return -ENOMEM;
975         }
976
977         /* Generate a random MAC address, if none was assigned by PF. */
978         if (rte_is_zero_ether_addr(perm_addr)) {
979                 rte_eth_random_addr(perm_addr->addr_bytes);
980                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
981                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
982                              "%02x:%02x:%02x:%02x:%02x:%02x",
983                              perm_addr->addr_bytes[0],
984                              perm_addr->addr_bytes[1],
985                              perm_addr->addr_bytes[2],
986                              perm_addr->addr_bytes[3],
987                              perm_addr->addr_bytes[4],
988                              perm_addr->addr_bytes[5]);
989         }
990
991         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
992         if (diag) {
993                 rte_free(eth_dev->data->mac_addrs);
994                 eth_dev->data->mac_addrs = NULL;
995                 return diag;
996         }
997         /* Copy the permanent MAC address */
998         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.perm_addr,
999                         &eth_dev->data->mac_addrs[0]);
1000
1001         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1002                      "mac.type=%s",
1003                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1004                      pci_dev->id.device_id, "igb_mac_82576_vf");
1005
1006         intr_handle = &pci_dev->intr_handle;
1007         rte_intr_callback_register(intr_handle,
1008                                    eth_igbvf_interrupt_handler, eth_dev);
1009
1010         return 0;
1011 }
1012
1013 static int
1014 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1015 {
1016         PMD_INIT_FUNC_TRACE();
1017
1018         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1019                 return 0;
1020
1021         igbvf_dev_close(eth_dev);
1022
1023         return 0;
1024 }
1025
1026 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1027         struct rte_pci_device *pci_dev)
1028 {
1029         return rte_eth_dev_pci_generic_probe(pci_dev,
1030                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1031 }
1032
1033 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1034 {
1035         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1036 }
1037
1038 static struct rte_pci_driver rte_igb_pmd = {
1039         .id_table = pci_id_igb_map,
1040         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1041         .probe = eth_igb_pci_probe,
1042         .remove = eth_igb_pci_remove,
1043 };
1044
1045
1046 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1047         struct rte_pci_device *pci_dev)
1048 {
1049         return rte_eth_dev_pci_generic_probe(pci_dev,
1050                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1051 }
1052
1053 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1054 {
1055         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1056 }
1057
1058 /*
1059  * virtual function driver struct
1060  */
1061 static struct rte_pci_driver rte_igbvf_pmd = {
1062         .id_table = pci_id_igbvf_map,
1063         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1064         .probe = eth_igbvf_pci_probe,
1065         .remove = eth_igbvf_pci_remove,
1066 };
1067
1068 static void
1069 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1070 {
1071         struct e1000_hw *hw =
1072                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1073         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1074         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1075         rctl |= E1000_RCTL_VFE;
1076         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1077 }
1078
1079 static int
1080 igb_check_mq_mode(struct rte_eth_dev *dev)
1081 {
1082         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1083         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1084         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1085         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1086
1087         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1088             tx_mq_mode == ETH_MQ_TX_DCB ||
1089             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1090                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1091                 return -EINVAL;
1092         }
1093         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1094                 /* Check multi-queue mode.
1095                  * To no break software we accept ETH_MQ_RX_NONE as this might
1096                  * be used to turn off VLAN filter.
1097                  */
1098
1099                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1100                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1101                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1102                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1103                 } else {
1104                         /* Only support one queue on VFs.
1105                          * RSS together with SRIOV is not supported.
1106                          */
1107                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1108                                         " wrong mq_mode rx %d.",
1109                                         rx_mq_mode);
1110                         return -EINVAL;
1111                 }
1112                 /* TX mode is not used here, so mode might be ignored.*/
1113                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1114                         /* SRIOV only works in VMDq enable mode */
1115                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1116                                         " TX mode %d is not supported. "
1117                                         " Driver will behave as %d mode.",
1118                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1119                 }
1120
1121                 /* check valid queue number */
1122                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1123                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1124                                         " only support one queue on VFs.");
1125                         return -EINVAL;
1126                 }
1127         } else {
1128                 /* To no break software that set invalid mode, only display
1129                  * warning if invalid mode is used.
1130                  */
1131                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1132                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1133                     rx_mq_mode != ETH_MQ_RX_RSS) {
1134                         /* RSS together with VMDq not supported*/
1135                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1136                                      rx_mq_mode);
1137                         return -EINVAL;
1138                 }
1139
1140                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1141                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1142                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1143                                         " Due to txmode is meaningless in this"
1144                                         " driver, just ignore.",
1145                                         tx_mq_mode);
1146                 }
1147         }
1148         return 0;
1149 }
1150
1151 static int
1152 eth_igb_configure(struct rte_eth_dev *dev)
1153 {
1154         struct e1000_interrupt *intr =
1155                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1156         int ret;
1157
1158         PMD_INIT_FUNC_TRACE();
1159
1160         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1161                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1162
1163         /* multipe queue mode checking */
1164         ret  = igb_check_mq_mode(dev);
1165         if (ret != 0) {
1166                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1167                             ret);
1168                 return ret;
1169         }
1170
1171         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1172         PMD_INIT_FUNC_TRACE();
1173
1174         return 0;
1175 }
1176
1177 static void
1178 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1179                      bool enable)
1180 {
1181         struct e1000_hw *hw =
1182                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1183         uint32_t tctl, rctl;
1184
1185         tctl = E1000_READ_REG(hw, E1000_TCTL);
1186         rctl = E1000_READ_REG(hw, E1000_RCTL);
1187
1188         if (enable) {
1189                 /* enable Tx/Rx */
1190                 tctl |= E1000_TCTL_EN;
1191                 rctl |= E1000_RCTL_EN;
1192         } else {
1193                 /* disable Tx/Rx */
1194                 tctl &= ~E1000_TCTL_EN;
1195                 rctl &= ~E1000_RCTL_EN;
1196         }
1197         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1198         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1199         E1000_WRITE_FLUSH(hw);
1200 }
1201
1202 static int
1203 eth_igb_start(struct rte_eth_dev *dev)
1204 {
1205         struct e1000_hw *hw =
1206                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1207         struct e1000_adapter *adapter =
1208                 E1000_DEV_PRIVATE(dev->data->dev_private);
1209         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1210         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1211         int ret, mask;
1212         uint32_t intr_vector = 0;
1213         uint32_t ctrl_ext;
1214         uint32_t *speeds;
1215         int num_speeds;
1216         bool autoneg;
1217
1218         PMD_INIT_FUNC_TRACE();
1219
1220         /* disable uio/vfio intr/eventfd mapping */
1221         rte_intr_disable(intr_handle);
1222
1223         /* Power up the phy. Needed to make the link go Up */
1224         eth_igb_dev_set_link_up(dev);
1225
1226         /*
1227          * Packet Buffer Allocation (PBA)
1228          * Writing PBA sets the receive portion of the buffer
1229          * the remainder is used for the transmit buffer.
1230          */
1231         if (hw->mac.type == e1000_82575) {
1232                 uint32_t pba;
1233
1234                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1235                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1236         }
1237
1238         /* Put the address into the Receive Address Array */
1239         e1000_rar_set(hw, hw->mac.addr, 0);
1240
1241         /* Initialize the hardware */
1242         if (igb_hardware_init(hw)) {
1243                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1244                 return -EIO;
1245         }
1246         adapter->stopped = 0;
1247
1248         E1000_WRITE_REG(hw, E1000_VET,
1249                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1250
1251         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1252         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1253         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1254         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1255         E1000_WRITE_FLUSH(hw);
1256
1257         /* configure PF module if SRIOV enabled */
1258         igb_pf_host_configure(dev);
1259
1260         /* check and configure queue intr-vector mapping */
1261         if ((rte_intr_cap_multiple(intr_handle) ||
1262              !RTE_ETH_DEV_SRIOV(dev).active) &&
1263             dev->data->dev_conf.intr_conf.rxq != 0) {
1264                 intr_vector = dev->data->nb_rx_queues;
1265                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1266                         return -1;
1267         }
1268
1269         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1270                 intr_handle->intr_vec =
1271                         rte_zmalloc("intr_vec",
1272                                     dev->data->nb_rx_queues * sizeof(int), 0);
1273                 if (intr_handle->intr_vec == NULL) {
1274                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1275                                      " intr_vec", dev->data->nb_rx_queues);
1276                         return -ENOMEM;
1277                 }
1278         }
1279
1280         /* confiugre msix for rx interrupt */
1281         eth_igb_configure_msix_intr(dev);
1282
1283         /* Configure for OS presence */
1284         igb_init_manageability(hw);
1285
1286         eth_igb_tx_init(dev);
1287
1288         /* This can fail when allocating mbufs for descriptor rings */
1289         ret = eth_igb_rx_init(dev);
1290         if (ret) {
1291                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1292                 igb_dev_clear_queues(dev);
1293                 return ret;
1294         }
1295
1296         e1000_clear_hw_cntrs_base_generic(hw);
1297
1298         /*
1299          * VLAN Offload Settings
1300          */
1301         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1302                         ETH_VLAN_EXTEND_MASK;
1303         ret = eth_igb_vlan_offload_set(dev, mask);
1304         if (ret) {
1305                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1306                 igb_dev_clear_queues(dev);
1307                 return ret;
1308         }
1309
1310         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1311                 /* Enable VLAN filter since VMDq always use VLAN filter */
1312                 igb_vmdq_vlan_hw_filter_enable(dev);
1313         }
1314
1315         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1316                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1317                 (hw->mac.type == e1000_i211)) {
1318                 /* Configure EITR with the maximum possible value (0xFFFF) */
1319                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1320         }
1321
1322         /* Setup link speed and duplex */
1323         speeds = &dev->data->dev_conf.link_speeds;
1324         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1325                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1326                 hw->mac.autoneg = 1;
1327         } else {
1328                 num_speeds = 0;
1329                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1330
1331                 /* Reset */
1332                 hw->phy.autoneg_advertised = 0;
1333
1334                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1335                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1336                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1337                         num_speeds = -1;
1338                         goto error_invalid_config;
1339                 }
1340                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1341                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1342                         num_speeds++;
1343                 }
1344                 if (*speeds & ETH_LINK_SPEED_10M) {
1345                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1346                         num_speeds++;
1347                 }
1348                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1349                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1350                         num_speeds++;
1351                 }
1352                 if (*speeds & ETH_LINK_SPEED_100M) {
1353                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1354                         num_speeds++;
1355                 }
1356                 if (*speeds & ETH_LINK_SPEED_1G) {
1357                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1358                         num_speeds++;
1359                 }
1360                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1361                         goto error_invalid_config;
1362
1363                 /* Set/reset the mac.autoneg based on the link speed,
1364                  * fixed or not
1365                  */
1366                 if (!autoneg) {
1367                         hw->mac.autoneg = 0;
1368                         hw->mac.forced_speed_duplex =
1369                                         hw->phy.autoneg_advertised;
1370                 } else {
1371                         hw->mac.autoneg = 1;
1372                 }
1373         }
1374
1375         e1000_setup_link(hw);
1376
1377         if (rte_intr_allow_others(intr_handle)) {
1378                 /* check if lsc interrupt is enabled */
1379                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1380                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1381                 else
1382                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1383         } else {
1384                 rte_intr_callback_unregister(intr_handle,
1385                                              eth_igb_interrupt_handler,
1386                                              (void *)dev);
1387                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1388                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1389                                      " no intr multiplex");
1390         }
1391
1392         /* check if rxq interrupt is enabled */
1393         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1394             rte_intr_dp_is_en(intr_handle))
1395                 eth_igb_rxq_interrupt_setup(dev);
1396
1397         /* enable uio/vfio intr/eventfd mapping */
1398         rte_intr_enable(intr_handle);
1399
1400         /* resume enabled intr since hw reset */
1401         igb_intr_enable(dev);
1402
1403         /* restore all types filter */
1404         igb_filter_restore(dev);
1405
1406         eth_igb_rxtx_control(dev, true);
1407         eth_igb_link_update(dev, 0);
1408
1409         PMD_INIT_LOG(DEBUG, "<<");
1410
1411         return 0;
1412
1413 error_invalid_config:
1414         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1415                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1416         igb_dev_clear_queues(dev);
1417         return -EINVAL;
1418 }
1419
1420 /*********************************************************************
1421  *
1422  *  This routine disables all traffic on the adapter by issuing a
1423  *  global reset on the MAC.
1424  *
1425  **********************************************************************/
1426 static int
1427 eth_igb_stop(struct rte_eth_dev *dev)
1428 {
1429         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1430         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1431         struct rte_eth_link link;
1432         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1433         struct e1000_adapter *adapter =
1434                 E1000_DEV_PRIVATE(dev->data->dev_private);
1435
1436         if (adapter->stopped)
1437                 return 0;
1438
1439         eth_igb_rxtx_control(dev, false);
1440
1441         igb_intr_disable(dev);
1442
1443         /* disable intr eventfd mapping */
1444         rte_intr_disable(intr_handle);
1445
1446         igb_pf_reset_hw(hw);
1447         E1000_WRITE_REG(hw, E1000_WUC, 0);
1448
1449         /* Set bit for Go Link disconnect if PHY reset is not blocked */
1450         if (hw->mac.type >= e1000_82580 &&
1451             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1452                 uint32_t phpm_reg;
1453
1454                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1455                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1456                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1457         }
1458
1459         /* Power down the phy. Needed to make the link go Down */
1460         eth_igb_dev_set_link_down(dev);
1461
1462         igb_dev_clear_queues(dev);
1463
1464         /* clear the recorded link status */
1465         memset(&link, 0, sizeof(link));
1466         rte_eth_linkstatus_set(dev, &link);
1467
1468         if (!rte_intr_allow_others(intr_handle))
1469                 /* resume to the default handler */
1470                 rte_intr_callback_register(intr_handle,
1471                                            eth_igb_interrupt_handler,
1472                                            (void *)dev);
1473
1474         /* Clean datapath event and queue/vec mapping */
1475         rte_intr_efd_disable(intr_handle);
1476         if (intr_handle->intr_vec != NULL) {
1477                 rte_free(intr_handle->intr_vec);
1478                 intr_handle->intr_vec = NULL;
1479         }
1480
1481         adapter->stopped = true;
1482         dev->data->dev_started = 0;
1483
1484         return 0;
1485 }
1486
1487 static int
1488 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1489 {
1490         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1491
1492         if (hw->phy.media_type == e1000_media_type_copper)
1493                 e1000_power_up_phy(hw);
1494         else
1495                 e1000_power_up_fiber_serdes_link(hw);
1496
1497         return 0;
1498 }
1499
1500 static int
1501 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1502 {
1503         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1504
1505         if (hw->phy.media_type == e1000_media_type_copper)
1506                 e1000_power_down_phy(hw);
1507         else
1508                 e1000_shutdown_fiber_serdes_link(hw);
1509
1510         return 0;
1511 }
1512
1513 static int
1514 eth_igb_close(struct rte_eth_dev *dev)
1515 {
1516         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1517         struct rte_eth_link link;
1518         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1519         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1520         struct e1000_filter_info *filter_info =
1521                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1522         int ret;
1523
1524         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1525                 return 0;
1526
1527         ret = eth_igb_stop(dev);
1528
1529         e1000_phy_hw_reset(hw);
1530         igb_release_manageability(hw);
1531         igb_hw_control_release(hw);
1532
1533         /* Clear bit for Go Link disconnect if PHY reset is not blocked */
1534         if (hw->mac.type >= e1000_82580 &&
1535             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1536                 uint32_t phpm_reg;
1537
1538                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1539                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1540                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1541         }
1542
1543         igb_dev_free_queues(dev);
1544
1545         if (intr_handle->intr_vec) {
1546                 rte_free(intr_handle->intr_vec);
1547                 intr_handle->intr_vec = NULL;
1548         }
1549
1550         memset(&link, 0, sizeof(link));
1551         rte_eth_linkstatus_set(dev, &link);
1552
1553         /* Reset any pending lock */
1554         igb_reset_swfw_lock(hw);
1555
1556         /* uninitialize PF if max_vfs not zero */
1557         igb_pf_host_uninit(dev);
1558
1559         rte_intr_callback_unregister(intr_handle,
1560                                      eth_igb_interrupt_handler, dev);
1561
1562         /* clear the SYN filter info */
1563         filter_info->syn_info = 0;
1564
1565         /* clear the ethertype filters info */
1566         filter_info->ethertype_mask = 0;
1567         memset(filter_info->ethertype_filters, 0,
1568                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
1569
1570         /* clear the rss filter info */
1571         memset(&filter_info->rss_info, 0,
1572                 sizeof(struct igb_rte_flow_rss_conf));
1573
1574         /* remove all ntuple filters of the device */
1575         igb_ntuple_filter_uninit(dev);
1576
1577         /* remove all flex filters of the device */
1578         igb_flex_filter_uninit(dev);
1579
1580         /* clear all the filters list */
1581         igb_filterlist_flush(dev);
1582
1583         return ret;
1584 }
1585
1586 /*
1587  * Reset PF device.
