848ef6e64ca4e6d45e6d359a572b0020a7c468b7
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58 #include "igb_regs.h"
59
60 /*
61  * Default values for port configuration
62  */
63 #define IGB_DEFAULT_RX_FREE_THRESH  32
64 #define IGB_DEFAULT_RX_PTHRESH      8
65 #define IGB_DEFAULT_RX_HTHRESH      8
66 #define IGB_DEFAULT_RX_WTHRESH      0
67
68 #define IGB_DEFAULT_TX_PTHRESH      32
69 #define IGB_DEFAULT_TX_HTHRESH      0
70 #define IGB_DEFAULT_TX_WTHRESH      0
71
72 #define IGB_HKEY_MAX_INDEX 10
73
74 /* Bit shift and mask */
75 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
76 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
77 #define IGB_8_BIT_WIDTH  CHAR_BIT
78 #define IGB_8_BIT_MASK   UINT8_MAX
79
80 /* Additional timesync values. */
81 #define E1000_ETQF_FILTER_1588 3
82 #define E1000_TIMINCA_INCVALUE 16000000
83 #define E1000_TIMINCA_INIT     ((0x02 << E1000_TIMINCA_16NS_SHIFT) \
84                                 | E1000_TIMINCA_INCVALUE)
85 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
86
87 static int  eth_igb_configure(struct rte_eth_dev *dev);
88 static int  eth_igb_start(struct rte_eth_dev *dev);
89 static void eth_igb_stop(struct rte_eth_dev *dev);
90 static void eth_igb_close(struct rte_eth_dev *dev);
91 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
92 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
93 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
94 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
95 static int  eth_igb_link_update(struct rte_eth_dev *dev,
96                                 int wait_to_complete);
97 static void eth_igb_stats_get(struct rte_eth_dev *dev,
98                                 struct rte_eth_stats *rte_stats);
99 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
100 static void eth_igb_infos_get(struct rte_eth_dev *dev,
101                               struct rte_eth_dev_info *dev_info);
102 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
103                                 struct rte_eth_dev_info *dev_info);
104 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
105                                 struct rte_eth_fc_conf *fc_conf);
106 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
107                                 struct rte_eth_fc_conf *fc_conf);
108 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
109 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
110 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
111 static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
112 static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
113                                                         void *param);
114 static int  igb_hardware_init(struct e1000_hw *hw);
115 static void igb_hw_control_acquire(struct e1000_hw *hw);
116 static void igb_hw_control_release(struct e1000_hw *hw);
117 static void igb_init_manageability(struct e1000_hw *hw);
118 static void igb_release_manageability(struct e1000_hw *hw);
119
120 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
121
122 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
123                 uint16_t vlan_id, int on);
124 static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
125 static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
126
127 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
128 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
129 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
130 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
131 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
132 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
133
134 static int eth_igb_led_on(struct rte_eth_dev *dev);
135 static int eth_igb_led_off(struct rte_eth_dev *dev);
136
137 static void igb_intr_disable(struct e1000_hw *hw);
138 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
139 static void eth_igb_rar_set(struct rte_eth_dev *dev,
140                 struct ether_addr *mac_addr,
141                 uint32_t index, uint32_t pool);
142 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
143 static void eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
144                 struct ether_addr *addr);
145
146 static void igbvf_intr_disable(struct e1000_hw *hw);
147 static int igbvf_dev_configure(struct rte_eth_dev *dev);
148 static int igbvf_dev_start(struct rte_eth_dev *dev);
149 static void igbvf_dev_stop(struct rte_eth_dev *dev);
150 static void igbvf_dev_close(struct rte_eth_dev *dev);
151 static int eth_igbvf_link_update(struct e1000_hw *hw);
152 static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
153 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
154 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
155                 uint16_t vlan_id, int on);
156 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
157 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
158 static void igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
159                 struct ether_addr *addr);
160 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
161 static int igbvf_get_regs(struct rte_eth_dev *dev,
162                 struct rte_dev_reg_info *regs);
163
164 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
165                                    struct rte_eth_rss_reta_entry64 *reta_conf,
166                                    uint16_t reta_size);
167 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
168                                   struct rte_eth_rss_reta_entry64 *reta_conf,
169                                   uint16_t reta_size);
170
171 static int eth_igb_syn_filter_set(struct rte_eth_dev *dev,
172                         struct rte_eth_syn_filter *filter,
173                         bool add);
174 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
175                         struct rte_eth_syn_filter *filter);
176 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
177                         enum rte_filter_op filter_op,
178                         void *arg);
179 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
180                         struct rte_eth_ntuple_filter *ntuple_filter);
181 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
182                         struct rte_eth_ntuple_filter *ntuple_filter);
183 static int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
184                         struct rte_eth_flex_filter *filter,
185                         bool add);
186 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
187                         struct rte_eth_flex_filter *filter);
188 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
189                         enum rte_filter_op filter_op,
190                         void *arg);
191 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
192                         struct rte_eth_ntuple_filter *ntuple_filter);
193 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
194                         struct rte_eth_ntuple_filter *ntuple_filter);
195 static int igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
196                         struct rte_eth_ntuple_filter *filter,
197                         bool add);
198 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
199                         struct rte_eth_ntuple_filter *filter);
200 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
201                                 enum rte_filter_op filter_op,
202                                 void *arg);
203 static int igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
204                         struct rte_eth_ethertype_filter *filter,
205                         bool add);
206 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
207                                 enum rte_filter_op filter_op,
208                                 void *arg);
209 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
210                         struct rte_eth_ethertype_filter *filter);
211 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
212                      enum rte_filter_type filter_type,
213                      enum rte_filter_op filter_op,
214                      void *arg);
215 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
216 static int eth_igb_get_regs(struct rte_eth_dev *dev,
217                 struct rte_dev_reg_info *regs);
218 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
219 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
220                 struct rte_dev_eeprom_info *eeprom);
221 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
222                 struct rte_dev_eeprom_info *eeprom);
223 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
224                                     struct ether_addr *mc_addr_set,
225                                     uint32_t nb_mc_addr);
226 static int igb_timesync_enable(struct rte_eth_dev *dev);
227 static int igb_timesync_disable(struct rte_eth_dev *dev);
228 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
229                                           struct timespec *timestamp,
230                                           uint32_t flags);
231 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
232                                           struct timespec *timestamp);
233 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
234                                         uint16_t queue_id);
235 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
236                                          uint16_t queue_id);
237 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
238                                        uint8_t queue, uint8_t msix_vector);
239 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
240                                uint8_t index, uint8_t offset);
241 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
242
243 /*
244  * Define VF Stats MACRO for Non "cleared on read" register
245  */
246 #define UPDATE_VF_STAT(reg, last, cur)            \
247 {                                                 \
248         u32 latest = E1000_READ_REG(hw, reg);     \
249         cur += latest - last;                     \
250         last = latest;                            \
251 }
252
253
254 #define IGB_FC_PAUSE_TIME 0x0680
255 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
256 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
257
258 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
259
260 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
261
262 /*
263  * The set of PCI devices this driver supports
264  */
265 static const struct rte_pci_id pci_id_igb_map[] = {
266
267 #define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
268 #include "rte_pci_dev_ids.h"
269
270 {0},
271 };
272
273 /*
274  * The set of PCI devices this driver supports (for 82576&I350 VF)
275  */
276 static const struct rte_pci_id pci_id_igbvf_map[] = {
277
278 #define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
279 #include "rte_pci_dev_ids.h"
280
281 {0},
282 };
283
284 static const struct eth_dev_ops eth_igb_ops = {
285         .dev_configure        = eth_igb_configure,
286         .dev_start            = eth_igb_start,
287         .dev_stop             = eth_igb_stop,
288         .dev_close            = eth_igb_close,
289         .promiscuous_enable   = eth_igb_promiscuous_enable,
290         .promiscuous_disable  = eth_igb_promiscuous_disable,
291         .allmulticast_enable  = eth_igb_allmulticast_enable,
292         .allmulticast_disable = eth_igb_allmulticast_disable,
293         .link_update          = eth_igb_link_update,
294         .stats_get            = eth_igb_stats_get,
295         .stats_reset          = eth_igb_stats_reset,
296         .dev_infos_get        = eth_igb_infos_get,
297         .mtu_set              = eth_igb_mtu_set,
298         .vlan_filter_set      = eth_igb_vlan_filter_set,
299         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
300         .vlan_offload_set     = eth_igb_vlan_offload_set,
301         .rx_queue_setup       = eth_igb_rx_queue_setup,
302         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
303         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
304         .rx_queue_release     = eth_igb_rx_queue_release,
305         .rx_queue_count       = eth_igb_rx_queue_count,
306         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
307         .tx_queue_setup       = eth_igb_tx_queue_setup,
308         .tx_queue_release     = eth_igb_tx_queue_release,
309         .dev_led_on           = eth_igb_led_on,
310         .dev_led_off          = eth_igb_led_off,
311         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
312         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
313         .mac_addr_add         = eth_igb_rar_set,
314         .mac_addr_remove      = eth_igb_rar_clear,
315         .mac_addr_set         = eth_igb_default_mac_addr_set,
316         .reta_update          = eth_igb_rss_reta_update,
317         .reta_query           = eth_igb_rss_reta_query,
318         .rss_hash_update      = eth_igb_rss_hash_update,
319         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
320         .filter_ctrl          = eth_igb_filter_ctrl,
321         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
322         .timesync_enable      = igb_timesync_enable,
323         .timesync_disable     = igb_timesync_disable,
324         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
325         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
326         .get_reg_length       = eth_igb_get_reg_length,
327         .get_reg              = eth_igb_get_regs,
328         .get_eeprom_length    = eth_igb_get_eeprom_length,
329         .get_eeprom           = eth_igb_get_eeprom,
330         .set_eeprom           = eth_igb_set_eeprom,
331 };
332
333 /*
334  * dev_ops for virtual function, bare necessities for basic vf
335  * operation have been implemented
336  */
337 static const struct eth_dev_ops igbvf_eth_dev_ops = {
338         .dev_configure        = igbvf_dev_configure,
339         .dev_start            = igbvf_dev_start,
340         .dev_stop             = igbvf_dev_stop,
341         .dev_close            = igbvf_dev_close,
342         .link_update          = eth_igb_link_update,
343         .stats_get            = eth_igbvf_stats_get,
344         .stats_reset          = eth_igbvf_stats_reset,
345         .vlan_filter_set      = igbvf_vlan_filter_set,
346         .dev_infos_get        = eth_igbvf_infos_get,
347         .rx_queue_setup       = eth_igb_rx_queue_setup,
348         .rx_queue_release     = eth_igb_rx_queue_release,
349         .tx_queue_setup       = eth_igb_tx_queue_setup,
350         .tx_queue_release     = eth_igb_tx_queue_release,
351         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
352         .mac_addr_set         = igbvf_default_mac_addr_set,
353         .get_reg_length       = igbvf_get_reg_length,
354         .get_reg              = igbvf_get_regs,
355 };
356
357 /**
358  * Atomically reads the link status information from global
359  * structure rte_eth_dev.
360  *
361  * @param dev
362  *   - Pointer to the structure rte_eth_dev to read from.
363  *   - Pointer to the buffer to be saved with the link status.
364  *
365  * @return
366  *   - On success, zero.
367  *   - On failure, negative value.
368  */
369 static inline int
370 rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
371                                 struct rte_eth_link *link)
372 {
373         struct rte_eth_link *dst = link;
374         struct rte_eth_link *src = &(dev->data->dev_link);
375
376         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
377                                         *(uint64_t *)src) == 0)
378                 return -1;
379
380         return 0;
381 }
382
383 /**
384  * Atomically writes the link status information into global
385  * structure rte_eth_dev.
386  *
387  * @param dev
388  *   - Pointer to the structure rte_eth_dev to read from.
389  *   - Pointer to the buffer to be saved with the link status.
390  *
391  * @return
392  *   - On success, zero.
393  *   - On failure, negative value.
394  */
395 static inline int
396 rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
397                                 struct rte_eth_link *link)
398 {
399         struct rte_eth_link *dst = &(dev->data->dev_link);
400         struct rte_eth_link *src = link;
401
402         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
403                                         *(uint64_t *)src) == 0)
404                 return -1;
405
406         return 0;
407 }
408
409 static inline void
410 igb_intr_enable(struct rte_eth_dev *dev)
411 {
412         struct e1000_interrupt *intr =
413                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
414         struct e1000_hw *hw =
415                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
416
417         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
418         E1000_WRITE_FLUSH(hw);
419 }
420
421 static void
422 igb_intr_disable(struct e1000_hw *hw)
423 {
424         E1000_WRITE_REG(hw, E1000_IMC, ~0);
425         E1000_WRITE_FLUSH(hw);
426 }
427
428 static inline int32_t
429 igb_pf_reset_hw(struct e1000_hw *hw)
430 {
431         uint32_t ctrl_ext;
432         int32_t status;
433
434         status = e1000_reset_hw(hw);
435
436         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
437         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
438         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
439         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
440         E1000_WRITE_FLUSH(hw);
441
442         return status;
443 }
444
445 static void
446 igb_identify_hardware(struct rte_eth_dev *dev)
447 {
448         struct e1000_hw *hw =
449                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
450
451         hw->vendor_id = dev->pci_dev->id.vendor_id;
452         hw->device_id = dev->pci_dev->id.device_id;
453         hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
454         hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
455
456         e1000_set_mac_type(hw);
457
458         /* need to check if it is a vf device below */
459 }
460
461 static int
462 igb_reset_swfw_lock(struct e1000_hw *hw)
463 {
464         int ret_val;
465
466         /*
467          * Do mac ops initialization manually here, since we will need
468          * some function pointers set by this call.
469          */
470         ret_val = e1000_init_mac_params(hw);
471         if (ret_val)
472                 return ret_val;
473
474         /*
475          * SMBI lock should not fail in this early stage. If this is the case,
476          * it is due to an improper exit of the application.
477          * So force the release of the faulty lock.
478          */
479         if (e1000_get_hw_semaphore_generic(hw) < 0) {
480                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
481         }
482         e1000_put_hw_semaphore_generic(hw);
483
484         if (hw->mac.ops.acquire_swfw_sync != NULL) {
485                 uint16_t mask;
486
487                 /*
488                  * Phy lock should not fail in this early stage. If this is the case,
489                  * it is due to an improper exit of the application.
490                  * So force the release of the faulty lock.
491                  */
492                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
493                 if (hw->bus.func > E1000_FUNC_1)
494                         mask <<= 2;
495                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
496                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
497                                     hw->bus.func);
498                 }
499                 hw->mac.ops.release_swfw_sync(hw, mask);
500
501                 /*
502                  * This one is more tricky since it is common to all ports; but
503                  * swfw_sync retries last long enough (1s) to be almost sure that if
504                  * lock can not be taken it is due to an improper lock of the
505                  * semaphore.
