1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
11 #include <rte_string_fns.h>
12 #include <rte_common.h>
13 #include <rte_interrupts.h>
14 #include <rte_byteorder.h>
16 #include <rte_debug.h>
18 #include <rte_bus_pci.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_ethdev_pci.h>
22 #include <rte_memory.h>
24 #include <rte_malloc.h>
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
33 * Default values for port configuration
35 #define IGB_DEFAULT_RX_FREE_THRESH 32
37 #define IGB_DEFAULT_RX_PTHRESH ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH 8
39 #define IGB_DEFAULT_RX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 4)
41 #define IGB_DEFAULT_TX_PTHRESH ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH 1
43 #define IGB_DEFAULT_TX_WTHRESH ((hw->mac.type == e1000_82576) ? 1 : 16)
45 /* Bit shift and mask */
46 #define IGB_4_BIT_WIDTH (CHAR_BIT / 2)
47 #define IGB_4_BIT_MASK RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
48 #define IGB_8_BIT_WIDTH CHAR_BIT
49 #define IGB_8_BIT_MASK UINT8_MAX
51 /* Additional timesync values. */
52 #define E1000_CYCLECOUNTER_MASK 0xffffffffffffffffULL
53 #define E1000_ETQF_FILTER_1588 3
54 #define IGB_82576_TSYNC_SHIFT 16
55 #define E1000_INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
56 #define E1000_INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
57 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
59 #define E1000_VTIVAR_MISC 0x01740
60 #define E1000_VTIVAR_MISC_MASK 0xFF
61 #define E1000_VTIVAR_VALID 0x80
62 #define E1000_VTIVAR_MISC_MAILBOX 0
63 #define E1000_VTIVAR_MISC_INTR_MASK 0x3
65 /* External VLAN Enable bit mask */
66 #define E1000_CTRL_EXT_EXT_VLAN (1 << 26)
68 /* External VLAN Ether Type bit mask and shift */
69 #define E1000_VET_VET_EXT 0xFFFF0000
70 #define E1000_VET_VET_EXT_SHIFT 16
72 /* MSI-X other interrupt vector */
73 #define IGB_MSIX_OTHER_INTR_VEC 0
75 static int eth_igb_configure(struct rte_eth_dev *dev);
76 static int eth_igb_start(struct rte_eth_dev *dev);
77 static void eth_igb_stop(struct rte_eth_dev *dev);
78 static int eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
79 static int eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
80 static void eth_igb_close(struct rte_eth_dev *dev);
81 static int eth_igb_reset(struct rte_eth_dev *dev);
82 static int eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
83 static int eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
84 static int eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
85 static int eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
86 static int eth_igb_link_update(struct rte_eth_dev *dev,
87 int wait_to_complete);
88 static int eth_igb_stats_get(struct rte_eth_dev *dev,
89 struct rte_eth_stats *rte_stats);
90 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
91 struct rte_eth_xstat *xstats, unsigned n);
92 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
94 uint64_t *values, unsigned int n);
95 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
96 struct rte_eth_xstat_name *xstats_names,
98 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
99 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
101 static int eth_igb_stats_reset(struct rte_eth_dev *dev);
102 static int eth_igb_xstats_reset(struct rte_eth_dev *dev);
103 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
104 char *fw_version, size_t fw_size);
105 static int eth_igb_infos_get(struct rte_eth_dev *dev,
106 struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static int eth_igbvf_infos_get(struct rte_eth_dev *dev,
109 struct rte_eth_dev_info *dev_info);
110 static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111 struct rte_eth_fc_conf *fc_conf);
112 static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113 struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
118 struct rte_intr_handle *handle);
119 static void eth_igb_interrupt_handler(void *param);
120 static int igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
126 static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129 uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131 enum rte_vlan_type vlan_type,
133 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
145 static void igb_intr_disable(struct rte_eth_dev *dev);
146 static int igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static int eth_igb_rar_set(struct rte_eth_dev *dev,
148 struct rte_ether_addr *mac_addr,
149 uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152 struct rte_ether_addr *addr);
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static void igbvf_dev_stop(struct rte_eth_dev *dev);
158 static void igbvf_dev_close(struct rte_eth_dev *dev);
159 static int igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static int igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static int igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static int igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
165 struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167 struct rte_eth_xstat *xstats, unsigned n);
168 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
169 struct rte_eth_xstat_name *xstats_names,
171 static int eth_igbvf_stats_reset(struct rte_eth_dev *dev);
172 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
173 uint16_t vlan_id, int on);
174 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
175 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
176 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
177 struct rte_ether_addr *addr);
178 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
179 static int igbvf_get_regs(struct rte_eth_dev *dev,
180 struct rte_dev_reg_info *regs);
182 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
183 struct rte_eth_rss_reta_entry64 *reta_conf,
185 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
186 struct rte_eth_rss_reta_entry64 *reta_conf,
189 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
190 struct rte_eth_syn_filter *filter);
191 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
192 enum rte_filter_op filter_op,
194 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
195 struct rte_eth_ntuple_filter *ntuple_filter);
196 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
197 struct rte_eth_ntuple_filter *ntuple_filter);
198 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
199 struct rte_eth_flex_filter *filter);
200 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
201 enum rte_filter_op filter_op,
203 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
204 struct rte_eth_ntuple_filter *ntuple_filter);
205 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
206 struct rte_eth_ntuple_filter *ntuple_filter);
207 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
208 struct rte_eth_ntuple_filter *filter);
209 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
210 enum rte_filter_op filter_op,
212 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
213 enum rte_filter_op filter_op,
215 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