1588  */
1589 static int
1590 eth_igb_reset(struct rte_eth_dev *dev)
1591 {
1592         int ret;
1593
1594         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1595          * its VF to make them align with it. The detailed notification
1596          * mechanism is PMD specific and is currently not implemented.
1597          * To avoid unexpected behavior in VF, currently reset of PF with
1598          * SR-IOV activation is not supported. It might be supported later.
1599          */
1600         if (dev->data->sriov.active)
1601                 return -ENOTSUP;
1602
1603         ret = eth_igb_dev_uninit(dev);
1604         if (ret)
1605                 return ret;
1606
1607         ret = eth_igb_dev_init(dev);
1608
1609         return ret;
1610 }
1611
1612
1613 static int
1614 igb_get_rx_buffer_size(struct e1000_hw *hw)
1615 {
1616         uint32_t rx_buf_size;
1617         if (hw->mac.type == e1000_82576) {
1618                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1619         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1620                 /* PBS needs to be translated according to a lookup table */
1621                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1622                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1623                 rx_buf_size = (rx_buf_size << 10);
1624         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1625                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1626         } else {
1627                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1628         }
1629
1630         return rx_buf_size;
1631 }
1632
1633 /*********************************************************************
1634  *
1635  *  Initialize the hardware
1636  *
1637  **********************************************************************/
1638 static int
1639 igb_hardware_init(struct e1000_hw *hw)
1640 {
1641         uint32_t rx_buf_size;
1642         int diag;
1643
1644         /* Let the firmware know the OS is in control */
1645         igb_hw_control_acquire(hw);
1646
1647         /*
1648          * These parameters control the automatic generation (Tx) and
1649          * response (Rx) to Ethernet PAUSE frames.
1650          * - High water mark should allow for at least two standard size (1518)
1651          *   frames to be received after sending an XOFF.
1652          * - Low water mark works best when it is very near the high water mark.
1653          *   This allows the receiver to restart by sending XON when it has
1654          *   drained a bit. Here we use an arbitrary value of 1500 which will
1655          *   restart after one full frame is pulled from the buffer. There
1656          *   could be several smaller frames in the buffer and if so they will
1657          *   not trigger the XON until their total number reduces the buffer
1658          *   by 1500.
1659          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1660          */
1661         rx_buf_size = igb_get_rx_buffer_size(hw);
1662
1663         hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
1664         hw->fc.low_water = hw->fc.high_water - 1500;
1665         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1666         hw->fc.send_xon = 1;
1667
1668         /* Set Flow control, use the tunable location if sane */
1669         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1670                 hw->fc.requested_mode = igb_fc_setting;
1671         else
1672                 hw->fc.requested_mode = e1000_fc_none;
1673
1674         /* Issue a global reset */
1675         igb_pf_reset_hw(hw);
1676         E1000_WRITE_REG(hw, E1000_WUC, 0);
1677
1678         diag = e1000_init_hw(hw);
1679         if (diag < 0)
1680                 return diag;
1681
1682         E1000_WRITE_REG(hw, E1000_VET,
1683                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1684         e1000_get_phy_info(hw);
1685         e1000_check_for_link(hw);
1686
1687         return 0;
1688 }
1689
1690 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1691 static void
1692 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1693 {
1694         int pause_frames;
1695
1696         uint64_t old_gprc  = stats->gprc;
1697         uint64_t old_gptc  = stats->gptc;
1698         uint64_t old_tpr   = stats->tpr;
1699         uint64_t old_tpt   = stats->tpt;
1700         uint64_t old_rpthc = stats->rpthc;
1701         uint64_t old_hgptc = stats->hgptc;
1702
1703         if(hw->phy.media_type == e1000_media_type_copper ||
1704             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1705                 stats->symerrs +=
1706                     E1000_READ_REG(hw,E1000_SYMERRS);
1707                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1708         }
1709
1710         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1711         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1712         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1713         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1714
1715         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1716         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1717         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1718         stats->dc += E1000_READ_REG(hw, E1000_DC);
1719         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1720         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1721         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1722         /*
1723         ** For watchdog management we need to know if we have been
1724         ** paused during the last interval, so capture that here.
1725         */
1726         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1727         stats->xoffrxc += pause_frames;
1728         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1729         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1730         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1731         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1732         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1733         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1734         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1735         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1736         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1737         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1738         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1739         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1740
1741         /* For the 64-bit byte counters the low dword must be read first. */
1742         /* Both registers clear on the read of the high dword */
1743
1744         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1745         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1746         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1747         stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
1748         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1749         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1750         stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
1751
1752         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1753         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1754         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1755         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1756         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1757
1758         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1759         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1760
1761         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1762         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1763         stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
1764         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1765         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1766         stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
1767
1768         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1769         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1770         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1771         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1772         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1773         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1774         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1775         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1776
1777         /* Interrupt Counts */
1778
1779         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1780         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1781         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1782         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1783         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1784         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1785         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1786         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1787         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1788
1789         /* Host to Card Statistics */
1790
1791         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1792         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1793         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1794         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1795         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1796         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1797         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1798         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1799         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1800         stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
1801         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1802         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1803         stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
1804         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1805         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1806         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1807
1808         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1809         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1810         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1811         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1812         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1813         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1814 }
1815
1816 static int
1817 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1818 {
1819         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1820         struct e1000_hw_stats *stats =
1821                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1822
1823         igb_read_stats_registers(hw, stats);
1824
1825         if (rte_stats == NULL)
1826                 return -EINVAL;
1827
1828         /* Rx Errors */
1829         rte_stats->imissed = stats->mpc;
1830         rte_stats->ierrors = stats->crcerrs +
1831                              stats->rlec + stats->ruc + stats->roc +
1832                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1833
1834         /* Tx Errors */
1835         rte_stats->oerrors = stats->ecol + stats->latecol;
1836
1837         rte_stats->ipackets = stats->gprc;
1838         rte_stats->opackets = stats->gptc;
1839         rte_stats->ibytes   = stats->gorc;
1840         rte_stats->obytes   = stats->gotc;
1841         return 0;
1842 }
1843
1844 static int
1845 eth_igb_stats_reset(struct rte_eth_dev *dev)
1846 {
1847         struct e1000_hw_stats *hw_stats =
1848                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1849
1850         /* HW registers are cleared on read */
1851         eth_igb_stats_get(dev, NULL);
1852
1853         /* Reset software totals */
1854         memset(hw_stats, 0, sizeof(*hw_stats));
1855
1856         return 0;
1857 }
1858
1859 static int
1860 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1861 {
1862         struct e1000_hw_stats *stats =
1863                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1864
1865         /* HW registers are cleared on read */
1866         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1867
1868         /* Reset software totals */
1869         memset(stats, 0, sizeof(*stats));
1870
1871         return 0;
1872 }
1873
1874 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1875         struct rte_eth_xstat_name *xstats_names,
1876         __rte_unused unsigned int size)
1877 {
1878         unsigned i;
1879
1880         if (xstats_names == NULL)
1881                 return IGB_NB_XSTATS;
1882
1883         /* Note: limit checked in rte_eth_xstats_names() */
1884
1885         for (i = 0; i < IGB_NB_XSTATS; i++) {
1886                 strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name,
1887                         sizeof(xstats_names[i].name));
1888         }
1889
1890         return IGB_NB_XSTATS;
1891 }
1892
1893 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1894                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1895                 unsigned int limit)
1896 {
1897         unsigned int i;
1898
1899         if (!ids) {
1900                 if (xstats_names == NULL)
1901                         return IGB_NB_XSTATS;
1902
1903                 for (i = 0; i < IGB_NB_XSTATS; i++)
1904                         strlcpy(xstats_names[i].name,
1905                                 rte_igb_stats_strings[i].name,
1906                                 sizeof(xstats_names[i].name));
1907
1908                 return IGB_NB_XSTATS;
1909
1910         } else {
1911                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1912
1913                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1914                                 IGB_NB_XSTATS);
1915
1916                 for (i = 0; i < limit; i++) {
1917                         if (ids[i] >= IGB_NB_XSTATS) {
1918                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1919                                 return -1;
1920                         }
1921                         strcpy(xstats_names[i].name,
1922                                         xstats_names_copy[ids[i]].name);
1923                 }
1924                 return limit;
1925         }
1926 }
1927
1928 static int
1929 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1930                    unsigned n)
1931 {
1932         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1933         struct e1000_hw_stats *hw_stats =
1934                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1935         unsigned i;
1936
1937         if (n < IGB_NB_XSTATS)
1938                 return IGB_NB_XSTATS;
1939
1940         igb_read_stats_registers(hw, hw_stats);
1941
1942         /* If this is a reset xstats is NULL, and we have cleared the
1943          * registers by reading them.
1944          */
1945         if (!xstats)
1946                 return 0;
1947
1948         /* Extended stats */
1949         for (i = 0; i < IGB_NB_XSTATS; i++) {
1950                 xstats[i].id = i;
1951                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1952                         rte_igb_stats_strings[i].offset);
1953         }
1954
1955         return IGB_NB_XSTATS;
1956 }
1957
1958 static int
1959 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1960                 uint64_t *values, unsigned int n)
1961 {
1962         unsigned int i;
1963
1964         if (!ids) {
1965                 struct e1000_hw *hw =
1966                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1967                 struct e1000_hw_stats *hw_stats =
1968                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1969
1970                 if (n < IGB_NB_XSTATS)
1971                         return IGB_NB_XSTATS;
1972
1973                 igb_read_stats_registers(hw, hw_stats);
1974
1975                 /* If this is a reset xstats is NULL, and we have cleared the
1976                  * registers by reading them.