506                  */
507                 mask = E1000_SWFW_EEP_SM;
508                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
509                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
510                 }
511                 hw->mac.ops.release_swfw_sync(hw, mask);
512         }
513
514         return E1000_SUCCESS;
515 }
516
517 static int
518 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
519 {
520         int error = 0;
521         struct rte_pci_device *pci_dev;
522         struct e1000_hw *hw =
523                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
524         struct e1000_vfta * shadow_vfta =
525                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
526         struct e1000_filter_info *filter_info =
527                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
528         struct e1000_adapter *adapter =
529                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
530
531         uint32_t ctrl_ext;
532
533         pci_dev = eth_dev->pci_dev;
534         eth_dev->dev_ops = &eth_igb_ops;
535         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
536         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
537
538         /* for secondary processes, we don't initialise any further as primary
539          * has already done this work. Only check we don't need a different
540          * RX function */
541         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
542                 if (eth_dev->data->scattered_rx)
543                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
544                 return 0;
545         }
546
547         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
548
549         igb_identify_hardware(eth_dev);
550         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
551                 error = -EIO;
552                 goto err_late;
553         }
554
555         e1000_get_bus_info(hw);
556
557         /* Reset any pending lock */
558         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
559                 error = -EIO;
560                 goto err_late;
561         }
562
563         /* Finish initialization */
564         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
565                 error = -EIO;
566                 goto err_late;
567         }
568
569         hw->mac.autoneg = 1;
570         hw->phy.autoneg_wait_to_complete = 0;
571         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
572
573         /* Copper options */
574         if (hw->phy.media_type == e1000_media_type_copper) {
575                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
576                 hw->phy.disable_polarity_correction = 0;
577                 hw->phy.ms_type = e1000_ms_hw_default;
578         }
579
580         /*
581          * Start from a known state, this is important in reading the nvm
582          * and mac from that.
583          */
584         igb_pf_reset_hw(hw);
585
586         /* Make sure we have a good EEPROM before we read from it */
587         if (e1000_validate_nvm_checksum(hw) < 0) {
588                 /*
589                  * Some PCI-E parts fail the first check due to
590                  * the link being in sleep state, call it again,
591                  * if it fails a second time its a real issue.
592                  */
593                 if (e1000_validate_nvm_checksum(hw) < 0) {
594                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
595                         error = -EIO;
596                         goto err_late;
597                 }
598         }
599
600         /* Read the permanent MAC address out of the EEPROM */
601         if (e1000_read_mac_addr(hw) != 0) {
602                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
603                 error = -EIO;
604                 goto err_late;
605         }
606
607         /* Allocate memory for storing MAC addresses */
608         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
609                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
610         if (eth_dev->data->mac_addrs == NULL) {
611                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
612                                                 "store MAC addresses",
613                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
614                 error = -ENOMEM;
615                 goto err_late;
616         }
617
618         /* Copy the permanent MAC address */
619         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
620
621         /* initialize the vfta */
622         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
623
624         /* Now initialize the hardware */
625         if (igb_hardware_init(hw) != 0) {
626                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
627                 rte_free(eth_dev->data->mac_addrs);
628                 eth_dev->data->mac_addrs = NULL;
629                 error = -ENODEV;
630                 goto err_late;
631         }
632         hw->mac.get_link_status = 1;
633         adapter->stopped = 0;
634
635         /* Indicate SOL/IDER usage */
636         if (e1000_check_reset_block(hw) < 0) {
637                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
638                                         "SOL/IDER session");
639         }
640
641         /* initialize PF if max_vfs not zero */
642         igb_pf_host_init(eth_dev);
643
644         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
645         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
646         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
647         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
648         E1000_WRITE_FLUSH(hw);
649
650         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
651                      eth_dev->data->port_id, pci_dev->id.vendor_id,
652                      pci_dev->id.device_id);
653
654         /* enable support intr */
655         igb_intr_enable(eth_dev);
656
657         TAILQ_INIT(&filter_info->flex_list);
658         filter_info->flex_mask = 0;
659         TAILQ_INIT(&filter_info->twotuple_list);
660         filter_info->twotuple_mask = 0;
661         TAILQ_INIT(&filter_info->fivetuple_list);
662         filter_info->fivetuple_mask = 0;
663
664         return 0;
665
666 err_late:
667         igb_hw_control_release(hw);
668
669         return (error);
670 }
671
672 static int
673 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
674 {
675         struct rte_pci_device *pci_dev;
676         struct e1000_hw *hw;
677         struct e1000_adapter *adapter =
678                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
679
680         PMD_INIT_FUNC_TRACE();
681
682         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
683                 return -EPERM;
684
685         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
686         pci_dev = eth_dev->pci_dev;
687
688         if (adapter->stopped == 0)
689                 eth_igb_close(eth_dev);
690
691         eth_dev->dev_ops = NULL;
692         eth_dev->rx_pkt_burst = NULL;
693         eth_dev->tx_pkt_burst = NULL;
694
695         /* Reset any pending lock */
696         igb_reset_swfw_lock(hw);
697
698         rte_free(eth_dev->data->mac_addrs);
699         eth_dev->data->mac_addrs = NULL;
700
701         /* uninitialize PF if max_vfs not zero */
702         igb_pf_host_uninit(eth_dev);
703
704         /* disable uio intr before callback unregister */
705         rte_intr_disable(&(pci_dev->intr_handle));
706         rte_intr_callback_unregister(&(pci_dev->intr_handle),
707                 eth_igb_interrupt_handler, (void *)eth_dev);
708
709         return 0;
710 }
711
712 /*
713  * Virtual Function device init
714  */
715 static int
716 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
717 {
718         struct rte_pci_device *pci_dev;
719         struct e1000_adapter *adapter =
720                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
721         struct e1000_hw *hw =
722                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
723         int diag;
724
725         PMD_INIT_FUNC_TRACE();
726
727         eth_dev->dev_ops = &igbvf_eth_dev_ops;
728         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
729         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
730
731         /* for secondary processes, we don't initialise any further as primary
732          * has already done this work. Only check we don't need a different
733          * RX function */
734         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
735                 if (eth_dev->data->scattered_rx)
736                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
737                 return 0;
738         }
739
740         pci_dev = eth_dev->pci_dev;
741
742         hw->device_id = pci_dev->id.device_id;
743         hw->vendor_id = pci_dev->id.vendor_id;
744         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
745         adapter->stopped = 0;
746
747         /* Initialize the shared code (base driver) */
748         diag = e1000_setup_init_funcs(hw, TRUE);
749         if (diag != 0) {
750                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
751                         diag);
752                 return -EIO;
753         }
754
755         /* init_mailbox_params */
756         hw->mbx.ops.init_params(hw);
757
758         /* Disable the interrupts for VF */
759         igbvf_intr_disable(hw);
760
761         diag = hw->mac.ops.reset_hw(hw);
762
763         /* Allocate memory for storing MAC addresses */
764         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
765                 hw->mac.rar_entry_count, 0);
766         if (eth_dev->data->mac_addrs == NULL) {
767                 PMD_INIT_LOG(ERR,
768                         "Failed to allocate %d bytes needed to store MAC "
769                         "addresses",
770                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
771                 return -ENOMEM;
772         }
773
774         /* Copy the permanent MAC address */
775         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
776                         &eth_dev->data->mac_addrs[0]);
777
778         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
779                      "mac.type=%s",
780                      eth_dev->data->port_id, pci_dev->id.vendor_id,
781                      pci_dev->id.device_id, "igb_mac_82576_vf");
782
783         return 0;
784 }
785
786 static int
787 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
788 {
789         struct e1000_adapter *adapter =
790                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
791
792         PMD_INIT_FUNC_TRACE();
793
794         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
795                 return -EPERM;
796
797         if (adapter->stopped == 0)
798                 igbvf_dev_close(eth_dev);
799
800         eth_dev->dev_ops = NULL;
801         eth_dev->rx_pkt_burst = NULL;
802         eth_dev->tx_pkt_burst = NULL;
803
804         rte_free(eth_dev->data->mac_addrs);
805         eth_dev->data->mac_addrs = NULL;
806
807         return 0;
808 }
809
810 static struct eth_driver rte_igb_pmd = {
811         .pci_drv = {
812                 .name = "rte_igb_pmd",
813                 .id_table = pci_id_igb_map,
814                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
815                         RTE_PCI_DRV_DETACHABLE,
816         },
817         .eth_dev_init = eth_igb_dev_init,
818         .eth_dev_uninit = eth_igb_dev_uninit,
819         .dev_private_size = sizeof(struct e1000_adapter),
820 };
821
822 /*
823  * virtual function driver struct
824  */
825 static struct eth_driver rte_igbvf_pmd = {
826         .pci_drv = {
827                 .name = "rte_igbvf_pmd",
828                 .id_table = pci_id_igbvf_map,
829                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_DETACHABLE,
830         },
831         .eth_dev_init = eth_igbvf_dev_init,
832         .eth_dev_uninit = eth_igbvf_dev_uninit,
833         .dev_private_size = sizeof(struct e1000_adapter),
834 };
835
836 static int
837 rte_igb_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
838 {
839         rte_eth_driver_register(&rte_igb_pmd);
840         return 0;
841 }
842
843 static void
844 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
845 {
846         struct e1000_hw *hw =
847                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
848         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
849         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
850         rctl |= E1000_RCTL_VFE;
851         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
852 }
853
854 /*
855  * VF Driver initialization routine.
856  * Invoked one at EAL init time.
857  * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
858  */
859 static int
860 rte_igbvf_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
861 {
862         PMD_INIT_FUNC_TRACE();
863
864         rte_eth_driver_register(&rte_igbvf_pmd);
865         return (0);
866 }
867
868 static int
869 eth_igb_configure(struct rte_eth_dev *dev)
870 {
871         struct e1000_interrupt *intr =
872                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
873
874         PMD_INIT_FUNC_TRACE();
875         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
876         PMD_INIT_FUNC_TRACE();
877
878         return (0);
879 }
880
881 static int
882 eth_igb_start(struct rte_eth_dev *dev)
883 {
884         struct e1000_hw *hw =
885                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
886         struct e1000_adapter *adapter =
887                 E1000_DEV_PRIVATE(dev->data->dev_private);
888         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
889         int ret, mask;
890         uint32_t intr_vector = 0;
891         uint32_t ctrl_ext;
892
893         PMD_INIT_FUNC_TRACE();
894
895         /* Power up the phy. Needed to make the link go Up */
896         e1000_power_up_phy(hw);
897
898         /*
899          * Packet Buffer Allocation (PBA)
900          * Writing PBA sets the receive portion of the buffer
901          * the remainder is used for the transmit buffer.
902          */
903         if (hw->mac.type == e1000_82575) {
904                 uint32_t pba;
905
906                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
907                 E1000_WRITE_REG(hw, E1000_PBA, pba);
908         }
909
910         /* Put the address into the Receive Address Array */
911         e1000_rar_set(hw, hw->mac.addr, 0);
912
913         /* Initialize the hardware */
914         if (igb_hardware_init(hw)) {
915                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
916                 return (-EIO);
917         }
918         adapter->stopped = 0;
919
920         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
921
922         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
923         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
924         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
925         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
926         E1000_WRITE_FLUSH(hw);
927
928         /* configure PF module if SRIOV enabled */
929         igb_pf_host_configure(dev);
930
931         /* check and configure queue intr-vector mapping */
932         if (dev->data->dev_conf.intr_conf.rxq != 0)
933                 intr_vector = dev->data->nb_rx_queues;
934
935         if (rte_intr_efd_enable(intr_handle, intr_vector))
936                 return -1;
937
938         if (rte_intr_dp_is_en(intr_handle)) {
939                 intr_handle->intr_vec =
940                         rte_zmalloc("intr_vec",
941                                     dev->data->nb_rx_queues * sizeof(int), 0);
942                 if (intr_handle->intr_vec == NULL) {
943                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
944                                      " intr_vec\n", dev->data->nb_rx_queues);
945                         return -ENOMEM;
946                 }
947         }
948
949         /* confiugre msix for rx interrupt */
950         eth_igb_configure_msix_intr(dev);
951
952         /* Configure for OS presence */
953         igb_init_manageability(hw);
954
955         eth_igb_tx_init(dev);
956
957         /* This can fail when allocating mbufs for descriptor rings */
958         ret = eth_igb_rx_init(dev);
959         if (ret) {
960                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
961                 igb_dev_clear_queues(dev);
962                 return ret;
963         }
964
965         e1000_clear_hw_cntrs_base_generic(hw);
966
967         /*
968          * VLAN Offload Settings
969          */
970         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
971                         ETH_VLAN_EXTEND_MASK;
972         eth_igb_vlan_offload_set(dev, mask);
973
974         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
975                 /* Enable VLAN filter since VMDq always use VLAN filter */
976                 igb_vmdq_vlan_hw_filter_enable(dev);
977         }
978
979         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
980                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
981                 (hw->mac.type == e1000_i211)) {
982                 /* Configure EITR with the maximum possible value (0xFFFF) */
983                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
984         }
985
986         /* Setup link speed and duplex */
987         switch (dev->data->dev_conf.link_speed) {
988         case ETH_LINK_SPEED_AUTONEG:
989                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
990                         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
991                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
992                         hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
993                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
994                         hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
995                 else
996                         goto error_invalid_config;
997                 break;
998         case ETH_LINK_SPEED_10:
999                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
1000                         hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
1001                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
1002                         hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
1003                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
1004                         hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
1005                 else
1006                         goto error_invalid_config;
1007                 break;
1008         case ETH_LINK_SPEED_100:
1009                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
1010                         hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
1011                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
1012                         hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
1013                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
1014                         hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
1015                 else
1016                         goto error_invalid_config;
1017                 break;
1018         case ETH_LINK_SPEED_1000:
1019                 if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
1020                                 (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
1021                         hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
1022                 else
1023                         goto error_invalid_config;
1024                 break;
1025         case ETH_LINK_SPEED_10000:
1026         default:
1027                 goto error_invalid_config;
1028         }
1029         e1000_setup_link(hw);
1030
1031         /* check if lsc interrupt feature is enabled */
1032         if (dev->data->dev_conf.intr_conf.lsc != 0) {
1033                 if (rte_intr_allow_others(intr_handle)) {
1034                         rte_intr_callback_register(intr_handle,
1035                                                    eth_igb_interrupt_handler,
1036                                                    (void *)dev);
1037                         eth_igb_lsc_interrupt_setup(dev);
1038                 } else
1039                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1040                                      " no intr multiplex\n");
1041         }
1042
1043         /* check if rxq interrupt is enabled */
1044         if (dev->data->dev_conf.intr_conf.rxq != 0)
1045                 eth_igb_rxq_interrupt_setup(dev);
1046
1047         /* enable uio/vfio intr/eventfd mapping */
1048         rte_intr_enable(intr_handle);
1049
1050         /* resume enabled intr since hw reset */
1051         igb_intr_enable(dev);
1052
1053         PMD_INIT_LOG(DEBUG, "<<");
1054
1055         return (0);
1056
1057 error_invalid_config:
1058         PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
1059                      dev->data->dev_conf.link_speed,
1060                      dev->data->dev_conf.link_duplex, dev->data->port_id);
1061         igb_dev_clear_queues(dev);
1062         return (-EINVAL);
1063 }
1064
1065 /*********************************************************************
1066  *
1067  *  This routine disables all traffic on the adapter by issuing a
1068  *  global reset on the MAC.