216 struct rte_eth_ethertype_filter *filter);
217 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
218 enum rte_filter_type filter_type,
219 enum rte_filter_op filter_op,
221 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
222 static int eth_igb_get_regs(struct rte_eth_dev *dev,
223 struct rte_dev_reg_info *regs);
224 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
225 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
226 struct rte_dev_eeprom_info *eeprom);
227 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
228 struct rte_dev_eeprom_info *eeprom);
229 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
230 struct rte_eth_dev_module_info *modinfo);
231 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
232 struct rte_dev_eeprom_info *info);
233 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
234 struct rte_ether_addr *mc_addr_set,
235 uint32_t nb_mc_addr);
236 static int igb_timesync_enable(struct rte_eth_dev *dev);
237 static int igb_timesync_disable(struct rte_eth_dev *dev);
238 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
239 struct timespec *timestamp,
241 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
242 struct timespec *timestamp);
243 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
244 static int igb_timesync_read_time(struct rte_eth_dev *dev,
245 struct timespec *timestamp);
246 static int igb_timesync_write_time(struct rte_eth_dev *dev,
247 const struct timespec *timestamp);
248 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
250 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
252 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
253 uint8_t queue, uint8_t msix_vector);
254 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
255 uint8_t index, uint8_t offset);
256 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
257 static void eth_igbvf_interrupt_handler(void *param);
258 static void igbvf_mbx_process(struct rte_eth_dev *dev);
259 static int igb_filter_restore(struct rte_eth_dev *dev);
262 * Define VF Stats MACRO for Non "cleared on read" register
264 #define UPDATE_VF_STAT(reg, last, cur) \
266 u32 latest = E1000_READ_REG(hw, reg); \
267 cur += (latest - last) & UINT_MAX; \
271 #define IGB_FC_PAUSE_TIME 0x0680
272 #define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
273 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
275 #define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */
277 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
280 * The set of PCI devices this driver supports
282 static const struct rte_pci_id pci_id_igb_map[] = {
283 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
284 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
285 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
286 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
287 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
288 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
289 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
290 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
292 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
293 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
294 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
296 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
297 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
298 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
299 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
300 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
301 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
303 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
304 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
305 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
306 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
307 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
308 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
309 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
310 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
311 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
312 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
313 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
314 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
315 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
316 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
317 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
318 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
319 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
320 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
321 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
322 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
323 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
324 { .vendor_id = 0, /* sentinel */ },
328 * The set of PCI devices this driver supports (for 82576&I350 VF)
330 static const struct rte_pci_id pci_id_igbvf_map[] = {
331 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
332 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
333 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
334 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
335 { .vendor_id = 0, /* sentinel */ },
338 static const struct rte_eth_desc_lim rx_desc_lim = {
339 .nb_max = E1000_MAX_RING_DESC,
340 .nb_min = E1000_MIN_RING_DESC,
341 .nb_align = IGB_RXD_ALIGN,
344 static const struct rte_eth_desc_lim tx_desc_lim = {
345 .nb_max = E1000_MAX_RING_DESC,
346 .nb_min = E1000_MIN_RING_DESC,
347 .nb_align = IGB_RXD_ALIGN,
348 .nb_seg_max = IGB_TX_MAX_SEG,
349 .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
352 static const struct eth_dev_ops eth_igb_ops = {
353 .dev_configure = eth_igb_configure,
354 .dev_start = eth_igb_start,
355 .dev_stop = eth_igb_stop,
356 .dev_set_link_up = eth_igb_dev_set_link_up,
357 .dev_set_link_down = eth_igb_dev_set_link_down,
358 .dev_close = eth_igb_close,
359 .dev_reset = eth_igb_reset,
360 .promiscuous_enable = eth_igb_promiscuous_enable,
361 .promiscuous_disable = eth_igb_promiscuous_disable,
362 .allmulticast_enable = eth_igb_allmulticast_enable,
363 .allmulticast_disable = eth_igb_allmulticast_disable,
364 .link_update = eth_igb_link_update,
365 .stats_get = eth_igb_stats_get,
366 .xstats_get = eth_igb_xstats_get,
367 .xstats_get_by_id = eth_igb_xstats_get_by_id,
368 .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
369 .xstats_get_names = eth_igb_xstats_get_names,
370 .stats_reset = eth_igb_stats_reset,
371 .xstats_reset = eth_igb_xstats_reset,
372 .fw_version_get = eth_igb_fw_version_get,
373 .dev_infos_get = eth_igb_infos_get,
374 .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
375 .mtu_set = eth_igb_mtu_set,
376 .vlan_filter_set = eth_igb_vlan_filter_set,
377 .vlan_tpid_set = eth_igb_vlan_tpid_set,
378 .vlan_offload_set = eth_igb_vlan_offload_set,
379 .rx_queue_setup = eth_igb_rx_queue_setup,
380 .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
381 .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