1977                  */
1978                 if (!values)
1979                         return 0;
1980
1981                 /* Extended stats */
1982                 for (i = 0; i < IGB_NB_XSTATS; i++)
1983                         values[i] = *(uint64_t *)(((char *)hw_stats) +
1984                                         rte_igb_stats_strings[i].offset);
1985
1986                 return IGB_NB_XSTATS;
1987
1988         } else {
1989                 uint64_t values_copy[IGB_NB_XSTATS];
1990
1991                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
1992                                 IGB_NB_XSTATS);
1993
1994                 for (i = 0; i < n; i++) {
1995                         if (ids[i] >= IGB_NB_XSTATS) {
1996                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1997                                 return -1;
1998                         }
1999                         values[i] = values_copy[ids[i]];
2000                 }
2001                 return n;
2002         }
2003 }
2004
2005 static void
2006 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2007 {
2008         /* Good Rx packets, include VF loopback */
2009         UPDATE_VF_STAT(E1000_VFGPRC,
2010             hw_stats->last_gprc, hw_stats->gprc);
2011
2012         /* Good Rx octets, include VF loopback */
2013         UPDATE_VF_STAT(E1000_VFGORC,
2014             hw_stats->last_gorc, hw_stats->gorc);
2015
2016         /* Good Tx packets, include VF loopback */
2017         UPDATE_VF_STAT(E1000_VFGPTC,
2018             hw_stats->last_gptc, hw_stats->gptc);
2019
2020         /* Good Tx octets, include VF loopback */
2021         UPDATE_VF_STAT(E1000_VFGOTC,
2022             hw_stats->last_gotc, hw_stats->gotc);
2023
2024         /* Rx Multicst packets */
2025         UPDATE_VF_STAT(E1000_VFMPRC,
2026             hw_stats->last_mprc, hw_stats->mprc);
2027
2028         /* Good Rx loopback packets */
2029         UPDATE_VF_STAT(E1000_VFGPRLBC,
2030             hw_stats->last_gprlbc, hw_stats->gprlbc);
2031
2032         /* Good Rx loopback octets */
2033         UPDATE_VF_STAT(E1000_VFGORLBC,
2034             hw_stats->last_gorlbc, hw_stats->gorlbc);
2035
2036         /* Good Tx loopback packets */
2037         UPDATE_VF_STAT(E1000_VFGPTLBC,
2038             hw_stats->last_gptlbc, hw_stats->gptlbc);
2039
2040         /* Good Tx loopback octets */
2041         UPDATE_VF_STAT(E1000_VFGOTLBC,
2042             hw_stats->last_gotlbc, hw_stats->gotlbc);
2043 }
2044
2045 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2046                                      struct rte_eth_xstat_name *xstats_names,
2047                                      __rte_unused unsigned limit)
2048 {
2049         unsigned i;
2050
2051         if (xstats_names != NULL)
2052                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2053                         strlcpy(xstats_names[i].name,
2054                                 rte_igbvf_stats_strings[i].name,
2055                                 sizeof(xstats_names[i].name));
2056                 }
2057         return IGBVF_NB_XSTATS;
2058 }
2059
2060 static int
2061 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2062                      unsigned n)
2063 {
2064         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2065         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2066                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2067         unsigned i;
2068
2069         if (n < IGBVF_NB_XSTATS)
2070                 return IGBVF_NB_XSTATS;
2071
2072         igbvf_read_stats_registers(hw, hw_stats);
2073
2074         if (!xstats)
2075                 return 0;
2076
2077         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2078                 xstats[i].id = i;
2079                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2080                         rte_igbvf_stats_strings[i].offset);
2081         }
2082
2083         return IGBVF_NB_XSTATS;
2084 }
2085
2086 static int
2087 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2088 {
2089         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2090         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2091                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2092
2093         igbvf_read_stats_registers(hw, hw_stats);
2094
2095         if (rte_stats == NULL)
2096                 return -EINVAL;
2097
2098         rte_stats->ipackets = hw_stats->gprc;
2099         rte_stats->ibytes = hw_stats->gorc;
2100         rte_stats->opackets = hw_stats->gptc;
2101         rte_stats->obytes = hw_stats->gotc;
2102         return 0;
2103 }
2104
2105 static int
2106 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2107 {
2108         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2109                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2110
2111         /* Sync HW register to the last stats */
2112         eth_igbvf_stats_get(dev, NULL);
2113
2114         /* reset HW current stats*/
2115         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2116                offsetof(struct e1000_vf_stats, gprc));
2117
2118         return 0;
2119 }
2120
2121 static int
2122 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2123                        size_t fw_size)
2124 {
2125         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2126         struct e1000_fw_version fw;
2127         int ret;
2128
2129         e1000_get_fw_version(hw, &fw);
2130
2131         switch (hw->mac.type) {
2132         case e1000_i210:
2133         case e1000_i211:
2134                 if (!(e1000_get_flash_presence_i210(hw))) {
2135                         ret = snprintf(fw_version, fw_size,
2136                                  "%2d.%2d-%d",
2137                                  fw.invm_major, fw.invm_minor,
2138                                  fw.invm_img_type);
2139                         break;
2140                 }
2141                 /* fall through */
2142         default:
2143                 /* if option rom is valid, display its version too */
2144                 if (fw.or_valid) {
2145                         ret = snprintf(fw_version, fw_size,
2146                                  "%d.%d, 0x%08x, %d.%d.%d",
2147                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2148                                  fw.or_major, fw.or_build, fw.or_patch);
2149                 /* no option rom */
2150                 } else {
2151                         if (fw.etrack_id != 0X0000) {
2152                                 ret = snprintf(fw_version, fw_size,
2153                                          "%d.%d, 0x%08x",
2154                                          fw.eep_major, fw.eep_minor,
2155                                          fw.etrack_id);
2156                         } else {
2157                                 ret = snprintf(fw_version, fw_size,
2158                                          "%d.%d.%d",
2159                                          fw.eep_major, fw.eep_minor,
2160                                          fw.eep_build);
2161                         }
2162                 }
2163                 break;
2164         }
2165
2166         ret += 1; /* add the size of '\0' */
2167         if (fw_size < (u32)ret)
2168                 return ret;
2169         else
2170                 return 0;
2171 }
2172
2173 static int
2174 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2175 {
2176         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2177
2178         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2179         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2180         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2181         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2182         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2183                                     dev_info->rx_queue_offload_capa;
2184         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2185         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2186                                     dev_info->tx_queue_offload_capa;
2187
2188         switch (hw->mac.type) {
2189         case e1000_82575:
2190                 dev_info->max_rx_queues = 4;
2191                 dev_info->max_tx_queues = 4;
2192                 dev_info->max_vmdq_pools = 0;
2193                 break;
2194
2195         case e1000_82576:
2196                 dev_info->max_rx_queues = 16;
2197                 dev_info->max_tx_queues = 16;
2198                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2199                 dev_info->vmdq_queue_num = 16;
2200                 break;
2201
2202         case e1000_82580:
2203                 dev_info->max_rx_queues = 8;
2204                 dev_info->max_tx_queues = 8;
2205                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2206                 dev_info->vmdq_queue_num = 8;
2207                 break;
2208
2209         case e1000_i350:
2210                 dev_info->max_rx_queues = 8;
2211                 dev_info->max_tx_queues = 8;
2212                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2213                 dev_info->vmdq_queue_num = 8;
2214                 break;
2215
2216         case e1000_i354:
2217                 dev_info->max_rx_queues = 8;
2218                 dev_info->max_tx_queues = 8;
2219                 break;
2220
2221         case e1000_i210:
2222                 dev_info->max_rx_queues = 4;
2223                 dev_info->max_tx_queues = 4;
2224                 dev_info->max_vmdq_pools = 0;
2225                 break;
2226
2227         case e1000_i211:
2228                 dev_info->max_rx_queues = 2;
2229                 dev_info->max_tx_queues = 2;
2230                 dev_info->max_vmdq_pools = 0;
2231                 break;
2232
2233         default:
2234                 /* Should not happen */
2235                 return -EINVAL;
2236         }
2237         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2238         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2239         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2240
2241         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2242                 .rx_thresh = {
2243                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2244                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2245                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2246                 },
2247                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2248                 .rx_drop_en = 0,
2249                 .offloads = 0,
2250         };
2251
2252         dev_info->default_txconf = (struct rte_eth_txconf) {
2253                 .tx_thresh = {
2254                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2255                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2256                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2257                 },
2258                 .offloads = 0,
2259         };
2260
2261         dev_info->rx_desc_lim = rx_desc_lim;
2262         dev_info->tx_desc_lim = tx_desc_lim;
2263
2264         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2265                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2266                         ETH_LINK_SPEED_1G;
2267
2268         dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2269         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
2270
2271         return 0;
2272 }
2273
2274 static const uint32_t *
2275 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2276 {
2277         static const uint32_t ptypes[] = {
2278                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2279                 RTE_PTYPE_L2_ETHER,
2280                 RTE_PTYPE_L3_IPV4,
2281                 RTE_PTYPE_L3_IPV4_EXT,
2282                 RTE_PTYPE_L3_IPV6,
2283                 RTE_PTYPE_L3_IPV6_EXT,
2284                 RTE_PTYPE_L4_TCP,
2285                 RTE_PTYPE_L4_UDP,
2286                 RTE_PTYPE_L4_SCTP,
2287                 RTE_PTYPE_TUNNEL_IP,
2288                 RTE_PTYPE_INNER_L3_IPV6,
2289                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2290                 RTE_PTYPE_INNER_L4_TCP,
2291                 RTE_PTYPE_INNER_L4_UDP,
2292                 RTE_PTYPE_UNKNOWN
2293         };
2294
2295         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2296             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2297                 return ptypes;
2298         return NULL;
2299 }
2300
2301 static int
2302 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2303 {
2304         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2305
2306         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2307         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2308         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2309         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2310                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2311                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2312                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2313                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2314                                 DEV_TX_OFFLOAD_TCP_TSO;
2315         switch (hw->mac.type) {
2316         case e1000_vfadapt:
2317                 dev_info->max_rx_queues = 2;
2318                 dev_info->max_tx_queues = 2;
2319                 break;
2320         case e1000_vfadapt_i350:
2321                 dev_info->max_rx_queues = 1;
2322                 dev_info->max_tx_queues = 1;
2323                 break;
2324         default:
2325                 /* Should not happen */
2326                 return -EINVAL;
2327         }
2328
2329         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2330         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2331                                     dev_info->rx_queue_offload_capa;
2332         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2333         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2334                                     dev_info->tx_queue_offload_capa;
2335
2336         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2337                 .rx_thresh = {
2338                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2339                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2340                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2341                 },
2342                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2343                 .rx_drop_en = 0,
2344                 .offloads = 0,
2345         };
2346
2347         dev_info->default_txconf = (struct rte_eth_txconf) {
2348                 .tx_thresh = {
2349                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2350                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2351                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2352                 },
2353                 .offloads = 0,
2354         };
2355
2356         dev_info->rx_desc_lim = rx_desc_lim;
2357         dev_info->tx_desc_lim = tx_desc_lim;
2358
2359         return 0;
2360 }
2361
2362 /* return 0 means link status changed, -1 means not changed */
2363 static int
2364 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2365 {
2366         struct e1000_hw *hw =
2367                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2368         struct rte_eth_link link;
2369         int link_check, count;
2370
2371         link_check = 0;
2372         hw->mac.get_link_status = 1;
2373
2374         /* possible wait-to-complete in up to 9 seconds */
2375         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2376                 /* Read the real link status */
2377                 switch (hw->phy.media_type) {
2378                 case e1000_media_type_copper:
2379                         /* Do the work to read phy */
2380                         e1000_check_for_link(hw);
2381                         link_check = !hw->mac.get_link_status;
2382                         break;
2383
2384                 case e1000_media_type_fiber:
2385                         e1000_check_for_link(hw);
2386                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2387                                       E1000_STATUS_LU);
2388                         break;
2389
2390                 case e1000_media_type_internal_serdes:
2391                         e1000_check_for_link(hw);
2392                         link_check = hw->mac.serdes_has_link;
2393                         break;
2394
2395                 /* VF device is type_unknown */
2396                 case e1000_media_type_unknown:
2397                         eth_igbvf_link_update(hw);
2398                         link_check = !hw->mac.get_link_status;
2399                         break;
2400
2401                 default:
2402                         break;
2403                 }
2404                 if (link_check || wait_to_complete == 0)
2405                         break;
2406                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2407         }
2408         memset(&link, 0, sizeof(link));
2409
2410         /* Now we check if a transition has happened */
2411         if (link_check) {
2412                 uint16_t duplex, speed;
2413                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2414                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2415                                 ETH_LINK_FULL_DUPLEX :
2416                                 ETH_LINK_HALF_DUPLEX;
2417                 link.link_speed = speed;
2418                 link.link_status = ETH_LINK_UP;
2419                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2420                                 ETH_LINK_SPEED_FIXED);
2421         } else if (!link_check) {
2422                 link.link_speed = 0;
2423                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2424                 link.link_status = ETH_LINK_DOWN;
2425                 link.link_autoneg = ETH_LINK_FIXED;
2426         }
2427
2428         return rte_eth_linkstatus_set(dev, &link);
2429 }
2430
2431 /*
2432  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2433  * For ASF and Pass Through versions of f/w this means
2434  * that the driver is loaded.
2435  */
2436 static void
2437 igb_hw_control_acquire(struct e1000_hw *hw)
2438 {
2439         uint32_t ctrl_ext;
2440
2441         /* Let firmware know the driver has taken over */
2442         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2443         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2444 }
2445
2446 /*
2447  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2448  * For ASF and Pass Through versions of f/w this means that the
2449  * driver is no longer loaded.
2450  */
2451 static void
2452 igb_hw_control_release(struct e1000_hw *hw)
2453 {
2454         uint32_t ctrl_ext;
2455
2456         /* Let firmware taken over control of h/w */
2457         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2458         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2459                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2460 }
2461
2462 /*
2463  * Bit of a misnomer, what this really means is
2464  * to enable OS management of the system... aka
2465  * to disable special hardware management features.
2466  */
2467 static void
2468 igb_init_manageability(struct e1000_hw *hw)
2469 {
2470         if (e1000_enable_mng_pass_thru(hw)) {
2471                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2472                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2473
2474                 /* disable hardware interception of ARP */
2475                 manc &= ~(E1000_MANC_ARP_EN);
2476
2477                 /* enable receiving management packets to the host */
2478                 manc |= E1000_MANC_EN_MNG2HOST;
2479                 manc2h |= 1 << 5;  /* Mng Port 623 */
2480                 manc2h |= 1 << 6;  /* Mng Port 664 */
2481                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2482                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2483         }
2484 }
2485
2486 static void
2487 igb_release_manageability(struct e1000_hw *hw)
2488 {
2489         if (e1000_enable_mng_pass_thru(hw)) {
2490                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2491
2492                 manc |= E1000_MANC_ARP_EN;
2493                 manc &= ~E1000_MANC_EN_MNG2HOST;
2494
2495                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2496         }
2497 }
2498
2499 static int
2500 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2501 {
2502         struct e1000_hw *hw =
2503                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2504         uint32_t rctl;
2505
2506         rctl = E1000_READ_REG(hw, E1000_RCTL);
2507         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2508         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2509
2510         return 0;
2511 }
2512
2513 static int
2514 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2515 {
2516         struct e1000_hw *hw =
2517                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2518         uint32_t rctl;
2519
2520         rctl = E1000_READ_REG(hw, E1000_RCTL);
2521         rctl &= (~E1000_RCTL_UPE);
2522         if (dev->data->all_multicast == 1)
2523                 rctl |= E1000_RCTL_MPE;
2524         else
2525                 rctl &= (~E1000_RCTL_MPE);
2526         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2527
2528         return 0;
2529 }
2530
2531 static int
2532 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2533 {
2534         struct e1000_hw *hw =
2535                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2536         uint32_t rctl;
2537
2538         rctl = E1000_READ_REG(hw, E1000_RCTL);
2539         rctl |= E1000_RCTL_MPE;
2540         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2541
2542         return 0;
2543 }
2544
2545 static int
2546 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2547 {
2548         struct e1000_hw *hw =
2549                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2550         uint32_t rctl;
2551
2552         if (dev->data->promiscuous == 1)
2553                 return 0; /* must remain in all_multicast mode */
2554         rctl = E1000_READ_REG(hw, E1000_RCTL);
2555         rctl &= (~E1000_RCTL_MPE);
2556         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2557
2558         return 0;
2559 }
2560
2561 static int
2562 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2563 {
2564         struct e1000_hw *hw =
2565                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2566         struct e1000_vfta * shadow_vfta =
2567                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2568         uint32_t vfta;
2569         uint32_t vid_idx;
2570         uint32_t vid_bit;
2571
2572         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2573                               E1000_VFTA_ENTRY_MASK);
2574         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2575         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2576         if (on)
2577                 vfta |= vid_bit;
2578         else
2579                 vfta &= ~vid_bit;
2580         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2581
2582         /* update local VFTA copy */
2583         shadow_vfta->vfta[vid_idx] = vfta;
2584
2585         return 0;
2586 }
2587
2588 static int
2589 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2590                       enum rte_vlan_type vlan_type,
2591                       uint16_t tpid)
2592 {
2593         struct e1000_hw *hw =
2594                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2595         uint32_t reg, qinq;
2596
2597         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2598         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2599
2600         /* only outer TPID of double VLAN can be configured*/
2601         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2602                 reg = E1000_READ_REG(hw, E1000_VET);
2603                 reg = (reg & (~E1000_VET_VET_EXT)) |
2604                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2605                 E1000_WRITE_REG(hw, E1000_VET, reg);
2606
2607                 return 0;
2608         }
2609
2610         /* all other TPID values are read-only*/
2611         PMD_DRV_LOG(ERR, "Not supported");
2612
2613         return -ENOTSUP;
2614 }
2615
2616 static void
2617 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2618 {
2619         struct e1000_hw *hw =
2620                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2621         uint32_t reg;
2622
2623         /* Filter Table Disable */
2624         reg = E1000_READ_REG(hw, E1000_RCTL);
2625         reg &= ~E1000_RCTL_CFIEN;
2626         reg &= ~E1000_RCTL_VFE;
2627         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2628 }
2629
2630 static void
2631 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2632 {
2633         struct e1000_hw *hw =
2634                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2635         struct e1000_vfta * shadow_vfta =
2636                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2637         uint32_t reg;
2638         int i;
2639
2640         /* Filter Table Enable, CFI not used for packet acceptance */
2641         reg = E1000_READ_REG(hw, E1000_RCTL);
2642         reg &= ~E1000_RCTL_CFIEN;
2643         reg |= E1000_RCTL_VFE;
2644         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2645
2646         /* restore VFTA table */
2647         for (i = 0; i < IGB_VFTA_SIZE; i++)
2648                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2649 }
2650
2651 static void
2652 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2653 {
2654         struct e1000_hw *hw =
2655                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2656         uint32_t reg;
2657
2658         /* VLAN Mode Disable */
2659         reg = E1000_READ_REG(hw, E1000_CTRL);
2660         reg &= ~E1000_CTRL_VME;
2661         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2662 }
2663
2664 static void
2665 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2666 {
2667         struct e1000_hw *hw =
2668                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2669         uint32_t reg;
2670
2671         /* VLAN Mode Enable */
2672         reg = E1000_READ_REG(hw, E1000_CTRL);
2673         reg |= E1000_CTRL_VME;
2674         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2675 }
2676
2677 static void
2678 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2679 {
2680         struct e1000_hw *hw =
2681                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2682         uint32_t reg;
2683
2684         /* CTRL_EXT: Extended VLAN */
2685         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2686         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2687         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2688
2689         /* Update maximum packet length */
2690         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2691                 E1000_WRITE_REG(hw, E1000_RLPML,
2692                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2693                                                 VLAN_TAG_SIZE);
2694 }
2695
2696 static void
2697 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2698 {
2699         struct e1000_hw *hw =
2700                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2701         uint32_t reg;
2702
2703         /* CTRL_EXT: Extended VLAN */
2704         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2705         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2706         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2707
2708         /* Update maximum packet length */
2709         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2710                 E1000_WRITE_REG(hw, E1000_RLPML,
2711                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2712                                                 2 * VLAN_TAG_SIZE);
2713 }
2714
2715 static int
2716 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2717 {
2718         struct rte_eth_rxmode *rxmode;
2719
2720         rxmode = &dev->data->dev_conf.rxmode;
2721         if(mask & ETH_VLAN_STRIP_MASK){
2722                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2723                         igb_vlan_hw_strip_enable(dev);
2724                 else
2725                         igb_vlan_hw_strip_disable(dev);
2726         }
2727
2728         if(mask & ETH_VLAN_FILTER_MASK){
2729                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2730                         igb_vlan_hw_filter_enable(dev);
2731                 else
2732                         igb_vlan_hw_filter_disable(dev);
2733         }
2734
2735         if(mask & ETH_VLAN_EXTEND_MASK){
2736                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2737                         igb_vlan_hw_extend_enable(dev);
2738                 else
2739                         igb_vlan_hw_extend_disable(dev);
2740         }
2741
2742         return 0;
2743 }
2744
2745
2746 /**
2747  * It enables the interrupt mask and then enable the interrupt.