1069  *
1070  **********************************************************************/
1071 static void
1072 eth_igb_stop(struct rte_eth_dev *dev)
1073 {
1074         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1075         struct e1000_filter_info *filter_info =
1076                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1077         struct rte_eth_link link;
1078         struct e1000_flex_filter *p_flex;
1079         struct e1000_5tuple_filter *p_5tuple, *p_5tuple_next;
1080         struct e1000_2tuple_filter *p_2tuple, *p_2tuple_next;
1081         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
1082
1083         igb_intr_disable(hw);
1084
1085         /* disable intr eventfd mapping */
1086         rte_intr_disable(intr_handle);
1087
1088         igb_pf_reset_hw(hw);
1089         E1000_WRITE_REG(hw, E1000_WUC, 0);
1090
1091         /* Set bit for Go Link disconnect */
1092         if (hw->mac.type >= e1000_82580) {
1093                 uint32_t phpm_reg;
1094
1095                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1096                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1097                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1098         }
1099
1100         /* Power down the phy. Needed to make the link go Down */
1101         if (hw->phy.media_type == e1000_media_type_copper)
1102                 e1000_power_down_phy(hw);
1103         else
1104                 e1000_shutdown_fiber_serdes_link(hw);
1105
1106         igb_dev_clear_queues(dev);
1107
1108         /* clear the recorded link status */
1109         memset(&link, 0, sizeof(link));
1110         rte_igb_dev_atomic_write_link_status(dev, &link);
1111
1112         /* Remove all flex filters of the device */
1113         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
1114                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
1115                 rte_free(p_flex);
1116         }
1117         filter_info->flex_mask = 0;
1118
1119         /* Remove all ntuple filters of the device */
1120         for (p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list);
1121              p_5tuple != NULL; p_5tuple = p_5tuple_next) {
1122                 p_5tuple_next = TAILQ_NEXT(p_5tuple, entries);
1123                 TAILQ_REMOVE(&filter_info->fivetuple_list,
1124                              p_5tuple, entries);
1125                 rte_free(p_5tuple);
1126         }
1127         filter_info->fivetuple_mask = 0;
1128         for (p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list);
1129              p_2tuple != NULL; p_2tuple = p_2tuple_next) {
1130                 p_2tuple_next = TAILQ_NEXT(p_2tuple, entries);
1131                 TAILQ_REMOVE(&filter_info->twotuple_list,
1132                              p_2tuple, entries);
1133                 rte_free(p_2tuple);
1134         }
1135         filter_info->twotuple_mask = 0;
1136
1137         /* Clean datapath event and queue/vec mapping */
1138         rte_intr_efd_disable(intr_handle);
1139         if (intr_handle->intr_vec != NULL) {
1140                 rte_free(intr_handle->intr_vec);
1141                 intr_handle->intr_vec = NULL;
1142         }
1143 }
1144
1145 static void
1146 eth_igb_close(struct rte_eth_dev *dev)
1147 {
1148         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1149         struct e1000_adapter *adapter =
1150                 E1000_DEV_PRIVATE(dev->data->dev_private);
1151         struct rte_eth_link link;
1152         struct rte_pci_device *pci_dev;
1153
1154         eth_igb_stop(dev);
1155         adapter->stopped = 1;
1156
1157         e1000_phy_hw_reset(hw);
1158         igb_release_manageability(hw);
1159         igb_hw_control_release(hw);
1160
1161         /* Clear bit for Go Link disconnect */
1162         if (hw->mac.type >= e1000_82580) {
1163                 uint32_t phpm_reg;
1164
1165                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1166                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1167                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1168         }
1169
1170         igb_dev_free_queues(dev);
1171
1172         pci_dev = dev->pci_dev;
1173         if (pci_dev->intr_handle.intr_vec) {
1174                 rte_free(pci_dev->intr_handle.intr_vec);
1175                 pci_dev->intr_handle.intr_vec = NULL;
1176         }
1177
1178         memset(&link, 0, sizeof(link));
1179         rte_igb_dev_atomic_write_link_status(dev, &link);
1180 }
1181
1182 static int
1183 igb_get_rx_buffer_size(struct e1000_hw *hw)
1184 {
1185         uint32_t rx_buf_size;
1186         if (hw->mac.type == e1000_82576) {
1187                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1188         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1189                 /* PBS needs to be translated according to a lookup table */
1190                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1191                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1192                 rx_buf_size = (rx_buf_size << 10);
1193         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1194                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1195         } else {
1196                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1197         }
1198
1199         return rx_buf_size;
1200 }
1201
1202 /*********************************************************************
1203  *
1204  *  Initialize the hardware
1205  *
1206  **********************************************************************/
1207 static int
1208 igb_hardware_init(struct e1000_hw *hw)
1209 {
1210         uint32_t rx_buf_size;
1211         int diag;
1212
1213         /* Let the firmware know the OS is in control */
1214         igb_hw_control_acquire(hw);
1215
1216         /*
1217          * These parameters control the automatic generation (Tx) and
1218          * response (Rx) to Ethernet PAUSE frames.
1219          * - High water mark should allow for at least two standard size (1518)
1220          *   frames to be received after sending an XOFF.
1221          * - Low water mark works best when it is very near the high water mark.
1222          *   This allows the receiver to restart by sending XON when it has
1223          *   drained a bit. Here we use an arbitrary value of 1500 which will
1224          *   restart after one full frame is pulled from the buffer. There
1225          *   could be several smaller frames in the buffer and if so they will
1226          *   not trigger the XON until their total number reduces the buffer
1227          *   by 1500.
1228          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1229          */
1230         rx_buf_size = igb_get_rx_buffer_size(hw);
1231
1232         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1233         hw->fc.low_water = hw->fc.high_water - 1500;
1234         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1235         hw->fc.send_xon = 1;
1236
1237         /* Set Flow control, use the tunable location if sane */
1238         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1239                 hw->fc.requested_mode = igb_fc_setting;
1240         else
1241                 hw->fc.requested_mode = e1000_fc_none;
1242
1243         /* Issue a global reset */
1244         igb_pf_reset_hw(hw);
1245         E1000_WRITE_REG(hw, E1000_WUC, 0);
1246
1247         diag = e1000_init_hw(hw);
1248         if (diag < 0)
1249                 return (diag);
1250
1251         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1252         e1000_get_phy_info(hw);
1253         e1000_check_for_link(hw);
1254
1255         return (0);
1256 }
1257
1258 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1259 static void
1260 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1261 {
1262         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1263         struct e1000_hw_stats *stats =
1264                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1265         int pause_frames;
1266
1267         if(hw->phy.media_type == e1000_media_type_copper ||
1268             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1269                 stats->symerrs +=
1270                     E1000_READ_REG(hw,E1000_SYMERRS);
1271                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1272         }
1273
1274         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1275         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1276         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1277         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1278
1279         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1280         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1281         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1282         stats->dc += E1000_READ_REG(hw, E1000_DC);
1283         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1284         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1285         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1286         /*
1287         ** For watchdog management we need to know if we have been
1288         ** paused during the last interval, so capture that here.
1289         */
1290         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1291         stats->xoffrxc += pause_frames;
1292         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1293         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1294         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1295         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1296         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1297         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1298         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1299         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1300         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1301         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1302         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1303         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1304
1305         /* For the 64-bit byte counters the low dword must be read first. */
1306         /* Both registers clear on the read of the high dword */
1307
1308         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1309         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1310         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1311         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1312
1313         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1314         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1315         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1316         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1317         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1318
1319         stats->tor += E1000_READ_REG(hw, E1000_TORH);
1320         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
1321
1322         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1323         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1324         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1325         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1326         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1327         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1328         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1329         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1330         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1331         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1332
1333         /* Interrupt Counts */
1334
1335         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1336         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1337         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1338         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1339         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1340         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1341         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1342         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1343         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1344
1345         /* Host to Card Statistics */
1346
1347         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1348         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1349         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1350         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1351         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1352         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1353         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1354         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1355         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1356         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1357         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1358         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1359         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1360         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1361
1362         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1363         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1364         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1365         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1366         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1367         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1368
1369         if (rte_stats == NULL)
1370                 return;
1371
1372         /* Rx Errors */
1373         rte_stats->ibadcrc = stats->crcerrs;
1374         rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
1375         rte_stats->imissed = stats->mpc;
1376         rte_stats->ierrors = rte_stats->ibadcrc +
1377                              rte_stats->ibadlen +
1378                              rte_stats->imissed +
1379                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1380
1381         /* Tx Errors */
1382         rte_stats->oerrors = stats->ecol + stats->latecol;
1383
1384         /* XON/XOFF pause frames */
1385         rte_stats->tx_pause_xon  = stats->xontxc;
1386         rte_stats->rx_pause_xon  = stats->xonrxc;
1387         rte_stats->tx_pause_xoff = stats->xofftxc;
1388         rte_stats->rx_pause_xoff = stats->xoffrxc;
1389
1390         rte_stats->ipackets = stats->gprc;
1391         rte_stats->opackets = stats->gptc;
1392         rte_stats->ibytes   = stats->gorc;
1393         rte_stats->obytes   = stats->gotc;
1394 }
1395
1396 static void
1397 eth_igb_stats_reset(struct rte_eth_dev *dev)
1398 {
1399         struct e1000_hw_stats *hw_stats =
1400                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1401
1402         /* HW registers are cleared on read */
1403         eth_igb_stats_get(dev, NULL);
1404
1405         /* Reset software totals */
1406         memset(hw_stats, 0, sizeof(*hw_stats));
1407 }
1408
1409 static void
1410 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1411 {
1412         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1413         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1414                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1415
1416         /* Good Rx packets, include VF loopback */
1417         UPDATE_VF_STAT(E1000_VFGPRC,
1418             hw_stats->last_gprc, hw_stats->gprc);
1419
1420         /* Good Rx octets, include VF loopback */
1421         UPDATE_VF_STAT(E1000_VFGORC,
1422             hw_stats->last_gorc, hw_stats->gorc);
1423
1424         /* Good Tx packets, include VF loopback */
1425         UPDATE_VF_STAT(E1000_VFGPTC,
1426             hw_stats->last_gptc, hw_stats->gptc);
1427
1428         /* Good Tx octets, include VF loopback */
1429         UPDATE_VF_STAT(E1000_VFGOTC,
1430             hw_stats->last_gotc, hw_stats->gotc);
1431
1432         /* Rx Multicst packets */
1433         UPDATE_VF_STAT(E1000_VFMPRC,
1434             hw_stats->last_mprc, hw_stats->mprc);
1435
1436         /* Good Rx loopback packets */
1437         UPDATE_VF_STAT(E1000_VFGPRLBC,
1438             hw_stats->last_gprlbc, hw_stats->gprlbc);
1439
1440         /* Good Rx loopback octets */
1441         UPDATE_VF_STAT(E1000_VFGORLBC,
1442             hw_stats->last_gorlbc, hw_stats->gorlbc);
1443
1444         /* Good Tx loopback packets */
1445         UPDATE_VF_STAT(E1000_VFGPTLBC,
1446             hw_stats->last_gptlbc, hw_stats->gptlbc);
1447
1448         /* Good Tx loopback octets */
1449         UPDATE_VF_STAT(E1000_VFGOTLBC,
1450             hw_stats->last_gotlbc, hw_stats->gotlbc);
1451
1452         if (rte_stats == NULL)
1453                 return;
1454
1455         rte_stats->ipackets = hw_stats->gprc;
1456         rte_stats->ibytes = hw_stats->gorc;
1457         rte_stats->opackets = hw_stats->gptc;
1458         rte_stats->obytes = hw_stats->gotc;
1459         rte_stats->imcasts = hw_stats->mprc;
1460         rte_stats->ilbpackets = hw_stats->gprlbc;
1461         rte_stats->ilbbytes = hw_stats->gorlbc;
1462         rte_stats->olbpackets = hw_stats->gptlbc;
1463         rte_stats->olbbytes = hw_stats->gotlbc;
1464
1465 }
1466
1467 static void
1468 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
1469 {
1470         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1471                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1472
1473         /* Sync HW register to the last stats */
1474         eth_igbvf_stats_get(dev, NULL);
1475
1476         /* reset HW current stats*/
1477         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
1478                offsetof(struct e1000_vf_stats, gprc));
1479
1480 }
1481
1482 static void
1483 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1484 {
1485         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1486
1487         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1488         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
1489         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1490         dev_info->rx_offload_capa =
1491                 DEV_RX_OFFLOAD_VLAN_STRIP |
1492                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1493                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1494                 DEV_RX_OFFLOAD_TCP_CKSUM;
1495         dev_info->tx_offload_capa =
1496                 DEV_TX_OFFLOAD_VLAN_INSERT |
1497                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1498                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1499                 DEV_TX_OFFLOAD_TCP_CKSUM   |
1500                 DEV_TX_OFFLOAD_SCTP_CKSUM;
1501
1502         switch (hw->mac.type) {
1503         case e1000_82575:
1504                 dev_info->max_rx_queues = 4;
1505                 dev_info->max_tx_queues = 4;
1506                 dev_info->max_vmdq_pools = 0;
1507                 break;
1508
1509         case e1000_82576:
1510                 dev_info->max_rx_queues = 16;
1511                 dev_info->max_tx_queues = 16;
1512                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1513                 dev_info->vmdq_queue_num = 16;
1514                 break;
1515
1516         case e1000_82580:
1517                 dev_info->max_rx_queues = 8;
1518                 dev_info->max_tx_queues = 8;
1519                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1520                 dev_info->vmdq_queue_num = 8;
1521                 break;
1522
1523         case e1000_i350:
1524                 dev_info->max_rx_queues = 8;
1525                 dev_info->max_tx_queues = 8;
1526                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1527                 dev_info->vmdq_queue_num = 8;
1528                 break;
1529
1530         case e1000_i354:
1531                 dev_info->max_rx_queues = 8;
1532                 dev_info->max_tx_queues = 8;
1533                 break;
1534
1535         case e1000_i210:
1536                 dev_info->max_rx_queues = 4;
1537                 dev_info->max_tx_queues = 4;
1538                 dev_info->max_vmdq_pools = 0;
1539                 break;
1540
1541         case e1000_i211:
1542                 dev_info->max_rx_queues = 2;
1543                 dev_info->max_tx_queues = 2;
1544                 dev_info->max_vmdq_pools = 0;
1545                 break;
1546
1547         default:
1548                 /* Should not happen */
1549                 break;
1550         }
1551         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
1552         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
1553         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
1554
1555         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1556                 .rx_thresh = {
1557                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
1558                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
1559                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
1560                 },
1561                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
1562                 .rx_drop_en = 0,
1563         };
1564
1565         dev_info->default_txconf = (struct rte_eth_txconf) {
1566                 .tx_thresh = {
1567                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
1568                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
1569                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
1570                 },
1571                 .txq_flags = 0,
1572         };
1573 }
1574
1575 static void
1576 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1577 {
1578         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1579
1580         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1581         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
1582         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1583         dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
1584                                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1585                                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1586                                 DEV_RX_OFFLOAD_TCP_CKSUM;
1587         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1588                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1589                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1590                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
1591                                 DEV_TX_OFFLOAD_SCTP_CKSUM;
1592         switch (hw->mac.type) {
1593         case e1000_vfadapt:
1594                 dev_info->max_rx_queues = 2;
1595                 dev_info->max_tx_queues = 2;
1596                 break;
1597         case e1000_vfadapt_i350:
1598                 dev_info->max_rx_queues = 1;
1599                 dev_info->max_tx_queues = 1;
1600                 break;
1601         default:
1602                 /* Should not happen */
1603                 break;
1604         }
1605
1606         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1607                 .rx_thresh = {
1608                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
1609                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
1610                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
1611                 },
1612                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
1613                 .rx_drop_en = 0,
1614         };
1615
1616         dev_info->default_txconf = (struct rte_eth_txconf) {
1617                 .tx_thresh = {
1618                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
1619                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
1620                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
1621                 },
1622                 .txq_flags = 0,
1623         };
1624 }
1625
1626 /* return 0 means link status changed, -1 means not changed */
1627 static int
1628 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1629 {
1630         struct e1000_hw *hw =
1631                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1632         struct rte_eth_link link, old;
1633         int link_check, count;
1634
1635         link_check = 0;
1636         hw->mac.get_link_status = 1;
1637
1638         /* possible wait-to-complete in up to 9 seconds */
1639         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1640                 /* Read the real link status */
1641                 switch (hw->phy.media_type) {
1642                 case e1000_media_type_copper:
1643                         /* Do the work to read phy */
1644                         e1000_check_for_link(hw);
1645                         link_check = !hw->mac.get_link_status;
1646                         break;
1647
1648                 case e1000_media_type_fiber:
1649                         e1000_check_for_link(hw);
1650                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1651                                       E1000_STATUS_LU);
1652                         break;
1653
1654                 case e1000_media_type_internal_serdes:
1655                         e1000_check_for_link(hw);
1656                         link_check = hw->mac.serdes_has_link;
1657                         break;
1658
1659                 /* VF device is type_unknown */
1660                 case e1000_media_type_unknown:
1661                         eth_igbvf_link_update(hw);
1662                         link_check = !hw->mac.get_link_status;
1663                         break;
1664
1665                 default:
1666                         break;
1667                 }
1668                 if (link_check || wait_to_complete == 0)
1669                         break;
1670                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
1671         }
1672         memset(&link, 0, sizeof(link));
1673         rte_igb_dev_atomic_read_link_status(dev, &link);
1674         old = link;
1675
1676         /* Now we check if a transition has happened */
1677         if (link_check) {
1678                 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
1679                                           &link.link_duplex);
1680                 link.link_status = 1;
1681         } else if (!link_check) {
1682                 link.link_speed = 0;
1683                 link.link_duplex = 0;
1684                 link.link_status = 0;
1685         }
1686         rte_igb_dev_atomic_write_link_status(dev, &link);
1687
1688         /* not changed */
1689         if (old.link_status == link.link_status)
1690                 return -1;
1691
1692         /* changed */
1693         return 0;
1694 }
1695
1696 /*
1697  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
1698  * For ASF and Pass Through versions of f/w this means
1699  * that the driver is loaded.