382 .rx_queue_release = eth_igb_rx_queue_release,
383 .rx_queue_count = eth_igb_rx_queue_count,
384 .rx_descriptor_done = eth_igb_rx_descriptor_done,
385 .rx_descriptor_status = eth_igb_rx_descriptor_status,
386 .tx_descriptor_status = eth_igb_tx_descriptor_status,
387 .tx_queue_setup = eth_igb_tx_queue_setup,
388 .tx_queue_release = eth_igb_tx_queue_release,
389 .tx_done_cleanup = eth_igb_tx_done_cleanup,
390 .dev_led_on = eth_igb_led_on,
391 .dev_led_off = eth_igb_led_off,
392 .flow_ctrl_get = eth_igb_flow_ctrl_get,
393 .flow_ctrl_set = eth_igb_flow_ctrl_set,
394 .mac_addr_add = eth_igb_rar_set,
395 .mac_addr_remove = eth_igb_rar_clear,
396 .mac_addr_set = eth_igb_default_mac_addr_set,
397 .reta_update = eth_igb_rss_reta_update,
398 .reta_query = eth_igb_rss_reta_query,
399 .rss_hash_update = eth_igb_rss_hash_update,
400 .rss_hash_conf_get = eth_igb_rss_hash_conf_get,
401 .filter_ctrl = eth_igb_filter_ctrl,
402 .set_mc_addr_list = eth_igb_set_mc_addr_list,
403 .rxq_info_get = igb_rxq_info_get,
404 .txq_info_get = igb_txq_info_get,
405 .timesync_enable = igb_timesync_enable,
406 .timesync_disable = igb_timesync_disable,
407 .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
408 .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
409 .get_reg = eth_igb_get_regs,
410 .get_eeprom_length = eth_igb_get_eeprom_length,
411 .get_eeprom = eth_igb_get_eeprom,
412 .set_eeprom = eth_igb_set_eeprom,
413 .get_module_info = eth_igb_get_module_info,
414 .get_module_eeprom = eth_igb_get_module_eeprom,
415 .timesync_adjust_time = igb_timesync_adjust_time,
416 .timesync_read_time = igb_timesync_read_time,
417 .timesync_write_time = igb_timesync_write_time,
421 * dev_ops for virtual function, bare necessities for basic vf
422 * operation have been implemented
424 static const struct eth_dev_ops igbvf_eth_dev_ops = {
425 .dev_configure = igbvf_dev_configure,
426 .dev_start = igbvf_dev_start,
427 .dev_stop = igbvf_dev_stop,
428 .dev_close = igbvf_dev_close,
429 .promiscuous_enable = igbvf_promiscuous_enable,
430 .promiscuous_disable = igbvf_promiscuous_disable,
431 .allmulticast_enable = igbvf_allmulticast_enable,
432 .allmulticast_disable = igbvf_allmulticast_disable,
433 .link_update = eth_igb_link_update,
434 .stats_get = eth_igbvf_stats_get,
435 .xstats_get = eth_igbvf_xstats_get,
436 .xstats_get_names = eth_igbvf_xstats_get_names,
437 .stats_reset = eth_igbvf_stats_reset,
438 .xstats_reset = eth_igbvf_stats_reset,
439 .vlan_filter_set = igbvf_vlan_filter_set,
440 .dev_infos_get = eth_igbvf_infos_get,
441 .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
442 .rx_queue_setup = eth_igb_rx_queue_setup,
443 .rx_queue_release = eth_igb_rx_queue_release,
444 .rx_descriptor_done = eth_igb_rx_descriptor_done,
445 .rx_descriptor_status = eth_igb_rx_descriptor_status,
446 .tx_descriptor_status = eth_igb_tx_descriptor_status,
447 .tx_queue_setup = eth_igb_tx_queue_setup,
448 .tx_queue_release = eth_igb_tx_queue_release,
449 .tx_done_cleanup = eth_igb_tx_done_cleanup,
450 .set_mc_addr_list = eth_igb_set_mc_addr_list,
451 .rxq_info_get = igb_rxq_info_get,
452 .txq_info_get = igb_txq_info_get,
453 .mac_addr_set = igbvf_default_mac_addr_set,
454 .get_reg = igbvf_get_regs,
457 /* store statistics names and its offset in stats structure */
458 struct rte_igb_xstats_name_off {
459 char name[RTE_ETH_XSTATS_NAME_SIZE];
463 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
464 {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
465 {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
466 {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
467 {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
468 {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
469 {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
470 {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
472 {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
473 {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
474 {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
475 {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
476 {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
477 {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
478 {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
479 {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
480 {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
481 {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
482 {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
484 {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
485 {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
486 {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
487 {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
488 {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
490 {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
492 {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
493 {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
494 {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
495 {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
496 {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
497 {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
498 {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
499 {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
500 {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
501 {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
502 {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
503 {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
504 {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
505 {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
506 {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
507 {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
508 {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
509 {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
511 {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
513 {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
514 {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
515 {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
516 {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
517 {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
518 {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
519 {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
521 {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
524 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
525 sizeof(rte_igb_stats_strings[0]))
527 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
528 {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
529 {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
530 {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
531 {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
532 {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
535 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
536 sizeof(rte_igbvf_stats_strings[0]))
540 igb_intr_enable(struct rte_eth_dev *dev)
542 struct e1000_interrupt *intr =