2748  *
2749  * @param dev
2750  *  Pointer to struct rte_eth_dev.
2751  * @param on
2752  *  Enable or Disable
2753  *
2754  * @return
2755  *  - On success, zero.
2756  *  - On failure, a negative value.
2757  */
2758 static int
2759 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2760 {
2761         struct e1000_interrupt *intr =
2762                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2763
2764         if (on)
2765                 intr->mask |= E1000_ICR_LSC;
2766         else
2767                 intr->mask &= ~E1000_ICR_LSC;
2768
2769         return 0;
2770 }
2771
2772 /* It clears the interrupt causes and enables the interrupt.
2773  * It will be called once only during nic initialized.
2774  *
2775  * @param dev
2776  *  Pointer to struct rte_eth_dev.
2777  *
2778  * @return
2779  *  - On success, zero.
2780  *  - On failure, a negative value.
2781  */
2782 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2783 {
2784         uint32_t mask, regval;
2785         int ret;
2786         struct e1000_hw *hw =
2787                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2788         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2789         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2790         int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2791         struct rte_eth_dev_info dev_info;
2792
2793         memset(&dev_info, 0, sizeof(dev_info));
2794         ret = eth_igb_infos_get(dev, &dev_info);
2795         if (ret != 0)
2796                 return ret;
2797
2798         mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2799         regval = E1000_READ_REG(hw, E1000_EIMS);
2800         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2801
2802         return 0;
2803 }
2804
2805 /*
2806  * It reads ICR and gets interrupt causes, check it and set a bit flag
2807  * to update link status.
2808  *
2809  * @param dev
2810  *  Pointer to struct rte_eth_dev.
2811  *
2812  * @return
2813  *  - On success, zero.
2814  *  - On failure, a negative value.
2815  */
2816 static int
2817 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2818 {
2819         uint32_t icr;
2820         struct e1000_hw *hw =
2821                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2822         struct e1000_interrupt *intr =
2823                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2824
2825         igb_intr_disable(dev);
2826
2827         /* read-on-clear nic registers here */
2828         icr = E1000_READ_REG(hw, E1000_ICR);
2829
2830         intr->flags = 0;
2831         if (icr & E1000_ICR_LSC) {
2832                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2833         }
2834
2835         if (icr & E1000_ICR_VMMB)
2836                 intr->flags |= E1000_FLAG_MAILBOX;
2837
2838         return 0;
2839 }
2840
2841 /*
2842  * It executes link_update after knowing an interrupt is prsent.
2843  *
2844  * @param dev
2845  *  Pointer to struct rte_eth_dev.
2846  *
2847  * @return
2848  *  - On success, zero.
2849  *  - On failure, a negative value.
2850  */
2851 static int
2852 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2853                          struct rte_intr_handle *intr_handle)
2854 {
2855         struct e1000_hw *hw =
2856                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2857         struct e1000_interrupt *intr =
2858                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2859         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2860         struct rte_eth_link link;
2861         int ret;
2862
2863         if (intr->flags & E1000_FLAG_MAILBOX) {
2864                 igb_pf_mbx_process(dev);
2865                 intr->flags &= ~E1000_FLAG_MAILBOX;
2866         }
2867
2868         igb_intr_enable(dev);
2869         rte_intr_ack(intr_handle);
2870
2871         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2872                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2873
2874                 /* set get_link_status to check register later */
2875                 hw->mac.get_link_status = 1;
2876                 ret = eth_igb_link_update(dev, 0);
2877
2878                 /* check if link has changed */
2879                 if (ret < 0)
2880                         return 0;
2881
2882                 rte_eth_linkstatus_get(dev, &link);
2883                 if (link.link_status) {
2884                         PMD_INIT_LOG(INFO,
2885                                      " Port %d: Link Up - speed %u Mbps - %s",
2886                                      dev->data->port_id,
2887                                      (unsigned)link.link_speed,
2888                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2889                                      "full-duplex" : "half-duplex");
2890                 } else {
2891                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2892                                      dev->data->port_id);
2893                 }
2894
2895                 PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
2896                              pci_dev->addr.domain,
2897                              pci_dev->addr.bus,
2898                              pci_dev->addr.devid,
2899                              pci_dev->addr.function);
2900                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2901         }
2902
2903         return 0;
2904 }
2905
2906 /**
2907  * Interrupt handler which shall be registered at first.
2908  *
2909  * @param handle
2910  *  Pointer to interrupt handle.
2911  * @param param
2912  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2913  *
2914  * @return
2915  *  void
2916  */
2917 static void
2918 eth_igb_interrupt_handler(void *param)
2919 {
2920         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2921
2922         eth_igb_interrupt_get_status(dev);
2923         eth_igb_interrupt_action(dev, dev->intr_handle);
2924 }
2925
2926 static int
2927 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2928 {
2929         uint32_t eicr;
2930         struct e1000_hw *hw =
2931                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2932         struct e1000_interrupt *intr =
2933                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2934
2935         igbvf_intr_disable(hw);
2936
2937         /* read-on-clear nic registers here */
2938         eicr = E1000_READ_REG(hw, E1000_EICR);
2939         intr->flags = 0;
2940
2941         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2942                 intr->flags |= E1000_FLAG_MAILBOX;
2943
2944         return 0;
2945 }
2946
2947 void igbvf_mbx_process(struct rte_eth_dev *dev)
2948 {
2949         struct e1000_hw *hw =
2950                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2951         struct e1000_mbx_info *mbx = &hw->mbx;
2952         u32 in_msg = 0;
2953
2954         /* peek the message first */
2955         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2956
2957         /* PF reset VF event */
2958         if (in_msg == E1000_PF_CONTROL_MSG) {
2959                 /* dummy mbx read to ack pf */
2960                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2961                         return;
2962                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2963                                              NULL);
2964         }
2965 }
2966
2967 static int
2968 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2969 {
2970         struct e1000_interrupt *intr =
2971                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2972
2973         if (intr->flags & E1000_FLAG_MAILBOX) {
2974                 igbvf_mbx_process(dev);
2975                 intr->flags &= ~E1000_FLAG_MAILBOX;
2976         }
2977
2978         igbvf_intr_enable(dev);
2979         rte_intr_ack(intr_handle);
2980
2981         return 0;
2982 }
2983
2984 static void
2985 eth_igbvf_interrupt_handler(void *param)
2986 {
2987         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2988
2989         eth_igbvf_interrupt_get_status(dev);
2990         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2991 }
2992
2993 static int
2994 eth_igb_led_on(struct rte_eth_dev *dev)
2995 {
2996         struct e1000_hw *hw;
2997
2998         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2999         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3000 }
3001
3002 static int
3003 eth_igb_led_off(struct rte_eth_dev *dev)
3004 {
3005         struct e1000_hw *hw;
3006
3007         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3008         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3009 }
3010
3011 static int
3012 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3013 {
3014         struct e1000_hw *hw;
3015         uint32_t ctrl;
3016         int tx_pause;
3017         int rx_pause;
3018
3019         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3020         fc_conf->pause_time = hw->fc.pause_time;
3021         fc_conf->high_water = hw->fc.high_water;
3022         fc_conf->low_water = hw->fc.low_water;
3023         fc_conf->send_xon = hw->fc.send_xon;
3024         fc_conf->autoneg = hw->mac.autoneg;
3025
3026         /*
3027          * Return rx_pause and tx_pause status according to actual setting of
3028          * the TFCE and RFCE bits in the CTRL register.
3029          */
3030         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3031         if (ctrl & E1000_CTRL_TFCE)
3032                 tx_pause = 1;
3033         else
3034                 tx_pause = 0;
3035
3036         if (ctrl & E1000_CTRL_RFCE)
3037                 rx_pause = 1;
3038         else
3039                 rx_pause = 0;
3040
3041         if (rx_pause && tx_pause)
3042                 fc_conf->mode = RTE_FC_FULL;
3043         else if (rx_pause)
3044                 fc_conf->mode = RTE_FC_RX_PAUSE;
3045         else if (tx_pause)
3046                 fc_conf->mode = RTE_FC_TX_PAUSE;
3047         else
3048                 fc_conf->mode = RTE_FC_NONE;
3049
3050         return 0;
3051 }
3052
3053 static int
3054 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3055 {
3056         struct e1000_hw *hw;
3057         int err;
3058         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3059                 e1000_fc_none,
3060                 e1000_fc_rx_pause,
3061                 e1000_fc_tx_pause,
3062                 e1000_fc_full
3063         };
3064         uint32_t rx_buf_size;
3065         uint32_t max_high_water;
3066         uint32_t rctl;
3067         uint32_t ctrl;
3068
3069         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3070         if (fc_conf->autoneg != hw->mac.autoneg)
3071                 return -ENOTSUP;
3072         rx_buf_size = igb_get_rx_buffer_size(hw);
3073         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3074
3075         /* At least reserve one Ethernet frame for watermark */
3076         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
3077         if ((fc_conf->high_water > max_high_water) ||
3078             (fc_conf->high_water < fc_conf->low_water)) {
3079                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3080                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3081                 return -EINVAL;
3082         }
3083
3084         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3085         hw->fc.pause_time     = fc_conf->pause_time;
3086         hw->fc.high_water     = fc_conf->high_water;
3087         hw->fc.low_water      = fc_conf->low_water;
3088         hw->fc.send_xon       = fc_conf->send_xon;
3089
3090         err = e1000_setup_link_generic(hw);
3091         if (err == E1000_SUCCESS) {
3092
3093                 /* check if we want to forward MAC frames - driver doesn't have native
3094                  * capability to do that, so we'll write the registers ourselves */
3095
3096                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3097
3098                 /* set or clear MFLCN.PMCF bit depending on configuration */
3099                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3100                         rctl |= E1000_RCTL_PMCF;
3101                 else
3102                         rctl &= ~E1000_RCTL_PMCF;
3103
3104                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3105
3106                 /*
3107                  * check if we want to change flow control mode - driver doesn't have native
3108                  * capability to do that, so we'll write the registers ourselves
3109                  */
3110                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
3111
3112                 /*
3113                  * set or clear E1000_CTRL_RFCE and E1000_CTRL_TFCE bits depending
3114                  * on configuration
3115                  */
3116                 switch (fc_conf->mode) {
3117                 case RTE_FC_NONE:
3118                         ctrl &= ~E1000_CTRL_RFCE & ~E1000_CTRL_TFCE;
3119                         break;
3120                 case RTE_FC_RX_PAUSE:
3121                         ctrl |= E1000_CTRL_RFCE;
3122                         ctrl &= ~E1000_CTRL_TFCE;
3123                         break;
3124                 case RTE_FC_TX_PAUSE:
3125                         ctrl |= E1000_CTRL_TFCE;
3126                         ctrl &= ~E1000_CTRL_RFCE;
3127                         break;
3128                 case RTE_FC_FULL:
3129                         ctrl |= E1000_CTRL_RFCE | E1000_CTRL_TFCE;
3130                         break;
3131                 default:
3132                         PMD_INIT_LOG(ERR, "invalid flow control mode");
3133                         return -EINVAL;
3134                 }
3135
3136                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3137
3138                 E1000_WRITE_FLUSH(hw);
3139
3140                 return 0;
3141         }
3142
3143         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3144         return -EIO;
3145 }
3146
3147 #define E1000_RAH_POOLSEL_SHIFT      (18)
3148 static int
3149 eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
3150                 uint32_t index, uint32_t pool)
3151 {
3152         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3153         uint32_t rah;
3154
3155         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3156         rah = E1000_READ_REG(hw, E1000_RAH(index));
3157         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3158         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3159         return 0;
3160 }
3161
3162 static void
3163 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3164 {
3165         uint8_t addr[RTE_ETHER_ADDR_LEN];
3166         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3167
3168         memset(addr, 0, sizeof(addr));
3169
3170         e1000_rar_set(hw, addr, index);
3171 }
3172
3173 static int
3174 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3175                                 struct rte_ether_addr *addr)
3176 {
3177         eth_igb_rar_clear(dev, 0);
3178         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3179
3180         return 0;
3181 }
3182 /*
3183  * Virtual Function operations
3184  */
3185 static void
3186 igbvf_intr_disable(struct e1000_hw *hw)
3187 {
3188         PMD_INIT_FUNC_TRACE();
3189
3190         /* Clear interrupt mask to stop from interrupts being generated */
3191         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3192
3193         E1000_WRITE_FLUSH(hw);
3194 }
3195
3196 static void
3197 igbvf_stop_adapter(struct rte_eth_dev *dev)
3198 {
3199         u32 reg_val;
3200         u16 i;
3201         struct rte_eth_dev_info dev_info;
3202         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3203         int ret;
3204
3205         memset(&dev_info, 0, sizeof(dev_info));
3206         ret = eth_igbvf_infos_get(dev, &dev_info);
3207         if (ret != 0)
3208                 return;
3209
3210         /* Clear interrupt mask to stop from interrupts being generated */
3211         igbvf_intr_disable(hw);
3212
3213         /* Clear any pending interrupts, flush previous writes */
3214         E1000_READ_REG(hw, E1000_EICR);
3215
3216         /* Disable the transmit unit.  Each queue must be disabled. */
3217         for (i = 0; i < dev_info.max_tx_queues; i++)
3218                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3219
3220         /* Disable the receive unit by stopping each queue */
3221         for (i = 0; i < dev_info.max_rx_queues; i++) {
3222                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3223                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3224                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3225                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3226                         ;
3227         }
3228
3229         /* flush all queues disables */
3230         E1000_WRITE_FLUSH(hw);
3231         msec_delay(2);
3232 }
3233
3234 static int eth_igbvf_link_update(struct e1000_hw *hw)
3235 {
3236         struct e1000_mbx_info *mbx = &hw->mbx;
3237         struct e1000_mac_info *mac = &hw->mac;
3238         int ret_val = E1000_SUCCESS;
3239
3240         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3241
3242         /*
3243          * We only want to run this if there has been a rst asserted.