1700  */
1701 static void
1702 igb_hw_control_acquire(struct e1000_hw *hw)
1703 {
1704         uint32_t ctrl_ext;
1705
1706         /* Let firmware know the driver has taken over */
1707         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1708         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1709 }
1710
1711 /*
1712  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
1713  * For ASF and Pass Through versions of f/w this means that the
1714  * driver is no longer loaded.
1715  */
1716 static void
1717 igb_hw_control_release(struct e1000_hw *hw)
1718 {
1719         uint32_t ctrl_ext;
1720
1721         /* Let firmware taken over control of h/w */
1722         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1723         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1724                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1725 }
1726
1727 /*
1728  * Bit of a misnomer, what this really means is
1729  * to enable OS management of the system... aka
1730  * to disable special hardware management features.
1731  */
1732 static void
1733 igb_init_manageability(struct e1000_hw *hw)
1734 {
1735         if (e1000_enable_mng_pass_thru(hw)) {
1736                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1737                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1738
1739                 /* disable hardware interception of ARP */
1740                 manc &= ~(E1000_MANC_ARP_EN);
1741
1742                 /* enable receiving management packets to the host */
1743                 manc |= E1000_MANC_EN_MNG2HOST;
1744                 manc2h |= 1 << 5;  /* Mng Port 623 */
1745                 manc2h |= 1 << 6;  /* Mng Port 664 */
1746                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1747                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1748         }
1749 }
1750
1751 static void
1752 igb_release_manageability(struct e1000_hw *hw)
1753 {
1754         if (e1000_enable_mng_pass_thru(hw)) {
1755                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1756
1757                 manc |= E1000_MANC_ARP_EN;
1758                 manc &= ~E1000_MANC_EN_MNG2HOST;
1759
1760                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1761         }
1762 }
1763
1764 static void
1765 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
1766 {
1767         struct e1000_hw *hw =
1768                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1769         uint32_t rctl;
1770
1771         rctl = E1000_READ_REG(hw, E1000_RCTL);
1772         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1773         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1774 }
1775
1776 static void
1777 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
1778 {
1779         struct e1000_hw *hw =
1780                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1781         uint32_t rctl;
1782
1783         rctl = E1000_READ_REG(hw, E1000_RCTL);
1784         rctl &= (~E1000_RCTL_UPE);
1785         if (dev->data->all_multicast == 1)
1786                 rctl |= E1000_RCTL_MPE;
1787         else
1788                 rctl &= (~E1000_RCTL_MPE);
1789         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1790 }
1791
1792 static void
1793 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
1794 {
1795         struct e1000_hw *hw =
1796                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1797         uint32_t rctl;
1798
1799         rctl = E1000_READ_REG(hw, E1000_RCTL);
1800         rctl |= E1000_RCTL_MPE;
1801         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1802 }
1803
1804 static void
1805 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
1806 {
1807         struct e1000_hw *hw =
1808                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1809         uint32_t rctl;
1810
1811         if (dev->data->promiscuous == 1)
1812                 return; /* must remain in all_multicast mode */
1813         rctl = E1000_READ_REG(hw, E1000_RCTL);
1814         rctl &= (~E1000_RCTL_MPE);
1815         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1816 }
1817
1818 static int
1819 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1820 {
1821         struct e1000_hw *hw =
1822                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1823         struct e1000_vfta * shadow_vfta =
1824                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1825         uint32_t vfta;
1826         uint32_t vid_idx;
1827         uint32_t vid_bit;
1828
1829         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1830                               E1000_VFTA_ENTRY_MASK);
1831         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1832         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1833         if (on)
1834                 vfta |= vid_bit;
1835         else
1836                 vfta &= ~vid_bit;
1837         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1838
1839         /* update local VFTA copy */
1840         shadow_vfta->vfta[vid_idx] = vfta;
1841
1842         return 0;
1843 }
1844
1845 static void
1846 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
1847 {
1848         struct e1000_hw *hw =
1849                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1850         uint32_t reg = ETHER_TYPE_VLAN ;
1851
1852         reg |= (tpid << 16);
1853         E1000_WRITE_REG(hw, E1000_VET, reg);
1854 }
1855
1856 static void
1857 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1858 {
1859         struct e1000_hw *hw =
1860                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1861         uint32_t reg;
1862
1863         /* Filter Table Disable */
1864         reg = E1000_READ_REG(hw, E1000_RCTL);
1865         reg &= ~E1000_RCTL_CFIEN;
1866         reg &= ~E1000_RCTL_VFE;
1867         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1868 }
1869
1870 static void
1871 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1872 {
1873         struct e1000_hw *hw =
1874                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1875         struct e1000_vfta * shadow_vfta =
1876                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1877         uint32_t reg;
1878         int i;
1879
1880         /* Filter Table Enable, CFI not used for packet acceptance */
1881         reg = E1000_READ_REG(hw, E1000_RCTL);
1882         reg &= ~E1000_RCTL_CFIEN;
1883         reg |= E1000_RCTL_VFE;
1884         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1885
1886         /* restore VFTA table */
1887         for (i = 0; i < IGB_VFTA_SIZE; i++)
1888                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1889 }
1890
1891 static void
1892 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1893 {
1894         struct e1000_hw *hw =
1895                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1896         uint32_t reg;
1897
1898         /* VLAN Mode Disable */
1899         reg = E1000_READ_REG(hw, E1000_CTRL);
1900         reg &= ~E1000_CTRL_VME;
1901         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1902 }
1903
1904 static void
1905 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1906 {
1907         struct e1000_hw *hw =
1908                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1909         uint32_t reg;
1910
1911         /* VLAN Mode Enable */
1912         reg = E1000_READ_REG(hw, E1000_CTRL);
1913         reg |= E1000_CTRL_VME;
1914         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1915 }
1916
1917 static void
1918 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
1919 {
1920         struct e1000_hw *hw =
1921                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1922         uint32_t reg;
1923
1924         /* CTRL_EXT: Extended VLAN */
1925         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1926         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
1927         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1928
1929         /* Update maximum packet length */
1930         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1931                 E1000_WRITE_REG(hw, E1000_RLPML,
1932                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1933                                                 VLAN_TAG_SIZE);
1934 }
1935
1936 static void
1937 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
1938 {
1939         struct e1000_hw *hw =
1940                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1941         uint32_t reg;
1942
1943         /* CTRL_EXT: Extended VLAN */
1944         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1945         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
1946         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1947
1948         /* Update maximum packet length */
1949         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1950                 E1000_WRITE_REG(hw, E1000_RLPML,
1951                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1952                                                 2 * VLAN_TAG_SIZE);
1953 }
1954
1955 static void
1956 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1957 {
1958         if(mask & ETH_VLAN_STRIP_MASK){
1959                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1960                         igb_vlan_hw_strip_enable(dev);
1961                 else
1962                         igb_vlan_hw_strip_disable(dev);
1963         }
1964
1965         if(mask & ETH_VLAN_FILTER_MASK){
1966                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1967                         igb_vlan_hw_filter_enable(dev);
1968                 else
1969                         igb_vlan_hw_filter_disable(dev);
1970         }
1971
1972         if(mask & ETH_VLAN_EXTEND_MASK){
1973                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
1974                         igb_vlan_hw_extend_enable(dev);
1975                 else
1976                         igb_vlan_hw_extend_disable(dev);
1977         }
1978 }
1979
1980
1981 /**
1982  * It enables the interrupt mask and then enable the interrupt.
1983  *
1984  * @param dev
1985  *  Pointer to struct rte_eth_dev.
1986  *
1987  * @return
1988  *  - On success, zero.
1989  *  - On failure, a negative value.
1990  */
1991 static int
1992 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
1993 {
1994         struct e1000_interrupt *intr =
1995                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1996
1997         intr->mask |= E1000_ICR_LSC;
1998
1999         return 0;
2000 }
2001
2002 /* It clears the interrupt causes and enables the interrupt.
2003  * It will be called once only during nic initialized.
2004  *
2005  * @param dev
2006  *  Pointer to struct rte_eth_dev.
2007  *
2008  * @return
2009  *  - On success, zero.
2010  *  - On failure, a negative value.
2011  */
2012 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2013 {
2014         uint32_t mask, regval;
2015         struct e1000_hw *hw =
2016                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2017         struct rte_eth_dev_info dev_info;
2018
2019         memset(&dev_info, 0, sizeof(dev_info));
2020         eth_igb_infos_get(dev, &dev_info);
2021
2022         mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
2023         regval = E1000_READ_REG(hw, E1000_EIMS);
2024         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2025
2026         return 0;
2027 }
2028
2029 /*
2030  * It reads ICR and gets interrupt causes, check it and set a bit flag
2031  * to update link status.
2032  *
2033  * @param dev
2034  *  Pointer to struct rte_eth_dev.
2035  *
2036  * @return
2037  *  - On success, zero.
2038  *  - On failure, a negative value.
2039  */
2040 static int
2041 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2042 {
2043         uint32_t icr;
2044         struct e1000_hw *hw =
2045                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2046         struct e1000_interrupt *intr =
2047                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2048
2049         igb_intr_disable(hw);
2050
2051         /* read-on-clear nic registers here */
2052         icr = E1000_READ_REG(hw, E1000_ICR);
2053
2054         intr->flags = 0;
2055         if (icr & E1000_ICR_LSC) {
2056                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2057         }
2058
2059         if (icr & E1000_ICR_VMMB)
2060                 intr->flags |= E1000_FLAG_MAILBOX;
2061
2062         return 0;
2063 }
2064
2065 /*
2066  * It executes link_update after knowing an interrupt is prsent.
2067  *
2068  * @param dev
2069  *  Pointer to struct rte_eth_dev.
2070  *
2071  * @return
2072  *  - On success, zero.
2073  *  - On failure, a negative value.
2074  */
2075 static int
2076 eth_igb_interrupt_action(struct rte_eth_dev *dev)
2077 {
2078         struct e1000_hw *hw =
2079                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2080         struct e1000_interrupt *intr =
2081                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2082         uint32_t tctl, rctl;
2083         struct rte_eth_link link;
2084         int ret;
2085
2086         if (intr->flags & E1000_FLAG_MAILBOX) {
2087                 igb_pf_mbx_process(dev);
2088                 intr->flags &= ~E1000_FLAG_MAILBOX;
2089         }
2090
2091         igb_intr_enable(dev);
2092         rte_intr_enable(&(dev->pci_dev->intr_handle));
2093
2094         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2095                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2096
2097                 /* set get_link_status to check register later */
2098                 hw->mac.get_link_status = 1;
2099                 ret = eth_igb_link_update(dev, 0);
2100
2101                 /* check if link has changed */
2102                 if (ret < 0)
2103                         return 0;
2104
2105                 memset(&link, 0, sizeof(link));
2106                 rte_igb_dev_atomic_read_link_status(dev, &link);
2107                 if (link.link_status) {
2108                         PMD_INIT_LOG(INFO,
2109                                      " Port %d: Link Up - speed %u Mbps - %s",
2110                                      dev->data->port_id,
2111                                      (unsigned)link.link_speed,
2112                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2113                                      "full-duplex" : "half-duplex");
2114                 } else {
2115                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2116                                      dev->data->port_id);
2117                 }
2118
2119                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2120                              dev->pci_dev->addr.domain,
2121                              dev->pci_dev->addr.bus,
2122                              dev->pci_dev->addr.devid,
2123                              dev->pci_dev->addr.function);
2124                 tctl = E1000_READ_REG(hw, E1000_TCTL);
2125                 rctl = E1000_READ_REG(hw, E1000_RCTL);
2126                 if (link.link_status) {
2127                         /* enable Tx/Rx */
2128                         tctl |= E1000_TCTL_EN;
2129                         rctl |= E1000_RCTL_EN;
2130                 } else {
2131                         /* disable Tx/Rx */
2132                         tctl &= ~E1000_TCTL_EN;
2133                         rctl &= ~E1000_RCTL_EN;
2134                 }
2135                 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2136                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2137                 E1000_WRITE_FLUSH(hw);
2138                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
2139         }
2140
2141         return 0;
2142 }
2143
2144 /**
2145  * Interrupt handler which shall be registered at first.
2146  *
2147  * @param handle
2148  *  Pointer to interrupt handle.