543 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
544 struct e1000_hw *hw =
545 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
546 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
547 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
549 if (rte_intr_allow_others(intr_handle) &&
550 dev->data->dev_conf.intr_conf.lsc != 0) {
551 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
554 E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
555 E1000_WRITE_FLUSH(hw);
559 igb_intr_disable(struct rte_eth_dev *dev)
561 struct e1000_hw *hw =
562 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
563 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
564 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
566 if (rte_intr_allow_others(intr_handle) &&
567 dev->data->dev_conf.intr_conf.lsc != 0) {
568 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
571 E1000_WRITE_REG(hw, E1000_IMC, ~0);
572 E1000_WRITE_FLUSH(hw);
576 igbvf_intr_enable(struct rte_eth_dev *dev)
578 struct e1000_hw *hw =
579 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
581 /* only for mailbox */
582 E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
583 E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
584 E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
585 E1000_WRITE_FLUSH(hw);
588 /* only for mailbox now. If RX/TX needed, should extend this function. */
590 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
595 tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
596 tmp |= E1000_VTIVAR_VALID;
597 E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
601 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
603 struct e1000_hw *hw =
604 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
606 /* Configure VF other cause ivar */
607 igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
610 static inline int32_t
611 igb_pf_reset_hw(struct e1000_hw *hw)
616 status = e1000_reset_hw(hw);
618 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
619 /* Set PF Reset Done bit so PF/VF Mail Ops can work */
620 ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
621 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
622 E1000_WRITE_FLUSH(hw);
628 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
630 struct e1000_hw *hw =
631 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
634 hw->vendor_id = pci_dev->id.vendor_id;
635 hw->device_id = pci_dev->id.device_id;
636 hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
637 hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
639 e1000_set_mac_type(hw);
641 /* need to check if it is a vf device below */
645 igb_reset_swfw_lock(struct e1000_hw *hw)
650 * Do mac ops initialization manually here, since we will need
651 * some function pointers set by this call.
653 ret_val = e1000_init_mac_params(hw);
658 * SMBI lock should not fail in this early stage. If this is the case,
659 * it is due to an improper exit of the application.
660 * So force the release of the faulty lock.
662 if (e1000_get_hw_semaphore_generic(hw) < 0) {
663 PMD_DRV_LOG(DEBUG, "SMBI lock released");
665 e1000_put_hw_semaphore_generic(hw);
667 if (hw->mac.ops.acquire_swfw_sync != NULL) {
671 * Phy lock should not fail in this early stage. If this is the case,
672 * it is due to an improper exit of the application.
673 * So force the release of the faulty lock.
675 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
676 if (hw->bus.func > E1000_FUNC_1)
678 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
679 PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
682 hw->mac.ops.release_swfw_sync(hw, mask);
685 * This one is more tricky since it is common to all ports; but
686 * swfw_sync retries last long enough (1s) to be almost sure that if
687 * lock can not be taken it is due to an improper lock of the
690 mask = E1000_SWFW_EEP_SM;
691 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
692 PMD_DRV_LOG(DEBUG, "SWFW common locks released");
694 hw->mac.ops.release_swfw_sync(hw, mask);
697 return E1000_SUCCESS;
700 /* Remove all ntuple filters of the device */
701 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
703 struct e1000_filter_info *filter_info =
704 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
705 struct e1000_5tuple_filter *p_5tuple;
706 struct e1000_2tuple_filter *p_2tuple;
708 while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
709 TAILQ_REMOVE(&filter_info->fivetuple_list,
713 filter_info->fivetuple_mask = 0;
714 while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
715 TAILQ_REMOVE(&filter_info->twotuple_list,
719 filter_info->twotuple_mask = 0;
724 /* Remove all flex filters of the device */
725 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
727 struct e1000_filter_info *filter_info =
728 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
729 struct e1000_flex_filter *p_flex;
731 while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
732 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
735 filter_info->flex_mask = 0;
741 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
744 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
745 struct e1000_hw *hw =
746 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
747 struct e1000_vfta * shadow_vfta =
748 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
749 struct e1000_filter_info *filter_info =
750 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
751 struct e1000_adapter *adapter =
752 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
756 eth_dev->dev_ops = ð_igb_ops;
757 eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
758 eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
759 eth_dev->tx_pkt_prepare = ð_igb_prep_pkts;
761 /* for secondary processes, we don't initialise any further as primary
762 * has already done this work. Only check we don't need a different
764 if (rte_eal_process_type() != RTE_PROC_PRIMARY){
765 if (eth_dev->data->scattered_rx)
766 eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
770 rte_eth_copy_pci_info(eth_dev, pci_dev);
772 hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
774 igb_identify_hardware(eth_dev, pci_dev);
775 if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
780 e1000_get_bus_info(hw);
782 /* Reset any pending lock */
783 if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
788 /* Finish initialization */
789 if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
795 hw->phy.autoneg_wait_to_complete = 0;
796 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
799 if (hw->phy.media_type == e1000_media_type_copper) {
800 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
801 hw->phy.disable_polarity_correction = 0;
802 hw->phy.ms_type = e1000_ms_hw_default;
806 * Start from a known state, this is important in reading the nvm
811 /* Make sure we have a good EEPROM before we read from it */
812 if (e1000_validate_nvm_checksum(hw) < 0) {
814 * Some PCI-E parts fail the first check due to
815 * the link being in sleep state, call it again,
816 * if it fails a second time its a real issue.