3244          * in this case that could mean a link change, device reset,
3245          * or a virtual function reset
3246          */
3247
3248         /* If we were hit with a reset or timeout drop the link */
3249         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3250                 mac->get_link_status = TRUE;
3251
3252         if (!mac->get_link_status)
3253                 goto out;
3254
3255         /* if link status is down no point in checking to see if pf is up */
3256         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3257                 goto out;
3258
3259         /* if we passed all the tests above then the link is up and we no
3260          * longer need to check for link */
3261         mac->get_link_status = FALSE;
3262
3263 out:
3264         return ret_val;
3265 }
3266
3267
3268 static int
3269 igbvf_dev_configure(struct rte_eth_dev *dev)
3270 {
3271         struct rte_eth_conf* conf = &dev->data->dev_conf;
3272
3273         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3274                      dev->data->port_id);
3275
3276         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
3277                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
3278
3279         /*
3280          * VF has no ability to enable/disable HW CRC
3281          * Keep the persistent behavior the same as Host PF
3282          */
3283 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3284         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3285                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3286                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3287         }
3288 #else
3289         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3290                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3291                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3292         }
3293 #endif
3294
3295         return 0;
3296 }
3297
3298 static int
3299 igbvf_dev_start(struct rte_eth_dev *dev)
3300 {
3301         struct e1000_hw *hw =
3302                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3303         struct e1000_adapter *adapter =
3304                 E1000_DEV_PRIVATE(dev->data->dev_private);
3305         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3306         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3307         int ret;
3308         uint32_t intr_vector = 0;
3309
3310         PMD_INIT_FUNC_TRACE();
3311
3312         hw->mac.ops.reset_hw(hw);
3313         adapter->stopped = 0;
3314
3315         /* Set all vfta */
3316         igbvf_set_vfta_all(dev,1);
3317
3318         eth_igbvf_tx_init(dev);
3319
3320         /* This can fail when allocating mbufs for descriptor rings */
3321         ret = eth_igbvf_rx_init(dev);
3322         if (ret) {
3323                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3324                 igb_dev_clear_queues(dev);
3325                 return ret;
3326         }
3327
3328         /* check and configure queue intr-vector mapping */
3329         if (rte_intr_cap_multiple(intr_handle) &&
3330             dev->data->dev_conf.intr_conf.rxq) {
3331                 intr_vector = dev->data->nb_rx_queues;
3332                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3333                 if (ret)
3334                         return ret;
3335         }
3336
3337         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3338                 intr_handle->intr_vec =
3339                         rte_zmalloc("intr_vec",
3340                                     dev->data->nb_rx_queues * sizeof(int), 0);
3341                 if (!intr_handle->intr_vec) {
3342                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3343                                      " intr_vec", dev->data->nb_rx_queues);
3344                         return -ENOMEM;
3345                 }
3346         }
3347
3348         eth_igbvf_configure_msix_intr(dev);
3349
3350         /* enable uio/vfio intr/eventfd mapping */
3351         rte_intr_enable(intr_handle);
3352
3353         /* resume enabled intr since hw reset */
3354         igbvf_intr_enable(dev);
3355
3356         return 0;
3357 }
3358
3359 static int
3360 igbvf_dev_stop(struct rte_eth_dev *dev)
3361 {
3362         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3363         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3364         struct e1000_adapter *adapter =
3365                 E1000_DEV_PRIVATE(dev->data->dev_private);
3366
3367         if (adapter->stopped)
3368                 return 0;
3369
3370         PMD_INIT_FUNC_TRACE();
3371
3372         igbvf_stop_adapter(dev);
3373
3374         /*
3375           * Clear what we set, but we still keep shadow_vfta to
3376           * restore after device starts
3377           */
3378         igbvf_set_vfta_all(dev,0);
3379
3380         igb_dev_clear_queues(dev);
3381
3382         /* disable intr eventfd mapping */
3383         rte_intr_disable(intr_handle);
3384
3385         /* Clean datapath event and queue/vec mapping */
3386         rte_intr_efd_disable(intr_handle);
3387         if (intr_handle->intr_vec) {
3388                 rte_free(intr_handle->intr_vec);
3389                 intr_handle->intr_vec = NULL;
3390         }
3391
3392         adapter->stopped = true;
3393         dev->data->dev_started = 0;
3394
3395         return 0;
3396 }
3397
3398 static int
3399 igbvf_dev_close(struct rte_eth_dev *dev)
3400 {
3401         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3402         struct rte_ether_addr addr;
3403         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3404         int ret;
3405
3406         PMD_INIT_FUNC_TRACE();
3407
3408         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3409                 return 0;
3410
3411         e1000_reset_hw(hw);
3412
3413         ret = igbvf_dev_stop(dev);
3414         if (ret != 0)
3415                 return ret;
3416
3417         igb_dev_free_queues(dev);
3418
3419         /**
3420          * reprogram the RAR with a zero mac address,
3421          * to ensure that the VF traffic goes to the PF
3422          * after stop, close and detach of the VF.
3423          **/
3424
3425         memset(&addr, 0, sizeof(addr));
3426         igbvf_default_mac_addr_set(dev, &addr);
3427
3428         rte_intr_callback_unregister(&pci_dev->intr_handle,
3429                                      eth_igbvf_interrupt_handler,
3430                                      (void *)dev);
3431
3432         return 0;
3433 }
3434
3435 static int
3436 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3437 {
3438         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3439
3440         /* Set both unicast and multicast promisc */
3441         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3442
3443         return 0;
3444 }
3445
3446 static int
3447 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3448 {
3449         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3450
3451         /* If in allmulticast mode leave multicast promisc */
3452         if (dev->data->all_multicast == 1)
3453                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3454         else
3455                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3456
3457         return 0;
3458 }
3459
3460 static int
3461 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3462 {
3463         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3464
3465         /* In promiscuous mode multicast promisc already set */
3466         if (dev->data->promiscuous == 0)
3467                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3468
3469         return 0;
3470 }
3471
3472 static int
3473 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3474 {
3475         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3476
3477         /* In promiscuous mode leave multicast promisc enabled */
3478         if (dev->data->promiscuous == 0)
3479                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3480
3481         return 0;
3482 }
3483
3484 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3485 {
3486         struct e1000_mbx_info *mbx = &hw->mbx;
3487         uint32_t msgbuf[2];
3488         s32 err;
3489
3490         /* After set vlan, vlan strip will also be enabled in igb driver*/
3491         msgbuf[0] = E1000_VF_SET_VLAN;
3492         msgbuf[1] = vid;
3493         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3494         if (on)
3495                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3496
3497         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3498         if (err)
3499                 goto mbx_err;
3500
3501         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3502         if (err)
3503                 goto mbx_err;
3504
3505         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3506         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3507                 err = -EINVAL;
3508
3509 mbx_err:
3510         return err;
3511 }
3512
3513 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3514 {
3515         struct e1000_hw *hw =
3516                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3517         struct e1000_vfta * shadow_vfta =
3518                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3519         int i = 0, j = 0, vfta = 0, mask = 1;
3520
3521         for (i = 0; i < IGB_VFTA_SIZE; i++){
3522                 vfta = shadow_vfta->vfta[i];
3523                 if(vfta){
3524                         mask = 1;
3525                         for (j = 0; j < 32; j++){
3526                                 if(vfta & mask)
3527                                         igbvf_set_vfta(hw,
3528                                                 (uint16_t)((i<<5)+j), on);
3529                                 mask<<=1;
3530                         }
3531                 }
3532         }
3533
3534 }
3535
3536 static int
3537 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3538 {
3539         struct e1000_hw *hw =
3540                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3541         struct e1000_vfta * shadow_vfta =
3542                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3543         uint32_t vid_idx = 0;
3544         uint32_t vid_bit = 0;
3545         int ret = 0;
3546
3547         PMD_INIT_FUNC_TRACE();
3548
3549         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3550         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3551         if(ret){
3552                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3553                 return ret;
3554         }
3555         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3556         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3557
3558         /*Save what we set and retore it after device reset*/
3559         if (on)
3560                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3561         else
3562                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3563
3564         return 0;
3565 }
3566
3567 static int
3568 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr)
3569 {
3570         struct e1000_hw *hw =
3571                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3572
3573         /* index is not used by rar_set() */
3574         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3575         return 0;
3576 }
3577
3578
3579 static int
3580 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3581                         struct rte_eth_rss_reta_entry64 *reta_conf,
3582                         uint16_t reta_size)
3583 {
3584         uint8_t i, j, mask;
3585         uint32_t reta, r;
3586         uint16_t idx, shift;
3587         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3588
3589         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3590                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3591                         "(%d) doesn't match the number hardware can supported "
3592                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3593                 return -EINVAL;
3594         }
3595
3596         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3597                 idx = i / RTE_RETA_GROUP_SIZE;
3598                 shift = i % RTE_RETA_GROUP_SIZE;
3599                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3600                                                 IGB_4_BIT_MASK);
3601                 if (!mask)
3602                         continue;
3603                 if (mask == IGB_4_BIT_MASK)
3604                         r = 0;
3605                 else
3606                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3607                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3608                         if (mask & (0x1 << j))
3609                                 reta |= reta_conf[idx].reta[shift + j] <<
3610                                                         (CHAR_BIT * j);
3611                         else
3612                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3613                 }
3614                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3615         }
3616
3617         return 0;
3618 }
3619
3620 static int
3621 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3622                        struct rte_eth_rss_reta_entry64 *reta_conf,
3623                        uint16_t reta_size)
3624 {
3625         uint8_t i, j, mask;
3626         uint32_t reta;
3627         uint16_t idx, shift;
3628         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3629
3630         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3631                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3632                         "(%d) doesn't match the number hardware can supported "
3633                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3634                 return -EINVAL;
3635         }
3636
3637         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3638                 idx = i / RTE_RETA_GROUP_SIZE;
3639                 shift = i % RTE_RETA_GROUP_SIZE;
3640                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3641                                                 IGB_4_BIT_MASK);
3642                 if (!mask)
3643                         continue;
3644                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3645                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3646                         if (mask & (0x1 << j))
3647                                 reta_conf[idx].reta[shift + j] =
3648                                         ((reta >> (CHAR_BIT * j)) &
3649                                                 IGB_8_BIT_MASK);
3650                 }
3651         }
3652
3653         return 0;
3654 }
3655
3656 int
3657 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3658                         struct rte_eth_syn_filter *filter,
3659                         bool add)
3660 {
3661         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3662         struct e1000_filter_info *filter_info =
3663                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3664         uint32_t synqf, rfctl;
3665
3666         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3667                 return -EINVAL;
3668
3669         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3670
3671         if (add) {
3672                 if (synqf & E1000_SYN_FILTER_ENABLE)
3673                         return -EINVAL;
3674
3675                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3676                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3677
3678                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3679                 if (filter->hig_pri)
3680                         rfctl |= E1000_RFCTL_SYNQFP;
3681                 else
3682                         rfctl &= ~E1000_RFCTL_SYNQFP;
3683
3684                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3685         } else {
3686                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3687                         return -ENOENT;
3688                 synqf = 0;
3689         }
3690
3691         filter_info->syn_info = synqf;
3692         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3693         E1000_WRITE_FLUSH(hw);
3694         return 0;
3695 }
3696
3697 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3698 static inline int
3699 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3700                         struct e1000_2tuple_filter_info *filter_info)
3701 {
3702         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3703                 return -EINVAL;
3704         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3705                 return -EINVAL;  /* filter index is out of range. */
3706         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
3707                 return -EINVAL;  /* flags is invalid. */
3708
3709         switch (filter->dst_port_mask) {
3710         case UINT16_MAX:
3711                 filter_info->dst_port_mask = 0;
3712                 filter_info->dst_port = filter->dst_port;
3713                 break;
3714         case 0:
3715                 filter_info->dst_port_mask = 1;
3716                 break;
3717         default:
3718                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3719                 return -EINVAL;
3720         }
3721
3722         switch (filter->proto_mask) {
3723         case UINT8_MAX:
3724                 filter_info->proto_mask = 0;
3725                 filter_info->proto = filter->proto;
3726                 break;
3727         case 0:
3728                 filter_info->proto_mask = 1;
3729                 break;
3730         default:
3731                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3732                 return -EINVAL;
3733         }
3734
3735         filter_info->priority = (uint8_t)filter->priority;
3736         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3737                 filter_info->tcp_flags = filter->tcp_flags;
3738         else
3739                 filter_info->tcp_flags = 0;
3740
3741         return 0;
3742 }
3743
3744 static inline struct e1000_2tuple_filter *
3745 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3746                         struct e1000_2tuple_filter_info *key)
3747 {
3748         struct e1000_2tuple_filter *it;
3749
3750         TAILQ_FOREACH(it, filter_list, entries) {
3751                 if (memcmp(key, &it->filter_info,
3752                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3753                         return it;
3754                 }
3755         }
3756         return NULL;
3757 }
3758
3759 /* inject a igb 2tuple filter to HW */
3760 static inline void
3761 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3762                            struct e1000_2tuple_filter *filter)
3763 {
3764         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3765         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3766         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3767         int i;
3768
3769         i = filter->index;
3770         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3771         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3772                 imir |= E1000_IMIR_PORT_BP;
3773         else
3774                 imir &= ~E1000_IMIR_PORT_BP;
3775
3776         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3777
3778         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3779         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3780         ttqf |= (uint32_t)(filter->filter_info.proto &
3781                                                 E1000_TTQF_PROTOCOL_MASK);
3782         if (filter->filter_info.proto_mask == 0)
3783                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3784
3785         /* tcp flags bits setting. */
3786         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
3787                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
3788                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3789                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
3790                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3791                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
3792                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3793                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
3794                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3795                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
3796                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3797                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
3798                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3799         } else {
3800                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3801         }
3802         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3803         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3804         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3805 }
3806
3807 /*
3808  * igb_add_2tuple_filter - add a 2tuple filter
3809  *
3810  * @param
3811  * dev: Pointer to struct rte_eth_dev.