2149  * @param param
2150  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2151  *
2152  * @return
2153  *  void
2154  */
2155 static void
2156 eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
2157                                                         void *param)
2158 {
2159         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2160
2161         eth_igb_interrupt_get_status(dev);
2162         eth_igb_interrupt_action(dev);
2163 }
2164
2165 static int
2166 eth_igb_led_on(struct rte_eth_dev *dev)
2167 {
2168         struct e1000_hw *hw;
2169
2170         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2171         return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
2172 }
2173
2174 static int
2175 eth_igb_led_off(struct rte_eth_dev *dev)
2176 {
2177         struct e1000_hw *hw;
2178
2179         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2180         return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
2181 }
2182
2183 static int
2184 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2185 {
2186         struct e1000_hw *hw;
2187         uint32_t ctrl;
2188         int tx_pause;
2189         int rx_pause;
2190
2191         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2192         fc_conf->pause_time = hw->fc.pause_time;
2193         fc_conf->high_water = hw->fc.high_water;
2194         fc_conf->low_water = hw->fc.low_water;
2195         fc_conf->send_xon = hw->fc.send_xon;
2196         fc_conf->autoneg = hw->mac.autoneg;
2197
2198         /*
2199          * Return rx_pause and tx_pause status according to actual setting of
2200          * the TFCE and RFCE bits in the CTRL register.
2201          */
2202         ctrl = E1000_READ_REG(hw, E1000_CTRL);
2203         if (ctrl & E1000_CTRL_TFCE)
2204                 tx_pause = 1;
2205         else
2206                 tx_pause = 0;
2207
2208         if (ctrl & E1000_CTRL_RFCE)
2209                 rx_pause = 1;
2210         else
2211                 rx_pause = 0;
2212
2213         if (rx_pause && tx_pause)
2214                 fc_conf->mode = RTE_FC_FULL;
2215         else if (rx_pause)
2216                 fc_conf->mode = RTE_FC_RX_PAUSE;
2217         else if (tx_pause)
2218                 fc_conf->mode = RTE_FC_TX_PAUSE;
2219         else
2220                 fc_conf->mode = RTE_FC_NONE;
2221
2222         return 0;
2223 }
2224
2225 static int
2226 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2227 {
2228         struct e1000_hw *hw;
2229         int err;
2230         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
2231                 e1000_fc_none,
2232                 e1000_fc_rx_pause,
2233                 e1000_fc_tx_pause,
2234                 e1000_fc_full
2235         };
2236         uint32_t rx_buf_size;
2237         uint32_t max_high_water;
2238         uint32_t rctl;
2239
2240         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2241         if (fc_conf->autoneg != hw->mac.autoneg)
2242                 return -ENOTSUP;
2243         rx_buf_size = igb_get_rx_buffer_size(hw);
2244         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
2245
2246         /* At least reserve one Ethernet frame for watermark */
2247         max_high_water = rx_buf_size - ETHER_MAX_LEN;
2248         if ((fc_conf->high_water > max_high_water) ||
2249             (fc_conf->high_water < fc_conf->low_water)) {
2250                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
2251                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
2252                 return (-EINVAL);
2253         }
2254
2255         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
2256         hw->fc.pause_time     = fc_conf->pause_time;
2257         hw->fc.high_water     = fc_conf->high_water;
2258         hw->fc.low_water      = fc_conf->low_water;
2259         hw->fc.send_xon       = fc_conf->send_xon;
2260
2261         err = e1000_setup_link_generic(hw);
2262         if (err == E1000_SUCCESS) {
2263
2264                 /* check if we want to forward MAC frames - driver doesn't have native
2265                  * capability to do that, so we'll write the registers ourselves */
2266
2267                 rctl = E1000_READ_REG(hw, E1000_RCTL);
2268
2269                 /* set or clear MFLCN.PMCF bit depending on configuration */
2270                 if (fc_conf->mac_ctrl_frame_fwd != 0)
2271                         rctl |= E1000_RCTL_PMCF;
2272                 else
2273                         rctl &= ~E1000_RCTL_PMCF;
2274
2275                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2276                 E1000_WRITE_FLUSH(hw);
2277
2278                 return 0;
2279         }
2280
2281         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
2282         return (-EIO);
2283 }
2284
2285 #define E1000_RAH_POOLSEL_SHIFT      (18)
2286 static void
2287 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
2288                 uint32_t index, __rte_unused uint32_t pool)
2289 {
2290         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2291         uint32_t rah;
2292
2293         e1000_rar_set(hw, mac_addr->addr_bytes, index);
2294         rah = E1000_READ_REG(hw, E1000_RAH(index));
2295         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
2296         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
2297 }
2298
2299 static void
2300 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
2301 {
2302         uint8_t addr[ETHER_ADDR_LEN];
2303         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2304
2305         memset(addr, 0, sizeof(addr));
2306
2307         e1000_rar_set(hw, addr, index);
2308 }
2309
2310 static void
2311 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
2312                                 struct ether_addr *addr)
2313 {
2314         eth_igb_rar_clear(dev, 0);
2315
2316         eth_igb_rar_set(dev, (void *)addr, 0, 0);
2317 }
2318 /*
2319  * Virtual Function operations
2320  */
2321 static void
2322 igbvf_intr_disable(struct e1000_hw *hw)
2323 {
2324         PMD_INIT_FUNC_TRACE();
2325
2326         /* Clear interrupt mask to stop from interrupts being generated */
2327         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
2328
2329         E1000_WRITE_FLUSH(hw);
2330 }
2331
2332 static void
2333 igbvf_stop_adapter(struct rte_eth_dev *dev)
2334 {
2335         u32 reg_val;
2336         u16 i;
2337         struct rte_eth_dev_info dev_info;
2338         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2339
2340         memset(&dev_info, 0, sizeof(dev_info));
2341         eth_igbvf_infos_get(dev, &dev_info);
2342
2343         /* Clear interrupt mask to stop from interrupts being generated */
2344         igbvf_intr_disable(hw);
2345
2346         /* Clear any pending interrupts, flush previous writes */
2347         E1000_READ_REG(hw, E1000_EICR);
2348
2349         /* Disable the transmit unit.  Each queue must be disabled. */
2350         for (i = 0; i < dev_info.max_tx_queues; i++)
2351                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
2352
2353         /* Disable the receive unit by stopping each queue */
2354         for (i = 0; i < dev_info.max_rx_queues; i++) {
2355                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
2356                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
2357                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
2358                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
2359                         ;
2360         }
2361
2362         /* flush all queues disables */
2363         E1000_WRITE_FLUSH(hw);
2364         msec_delay(2);
2365 }
2366
2367 static int eth_igbvf_link_update(struct e1000_hw *hw)
2368 {
2369         struct e1000_mbx_info *mbx = &hw->mbx;
2370         struct e1000_mac_info *mac = &hw->mac;
2371         int ret_val = E1000_SUCCESS;
2372
2373         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
2374
2375         /*
2376          * We only want to run this if there has been a rst asserted.
2377          * in this case that could mean a link change, device reset,
2378          * or a virtual function reset
2379          */
2380
2381         /* If we were hit with a reset or timeout drop the link */
2382         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
2383                 mac->get_link_status = TRUE;
2384
2385         if (!mac->get_link_status)
2386                 goto out;
2387
2388         /* if link status is down no point in checking to see if pf is up */
2389         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
2390                 goto out;
2391
2392         /* if we passed all the tests above then the link is up and we no
2393          * longer need to check for link */
2394         mac->get_link_status = FALSE;
2395
2396 out:
2397         return ret_val;
2398 }
2399
2400
2401 static int
2402 igbvf_dev_configure(struct rte_eth_dev *dev)
2403 {
2404         struct rte_eth_conf* conf = &dev->data->dev_conf;
2405
2406         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
2407                      dev->data->port_id);
2408
2409         /*
2410          * VF has no ability to enable/disable HW CRC
2411          * Keep the persistent behavior the same as Host PF
2412          */
2413 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
2414         if (!conf->rxmode.hw_strip_crc) {
2415                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
2416                 conf->rxmode.hw_strip_crc = 1;
2417         }
2418 #else
2419         if (conf->rxmode.hw_strip_crc) {
2420                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
2421                 conf->rxmode.hw_strip_crc = 0;
2422         }
2423 #endif
2424
2425         return 0;
2426 }
2427
2428 static int
2429 igbvf_dev_start(struct rte_eth_dev *dev)
2430 {
2431         struct e1000_hw *hw =
2432                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2433         struct e1000_adapter *adapter =
2434                 E1000_DEV_PRIVATE(dev->data->dev_private);
2435         int ret;
2436
2437         PMD_INIT_FUNC_TRACE();
2438
2439         hw->mac.ops.reset_hw(hw);
2440         adapter->stopped = 0;
2441
2442         /* Set all vfta */
2443         igbvf_set_vfta_all(dev,1);
2444
2445         eth_igbvf_tx_init(dev);
2446
2447         /* This can fail when allocating mbufs for descriptor rings */
2448         ret = eth_igbvf_rx_init(dev);
2449         if (ret) {
2450                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
2451                 igb_dev_clear_queues(dev);
2452                 return ret;
2453         }
2454
2455         return 0;
2456 }
2457
2458 static void
2459 igbvf_dev_stop(struct rte_eth_dev *dev)
2460 {
2461         PMD_INIT_FUNC_TRACE();
2462
2463         igbvf_stop_adapter(dev);
2464
2465         /*
2466           * Clear what we set, but we still keep shadow_vfta to
2467           * restore after device starts
2468           */
2469         igbvf_set_vfta_all(dev,0);
2470
2471         igb_dev_clear_queues(dev);
2472 }
2473
2474 static void
2475 igbvf_dev_close(struct rte_eth_dev *dev)
2476 {
2477         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2478         struct e1000_adapter *adapter =
2479                 E1000_DEV_PRIVATE(dev->data->dev_private);
2480
2481         PMD_INIT_FUNC_TRACE();
2482
2483         e1000_reset_hw(hw);
2484
2485         igbvf_dev_stop(dev);
2486         adapter->stopped = 1;
2487         igb_dev_free_queues(dev);
2488 }
2489
2490 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
2491 {
2492         struct e1000_mbx_info *mbx = &hw->mbx;
2493         uint32_t msgbuf[2];
2494
2495         /* After set vlan, vlan strip will also be enabled in igb driver*/
2496         msgbuf[0] = E1000_VF_SET_VLAN;
2497         msgbuf[1] = vid;
2498         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
2499         if (on)
2500                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
2501
2502         return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
2503 }
2504
2505 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
2506 {
2507         struct e1000_hw *hw =
2508                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2509         struct e1000_vfta * shadow_vfta =
2510                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2511         int i = 0, j = 0, vfta = 0, mask = 1;
2512
2513         for (i = 0; i < IGB_VFTA_SIZE; i++){
2514                 vfta = shadow_vfta->vfta[i];
2515                 if(vfta){
2516                         mask = 1;
2517                         for (j = 0; j < 32; j++){
2518                                 if(vfta & mask)
2519                                         igbvf_set_vfta(hw,
2520                                                 (uint16_t)((i<<5)+j), on);
2521                                 mask<<=1;
2522                         }
2523                 }
2524         }
2525
2526 }
2527
2528 static int
2529 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2530 {
2531         struct e1000_hw *hw =
2532                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2533         struct e1000_vfta * shadow_vfta =
2534                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2535         uint32_t vid_idx = 0;
2536         uint32_t vid_bit = 0;
2537         int ret = 0;
2538
2539         PMD_INIT_FUNC_TRACE();
2540
2541         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
2542         ret = igbvf_set_vfta(hw, vlan_id, !!on);
2543         if(ret){
2544                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
2545                 return ret;
2546         }
2547         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
2548         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
2549
2550         /*Save what we set and retore it after device reset*/
2551         if (on)
2552                 shadow_vfta->vfta[vid_idx] |= vid_bit;
2553         else
2554                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
2555
2556         return 0;
2557 }
2558
2559 static void
2560 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
2561 {
2562         struct e1000_hw *hw =
2563                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2564
2565         /* index is not used by rar_set() */
2566         hw->mac.ops.rar_set(hw, (void *)addr, 0);
2567 }
2568
2569
2570 static int
2571 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
2572                         struct rte_eth_rss_reta_entry64 *reta_conf,
2573                         uint16_t reta_size)
2574 {
2575         uint8_t i, j, mask;
2576         uint32_t reta, r;
2577         uint16_t idx, shift;
2578         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2579
2580         if (reta_size != ETH_RSS_RETA_SIZE_128) {
2581                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
2582                         "(%d) doesn't match the number hardware can supported "
2583                         "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
2584                 return -EINVAL;
2585         }
2586
2587         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
2588                 idx = i / RTE_RETA_GROUP_SIZE;
2589                 shift = i % RTE_RETA_GROUP_SIZE;
2590                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
2591                                                 IGB_4_BIT_MASK);
2592                 if (!mask)
2593                         continue;
2594                 if (mask == IGB_4_BIT_MASK)
2595                         r = 0;
2596                 else
2597                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
2598                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
2599                         if (mask & (0x1 << j))
2600                                 reta |= reta_conf[idx].reta[shift + j] <<
2601                                                         (CHAR_BIT * j);
2602                         else
2603                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
2604                 }
2605                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2606         }
2607
2608         return 0;
2609 }
2610
2611 static int
2612 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
2613                        struct rte_eth_rss_reta_entry64 *reta_conf,
2614                        uint16_t reta_size)
2615 {
2616         uint8_t i, j, mask;
2617         uint32_t reta;
2618         uint16_t idx, shift;
2619         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2620
2621         if (reta_size != ETH_RSS_RETA_SIZE_128) {
2622                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
2623                         "(%d) doesn't match the number hardware can supported "
2624                         "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
2625                 return -EINVAL;
2626         }
2627
2628         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
2629                 idx = i / RTE_RETA_GROUP_SIZE;
2630                 shift = i % RTE_RETA_GROUP_SIZE;
2631                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
2632                                                 IGB_4_BIT_MASK);
2633                 if (!mask)
2634                         continue;
2635                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
2636                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
2637                         if (mask & (0x1 << j))
2638                                 reta_conf[idx].reta[shift + j] =
2639                                         ((reta >> (CHAR_BIT * j)) &
2640                                                 IGB_8_BIT_MASK);
2641                 }
2642         }
2643
2644         return 0;
2645 }
2646
2647 #define MAC_TYPE_FILTER_SUP(type)    do {\
2648         if ((type) != e1000_82580 && (type) != e1000_i350 &&\
2649                 (type) != e1000_82576)\
2650                 return -ENOTSUP;\
2651 } while (0)
2652
2653 static int
2654 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
2655                         struct rte_eth_syn_filter *filter,
2656                         bool add)
2657 {
2658         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2659         uint32_t synqf, rfctl;
2660
2661         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
2662                 return -EINVAL;
2663
2664         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
2665
2666         if (add) {
2667                 if (synqf & E1000_SYN_FILTER_ENABLE)
2668                         return -EINVAL;
2669
2670                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
2671                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
2672
2673                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2674                 if (filter->hig_pri)
2675                         rfctl |= E1000_RFCTL_SYNQFP;
2676                 else
2677                         rfctl &= ~E1000_RFCTL_SYNQFP;
2678
2679                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2680         } else {
2681                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
2682                         return -ENOENT;
2683                 synqf = 0;
2684         }
2685
2686         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
2687         E1000_WRITE_FLUSH(hw);
2688         return 0;
2689 }
2690
2691 static int
2692 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
2693                         struct rte_eth_syn_filter *filter)
2694 {
2695         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2696         uint32_t synqf, rfctl;
2697
2698         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
2699         if (synqf & E1000_SYN_FILTER_ENABLE) {
2700                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2701                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
2702                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
2703                                 E1000_SYN_FILTER_QUEUE_SHIFT);
2704                 return 0;
2705         }
2706
2707         return -ENOENT;
2708 }
2709
2710 static int
2711 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
2712                         enum rte_filter_op filter_op,
2713                         void *arg)
2714 {
2715         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2716         int ret;
2717
2718         MAC_TYPE_FILTER_SUP(hw->mac.type);
2719
2720         if (filter_op == RTE_ETH_FILTER_NOP)
2721                 return 0;
2722
2723         if (arg == NULL) {
2724                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
2725                             filter_op);
2726                 return -EINVAL;
2727         }
2728
2729         switch (filter_op) {
2730         case RTE_ETH_FILTER_ADD:
2731                 ret = eth_igb_syn_filter_set(dev,
2732                                 (struct rte_eth_syn_filter *)arg,
2733                                 TRUE);
2734                 break;
2735         case RTE_ETH_FILTER_DELETE:
2736                 ret = eth_igb_syn_filter_set(dev,
2737                                 (struct rte_eth_syn_filter *)arg,
2738                                 FALSE);
2739                 break;
2740         case RTE_ETH_FILTER_GET:
2741                 ret = eth_igb_syn_filter_get(dev,
2742                                 (struct rte_eth_syn_filter *)arg);
2743                 break;
2744         default:
2745                 PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
2746                 ret = -EINVAL;
2747                 break;
2748         }
2749
2750         return ret;
2751 }
2752
2753 #define MAC_TYPE_FILTER_SUP_EXT(type)    do {\
2754         if ((type) != e1000_82580 && (type) != e1000_i350)\
2755                 return -ENOSYS; \
2756 } while (0)
2757
2758 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
2759 static inline int
2760 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
2761                         struct e1000_2tuple_filter_info *filter_info)
2762 {
2763         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
2764                 return -EINVAL;
2765         if (filter->priority > E1000_2TUPLE_MAX_PRI)
2766                 return -EINVAL;  /* filter index is out of range. */
2767         if (filter->tcp_flags > TCP_FLAG_ALL)
2768                 return -EINVAL;  /* flags is invalid. */
2769
2770         switch (filter->dst_port_mask) {
2771         case UINT16_MAX:
2772                 filter_info->dst_port_mask = 0;
2773                 filter_info->dst_port = filter->dst_port;
2774                 break;
2775         case 0:
2776                 filter_info->dst_port_mask = 1;
2777                 break;
2778         default:
2779                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
2780                 return -EINVAL;
2781         }
2782
2783         switch (filter->proto_mask) {
2784         case UINT8_MAX:
2785                 filter_info->proto_mask = 0;
2786                 filter_info->proto = filter->proto;
2787                 break;
2788         case 0:
2789                 filter_info->proto_mask = 1;
2790                 break;
2791         default:
2792                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
2793                 return -EINVAL;
2794         }
2795
2796         filter_info->priority = (uint8_t)filter->priority;
2797         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
2798                 filter_info->tcp_flags = filter->tcp_flags;
2799         else
2800                 filter_info->tcp_flags = 0;
2801
2802         return 0;
2803 }
2804
2805 static inline struct e1000_2tuple_filter *
2806 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
2807                         struct e1000_2tuple_filter_info *key)
2808 {
2809         struct e1000_2tuple_filter *it;
2810
2811         TAILQ_FOREACH(it, filter_list, entries) {
2812                 if (memcmp(key, &it->filter_info,
2813                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
2814                         return it;
2815                 }
2816         }
2817         return NULL;
2818 }
2819
2820 /*
2821  * igb_add_2tuple_filter - add a 2tuple filter
2822  *
2823  * @param
2824  * dev: Pointer to struct rte_eth_dev.