818 if (e1000_validate_nvm_checksum(hw) < 0) {
819 PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
825 /* Read the permanent MAC address out of the EEPROM */
826 if (e1000_read_mac_addr(hw) != 0) {
827 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
832 /* Allocate memory for storing MAC addresses */
833 eth_dev->data->mac_addrs = rte_zmalloc("e1000",
834 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
835 if (eth_dev->data->mac_addrs == NULL) {
836 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
837 "store MAC addresses",
838 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
843 /* Copy the permanent MAC address */
844 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
845 ð_dev->data->mac_addrs[0]);
847 /* Pass the information to the rte_eth_dev_close() that it should also
848 * release the private port resources.
850 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
852 /* initialize the vfta */
853 memset(shadow_vfta, 0, sizeof(*shadow_vfta));
855 /* Now initialize the hardware */
856 if (igb_hardware_init(hw) != 0) {
857 PMD_INIT_LOG(ERR, "Hardware initialization failed");
858 rte_free(eth_dev->data->mac_addrs);
859 eth_dev->data->mac_addrs = NULL;
863 hw->mac.get_link_status = 1;
864 adapter->stopped = 0;
866 /* Indicate SOL/IDER usage */
867 if (e1000_check_reset_block(hw) < 0) {
868 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
872 /* initialize PF if max_vfs not zero */
873 igb_pf_host_init(eth_dev);
875 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
876 /* Set PF Reset Done bit so PF/VF Mail Ops can work */
877 ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
878 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
879 E1000_WRITE_FLUSH(hw);
881 PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
882 eth_dev->data->port_id, pci_dev->id.vendor_id,
883 pci_dev->id.device_id);
885 rte_intr_callback_register(&pci_dev->intr_handle,
886 eth_igb_interrupt_handler,
889 /* enable uio/vfio intr/eventfd mapping */
890 rte_intr_enable(&pci_dev->intr_handle);
892 /* enable support intr */
893 igb_intr_enable(eth_dev);
895 eth_igb_dev_set_link_down(eth_dev);
897 /* initialize filter info */
898 memset(filter_info, 0,
899 sizeof(struct e1000_filter_info));
901 TAILQ_INIT(&filter_info->flex_list);
902 TAILQ_INIT(&filter_info->twotuple_list);
903 TAILQ_INIT(&filter_info->fivetuple_list);
905 TAILQ_INIT(&igb_filter_ntuple_list);
906 TAILQ_INIT(&igb_filter_ethertype_list);
907 TAILQ_INIT(&igb_filter_syn_list);
908 TAILQ_INIT(&igb_filter_flex_list);
909 TAILQ_INIT(&igb_filter_rss_list);
910 TAILQ_INIT(&igb_flow_list);
915 igb_hw_control_release(hw);
921 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
923 PMD_INIT_FUNC_TRACE();
925 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
928 eth_igb_close(eth_dev);
934 * Virtual Function device init
937 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
939 struct rte_pci_device *pci_dev;
940 struct rte_intr_handle *intr_handle;
941 struct e1000_adapter *adapter =
942 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
943 struct e1000_hw *hw =
944 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
946 struct rte_ether_addr *perm_addr =
947 (struct rte_ether_addr *)hw->mac.perm_addr;
949 PMD_INIT_FUNC_TRACE();
951 eth_dev->dev_ops = &igbvf_eth_dev_ops;
952 eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
953 eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
954 eth_dev->tx_pkt_prepare = ð_igb_prep_pkts;
956 /* for secondary processes, we don't initialise any further as primary
957 * has already done this work. Only check we don't need a different
959 if (rte_eal_process_type() != RTE_PROC_PRIMARY){
960 if (eth_dev->data->scattered_rx)
961 eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
965 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
966 rte_eth_copy_pci_info(eth_dev, pci_dev);
968 hw->device_id = pci_dev->id.device_id;
969 hw->vendor_id = pci_dev->id.vendor_id;
970 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
971 adapter->stopped = 0;
973 /* Initialize the shared code (base driver) */
974 diag = e1000_setup_init_funcs(hw, TRUE);
976 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
981 /* init_mailbox_params */
982 hw->mbx.ops.init_params(hw);
984 /* Disable the interrupts for VF */
985 igbvf_intr_disable(hw);
987 diag = hw->mac.ops.reset_hw(hw);
989 /* Allocate memory for storing MAC addresses */
990 eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN *
991 hw->mac.rar_entry_count, 0);
992 if (eth_dev->data->mac_addrs == NULL) {
994 "Failed to allocate %d bytes needed to store MAC "
996 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1000 /* Pass the information to the rte_eth_dev_close() that it should also
1001 * release the private port resources.