3812  * ntuple_filter: ponter to the filter that will be added.
3813  *
3814  * @return
3815  *    - On success, zero.
3816  *    - On failure, a negative value.
3817  */
3818 static int
3819 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3820                         struct rte_eth_ntuple_filter *ntuple_filter)
3821 {
3822         struct e1000_filter_info *filter_info =
3823                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3824         struct e1000_2tuple_filter *filter;
3825         int i, ret;
3826
3827         filter = rte_zmalloc("e1000_2tuple_filter",
3828                         sizeof(struct e1000_2tuple_filter), 0);
3829         if (filter == NULL)
3830                 return -ENOMEM;
3831
3832         ret = ntuple_filter_to_2tuple(ntuple_filter,
3833                                       &filter->filter_info);
3834         if (ret < 0) {
3835                 rte_free(filter);
3836                 return ret;
3837         }
3838         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3839                                          &filter->filter_info) != NULL) {
3840                 PMD_DRV_LOG(ERR, "filter exists.");
3841                 rte_free(filter);
3842                 return -EEXIST;
3843         }
3844         filter->queue = ntuple_filter->queue;
3845
3846         /*
3847          * look for an unused 2tuple filter index,
3848          * and insert the filter to list.
3849          */
3850         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3851                 if (!(filter_info->twotuple_mask & (1 << i))) {
3852                         filter_info->twotuple_mask |= 1 << i;
3853                         filter->index = i;
3854                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3855                                           filter,
3856                                           entries);
3857                         break;
3858                 }
3859         }
3860         if (i >= E1000_MAX_TTQF_FILTERS) {
3861                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3862                 rte_free(filter);
3863                 return -ENOSYS;
3864         }
3865
3866         igb_inject_2uple_filter(dev, filter);
3867         return 0;
3868 }
3869
3870 int
3871 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3872                         struct e1000_2tuple_filter *filter)
3873 {
3874         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3875         struct e1000_filter_info *filter_info =
3876                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3877
3878         filter_info->twotuple_mask &= ~(1 << filter->index);
3879         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3880         rte_free(filter);
3881
3882         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3883         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3884         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3885         return 0;
3886 }
3887
3888 /*
3889  * igb_remove_2tuple_filter - remove a 2tuple filter
3890  *
3891  * @param
3892  * dev: Pointer to struct rte_eth_dev.
3893  * ntuple_filter: ponter to the filter that will be removed.
3894  *
3895  * @return
3896  *    - On success, zero.
3897  *    - On failure, a negative value.
3898  */
3899 static int
3900 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3901                         struct rte_eth_ntuple_filter *ntuple_filter)
3902 {
3903         struct e1000_filter_info *filter_info =
3904                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3905         struct e1000_2tuple_filter_info filter_2tuple;
3906         struct e1000_2tuple_filter *filter;
3907         int ret;
3908
3909         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3910         ret = ntuple_filter_to_2tuple(ntuple_filter,
3911                                       &filter_2tuple);
3912         if (ret < 0)
3913                 return ret;
3914
3915         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3916                                          &filter_2tuple);
3917         if (filter == NULL) {
3918                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3919                 return -ENOENT;
3920         }
3921
3922         igb_delete_2tuple_filter(dev, filter);
3923
3924         return 0;
3925 }
3926
3927 /* inject a igb flex filter to HW */
3928 static inline void
3929 igb_inject_flex_filter(struct rte_eth_dev *dev,
3930                            struct e1000_flex_filter *filter)
3931 {
3932         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3933         uint32_t wufc, queueing;
3934         uint32_t reg_off;
3935         uint8_t i, j = 0;
3936
3937         wufc = E1000_READ_REG(hw, E1000_WUFC);
3938         if (filter->index < E1000_MAX_FHFT)
3939                 reg_off = E1000_FHFT(filter->index);
3940         else
3941                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3942
3943         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3944                         (E1000_WUFC_FLX0 << filter->index));
3945         queueing = filter->filter_info.len |
3946                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3947                 (filter->filter_info.priority <<
3948                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3949         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3950                         queueing);
3951
3952         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3953                 E1000_WRITE_REG(hw, reg_off,
3954                                 filter->filter_info.dwords[j]);
3955                 reg_off += sizeof(uint32_t);
3956                 E1000_WRITE_REG(hw, reg_off,
3957                                 filter->filter_info.dwords[++j]);
3958                 reg_off += sizeof(uint32_t);
3959                 E1000_WRITE_REG(hw, reg_off,
3960                         (uint32_t)filter->filter_info.mask[i]);
3961                 reg_off += sizeof(uint32_t) * 2;
3962                 ++j;
3963         }
3964 }
3965
3966 static inline struct e1000_flex_filter *
3967 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3968                         struct e1000_flex_filter_info *key)
3969 {
3970         struct e1000_flex_filter *it;
3971
3972         TAILQ_FOREACH(it, filter_list, entries) {
3973                 if (memcmp(key, &it->filter_info,
3974                         sizeof(struct e1000_flex_filter_info)) == 0)
3975                         return it;
3976         }
3977
3978         return NULL;
3979 }
3980
3981 /* remove a flex byte filter
3982  * @param
3983  * dev: Pointer to struct rte_eth_dev.
3984  * filter: the pointer of the filter will be removed.
3985  */
3986 void
3987 igb_remove_flex_filter(struct rte_eth_dev *dev,
3988                         struct e1000_flex_filter *filter)
3989 {
3990         struct e1000_filter_info *filter_info =
3991                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3992         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3993         uint32_t wufc, i;
3994         uint32_t reg_off;
3995
3996         wufc = E1000_READ_REG(hw, E1000_WUFC);
3997         if (filter->index < E1000_MAX_FHFT)
3998                 reg_off = E1000_FHFT(filter->index);
3999         else
4000                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
4001
4002         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
4003                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4004
4005         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4006                 (~(E1000_WUFC_FLX0 << filter->index)));
4007
4008         filter_info->flex_mask &= ~(1 << filter->index);
4009         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4010         rte_free(filter);
4011 }
4012
4013 int
4014 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4015                         struct igb_flex_filter *filter,
4016                         bool add)
4017 {
4018         struct e1000_filter_info *filter_info =
4019                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4020         struct e1000_flex_filter *flex_filter, *it;
4021         uint32_t mask;
4022         uint8_t shift, i;
4023
4024         flex_filter = rte_zmalloc("e1000_flex_filter",
4025                         sizeof(struct e1000_flex_filter), 0);
4026         if (flex_filter == NULL)
4027                 return -ENOMEM;
4028
4029         flex_filter->filter_info.len = filter->len;
4030         flex_filter->filter_info.priority = filter->priority;
4031         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4032         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4033                 mask = 0;
4034                 /* reverse bits in flex filter's mask*/
4035                 for (shift = 0; shift < CHAR_BIT; shift++) {
4036                         if (filter->mask[i] & (0x01 << shift))
4037                                 mask |= (0x80 >> shift);
4038                 }
4039                 flex_filter->filter_info.mask[i] = mask;
4040         }
4041
4042         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4043                                 &flex_filter->filter_info);
4044         if (it == NULL && !add) {
4045                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4046                 rte_free(flex_filter);
4047                 return -ENOENT;
4048         }
4049         if (it != NULL && add) {
4050                 PMD_DRV_LOG(ERR, "filter exists.");
4051                 rte_free(flex_filter);
4052                 return -EEXIST;
4053         }
4054
4055         if (add) {
4056                 flex_filter->queue = filter->queue;
4057                 /*
4058                  * look for an unused flex filter index
4059                  * and insert the filter into the list.
4060                  */
4061                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4062                         if (!(filter_info->flex_mask & (1 << i))) {
4063                                 filter_info->flex_mask |= 1 << i;
4064                                 flex_filter->index = i;
4065                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4066                                         flex_filter,
4067                                         entries);
4068                                 break;
4069                         }
4070                 }
4071                 if (i >= E1000_MAX_FLEX_FILTERS) {
4072                         PMD_DRV_LOG(ERR, "flex filters are full.");
4073                         rte_free(flex_filter);
4074                         return -ENOSYS;
4075                 }
4076
4077                 igb_inject_flex_filter(dev, flex_filter);
4078
4079         } else {
4080                 igb_remove_flex_filter(dev, it);
4081                 rte_free(flex_filter);
4082         }
4083
4084         return 0;
4085 }
4086
4087 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4088 static inline int
4089 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4090                         struct e1000_5tuple_filter_info *filter_info)
4091 {
4092         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4093                 return -EINVAL;
4094         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4095                 return -EINVAL;  /* filter index is out of range. */
4096         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
4097                 return -EINVAL;  /* flags is invalid. */
4098
4099         switch (filter->dst_ip_mask) {
4100         case UINT32_MAX:
4101                 filter_info->dst_ip_mask = 0;
4102                 filter_info->dst_ip = filter->dst_ip;
4103                 break;
4104         case 0:
4105                 filter_info->dst_ip_mask = 1;
4106                 break;
4107         default:
4108                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4109                 return -EINVAL;
4110         }
4111
4112         switch (filter->src_ip_mask) {
4113         case UINT32_MAX:
4114                 filter_info->src_ip_mask = 0;
4115                 filter_info->src_ip = filter->src_ip;
4116                 break;
4117         case 0:
4118                 filter_info->src_ip_mask = 1;
4119                 break;
4120         default:
4121                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4122                 return -EINVAL;
4123         }
4124
4125         switch (filter->dst_port_mask) {
4126         case UINT16_MAX:
4127                 filter_info->dst_port_mask = 0;
4128                 filter_info->dst_port = filter->dst_port;
4129                 break;
4130         case 0:
4131                 filter_info->dst_port_mask = 1;
4132                 break;
4133         default:
4134                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4135                 return -EINVAL;
4136         }
4137
4138         switch (filter->src_port_mask) {
4139         case UINT16_MAX:
4140                 filter_info->src_port_mask = 0;
4141                 filter_info->src_port = filter->src_port;
4142                 break;
4143         case 0:
4144                 filter_info->src_port_mask = 1;
4145                 break;
4146         default:
4147                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4148                 return -EINVAL;
4149         }
4150
4151         switch (filter->proto_mask) {
4152         case UINT8_MAX:
4153                 filter_info->proto_mask = 0;
4154                 filter_info->proto = filter->proto;
4155                 break;
4156         case 0:
4157                 filter_info->proto_mask = 1;
4158                 break;
4159         default:
4160                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4161                 return -EINVAL;
4162         }
4163
4164         filter_info->priority = (uint8_t)filter->priority;
4165         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4166                 filter_info->tcp_flags = filter->tcp_flags;
4167         else
4168                 filter_info->tcp_flags = 0;
4169
4170         return 0;
4171 }
4172
4173 static inline struct e1000_5tuple_filter *
4174 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4175                         struct e1000_5tuple_filter_info *key)
4176 {
4177         struct e1000_5tuple_filter *it;
4178
4179         TAILQ_FOREACH(it, filter_list, entries) {
4180                 if (memcmp(key, &it->filter_info,
4181                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4182                         return it;
4183                 }
4184         }
4185         return NULL;
4186 }
4187
4188 /* inject a igb 5-tuple filter to HW */
4189 static inline void
4190 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4191                            struct e1000_5tuple_filter *filter)
4192 {
4193         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4194         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4195         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4196         uint8_t i;
4197
4198         i = filter->index;
4199         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4200         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4201                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4202         if (filter->filter_info.dst_ip_mask == 0)
4203                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4204         if (filter->filter_info.src_port_mask == 0)
4205                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4206         if (filter->filter_info.proto_mask == 0)
4207                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4208         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4209                 E1000_FTQF_QUEUE_MASK;
4210         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4211         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4212         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4213         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4214
4215         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4216         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4217
4218         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4219         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4220                 imir |= E1000_IMIR_PORT_BP;
4221         else
4222                 imir &= ~E1000_IMIR_PORT_BP;
4223         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4224
4225         /* tcp flags bits setting. */
4226         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
4227                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
4228                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4229                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
4230                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4231                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
4232                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4233                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
4234                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4235                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
4236                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4237                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
4238                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4239         } else {
4240                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4241         }
4242         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4243         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4244 }
4245
4246 /*
4247  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4248  *
4249  * @param
4250  * dev: Pointer to struct rte_eth_dev.
4251  * ntuple_filter: ponter to the filter that will be added.
4252  *
4253  * @return
4254  *    - On success, zero.
4255  *    - On failure, a negative value.
4256  */
4257 static int
4258 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4259                         struct rte_eth_ntuple_filter *ntuple_filter)
4260 {
4261         struct e1000_filter_info *filter_info =
4262                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4263         struct e1000_5tuple_filter *filter;
4264         uint8_t i;
4265         int ret;
4266
4267         filter = rte_zmalloc("e1000_5tuple_filter",
4268                         sizeof(struct e1000_5tuple_filter), 0);
4269         if (filter == NULL)
4270                 return -ENOMEM;
4271
4272         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4273                                             &filter->filter_info);
4274         if (ret < 0) {
4275                 rte_free(filter);
4276                 return ret;
4277         }
4278
4279         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4280                                          &filter->filter_info) != NULL) {
4281                 PMD_DRV_LOG(ERR, "filter exists.");
4282                 rte_free(filter);
4283                 return -EEXIST;
4284         }
4285         filter->queue = ntuple_filter->queue;
4286
4287         /*
4288          * look for an unused 5tuple filter index,
4289          * and insert the filter to list.