2825  * ntuple_filter: ponter to the filter that will be added.
2826  *
2827  * @return
2828  *    - On success, zero.
2829  *    - On failure, a negative value.
2830  */
2831 static int
2832 igb_add_2tuple_filter(struct rte_eth_dev *dev,
2833                         struct rte_eth_ntuple_filter *ntuple_filter)
2834 {
2835         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2836         struct e1000_filter_info *filter_info =
2837                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2838         struct e1000_2tuple_filter *filter;
2839         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
2840         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
2841         int i, ret;
2842
2843         filter = rte_zmalloc("e1000_2tuple_filter",
2844                         sizeof(struct e1000_2tuple_filter), 0);
2845         if (filter == NULL)
2846                 return -ENOMEM;
2847
2848         ret = ntuple_filter_to_2tuple(ntuple_filter,
2849                                       &filter->filter_info);
2850         if (ret < 0) {
2851                 rte_free(filter);
2852                 return ret;
2853         }
2854         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
2855                                          &filter->filter_info) != NULL) {
2856                 PMD_DRV_LOG(ERR, "filter exists.");
2857                 rte_free(filter);
2858                 return -EEXIST;
2859         }
2860         filter->queue = ntuple_filter->queue;
2861
2862         /*
2863          * look for an unused 2tuple filter index,
2864          * and insert the filter to list.
2865          */
2866         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
2867                 if (!(filter_info->twotuple_mask & (1 << i))) {
2868                         filter_info->twotuple_mask |= 1 << i;
2869                         filter->index = i;
2870                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
2871                                           filter,
2872                                           entries);
2873                         break;
2874                 }
2875         }
2876         if (i >= E1000_MAX_TTQF_FILTERS) {
2877                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
2878                 rte_free(filter);
2879                 return -ENOSYS;
2880         }
2881
2882         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
2883         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
2884                 imir |= E1000_IMIR_PORT_BP;
2885         else
2886                 imir &= ~E1000_IMIR_PORT_BP;
2887
2888         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
2889
2890         ttqf |= E1000_TTQF_QUEUE_ENABLE;
2891         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
2892         ttqf |= (uint32_t)(filter->filter_info.proto & E1000_TTQF_PROTOCOL_MASK);
2893         if (filter->filter_info.proto_mask == 0)
2894                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
2895
2896         /* tcp flags bits setting. */
2897         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
2898                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
2899                         imir_ext |= E1000_IMIREXT_CTRL_URG;
2900                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
2901                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
2902                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
2903                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
2904                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
2905                         imir_ext |= E1000_IMIREXT_CTRL_RST;
2906                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
2907                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
2908                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
2909                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
2910         } else
2911                 imir_ext |= E1000_IMIREXT_CTRL_BP;
2912         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
2913         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
2914         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
2915         return 0;
2916 }
2917
2918 /*
2919  * igb_remove_2tuple_filter - remove a 2tuple filter
2920  *
2921  * @param
2922  * dev: Pointer to struct rte_eth_dev.
2923  * ntuple_filter: ponter to the filter that will be removed.
2924  *
2925  * @return
2926  *    - On success, zero.
2927  *    - On failure, a negative value.
2928  */
2929 static int
2930 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
2931                         struct rte_eth_ntuple_filter *ntuple_filter)
2932 {
2933         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2934         struct e1000_filter_info *filter_info =
2935                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2936         struct e1000_2tuple_filter_info filter_2tuple;
2937         struct e1000_2tuple_filter *filter;
2938         int ret;
2939
2940         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
2941         ret = ntuple_filter_to_2tuple(ntuple_filter,
2942                                       &filter_2tuple);
2943         if (ret < 0)
2944                 return ret;
2945
2946         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
2947                                          &filter_2tuple);
2948         if (filter == NULL) {
2949                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
2950                 return -ENOENT;
2951         }
2952
2953         filter_info->twotuple_mask &= ~(1 << filter->index);
2954         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
2955         rte_free(filter);
2956
2957         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
2958         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
2959         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
2960         return 0;
2961 }
2962
2963 static inline struct e1000_flex_filter *
2964 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
2965                         struct e1000_flex_filter_info *key)
2966 {
2967         struct e1000_flex_filter *it;
2968
2969         TAILQ_FOREACH(it, filter_list, entries) {
2970                 if (memcmp(key, &it->filter_info,
2971                         sizeof(struct e1000_flex_filter_info)) == 0)
2972                         return it;
2973         }
2974
2975         return NULL;
2976 }
2977
2978 static int
2979 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
2980                         struct rte_eth_flex_filter *filter,
2981                         bool add)
2982 {
2983         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2984         struct e1000_filter_info *filter_info =
2985                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2986         struct e1000_flex_filter *flex_filter, *it;
2987         uint32_t wufc, queueing, mask;
2988         uint32_t reg_off;
2989         uint8_t shift, i, j = 0;
2990
2991         flex_filter = rte_zmalloc("e1000_flex_filter",
2992                         sizeof(struct e1000_flex_filter), 0);
2993         if (flex_filter == NULL)
2994                 return -ENOMEM;
2995
2996         flex_filter->filter_info.len = filter->len;
2997         flex_filter->filter_info.priority = filter->priority;
2998         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
2999         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
3000                 mask = 0;
3001                 /* reverse bits in flex filter's mask*/
3002                 for (shift = 0; shift < CHAR_BIT; shift++) {
3003                         if (filter->mask[i] & (0x01 << shift))
3004                                 mask |= (0x80 >> shift);
3005                 }
3006                 flex_filter->filter_info.mask[i] = mask;
3007         }
3008
3009         wufc = E1000_READ_REG(hw, E1000_WUFC);
3010         if (flex_filter->index < E1000_MAX_FHFT)
3011                 reg_off = E1000_FHFT(flex_filter->index);
3012         else
3013                 reg_off = E1000_FHFT_EXT(flex_filter->index - E1000_MAX_FHFT);
3014
3015         if (add) {
3016                 if (eth_igb_flex_filter_lookup(&filter_info->flex_list,
3017                                 &flex_filter->filter_info) != NULL) {
3018                         PMD_DRV_LOG(ERR, "filter exists.");
3019                         rte_free(flex_filter);
3020                         return -EEXIST;
3021                 }
3022                 flex_filter->queue = filter->queue;
3023                 /*
3024                  * look for an unused flex filter index
3025                  * and insert the filter into the list.
3026                  */
3027                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
3028                         if (!(filter_info->flex_mask & (1 << i))) {
3029                                 filter_info->flex_mask |= 1 << i;
3030                                 flex_filter->index = i;
3031                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
3032                                         flex_filter,
3033                                         entries);
3034                                 break;
3035                         }
3036                 }
3037                 if (i >= E1000_MAX_FLEX_FILTERS) {
3038                         PMD_DRV_LOG(ERR, "flex filters are full.");
3039                         rte_free(flex_filter);
3040                         return -ENOSYS;
3041                 }
3042
3043                 E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3044                                 (E1000_WUFC_FLX0 << flex_filter->index));
3045                 queueing = filter->len |
3046                         (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3047                         (filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT);
3048                 E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3049                                 queueing);
3050                 for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3051                         E1000_WRITE_REG(hw, reg_off,
3052                                         flex_filter->filter_info.dwords[j]);
3053                         reg_off += sizeof(uint32_t);
3054                         E1000_WRITE_REG(hw, reg_off,
3055                                         flex_filter->filter_info.dwords[++j]);
3056                         reg_off += sizeof(uint32_t);
3057                         E1000_WRITE_REG(hw, reg_off,
3058                                 (uint32_t)flex_filter->filter_info.mask[i]);
3059                         reg_off += sizeof(uint32_t) * 2;
3060                         ++j;
3061                 }
3062         } else {
3063                 it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
3064                                 &flex_filter->filter_info);
3065                 if (it == NULL) {
3066                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
3067                         rte_free(flex_filter);
3068                         return -ENOENT;
3069                 }
3070
3071                 for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3072                         E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
3073                 E1000_WRITE_REG(hw, E1000_WUFC, wufc &
3074                         (~(E1000_WUFC_FLX0 << it->index)));
3075
3076                 filter_info->flex_mask &= ~(1 << it->index);
3077                 TAILQ_REMOVE(&filter_info->flex_list, it, entries);
3078                 rte_free(it);
3079                 rte_free(flex_filter);
3080         }
3081
3082         return 0;
3083 }
3084
3085 static int
3086 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
3087                         struct rte_eth_flex_filter *filter)
3088 {
3089         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3090         struct e1000_filter_info *filter_info =
3091                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3092         struct e1000_flex_filter flex_filter, *it;
3093         uint32_t wufc, queueing, wufc_en = 0;
3094
3095         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
3096         flex_filter.filter_info.len = filter->len;
3097         flex_filter.filter_info.priority = filter->priority;
3098         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
3099         memcpy(flex_filter.filter_info.mask, filter->mask,
3100                         RTE_ALIGN(filter->len, sizeof(char)) / sizeof(char));
3101
3102         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
3103                                 &flex_filter.filter_info);
3104         if (it == NULL) {
3105                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3106                 return -ENOENT;
3107         }
3108
3109         wufc = E1000_READ_REG(hw, E1000_WUFC);
3110         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
3111
3112         if ((wufc & wufc_en) == wufc_en) {
3113                 uint32_t reg_off = 0;
3114                 if (it->index < E1000_MAX_FHFT)
3115                         reg_off = E1000_FHFT(it->index);
3116                 else
3117                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
3118
3119                 queueing = E1000_READ_REG(hw,
3120                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
3121                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
3122                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
3123                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
3124                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
3125                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
3126                 return 0;
3127         }
3128         return -ENOENT;
3129 }
3130
3131 static int
3132 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
3133                         enum rte_filter_op filter_op,
3134                         void *arg)
3135 {
3136         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3137         struct rte_eth_flex_filter *filter;
3138         int ret = 0;
3139
3140         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
3141
3142         if (filter_op == RTE_ETH_FILTER_NOP)
3143                 return ret;
3144
3145         if (arg == NULL) {
3146                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3147                             filter_op);
3148                 return -EINVAL;
3149         }
3150
3151         filter = (struct rte_eth_flex_filter *)arg;
3152         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
3153             || filter->len % sizeof(uint64_t) != 0) {
3154                 PMD_DRV_LOG(ERR, "filter's length is out of range");
3155                 return -EINVAL;
3156         }
3157         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
3158                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
3159                 return -EINVAL;
3160         }
3161
3162         switch (filter_op) {
3163         case RTE_ETH_FILTER_ADD:
3164                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
3165                 break;
3166         case RTE_ETH_FILTER_DELETE:
3167                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
3168                 break;
3169         case RTE_ETH_FILTER_GET:
3170                 ret = eth_igb_get_flex_filter(dev, filter);
3171                 break;
3172         default:
3173                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3174                 ret = -EINVAL;
3175                 break;
3176         }
3177
3178         return ret;
3179 }
3180
3181 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
3182 static inline int
3183 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
3184                         struct e1000_5tuple_filter_info *filter_info)
3185 {
3186         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
3187                 return -EINVAL;
3188         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3189                 return -EINVAL;  /* filter index is out of range. */
3190         if (filter->tcp_flags > TCP_FLAG_ALL)
3191                 return -EINVAL;  /* flags is invalid. */
3192
3193         switch (filter->dst_ip_mask) {
3194         case UINT32_MAX:
3195                 filter_info->dst_ip_mask = 0;
3196                 filter_info->dst_ip = filter->dst_ip;
3197                 break;
3198         case 0:
3199                 filter_info->dst_ip_mask = 1;
3200                 break;
3201         default:
3202                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
3203                 return -EINVAL;
3204         }
3205
3206         switch (filter->src_ip_mask) {
3207         case UINT32_MAX:
3208                 filter_info->src_ip_mask = 0;
3209                 filter_info->src_ip = filter->src_ip;
3210                 break;
3211         case 0:
3212                 filter_info->src_ip_mask = 1;
3213                 break;
3214         default:
3215                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
3216                 return -EINVAL;
3217         }
3218
3219         switch (filter->dst_port_mask) {
3220         case UINT16_MAX:
3221                 filter_info->dst_port_mask = 0;
3222                 filter_info->dst_port = filter->dst_port;
3223                 break;
3224         case 0:
3225                 filter_info->dst_port_mask = 1;
3226                 break;
3227         default:
3228                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3229                 return -EINVAL;
3230         }
3231
3232         switch (filter->src_port_mask) {
3233         case UINT16_MAX:
3234                 filter_info->src_port_mask = 0;
3235                 filter_info->src_port = filter->src_port;
3236                 break;
3237         case 0:
3238                 filter_info->src_port_mask = 1;
3239                 break;
3240         default:
3241                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
3242                 return -EINVAL;
3243         }
3244
3245         switch (filter->proto_mask) {
3246         case UINT8_MAX:
3247                 filter_info->proto_mask = 0;
3248                 filter_info->proto = filter->proto;
3249                 break;
3250         case 0:
3251                 filter_info->proto_mask = 1;
3252                 break;
3253         default:
3254                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3255                 return -EINVAL;
3256         }
3257
3258         filter_info->priority = (uint8_t)filter->priority;
3259         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3260                 filter_info->tcp_flags = filter->tcp_flags;
3261         else
3262                 filter_info->tcp_flags = 0;
3263
3264         return 0;
3265 }
3266
3267 static inline struct e1000_5tuple_filter *
3268 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
3269                         struct e1000_5tuple_filter_info *key)
3270 {
3271         struct e1000_5tuple_filter *it;
3272
3273         TAILQ_FOREACH(it, filter_list, entries) {
3274                 if (memcmp(key, &it->filter_info,
3275                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
3276                         return it;
3277                 }
3278         }
3279         return NULL;
3280 }
3281
3282 /*
3283  * igb_add_5tuple_filter_82576 - add a 5tuple filter
3284  *
3285  * @param
3286  * dev: Pointer to struct rte_eth_dev.