1003 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1005 /* Generate a random MAC address, if none was assigned by PF. */
1006 if (rte_is_zero_ether_addr(perm_addr)) {
1007 rte_eth_random_addr(perm_addr->addr_bytes);
1008 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1009 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1010 "%02x:%02x:%02x:%02x:%02x:%02x",
1011 perm_addr->addr_bytes[0],
1012 perm_addr->addr_bytes[1],
1013 perm_addr->addr_bytes[2],
1014 perm_addr->addr_bytes[3],
1015 perm_addr->addr_bytes[4],
1016 perm_addr->addr_bytes[5]);
1019 diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1021 rte_free(eth_dev->data->mac_addrs);
1022 eth_dev->data->mac_addrs = NULL;
1025 /* Copy the permanent MAC address */
1026 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.perm_addr,
1027 ð_dev->data->mac_addrs[0]);
1029 PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1031 eth_dev->data->port_id, pci_dev->id.vendor_id,
1032 pci_dev->id.device_id, "igb_mac_82576_vf");
1034 intr_handle = &pci_dev->intr_handle;
1035 rte_intr_callback_register(intr_handle,
1036 eth_igbvf_interrupt_handler, eth_dev);
1042 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1044 PMD_INIT_FUNC_TRACE();
1046 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1049 igbvf_dev_close(eth_dev);
1054 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1055 struct rte_pci_device *pci_dev)
1057 return rte_eth_dev_pci_generic_probe(pci_dev,
1058 sizeof(struct e1000_adapter), eth_igb_dev_init);
1061 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1063 return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1066 static struct rte_pci_driver rte_igb_pmd = {
1067 .id_table = pci_id_igb_map,
1068 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1069 .probe = eth_igb_pci_probe,
1070 .remove = eth_igb_pci_remove,
1074 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1075 struct rte_pci_device *pci_dev)
1077 return rte_eth_dev_pci_generic_probe(pci_dev,
1078 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1081 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1083 return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1087 * virtual function driver struct
1089 static struct rte_pci_driver rte_igbvf_pmd = {
1090 .id_table = pci_id_igbvf_map,
1091 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1092 .probe = eth_igbvf_pci_probe,
1093 .remove = eth_igbvf_pci_remove,
1097 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1099 struct e1000_hw *hw =
1100 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1101 /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1102 uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1103 rctl |= E1000_RCTL_VFE;
1104 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1108 igb_check_mq_mode(struct rte_eth_dev *dev)
1110 enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1111 enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1112 uint16_t nb_rx_q = dev->data->nb_rx_queues;
1113 uint16_t nb_tx_q = dev->data->nb_tx_queues;
1115 if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1116 tx_mq_mode == ETH_MQ_TX_DCB ||
1117 tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1118 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1121 if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1122 /* Check multi-queue mode.
1123 * To no break software we accept ETH_MQ_RX_NONE as this might
1124 * be used to turn off VLAN filter.
1127 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1128 rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1129 dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1130 RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1132 /* Only support one queue on VFs.
1133 * RSS together with SRIOV is not supported.
1135 PMD_INIT_LOG(ERR, "SRIOV is active,"
1136 " wrong mq_mode rx %d.",
1140 /* TX mode is not used here, so mode might be ignored.*/
1141 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1142 /* SRIOV only works in VMDq enable mode */
1143 PMD_INIT_LOG(WARNING, "SRIOV is active,"
1144 " TX mode %d is not supported. "
1145 " Driver will behave as %d mode.",
1146 tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1149 /* check valid queue number */
1150 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1151 PMD_INIT_LOG(ERR, "SRIOV is active,"
1152 " only support one queue on VFs.");
1156 /* To no break software that set invalid mode, only display
1157 * warning if invalid mode is used.
1159 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1160 rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1161 rx_mq_mode != ETH_MQ_RX_RSS) {
1162 /* RSS together with VMDq not supported*/
1163 PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1168 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1169 tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1170 PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1171 " Due to txmode is meaningless in this"
1172 " driver, just ignore.",
1180 eth_igb_configure(struct rte_eth_dev *dev)
1182 struct e1000_interrupt *intr =
1183 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1186 PMD_INIT_FUNC_TRACE();
1188 if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1189 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1191 /* multipe queue mode checking */
1192 ret = igb_check_mq_mode(dev);
1194 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1199 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1200 PMD_INIT_FUNC_TRACE();
1206 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1209 struct e1000_hw *hw =
1210 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1211 uint32_t tctl, rctl;
1213 tctl = E1000_READ_REG(hw, E1000_TCTL);
1214 rctl = E1000_READ_REG(hw, E1000_RCTL);
1218 tctl |= E1000_TCTL_EN;
1219 rctl |= E1000_RCTL_EN;
1222 tctl &= ~E1000_TCTL_EN;
1223 rctl &= ~E1000_RCTL_EN;
1225 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1226 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1227 E1000_WRITE_FLUSH(hw);
1231 eth_igb_start(struct rte_eth_dev *dev)
1233 struct e1000_hw *hw =
1234 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1235 struct e1000_adapter *adapter =
1236 E1000_DEV_PRIVATE(dev->data->dev_private);
1237 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1238 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1240 uint32_t intr_vector = 0;
1246 PMD_INIT_FUNC_TRACE();
1248 /* disable uio/vfio intr/eventfd mapping */
1249 rte_intr_disable(intr_handle);
1251 /* Power up the phy. Needed to make the link go Up */
1252 eth_igb_dev_set_link_up(dev);
1255 * Packet Buffer Allocation (PBA)
1256 * Writing PBA sets the receive portion of the buffer
1257 * the remainder is used for the transmit buffer.