4290          */
4291         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4292                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4293                         filter_info->fivetuple_mask |= 1 << i;
4294                         filter->index = i;
4295                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4296                                           filter,
4297                                           entries);
4298                         break;
4299                 }
4300         }
4301         if (i >= E1000_MAX_FTQF_FILTERS) {
4302                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4303                 rte_free(filter);
4304                 return -ENOSYS;
4305         }
4306
4307         igb_inject_5tuple_filter_82576(dev, filter);
4308         return 0;
4309 }
4310
4311 int
4312 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4313                                 struct e1000_5tuple_filter *filter)
4314 {
4315         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4316         struct e1000_filter_info *filter_info =
4317                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4318
4319         filter_info->fivetuple_mask &= ~(1 << filter->index);
4320         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4321         rte_free(filter);
4322
4323         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4324                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4325         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4326         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4327         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4328         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4329         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4330         return 0;
4331 }
4332
4333 /*
4334  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4335  *
4336  * @param
4337  * dev: Pointer to struct rte_eth_dev.
4338  * ntuple_filter: ponter to the filter that will be removed.
4339  *
4340  * @return
4341  *    - On success, zero.
4342  *    - On failure, a negative value.
4343  */
4344 static int
4345 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4346                                 struct rte_eth_ntuple_filter *ntuple_filter)
4347 {
4348         struct e1000_filter_info *filter_info =
4349                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4350         struct e1000_5tuple_filter_info filter_5tuple;
4351         struct e1000_5tuple_filter *filter;
4352         int ret;
4353
4354         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4355         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4356                                             &filter_5tuple);
4357         if (ret < 0)
4358                 return ret;
4359
4360         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4361                                          &filter_5tuple);
4362         if (filter == NULL) {
4363                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4364                 return -ENOENT;
4365         }
4366
4367         igb_delete_5tuple_filter_82576(dev, filter);
4368
4369         return 0;
4370 }
4371
4372 static int
4373 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4374 {
4375         uint32_t rctl;
4376         struct e1000_hw *hw;
4377         struct rte_eth_dev_info dev_info;
4378         uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4379         int ret;
4380
4381         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4382
4383 #ifdef RTE_LIBRTE_82571_SUPPORT
4384         /* XXX: not bigger than max_rx_pktlen */
4385         if (hw->mac.type == e1000_82571)
4386                 return -ENOTSUP;
4387 #endif
4388         ret = eth_igb_infos_get(dev, &dev_info);
4389         if (ret != 0)
4390                 return ret;
4391
4392         /* check that mtu is within the allowed range */
4393         if (mtu < RTE_ETHER_MIN_MTU ||
4394                         frame_size > dev_info.max_rx_pktlen)
4395                 return -EINVAL;
4396
4397         /* refuse mtu that requires the support of scattered packets when this
4398          * feature has not been enabled before. */
4399         if (!dev->data->scattered_rx &&
4400             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4401                 return -EINVAL;
4402
4403         rctl = E1000_READ_REG(hw, E1000_RCTL);
4404
4405         /* switch to jumbo mode if needed */
4406         if (frame_size > E1000_ETH_MAX_LEN) {
4407                 dev->data->dev_conf.rxmode.offloads |=
4408                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4409                 rctl |= E1000_RCTL_LPE;
4410         } else {
4411                 dev->data->dev_conf.rxmode.offloads &=
4412                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4413                 rctl &= ~E1000_RCTL_LPE;
4414         }
4415         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4416
4417         /* update max frame size */
4418         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4419
4420         E1000_WRITE_REG(hw, E1000_RLPML,
4421                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4422
4423         return 0;
4424 }
4425
4426 /*
4427  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4428  *
4429  * @param
4430  * dev: Pointer to struct rte_eth_dev.
4431  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4432  * add: if true, add filter, if false, remove filter
4433  *
4434  * @return
4435  *    - On success, zero.
4436  *    - On failure, a negative value.
4437  */
4438 int
4439 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4440                         struct rte_eth_ntuple_filter *ntuple_filter,
4441                         bool add)
4442 {
4443         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4444         int ret;
4445
4446         switch (ntuple_filter->flags) {
4447         case RTE_5TUPLE_FLAGS:
4448         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4449                 if (hw->mac.type != e1000_82576)
4450                         return -ENOTSUP;
4451                 if (add)
4452                         ret = igb_add_5tuple_filter_82576(dev,
4453                                                           ntuple_filter);
4454                 else
4455                         ret = igb_remove_5tuple_filter_82576(dev,
4456                                                              ntuple_filter);
4457                 break;
4458         case RTE_2TUPLE_FLAGS:
4459         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4460                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4461                         hw->mac.type != e1000_i210 &&
4462                         hw->mac.type != e1000_i211)
4463                         return -ENOTSUP;
4464                 if (add)
4465                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4466                 else
4467                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4468                 break;
4469         default:
4470                 ret = -EINVAL;
4471                 break;
4472         }
4473
4474         return ret;
4475 }
4476
4477 static inline int
4478 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4479                         uint16_t ethertype)
4480 {
4481         int i;
4482
4483         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4484                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4485                     (filter_info->ethertype_mask & (1 << i)))
4486                         return i;
4487         }
4488         return -1;
4489 }
4490
4491 static inline int
4492 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4493                         uint16_t ethertype, uint32_t etqf)
4494 {
4495         int i;
4496
4497         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4498                 if (!(filter_info->ethertype_mask & (1 << i))) {
4499                         filter_info->ethertype_mask |= 1 << i;
4500                         filter_info->ethertype_filters[i].ethertype = ethertype;
4501                         filter_info->ethertype_filters[i].etqf = etqf;
4502                         return i;
4503                 }
4504         }
4505         return -1;
4506 }
4507
4508 int
4509 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4510                         uint8_t idx)
4511 {
4512         if (idx >= E1000_MAX_ETQF_FILTERS)
4513                 return -1;
4514         filter_info->ethertype_mask &= ~(1 << idx);
4515         filter_info->ethertype_filters[idx].ethertype = 0;
4516         filter_info->ethertype_filters[idx].etqf = 0;
4517         return idx;
4518 }
4519
4520
4521 int
4522 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4523                         struct rte_eth_ethertype_filter *filter,
4524                         bool add)
4525 {
4526         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4527         struct e1000_filter_info *filter_info =
4528                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4529         uint32_t etqf = 0;
4530         int ret;
4531
4532         if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
4533                 filter->ether_type == RTE_ETHER_TYPE_IPV6) {
4534                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4535                         " ethertype filter.", filter->ether_type);
4536                 return -EINVAL;
4537         }
4538
4539         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4540                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4541                 return -EINVAL;
4542         }
4543         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4544                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4545                 return -EINVAL;
4546         }
4547
4548         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4549         if (ret >= 0 && add) {
4550                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4551                             filter->ether_type);
4552                 return -EEXIST;
4553         }
4554         if (ret < 0 && !add) {
4555                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4556                             filter->ether_type);
4557                 return -ENOENT;
4558         }
4559
4560         if (add) {
4561                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4562                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4563                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4564                 ret = igb_ethertype_filter_insert(filter_info,
4565                                 filter->ether_type, etqf);
4566                 if (ret < 0) {
4567                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4568                         return -ENOSYS;
4569                 }
4570         } else {
4571                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4572                 if (ret < 0)
4573                         return -ENOSYS;
4574         }
4575         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4576         E1000_WRITE_FLUSH(hw);
4577
4578         return 0;
4579 }
4580
4581 static int
4582 eth_igb_filter_ctrl(struct rte_eth_dev *dev __rte_unused,
4583                      enum rte_filter_type filter_type,
4584                      enum rte_filter_op filter_op,
4585                      void *arg)
4586 {
4587         int ret = 0;
4588
4589         switch (filter_type) {
4590         case RTE_ETH_FILTER_GENERIC:
4591                 if (filter_op != RTE_ETH_FILTER_GET)
4592                         return -EINVAL;
4593                 *(const void **)arg = &igb_flow_ops;
4594                 break;
4595         default:
4596                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4597                                                         filter_type);
4598                 break;
4599         }
4600
4601         return ret;
4602 }
4603
4604 static int
4605 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4606                          struct rte_ether_addr *mc_addr_set,
4607                          uint32_t nb_mc_addr)
4608 {
4609         struct e1000_hw *hw;
4610
4611         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4612         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4613         return 0;
4614 }
4615
4616 static uint64_t
4617 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4618 {
4619         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4620         uint64_t systime_cycles;
4621
4622         switch (hw->mac.type) {
4623         case e1000_i210:
4624         case e1000_i211:
4625                 /*
4626                  * Need to read System Time Residue Register to be able
4627                  * to read the other two registers.
4628                  */
4629                 E1000_READ_REG(hw, E1000_SYSTIMR);
4630                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4631                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4632                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4633                                 * NSEC_PER_SEC;
4634                 break;
4635         case e1000_82580:
4636         case e1000_i350:
4637         case e1000_i354:
4638                 /*
4639                  * Need to read System Time Residue Register to be able
4640                  * to read the other two registers.
4641                  */
4642                 E1000_READ_REG(hw, E1000_SYSTIMR);
4643                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4644                 /* Only the 8 LSB are valid. */
4645                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4646                                 & 0xff) << 32;
4647                 break;
4648         default:
4649                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4650                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4651                                 << 32;
4652                 break;
4653         }
4654
4655         return systime_cycles;
4656 }
4657
4658 static uint64_t
4659 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4660 {
4661         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4662         uint64_t rx_tstamp_cycles;
4663
4664         switch (hw->mac.type) {
4665         case e1000_i210:
4666         case e1000_i211:
4667                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4668                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4669                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4670                                 * NSEC_PER_SEC;
4671                 break;
4672         case e1000_82580:
4673         case e1000_i350:
4674         case e1000_i354:
4675                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4676                 /* Only the 8 LSB are valid. */
4677                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4678                                 & 0xff) << 32;
4679                 break;
4680         default:
4681                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4682                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4683                                 << 32;
4684                 break;
4685         }
4686
4687         return rx_tstamp_cycles;
4688 }
4689
4690 static uint64_t
4691 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4692 {
4693         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4694         uint64_t tx_tstamp_cycles;
4695
4696         switch (hw->mac.type) {
4697         case e1000_i210:
4698         case e1000_i211:
4699                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4700                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4701                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4702                                 * NSEC_PER_SEC;
4703                 break;
4704         case e1000_82580:
4705         case e1000_i350:
4706         case e1000_i354:
4707                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4708                 /* Only the 8 LSB are valid. */
4709                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
4710                                 & 0xff) << 32;
4711                 break;
4712         default:
4713                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4714                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4715                                 << 32;
4716                 break;
4717         }
4718
4719         return tx_tstamp_cycles;
4720 }
4721
4722 static void
4723 igb_start_timecounters(struct rte_eth_dev *dev)
4724 {
4725         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4726         struct e1000_adapter *adapter = dev->data->dev_private;
4727         uint32_t incval = 1;
4728         uint32_t shift = 0;
4729         uint64_t mask = E1000_CYCLECOUNTER_MASK;
4730
4731         switch (hw->mac.type) {
4732         case e1000_82580:
4733         case e1000_i350:
4734         case e1000_i354:
4735                 /* 32 LSB bits + 8 MSB bits = 40 bits */
4736                 mask = (1ULL << 40) - 1;
4737                 /* fall-through */
4738         case e1000_i210:
4739         case e1000_i211:
4740                 /*
4741                  * Start incrementing the register
4742                  * used to timestamp PTP packets.