3287  * ntuple_filter: ponter to the filter that will be added.
3288  *
3289  * @return
3290  *    - On success, zero.
3291  *    - On failure, a negative value.
3292  */
3293 static int
3294 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
3295                         struct rte_eth_ntuple_filter *ntuple_filter)
3296 {
3297         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3298         struct e1000_filter_info *filter_info =
3299                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3300         struct e1000_5tuple_filter *filter;
3301         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
3302         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3303         uint8_t i;
3304         int ret;
3305
3306         filter = rte_zmalloc("e1000_5tuple_filter",
3307                         sizeof(struct e1000_5tuple_filter), 0);
3308         if (filter == NULL)
3309                 return -ENOMEM;
3310
3311         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
3312                                             &filter->filter_info);
3313         if (ret < 0) {
3314                 rte_free(filter);
3315                 return ret;
3316         }
3317
3318         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
3319                                          &filter->filter_info) != NULL) {
3320                 PMD_DRV_LOG(ERR, "filter exists.");
3321                 rte_free(filter);
3322                 return -EEXIST;
3323         }
3324         filter->queue = ntuple_filter->queue;
3325
3326         /*
3327          * look for an unused 5tuple filter index,
3328          * and insert the filter to list.
3329          */
3330         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
3331                 if (!(filter_info->fivetuple_mask & (1 << i))) {
3332                         filter_info->fivetuple_mask |= 1 << i;
3333                         filter->index = i;
3334                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
3335                                           filter,
3336                                           entries);
3337                         break;
3338                 }
3339         }
3340         if (i >= E1000_MAX_FTQF_FILTERS) {
3341                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
3342                 rte_free(filter);
3343                 return -ENOSYS;
3344         }
3345
3346         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
3347         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
3348                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
3349         if (filter->filter_info.dst_ip_mask == 0)
3350                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
3351         if (filter->filter_info.src_port_mask == 0)
3352                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
3353         if (filter->filter_info.proto_mask == 0)
3354                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
3355         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
3356                 E1000_FTQF_QUEUE_MASK;
3357         ftqf |= E1000_FTQF_QUEUE_ENABLE;
3358         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
3359         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
3360         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
3361
3362         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
3363         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
3364
3365         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3366         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3367                 imir |= E1000_IMIR_PORT_BP;
3368         else
3369                 imir &= ~E1000_IMIR_PORT_BP;
3370         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3371
3372         /* tcp flags bits setting. */
3373         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3374                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3375                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3376                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3377                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3378                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3379                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3380                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3381                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3382                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3383                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3384                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3385                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3386         } else
3387                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3388         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3389         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3390         return 0;
3391 }
3392
3393 /*
3394  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
3395  *
3396  * @param
3397  * dev: Pointer to struct rte_eth_dev.
3398  * ntuple_filter: ponter to the filter that will be removed.
3399  *
3400  * @return
3401  *    - On success, zero.
3402  *    - On failure, a negative value.
3403  */
3404 static int
3405 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
3406                                 struct rte_eth_ntuple_filter *ntuple_filter)
3407 {
3408         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3409         struct e1000_filter_info *filter_info =
3410                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3411         struct e1000_5tuple_filter_info filter_5tuple;
3412         struct e1000_5tuple_filter *filter;
3413         int ret;
3414
3415         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
3416         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
3417                                             &filter_5tuple);
3418         if (ret < 0)
3419                 return ret;
3420
3421         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
3422                                          &filter_5tuple);
3423         if (filter == NULL) {
3424                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3425                 return -ENOENT;
3426         }
3427
3428         filter_info->fivetuple_mask &= ~(1 << filter->index);
3429         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
3430         rte_free(filter);
3431
3432         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
3433                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
3434         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
3435         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
3436         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
3437         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3438         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3439         return 0;
3440 }
3441
3442 static int
3443 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
3444 {
3445         uint32_t rctl;
3446         struct e1000_hw *hw;
3447         struct rte_eth_dev_info dev_info;
3448         uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
3449                                      VLAN_TAG_SIZE);
3450
3451         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3452
3453 #ifdef RTE_LIBRTE_82571_SUPPORT
3454         /* XXX: not bigger than max_rx_pktlen */
3455         if (hw->mac.type == e1000_82571)
3456                 return -ENOTSUP;
3457 #endif
3458         eth_igb_infos_get(dev, &dev_info);
3459
3460         /* check that mtu is within the allowed range */
3461         if ((mtu < ETHER_MIN_MTU) ||
3462             (frame_size > dev_info.max_rx_pktlen))
3463                 return -EINVAL;
3464
3465         /* refuse mtu that requires the support of scattered packets when this
3466          * feature has not been enabled before. */
3467         if (!dev->data->scattered_rx &&
3468             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
3469                 return -EINVAL;
3470
3471         rctl = E1000_READ_REG(hw, E1000_RCTL);
3472
3473         /* switch to jumbo mode if needed */
3474         if (frame_size > ETHER_MAX_LEN) {
3475                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
3476                 rctl |= E1000_RCTL_LPE;
3477         } else {
3478                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
3479                 rctl &= ~E1000_RCTL_LPE;
3480         }
3481         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3482
3483         /* update max frame size */
3484         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
3485
3486         E1000_WRITE_REG(hw, E1000_RLPML,
3487                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
3488
3489         return 0;
3490 }
3491
3492 /*
3493  * igb_add_del_ntuple_filter - add or delete a ntuple filter
3494  *
3495  * @param
3496  * dev: Pointer to struct rte_eth_dev.
3497  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
3498  * add: if true, add filter, if false, remove filter
3499  *
3500  * @return
3501  *    - On success, zero.
3502  *    - On failure, a negative value.
3503  */
3504 static int
3505 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
3506                         struct rte_eth_ntuple_filter *ntuple_filter,
3507                         bool add)
3508 {
3509         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3510         int ret;
3511
3512         switch (ntuple_filter->flags) {
3513         case RTE_5TUPLE_FLAGS:
3514         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3515                 if (hw->mac.type != e1000_82576)
3516                         return -ENOTSUP;
3517                 if (add)
3518                         ret = igb_add_5tuple_filter_82576(dev,
3519                                                           ntuple_filter);
3520                 else
3521                         ret = igb_remove_5tuple_filter_82576(dev,
3522                                                              ntuple_filter);
3523                 break;
3524         case RTE_2TUPLE_FLAGS:
3525         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3526                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
3527                         return -ENOTSUP;
3528                 if (add)
3529                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
3530                 else
3531                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
3532                 break;
3533         default:
3534                 ret = -EINVAL;
3535                 break;
3536         }
3537
3538         return ret;
3539 }
3540
3541 /*
3542  * igb_get_ntuple_filter - get a ntuple filter
3543  *
3544  * @param
3545  * dev: Pointer to struct rte_eth_dev.
3546  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
3547  *
3548  * @return
3549  *    - On success, zero.
3550  *    - On failure, a negative value.
3551  */
3552 static int
3553 igb_get_ntuple_filter(struct rte_eth_dev *dev,
3554                         struct rte_eth_ntuple_filter *ntuple_filter)
3555 {
3556         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3557         struct e1000_filter_info *filter_info =
3558                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3559         struct e1000_5tuple_filter_info filter_5tuple;
3560         struct e1000_2tuple_filter_info filter_2tuple;
3561         struct e1000_5tuple_filter *p_5tuple_filter;
3562         struct e1000_2tuple_filter *p_2tuple_filter;
3563         int ret;
3564
3565         switch (ntuple_filter->flags) {
3566         case RTE_5TUPLE_FLAGS:
3567         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3568                 if (hw->mac.type != e1000_82576)
3569                         return -ENOTSUP;
3570                 memset(&filter_5tuple,
3571                         0,
3572                         sizeof(struct e1000_5tuple_filter_info));
3573                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
3574                                                     &filter_5tuple);
3575                 if (ret < 0)
3576                         return ret;
3577                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
3578                                         &filter_info->fivetuple_list,
3579                                         &filter_5tuple);
3580                 if (p_5tuple_filter == NULL) {
3581                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
3582                         return -ENOENT;
3583                 }
3584                 ntuple_filter->queue = p_5tuple_filter->queue;
3585                 break;
3586         case RTE_2TUPLE_FLAGS:
3587         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3588                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
3589                         return -ENOTSUP;
3590                 memset(&filter_2tuple,
3591                         0,
3592                         sizeof(struct e1000_2tuple_filter_info));
3593                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
3594                 if (ret < 0)
3595                         return ret;
3596                 p_2tuple_filter = igb_2tuple_filter_lookup(
3597                                         &filter_info->twotuple_list,
3598                                         &filter_2tuple);
3599                 if (p_2tuple_filter == NULL) {
3600                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
3601                         return -ENOENT;
3602                 }
3603                 ntuple_filter->queue = p_2tuple_filter->queue;
3604                 break;
3605         default:
3606                 ret = -EINVAL;
3607                 break;
3608         }
3609
3610         return 0;
3611 }
3612
3613 /*
3614  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
3615  * @dev: pointer to rte_eth_dev structure
3616  * @filter_op:operation will be taken.
3617  * @arg: a pointer to specific structure corresponding to the filter_op
3618  */
3619 static int
3620 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
3621                                 enum rte_filter_op filter_op,
3622                                 void *arg)
3623 {
3624         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3625         int ret;
3626
3627         MAC_TYPE_FILTER_SUP(hw->mac.type);
3628
3629         if (filter_op == RTE_ETH_FILTER_NOP)
3630                 return 0;
3631
3632         if (arg == NULL) {
3633                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
3634                             filter_op);
3635                 return -EINVAL;
3636         }
3637
3638         switch (filter_op) {
3639         case RTE_ETH_FILTER_ADD:
3640                 ret = igb_add_del_ntuple_filter(dev,
3641                         (struct rte_eth_ntuple_filter *)arg,
3642                         TRUE);
3643                 break;
3644         case RTE_ETH_FILTER_DELETE:
3645                 ret = igb_add_del_ntuple_filter(dev,
3646                         (struct rte_eth_ntuple_filter *)arg,
3647                         FALSE);
3648                 break;
3649         case RTE_ETH_FILTER_GET:
3650                 ret = igb_get_ntuple_filter(dev,
3651                         (struct rte_eth_ntuple_filter *)arg);
3652                 break;
3653         default:
3654                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
3655                 ret = -EINVAL;
3656                 break;
3657         }
3658         return ret;
3659 }
3660
3661 static inline int
3662 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
3663                         uint16_t ethertype)
3664 {
3665         int i;
3666
3667         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
3668                 if (filter_info->ethertype_filters[i] == ethertype &&
3669                     (filter_info->ethertype_mask & (1 << i)))
3670                         return i;
3671         }
3672         return -1;
3673 }
3674
3675 static inline int
3676 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
3677                         uint16_t ethertype)
3678 {
3679         int i;
3680
3681         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
3682                 if (!(filter_info->ethertype_mask & (1 << i))) {
3683                         filter_info->ethertype_mask |= 1 << i;
3684                         filter_info->ethertype_filters[i] = ethertype;
3685                         return i;
3686                 }
3687         }
3688         return -1;
3689 }
3690
3691 static inline int
3692 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
3693                         uint8_t idx)
3694 {
3695         if (idx >= E1000_MAX_ETQF_FILTERS)
3696                 return -1;
3697         filter_info->ethertype_mask &= ~(1 << idx);
3698         filter_info->ethertype_filters[idx] = 0;
3699         return idx;
3700 }
3701
3702
3703 static int
3704 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
3705                         struct rte_eth_ethertype_filter *filter,
3706                         bool add)
3707 {
3708         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3709         struct e1000_filter_info *filter_info =
3710                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3711         uint32_t etqf = 0;
3712         int ret;
3713
3714         if (filter->ether_type == ETHER_TYPE_IPv4 ||
3715                 filter->ether_type == ETHER_TYPE_IPv6) {
3716                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
3717                         " ethertype filter.", filter->ether_type);
3718                 return -EINVAL;
3719         }
3720
3721         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
3722                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
3723                 return -EINVAL;
3724         }
3725         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
3726                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
3727                 return -EINVAL;
3728         }
3729
3730         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
3731         if (ret >= 0 && add) {
3732                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
3733                             filter->ether_type);
3734                 return -EEXIST;
3735         }
3736         if (ret < 0 && !add) {
3737                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
3738                             filter->ether_type);
3739                 return -ENOENT;
3740         }
3741
3742         if (add) {
3743                 ret = igb_ethertype_filter_insert(filter_info,
3744                         filter->ether_type);
3745                 if (ret < 0) {
3746                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
3747                         return -ENOSYS;
3748                 }
3749
3750                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
3751                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
3752                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
3753         } else {
3754                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
3755                 if (ret < 0)
3756                         return -ENOSYS;
3757         }
3758         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
3759         E1000_WRITE_FLUSH(hw);
3760
3761         return 0;
3762 }
3763
3764 static int
3765 igb_get_ethertype_filter(struct rte_eth_dev *dev,
3766                         struct rte_eth_ethertype_filter *filter)
3767 {
3768         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3769         struct e1000_filter_info *filter_info =
3770                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3771         uint32_t etqf;
3772         int ret;
3773
3774         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
3775         if (ret < 0) {
3776                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
3777                             filter->ether_type);
3778                 return -ENOENT;
3779         }
3780
3781         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
3782         if (etqf & E1000_ETQF_FILTER_ENABLE) {
3783                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
3784                 filter->flags = 0;
3785                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
3786                                 E1000_ETQF_QUEUE_SHIFT;
3787                 return 0;
3788         }
3789
3790         return -ENOENT;
3791 }
3792
3793 /*
3794  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
3795  * @dev: pointer to rte_eth_dev structure
3796  * @filter_op:operation will be taken.