1259 if (hw->mac.type == e1000_82575) {
1262 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1263 E1000_WRITE_REG(hw, E1000_PBA, pba);
1266 /* Put the address into the Receive Address Array */
1267 e1000_rar_set(hw, hw->mac.addr, 0);
1269 /* Initialize the hardware */
1270 if (igb_hardware_init(hw)) {
1271 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1274 adapter->stopped = 0;
1276 E1000_WRITE_REG(hw, E1000_VET,
1277 RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1279 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1280 /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1281 ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1282 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1283 E1000_WRITE_FLUSH(hw);
1285 /* configure PF module if SRIOV enabled */
1286 igb_pf_host_configure(dev);
1288 /* check and configure queue intr-vector mapping */
1289 if ((rte_intr_cap_multiple(intr_handle) ||
1290 !RTE_ETH_DEV_SRIOV(dev).active) &&
1291 dev->data->dev_conf.intr_conf.rxq != 0) {
1292 intr_vector = dev->data->nb_rx_queues;
1293 if (rte_intr_efd_enable(intr_handle, intr_vector))
1297 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1298 intr_handle->intr_vec =
1299 rte_zmalloc("intr_vec",
1300 dev->data->nb_rx_queues * sizeof(int), 0);
1301 if (intr_handle->intr_vec == NULL) {
1302 PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1303 " intr_vec", dev->data->nb_rx_queues);
1308 /* confiugre msix for rx interrupt */
1309 eth_igb_configure_msix_intr(dev);
1311 /* Configure for OS presence */
1312 igb_init_manageability(hw);
1314 eth_igb_tx_init(dev);
1316 /* This can fail when allocating mbufs for descriptor rings */
1317 ret = eth_igb_rx_init(dev);
1319 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1320 igb_dev_clear_queues(dev);
1324 e1000_clear_hw_cntrs_base_generic(hw);
1327 * VLAN Offload Settings
1329 mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1330 ETH_VLAN_EXTEND_MASK;
1331 ret = eth_igb_vlan_offload_set(dev, mask);
1333 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1334 igb_dev_clear_queues(dev);
1338 if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1339 /* Enable VLAN filter since VMDq always use VLAN filter */
1340 igb_vmdq_vlan_hw_filter_enable(dev);
1343 if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1344 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1345 (hw->mac.type == e1000_i211)) {
1346 /* Configure EITR with the maximum possible value (0xFFFF) */
1347 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1350 /* Setup link speed and duplex */
1351 speeds = &dev->data->dev_conf.link_speeds;
1352 if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1353 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1354 hw->mac.autoneg = 1;
1357 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1360 hw->phy.autoneg_advertised = 0;
1362 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1363 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1364 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1366 goto error_invalid_config;
1368 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1369 hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1372 if (*speeds & ETH_LINK_SPEED_10M) {
1373 hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1376 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1377 hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1380 if (*speeds & ETH_LINK_SPEED_100M) {
1381 hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1384 if (*speeds & ETH_LINK_SPEED_1G) {
1385 hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1388 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1389 goto error_invalid_config;
1391 /* Set/reset the mac.autoneg based on the link speed,
1395 hw->mac.autoneg = 0;
1396 hw->mac.forced_speed_duplex =
1397 hw->phy.autoneg_advertised;
1399 hw->mac.autoneg = 1;
1403 e1000_setup_link(hw);
1405 if (rte_intr_allow_others(intr_handle)) {
1406 /* check if lsc interrupt is enabled */
1407 if (dev->data->dev_conf.intr_conf.lsc != 0)
1408 eth_igb_lsc_interrupt_setup(dev, TRUE);
1410 eth_igb_lsc_interrupt_setup(dev, FALSE);
1412 rte_intr_callback_unregister(intr_handle,
1413 eth_igb_interrupt_handler,
1415 if (dev->data->dev_conf.intr_conf.lsc != 0)
1416 PMD_INIT_LOG(INFO, "lsc won't enable because of"
1417 " no intr multiplex");
1420 /* check if rxq interrupt is enabled */
1421 if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1422 rte_intr_dp_is_en(intr_handle))
1423 eth_igb_rxq_interrupt_setup(dev);
1425 /* enable uio/vfio intr/eventfd mapping */
1426 rte_intr_enable(intr_handle);
1428 /* resume enabled intr since hw reset */
1429 igb_intr_enable(dev);
1431 /* restore all types filter */
1432 igb_filter_restore(dev);
1434 eth_igb_rxtx_control(dev, true);
1435 eth_igb_link_update(dev, 0);
1437 PMD_INIT_LOG(DEBUG, "<<");
1441 error_invalid_config:
1442 PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1443 dev->data->dev_conf.link_speeds, dev->data->port_id);
1444 igb_dev_clear_queues(dev);
1448 /*********************************************************************
1450 * This routine disables all traffic on the adapter by issuing a
1451 * global reset on the MAC.