4743                  */
4744                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
4745                 break;
4746         case e1000_82576:
4747                 incval = E1000_INCVALUE_82576;
4748                 shift = IGB_82576_TSYNC_SHIFT;
4749                 E1000_WRITE_REG(hw, E1000_TIMINCA,
4750                                 E1000_INCPERIOD_82576 | incval);
4751                 break;
4752         default:
4753                 /* Not supported */
4754                 return;
4755         }
4756
4757         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
4758         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4759         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4760
4761         adapter->systime_tc.cc_mask = mask;
4762         adapter->systime_tc.cc_shift = shift;
4763         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
4764
4765         adapter->rx_tstamp_tc.cc_mask = mask;
4766         adapter->rx_tstamp_tc.cc_shift = shift;
4767         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4768
4769         adapter->tx_tstamp_tc.cc_mask = mask;
4770         adapter->tx_tstamp_tc.cc_shift = shift;
4771         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4772 }
4773
4774 static int
4775 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
4776 {
4777         struct e1000_adapter *adapter = dev->data->dev_private;
4778
4779         adapter->systime_tc.nsec += delta;
4780         adapter->rx_tstamp_tc.nsec += delta;
4781         adapter->tx_tstamp_tc.nsec += delta;
4782
4783         return 0;
4784 }
4785
4786 static int
4787 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
4788 {
4789         uint64_t ns;
4790         struct e1000_adapter *adapter = dev->data->dev_private;
4791
4792         ns = rte_timespec_to_ns(ts);
4793
4794         /* Set the timecounters to a new value. */
4795         adapter->systime_tc.nsec = ns;
4796         adapter->rx_tstamp_tc.nsec = ns;
4797         adapter->tx_tstamp_tc.nsec = ns;
4798
4799         return 0;
4800 }
4801
4802 static int
4803 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
4804 {
4805         uint64_t ns, systime_cycles;
4806         struct e1000_adapter *adapter = dev->data->dev_private;
4807
4808         systime_cycles = igb_read_systime_cyclecounter(dev);
4809         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
4810         *ts = rte_ns_to_timespec(ns);
4811
4812         return 0;
4813 }
4814
4815 static int
4816 igb_timesync_enable(struct rte_eth_dev *dev)
4817 {
4818         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4819         uint32_t tsync_ctl;
4820         uint32_t tsauxc;
4821
4822         /* Stop the timesync system time. */
4823         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
4824         /* Reset the timesync system time value. */
4825         switch (hw->mac.type) {
4826         case e1000_82580:
4827         case e1000_i350:
4828         case e1000_i354:
4829         case e1000_i210:
4830         case e1000_i211:
4831                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
4832                 /* fall-through */
4833         case e1000_82576:
4834                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
4835                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
4836                 break;
4837         default:
4838                 /* Not supported. */
4839                 return -ENOTSUP;
4840         }
4841
4842         /* Enable system time for it isn't on by default. */
4843         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
4844         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
4845         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
4846
4847         igb_start_timecounters(dev);
4848
4849         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4850         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
4851                         (RTE_ETHER_TYPE_1588 |
4852                          E1000_ETQF_FILTER_ENABLE |
4853                          E1000_ETQF_1588));
4854
4855         /* Enable timestamping of received PTP packets. */
4856         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4857         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
4858         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4859
4860         /* Enable Timestamping of transmitted PTP packets. */
4861         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4862         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
4863         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4864
4865         return 0;
4866 }
4867
4868 static int
4869 igb_timesync_disable(struct rte_eth_dev *dev)
4870 {
4871         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4872         uint32_t tsync_ctl;
4873
4874         /* Disable timestamping of transmitted PTP packets. */
4875         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4876         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
4877         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4878
4879         /* Disable timestamping of received PTP packets. */
4880         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4881         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
4882         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4883
4884         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4885         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
4886
4887         /* Stop incrementating the System Time registers. */
4888         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
4889
4890         return 0;
4891 }
4892
4893 static int
4894 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
4895                                struct timespec *timestamp,
4896                                uint32_t flags __rte_unused)
4897 {
4898         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4899         struct e1000_adapter *adapter = dev->data->dev_private;
4900         uint32_t tsync_rxctl;
4901         uint64_t rx_tstamp_cycles;
4902         uint64_t ns;
4903
4904         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4905         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
4906                 return -EINVAL;
4907
4908         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
4909         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
4910         *timestamp = rte_ns_to_timespec(ns);
4911
4912         return  0;
4913 }
4914
4915 static int
4916 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
4917                                struct timespec *timestamp)
4918 {
4919         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4920         struct e1000_adapter *adapter = dev->data->dev_private;
4921         uint32_t tsync_txctl;
4922         uint64_t tx_tstamp_cycles;
4923         uint64_t ns;
4924
4925         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4926         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
4927                 return -EINVAL;
4928
4929         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
4930         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
4931         *timestamp = rte_ns_to_timespec(ns);
4932
4933         return  0;
4934 }
4935
4936 static int
4937 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4938 {
4939         int count = 0;
4940         int g_ind = 0;
4941         const struct reg_info *reg_group;
4942
4943         while ((reg_group = igb_regs[g_ind++]))
4944                 count += igb_reg_group_count(reg_group);
4945
4946         return count;
4947 }
4948
4949 static int
4950 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4951 {
4952         int count = 0;
4953         int g_ind = 0;
4954         const struct reg_info *reg_group;
4955
4956         while ((reg_group = igbvf_regs[g_ind++]))
4957                 count += igb_reg_group_count(reg_group);
4958
4959         return count;
4960 }
4961
4962 static int
4963 eth_igb_get_regs(struct rte_eth_dev *dev,
4964         struct rte_dev_reg_info *regs)
4965 {
4966         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4967         uint32_t *data = regs->data;
4968         int g_ind = 0;
4969         int count = 0;
4970         const struct reg_info *reg_group;
4971
4972         if (data == NULL) {
4973                 regs->length = eth_igb_get_reg_length(dev);
4974                 regs->width = sizeof(uint32_t);
4975                 return 0;
4976         }
4977
4978         /* Support only full register dump */
4979         if ((regs->length == 0) ||
4980             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
4981                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4982                         hw->device_id;
4983                 while ((reg_group = igb_regs[g_ind++]))
4984                         count += igb_read_regs_group(dev, &data[count],
4985                                                         reg_group);
4986                 return 0;
4987         }
4988
4989         return -ENOTSUP;
4990 }
4991
4992 static int
4993 igbvf_get_regs(struct rte_eth_dev *dev,
4994         struct rte_dev_reg_info *regs)
4995 {
4996         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4997         uint32_t *data = regs->data;
4998         int g_ind = 0;
4999         int count = 0;
5000         const struct reg_info *reg_group;
5001
5002         if (data == NULL) {
5003                 regs->length = igbvf_get_reg_length(dev);
5004                 regs->width = sizeof(uint32_t);
5005                 return 0;
5006         }
5007
5008         /* Support only full register dump */
5009         if ((regs->length == 0) ||
5010             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5011                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5012                         hw->device_id;
5013                 while ((reg_group = igbvf_regs[g_ind++]))
5014                         count += igb_read_regs_group(dev, &data[count],
5015                                                         reg_group);
5016                 return 0;
5017         }
5018
5019         return -ENOTSUP;
5020 }
5021
5022 static int
5023 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5024 {
5025         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5026
5027         /* Return unit is byte count */
5028         return hw->nvm.word_size * 2;
5029 }
5030
5031 static int
5032 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5033         struct rte_dev_eeprom_info *in_eeprom)
5034 {
5035         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5036         struct e1000_nvm_info *nvm = &hw->nvm;
5037         uint16_t *data = in_eeprom->data;
5038         int first, length;
5039
5040         first = in_eeprom->offset >> 1;
5041         length = in_eeprom->length >> 1;
5042         if ((first >= hw->nvm.word_size) ||
5043             ((first + length) >= hw->nvm.word_size))
5044                 return -EINVAL;
5045
5046         in_eeprom->magic = hw->vendor_id |
5047                 ((uint32_t)hw->device_id << 16);
5048
5049         if ((nvm->ops.read) == NULL)
5050                 return -ENOTSUP;
5051
5052         return nvm->ops.read(hw, first, length, data);
5053 }
5054
5055 static int
5056 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5057         struct rte_dev_eeprom_info *in_eeprom)
5058 {
5059         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5060         struct e1000_nvm_info *nvm = &hw->nvm;
5061         uint16_t *data = in_eeprom->data;
5062         int first, length;
5063
5064         first = in_eeprom->offset >> 1;
5065         length = in_eeprom->length >> 1;
5066         if ((first >= hw->nvm.word_size) ||
5067             ((first + length) >= hw->nvm.word_size))
5068                 return -EINVAL;
5069
5070         in_eeprom->magic = (uint32_t)hw->vendor_id |
5071                 ((uint32_t)hw->device_id << 16);
5072
5073         if ((nvm->ops.write) == NULL)
5074                 return -ENOTSUP;
5075         return nvm->ops.write(hw,  first, length, data);
5076 }
5077
5078 static int
5079 eth_igb_get_module_info(struct rte_eth_dev *dev,
5080                         struct rte_eth_dev_module_info *modinfo)
5081 {
5082         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5083
5084         uint32_t status = 0;
5085         uint16_t sff8472_rev, addr_mode;
5086         bool page_swap = false;
5087
5088         if (hw->phy.media_type == e1000_media_type_copper ||
5089             hw->phy.media_type == e1000_media_type_unknown)
5090                 return -EOPNOTSUPP;
5091
5092         /* Check whether we support SFF-8472 or not */
5093         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5094         if (status)
5095                 return -EIO;
5096
5097         /* addressing mode is not supported */
5098         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5099         if (status)
5100                 return -EIO;
5101
5102         /* addressing mode is not supported */
5103         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5104                 PMD_DRV_LOG(ERR,
5105                             "Address change required to access page 0xA2, "
5106                             "but not supported. Please report the module "
5107                             "type to the driver maintainers.\n");
5108                 page_swap = true;
5109         }
5110
5111         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5112                 /* We have an SFP, but it does not support SFF-8472 */
5113                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5114                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5115         } else {
5116                 /* We have an SFP which supports a revision of SFF-8472 */
5117                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5118                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5119         }
5120
5121         return 0;
5122 }
5123
5124 static int
5125 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5126                           struct rte_dev_eeprom_info *info)
5127 {
5128         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5129
5130         uint32_t status = 0;
5131         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5132         u16 first_word, last_word;
5133         int i = 0;
5134
5135         if (info->length == 0)
5136                 return -EINVAL;
5137
5138         first_word = info->offset >> 1;
5139         last_word = (info->offset + info->length - 1) >> 1;
5140
5141         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5142         for (i = 0; i < last_word - first_word + 1; i++) {
5143                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5144                                                 &dataword[i]);
5145                 if (status) {
5146                         /* Error occurred while reading module */
5147                         return -EIO;
5148                 }
5149
5150                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5151         }
5152
5153         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5154
5155         return 0;
5156 }
5157
5158 static int
5159 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5160 {
5161         struct e1000_hw *hw =
5162                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5163         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5164         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5165         uint32_t vec = E1000_MISC_VEC_ID;
5166
5167         if (rte_intr_allow_others(intr_handle))
5168                 vec = E1000_RX_VEC_START;
5169
5170         uint32_t mask = 1 << (queue_id + vec);
5171
5172         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5173         E1000_WRITE_FLUSH(hw);
5174
5175         return 0;
5176 }
5177
5178 static int
5179 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5180 {
5181         struct e1000_hw *hw =
5182                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5183         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5184         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5185         uint32_t vec = E1000_MISC_VEC_ID;
5186
5187         if (rte_intr_allow_others(intr_handle))
5188                 vec = E1000_RX_VEC_START;
5189
5190         uint32_t mask = 1 << (queue_id + vec);
5191         uint32_t regval;
5192
5193         regval = E1000_READ_REG(hw, E1000_EIMS);
5194         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5195         E1000_WRITE_FLUSH(hw);
5196
5197         rte_intr_ack(intr_handle);
5198
5199         return 0;
5200 }
5201
5202 static void
5203 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5204                    uint8_t index, uint8_t offset)
5205 {
5206         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5207
5208         /* clear bits */
5209         val &= ~((uint32_t)0xFF << offset);
5210
5211         /* write vector and valid bit */
5212         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5213
5214         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5215 }
5216
5217 static void
5218 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5219                            uint8_t queue, uint8_t msix_vector)
5220 {
5221         uint32_t tmp = 0;
5222
5223         if (hw->mac.type == e1000_82575) {
5224                 if (direction == 0)
5225                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5226                 else if (direction == 1)
5227                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5228                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5229         } else if (hw->mac.type == e1000_82576) {
5230                 if ((direction == 0) || (direction == 1))
5231                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5232                                            ((queue & 0x8) << 1) +
5233                                            8 * direction);
5234         } else if ((hw->mac.type == e1000_82580) ||
5235                         (hw->mac.type == e1000_i350) ||
5236                         (hw->mac.type == e1000_i354) ||
5237                         (hw->mac.type == e1000_i210) ||
5238                         (hw->mac.type == e1000_i211)) {
5239                 if ((direction == 0) || (direction == 1))
5240                         eth_igb_write_ivar(hw, msix_vector,
5241                                            queue >> 1,
5242                                            ((queue & 0x1) << 4) +
5243                                            8 * direction);
5244         }
5245 }
5246
5247 /* Sets up the hardware to generate MSI-X interrupts properly
5248  * @hw
5249  *  board private structure
5250  */
5251 static void
5252 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5253 {
5254         int queue_id;
5255         uint32_t tmpval, regval, intr_mask;
5256         struct e1000_hw *hw =
5257                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5258         uint32_t vec = E1000_MISC_VEC_ID;
5259         uint32_t base = E1000_MISC_VEC_ID;
5260         uint32_t misc_shift = 0;
5261         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5262         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5263
5264         /* won't configure msix register if no mapping is done
5265          * between intr vector and event fd
5266          */
5267         if (!rte_intr_dp_is_en(intr_handle))
5268                 return;
5269
5270         if (rte_intr_allow_others(intr_handle)) {
5271                 vec = base = E1000_RX_VEC_START;
5272                 misc_shift = 1;
5273         }
5274
5275         /* set interrupt vector for other causes */
5276         if (hw->mac.type == e1000_82575) {
5277                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5278                 /* enable MSI-X PBA support */
5279                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5280
5281                 /* Auto-Mask interrupts upon ICR read */
5282                 tmpval |= E1000_CTRL_EXT_EIAME;
5283                 tmpval |= E1000_CTRL_EXT_IRCA;
5284
5285                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5286
5287                 /* enable msix_other interrupt */
5288                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5289                 regval = E1000_READ_REG(hw, E1000_EIAC);
5290                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5291                 regval = E1000_READ_REG(hw, E1000_EIAM);
5292                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5293         } else if ((hw->mac.type == e1000_82576) ||
5294                         (hw->mac.type == e1000_82580) ||
5295                         (hw->mac.type == e1000_i350) ||
5296                         (hw->mac.type == e1000_i354) ||
5297                         (hw->mac.type == e1000_i210) ||
5298                         (hw->mac.type == e1000_i211)) {
5299                 /* turn on MSI-X capability first */
5300                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5301                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5302                                         E1000_GPIE_NSICR);
5303                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5304                         misc_shift;
5305
5306                 if (dev->data->dev_conf.intr_conf.lsc != 0)
5307                         intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5308
5309                 regval = E1000_READ_REG(hw, E1000_EIAC);
5310                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5311
5312                 /* enable msix_other interrupt */
5313                 regval = E1000_READ_REG(hw, E1000_EIMS);
5314                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5315                 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5316                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5317         }
5318
5319         /* use EIAM to auto-mask when MSI-X interrupt
5320          * is asserted, this saves a register write for every interrupt
5321          */
5322         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5323                 misc_shift;
5324
5325         if (dev->data->dev_conf.intr_conf.lsc != 0)
5326                 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5327
5328         regval = E1000_READ_REG(hw, E1000_EIAM);
5329         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5330
5331         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5332                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5333                 intr_handle->intr_vec[queue_id] = vec;
5334                 if (vec < base + intr_handle->nb_efd - 1)
5335                         vec++;
5336         }
5337
5338         E1000_WRITE_FLUSH(hw);
5339 }
5340
5341 /* restore n-tuple filter */
5342 static inline void
5343 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5344 {
5345         struct e1000_filter_info *filter_info =
5346                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5347         struct e1000_5tuple_filter *p_5tuple;
5348         struct e1000_2tuple_filter *p_2tuple;
5349
5350         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5351                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5352         }
5353
5354         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5355                 igb_inject_2uple_filter(dev, p_2tuple);
5356         }
5357 }
5358
5359 /* restore SYN filter */
5360 static inline void
5361 igb_syn_filter_restore(struct rte_eth_dev *dev)
5362 {
5363         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5364         struct e1000_filter_info *filter_info =
5365                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5366         uint32_t synqf;
5367
5368         synqf = filter_info->syn_info;
5369
5370         if (synqf & E1000_SYN_FILTER_ENABLE) {
5371                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5372                 E1000_WRITE_FLUSH(hw);
5373         }
5374 }
5375
5376 /* restore ethernet type filter */
5377 static inline void
5378 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5379 {
5380         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5381         struct e1000_filter_info *filter_info =
5382                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5383         int i;
5384
5385         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5386                 if (filter_info->ethertype_mask & (1 << i)) {
5387                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5388                                 filter_info->ethertype_filters[i].etqf);
5389                         E1000_WRITE_FLUSH(hw);
5390                 }
5391         }
5392 }
5393
5394 /* restore flex byte filter */
5395 static inline void
5396 igb_flex_filter_restore(struct rte_eth_dev *dev)
5397 {
5398         struct e1000_filter_info *filter_info =
5399                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5400         struct e1000_flex_filter *flex_filter;
5401
5402         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5403                 igb_inject_flex_filter(dev, flex_filter);
5404         }
5405 }
5406
5407 /* restore rss filter */
5408 static inline void
5409 igb_rss_filter_restore(struct rte_eth_dev *dev)
5410 {
5411         struct e1000_filter_info *filter_info =
5412                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5413
5414         if (filter_info->rss_info.conf.queue_num)
5415                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5416 }
5417
5418 /* restore all types filter */
5419 static int
5420 igb_filter_restore(struct rte_eth_dev *dev)
5421 {
5422         igb_ntuple_filter_restore(dev);
5423         igb_ethertype_filter_restore(dev);
5424         igb_syn_filter_restore(dev);
5425         igb_flex_filter_restore(dev);
5426         igb_rss_filter_restore(dev);
5427
5428         return 0;
5429 }
5430
5431 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5432 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5433 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5434 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5435 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5436 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5437
5438 /* see e1000_logs.c */
5439 RTE_INIT(e1000_init_log)
5440 {
5441         e1000_igb_init_log();
5442 }