3797  * @arg: a pointer to specific structure corresponding to the filter_op
3798  */
3799 static int
3800 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
3801                                 enum rte_filter_op filter_op,
3802                                 void *arg)
3803 {
3804         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3805         int ret;
3806
3807         MAC_TYPE_FILTER_SUP(hw->mac.type);
3808
3809         if (filter_op == RTE_ETH_FILTER_NOP)
3810                 return 0;
3811
3812         if (arg == NULL) {
3813                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
3814                             filter_op);
3815                 return -EINVAL;
3816         }
3817
3818         switch (filter_op) {
3819         case RTE_ETH_FILTER_ADD:
3820                 ret = igb_add_del_ethertype_filter(dev,
3821                         (struct rte_eth_ethertype_filter *)arg,
3822                         TRUE);
3823                 break;
3824         case RTE_ETH_FILTER_DELETE:
3825                 ret = igb_add_del_ethertype_filter(dev,
3826                         (struct rte_eth_ethertype_filter *)arg,
3827                         FALSE);
3828                 break;
3829         case RTE_ETH_FILTER_GET:
3830                 ret = igb_get_ethertype_filter(dev,
3831                         (struct rte_eth_ethertype_filter *)arg);
3832                 break;
3833         default:
3834                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
3835                 ret = -EINVAL;
3836                 break;
3837         }
3838         return ret;
3839 }
3840
3841 static int
3842 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
3843                      enum rte_filter_type filter_type,
3844                      enum rte_filter_op filter_op,
3845                      void *arg)
3846 {
3847         int ret = -EINVAL;
3848
3849         switch (filter_type) {
3850         case RTE_ETH_FILTER_NTUPLE:
3851                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
3852                 break;
3853         case RTE_ETH_FILTER_ETHERTYPE:
3854                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
3855                 break;
3856         case RTE_ETH_FILTER_SYN:
3857                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
3858                 break;
3859         case RTE_ETH_FILTER_FLEXIBLE:
3860                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
3861                 break;
3862         default:
3863                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
3864                                                         filter_type);
3865                 break;
3866         }
3867
3868         return ret;
3869 }
3870
3871 static int
3872 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
3873                          struct ether_addr *mc_addr_set,
3874                          uint32_t nb_mc_addr)
3875 {
3876         struct e1000_hw *hw;
3877
3878         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3879         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
3880         return 0;
3881 }
3882
3883 static int
3884 igb_timesync_enable(struct rte_eth_dev *dev)
3885 {
3886         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3887         uint32_t tsync_ctl;
3888         uint32_t tsauxc;
3889
3890         /* Enable system time for it isn't on by default. */
3891         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
3892         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
3893         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
3894
3895         /* Start incrementing the register used to timestamp PTP packets. */
3896         E1000_WRITE_REG(hw, E1000_TIMINCA, E1000_TIMINCA_INIT);
3897
3898         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
3899         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
3900                         (ETHER_TYPE_1588 |
3901                          E1000_ETQF_FILTER_ENABLE |
3902                          E1000_ETQF_1588));
3903
3904         /* Enable timestamping of received PTP packets. */
3905         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
3906         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
3907         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
3908
3909         /* Enable Timestamping of transmitted PTP packets. */
3910         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
3911         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
3912         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
3913
3914         return 0;
3915 }
3916
3917 static int
3918 igb_timesync_disable(struct rte_eth_dev *dev)
3919 {
3920         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3921         uint32_t tsync_ctl;
3922
3923         /* Disable timestamping of transmitted PTP packets. */
3924         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
3925         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
3926         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
3927
3928         /* Disable timestamping of received PTP packets. */
3929         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
3930         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
3931         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
3932
3933         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
3934         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
3935
3936         /* Stop incrementating the System Time registers. */
3937         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
3938
3939         return 0;
3940 }
3941
3942 static int
3943 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3944                                struct timespec *timestamp,
3945                                uint32_t flags __rte_unused)
3946 {
3947         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3948         uint32_t tsync_rxctl;
3949         uint32_t rx_stmpl;
3950         uint32_t rx_stmph;
3951
3952         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
3953         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
3954                 return -EINVAL;
3955
3956         rx_stmpl = E1000_READ_REG(hw, E1000_RXSTMPL);
3957         rx_stmph = E1000_READ_REG(hw, E1000_RXSTMPH);
3958
3959         timestamp->tv_sec = (uint64_t)(((uint64_t)rx_stmph << 32) | rx_stmpl);
3960         timestamp->tv_nsec = 0;
3961
3962         return  0;
3963 }
3964
3965 static int
3966 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3967                                struct timespec *timestamp)
3968 {
3969         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3970         uint32_t tsync_txctl;
3971         uint32_t tx_stmpl;
3972         uint32_t tx_stmph;
3973
3974         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
3975         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
3976                 return -EINVAL;
3977
3978         tx_stmpl = E1000_READ_REG(hw, E1000_TXSTMPL);
3979         tx_stmph = E1000_READ_REG(hw, E1000_TXSTMPH);
3980
3981         timestamp->tv_sec = (uint64_t)(((uint64_t)tx_stmph << 32) | tx_stmpl);
3982         timestamp->tv_nsec = 0;
3983
3984         return  0;
3985 }
3986
3987 static int
3988 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
3989 {
3990         int count = 0;
3991         int g_ind = 0;
3992         const struct reg_info *reg_group;
3993
3994         while ((reg_group = igb_regs[g_ind++]))
3995                 count += igb_reg_group_count(reg_group);
3996
3997         return count;
3998 }
3999
4000 static int
4001 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4002 {
4003         int count = 0;
4004         int g_ind = 0;
4005         const struct reg_info *reg_group;
4006
4007         while ((reg_group = igbvf_regs[g_ind++]))
4008                 count += igb_reg_group_count(reg_group);
4009
4010         return count;
4011 }
4012
4013 static int
4014 eth_igb_get_regs(struct rte_eth_dev *dev,
4015         struct rte_dev_reg_info *regs)
4016 {
4017         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4018         uint32_t *data = regs->data;
4019         int g_ind = 0;
4020         int count = 0;
4021         const struct reg_info *reg_group;
4022
4023         /* Support only full register dump */
4024         if ((regs->length == 0) ||
4025             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
4026                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4027                         hw->device_id;
4028                 while ((reg_group = igb_regs[g_ind++]))
4029                         count += igb_read_regs_group(dev, &data[count],
4030                                                         reg_group);
4031                 return 0;
4032         }
4033
4034         return -ENOTSUP;
4035 }
4036
4037 static int
4038 igbvf_get_regs(struct rte_eth_dev *dev,
4039         struct rte_dev_reg_info *regs)
4040 {
4041         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4042         uint32_t *data = regs->data;
4043         int g_ind = 0;
4044         int count = 0;
4045         const struct reg_info *reg_group;
4046
4047         /* Support only full register dump */
4048         if ((regs->length == 0) ||
4049             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
4050                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4051                         hw->device_id;
4052                 while ((reg_group = igbvf_regs[g_ind++]))
4053                         count += igb_read_regs_group(dev, &data[count],
4054                                                         reg_group);
4055                 return 0;
4056         }
4057
4058         return -ENOTSUP;
4059 }
4060
4061 static int
4062 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
4063 {
4064         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4065
4066         /* Return unit is byte count */
4067         return hw->nvm.word_size * 2;
4068 }
4069
4070 static int
4071 eth_igb_get_eeprom(struct rte_eth_dev *dev,
4072         struct rte_dev_eeprom_info *in_eeprom)
4073 {
4074         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4075         struct e1000_nvm_info *nvm = &hw->nvm;
4076         uint16_t *data = in_eeprom->data;
4077         int first, length;
4078
4079         first = in_eeprom->offset >> 1;
4080         length = in_eeprom->length >> 1;
4081         if ((first >= hw->nvm.word_size) ||
4082             ((first + length) >= hw->nvm.word_size))
4083                 return -EINVAL;
4084
4085         in_eeprom->magic = hw->vendor_id |
4086                 ((uint32_t)hw->device_id << 16);
4087
4088         if ((nvm->ops.read) == NULL)
4089                 return -ENOTSUP;
4090
4091         return nvm->ops.read(hw, first, length, data);
4092 }
4093
4094 static int
4095 eth_igb_set_eeprom(struct rte_eth_dev *dev,
4096         struct rte_dev_eeprom_info *in_eeprom)
4097 {
4098         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4099         struct e1000_nvm_info *nvm = &hw->nvm;
4100         uint16_t *data = in_eeprom->data;
4101         int first, length;
4102
4103         first = in_eeprom->offset >> 1;
4104         length = in_eeprom->length >> 1;
4105         if ((first >= hw->nvm.word_size) ||
4106             ((first + length) >= hw->nvm.word_size))
4107                 return -EINVAL;
4108
4109         in_eeprom->magic = (uint32_t)hw->vendor_id |
4110                 ((uint32_t)hw->device_id << 16);
4111
4112         if ((nvm->ops.write) == NULL)
4113                 return -ENOTSUP;
4114         return nvm->ops.write(hw,  first, length, data);
4115 }
4116
4117 static struct rte_driver pmd_igb_drv = {
4118         .type = PMD_PDEV,
4119         .init = rte_igb_pmd_init,
4120 };
4121
4122 static struct rte_driver pmd_igbvf_drv = {
4123         .type = PMD_PDEV,
4124         .init = rte_igbvf_pmd_init,
4125 };
4126
4127 static int
4128 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
4129 {
4130         struct e1000_hw *hw =
4131                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4132         uint32_t mask = 1 << queue_id;
4133
4134         E1000_WRITE_REG(hw, E1000_EIMC, mask);
4135         E1000_WRITE_FLUSH(hw);
4136
4137         return 0;
4138 }
4139
4140 static int
4141 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
4142 {
4143         struct e1000_hw *hw =
4144                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4145         uint32_t mask = 1 << queue_id;
4146         uint32_t regval;
4147
4148         regval = E1000_READ_REG(hw, E1000_EIMS);
4149         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
4150         E1000_WRITE_FLUSH(hw);
4151
4152         rte_intr_enable(&dev->pci_dev->intr_handle);
4153
4154         return 0;
4155 }
4156
4157 static void
4158 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
4159                    uint8_t index, uint8_t offset)
4160 {
4161         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4162
4163         /* clear bits */
4164         val &= ~((uint32_t)0xFF << offset);
4165
4166         /* write vector and valid bit */
4167         val |= (msix_vector | E1000_IVAR_VALID) << offset;
4168
4169         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
4170 }
4171
4172 static void
4173 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
4174                            uint8_t queue, uint8_t msix_vector)
4175 {
4176         uint32_t tmp = 0;
4177
4178         if (hw->mac.type == e1000_82575) {
4179                 if (direction == 0)
4180                         tmp = E1000_EICR_RX_QUEUE0 << queue;
4181                 else if (direction == 1)
4182                         tmp = E1000_EICR_TX_QUEUE0 << queue;
4183                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
4184         } else if (hw->mac.type == e1000_82576) {
4185                 if ((direction == 0) || (direction == 1))
4186                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
4187                                            ((queue & 0x8) << 1) +
4188                                            8 * direction);
4189         } else if ((hw->mac.type == e1000_82580) ||
4190                         (hw->mac.type == e1000_i350) ||
4191                         (hw->mac.type == e1000_i354) ||
4192                         (hw->mac.type == e1000_i210) ||
4193                         (hw->mac.type == e1000_i211)) {
4194                 if ((direction == 0) || (direction == 1))
4195                         eth_igb_write_ivar(hw, msix_vector,
4196                                            queue >> 1,
4197                                            ((queue & 0x1) << 4) +
4198                                            8 * direction);
4199         }
4200 }
4201
4202 /* Sets up the hardware to generate MSI-X interrupts properly
4203  * @hw
4204  *  board private structure
4205  */
4206 static void
4207 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
4208 {
4209         int queue_id;
4210         uint32_t tmpval, regval, intr_mask;
4211         struct e1000_hw *hw =
4212                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4213         uint32_t vec = 0;
4214         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
4215
4216         /* won't configure msix register if no mapping is done
4217          * between intr vector and event fd
4218          */
4219         if (!rte_intr_dp_is_en(intr_handle))
4220                 return;
4221
4222         /* set interrupt vector for other causes */
4223         if (hw->mac.type == e1000_82575) {
4224                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
4225                 /* enable MSI-X PBA support */
4226                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
4227
4228                 /* Auto-Mask interrupts upon ICR read */
4229                 tmpval |= E1000_CTRL_EXT_EIAME;
4230                 tmpval |= E1000_CTRL_EXT_IRCA;
4231
4232                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
4233
4234                 /* enable msix_other interrupt */
4235                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
4236                 regval = E1000_READ_REG(hw, E1000_EIAC);
4237                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
4238                 regval = E1000_READ_REG(hw, E1000_EIAM);
4239                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
4240         } else if ((hw->mac.type == e1000_82576) ||
4241                         (hw->mac.type == e1000_82580) ||
4242                         (hw->mac.type == e1000_i350) ||
4243                         (hw->mac.type == e1000_i354) ||
4244                         (hw->mac.type == e1000_i210) ||
4245                         (hw->mac.type == e1000_i211)) {
4246                 /* turn on MSI-X capability first */
4247                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
4248                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
4249                                         E1000_GPIE_NSICR);
4250
4251                 intr_mask = (1 << intr_handle->max_intr) - 1;
4252                 regval = E1000_READ_REG(hw, E1000_EIAC);
4253                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
4254
4255                 /* enable msix_other interrupt */
4256                 regval = E1000_READ_REG(hw, E1000_EIMS);
4257                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
4258                 tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
4259                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
4260         }
4261
4262         /* use EIAM to auto-mask when MSI-X interrupt
4263          * is asserted, this saves a register write for every interrupt
4264          */
4265         intr_mask = (1 << intr_handle->nb_efd) - 1;
4266         regval = E1000_READ_REG(hw, E1000_EIAM);
4267         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
4268
4269         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
4270                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
4271                 intr_handle->intr_vec[queue_id] = vec;
4272                 if (vec < intr_handle->nb_efd - 1)
4273                         vec++;
4274         }
4275
4276         E1000_WRITE_FLUSH(hw);
4277 }
4278
4279 PMD_REGISTER_DRIVER(pmd_igb_drv);
4280 PMD_REGISTER_DRIVER(pmd_igbvf_drv);