1453 **********************************************************************/
1455 eth_igb_stop(struct rte_eth_dev *dev)
1457 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1458 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1459 struct rte_eth_link link;
1460 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1461 struct e1000_adapter *adapter =
1462 E1000_DEV_PRIVATE(dev->data->dev_private);
1464 if (adapter->stopped)
1467 eth_igb_rxtx_control(dev, false);
1469 igb_intr_disable(dev);
1471 /* disable intr eventfd mapping */
1472 rte_intr_disable(intr_handle);
1474 igb_pf_reset_hw(hw);
1475 E1000_WRITE_REG(hw, E1000_WUC, 0);
1477 /* Set bit for Go Link disconnect if PHY reset is not blocked */
1478 if (hw->mac.type >= e1000_82580 &&
1479 (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1482 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1483 phpm_reg |= E1000_82580_PM_GO_LINKD;
1484 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1487 /* Power down the phy. Needed to make the link go Down */
1488 eth_igb_dev_set_link_down(dev);
1490 igb_dev_clear_queues(dev);
1492 /* clear the recorded link status */
1493 memset(&link, 0, sizeof(link));
1494 rte_eth_linkstatus_set(dev, &link);
1496 if (!rte_intr_allow_others(intr_handle))
1497 /* resume to the default handler */
1498 rte_intr_callback_register(intr_handle,
1499 eth_igb_interrupt_handler,
1502 /* Clean datapath event and queue/vec mapping */
1503 rte_intr_efd_disable(intr_handle);
1504 if (intr_handle->intr_vec != NULL) {
1505 rte_free(intr_handle->intr_vec);
1506 intr_handle->intr_vec = NULL;
1509 adapter->stopped = true;
1513 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1515 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1517 if (hw->phy.media_type == e1000_media_type_copper)
1518 e1000_power_up_phy(hw);
1520 e1000_power_up_fiber_serdes_link(hw);
1526 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1528 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1530 if (hw->phy.media_type == e1000_media_type_copper)
1531 e1000_power_down_phy(hw);
1533 e1000_shutdown_fiber_serdes_link(hw);
1539 eth_igb_close(struct rte_eth_dev *dev)
1541 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1542 struct rte_eth_link link;
1543 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1544 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1545 struct e1000_filter_info *filter_info =
1546 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1550 e1000_phy_hw_reset(hw);
1551 igb_release_manageability(hw);
1552 igb_hw_control_release(hw);
1554 /* Clear bit for Go Link disconnect if PHY reset is not blocked */
1555 if (hw->mac.type >= e1000_82580 &&
1556 (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1559 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1560 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1561 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1564 igb_dev_free_queues(dev);
1566 if (intr_handle->intr_vec) {
1567 rte_free(intr_handle->intr_vec);
1568 intr_handle->intr_vec = NULL;
1571 memset(&link, 0, sizeof(link));
1572 rte_eth_linkstatus_set(dev, &link);
1574 dev->dev_ops = NULL;
1575 dev->rx_pkt_burst = NULL;
1576 dev->tx_pkt_burst = NULL;
1578 /* Reset any pending lock */
1579 igb_reset_swfw_lock(hw);
1581 /* uninitialize PF if max_vfs not zero */
1582 igb_pf_host_uninit(dev);
1584 rte_intr_callback_unregister(intr_handle,
1585 eth_igb_interrupt_handler, dev);
1587 /* clear the SYN filter info */
1588 filter_info->syn_info = 0;
1590 /* clear the ethertype filters info */
1591 filter_info->ethertype_mask = 0;
1592 memset(filter_info->ethertype_filters, 0,
1593 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
1595 /* clear the rss filter info */
1596 memset(&filter_info->rss_info, 0,
1597 sizeof(struct igb_rte_flow_rss_conf));
1599 /* remove all ntuple filters of the device */
1600 igb_ntuple_filter_uninit(dev);
1602 /* remove all flex filters of the device */
1603 igb_flex_filter_uninit(dev);
1605 /* clear all the filters list */
1606 igb_filterlist_flush(dev);
1613 eth_igb_reset(struct rte_eth_dev *dev)
1617 /* When a DPDK PMD PF begin to reset PF port, it should notify all
1618 * its VF to make them align with it. The detailed notification
1619 * mechanism is PMD specific and is currently not implemented.
1620 * To avoid unexpected behavior in VF, currently reset of PF with
1621 * SR-IOV activation is not supported. It might be supported later.
1623 if (dev->data->sriov.active)
1626 ret = eth_igb_dev_uninit(dev);
1630 ret = eth_igb_dev_init(dev);
1637 igb_get_rx_buffer_size(struct e1000_hw *hw)
1639 uint32_t rx_buf_size;
1640 if (hw->mac.type == e1000_82576) {
1641 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1642 } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1643 /* PBS needs to be translated according to a lookup table */
1644 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1645 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1646 rx_buf_size = (rx_buf_size << 10);
1647 } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1648 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1650 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1656 /*********************************************************************
1658 * Initialize the hardware
1660 **********************************************************************/
1662 igb_hardware_init(struct e1000_hw *hw)
1664 uint32_t rx_buf_size;
1667 /* Let the firmware know the OS is in control */
1668 igb_hw_control_acquire(hw);
1671 * These parameters control the automatic generation (Tx) and
1672 * response (Rx) to Ethernet PAUSE frames.
1673 * - High water mark should allow for at least two standard size (1518)
1674 * frames to be received after sending an XOFF.
1675 * - Low water mark works best when it is very near the high water mark.
1676 * This allows the receiver to restart by sending XON when it has
1677 * drained a bit. Here we use an arbitrary value of 1500 which will
1678 * restart after one full frame is pulled from the buffer. There
1679 * could be several smaller frames in the buffer and if so they will
1680 * not trigger the XON until their total number reduces the buffer
1682 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1684 rx_buf_size = igb_get_rx_buffer_size(hw);
1686 hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
1687 hw->fc.low_water = hw->fc.high_water - 1500;
1688 hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1689 hw->fc.send_xon = 1;
1691 /* Set Flow control, use the tunable location if sane */
1692 if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1693 hw->fc.requested_mode = igb_fc_setting;
1695 hw->fc.requested_mode = e1000_fc_none;
1697 /* Issue a global reset */
1698 igb_pf_reset_hw(hw);
1699 E1000_WRITE_REG(hw, E1000_WUC, 0);
1701 diag = e1000_init_hw(hw);
1705 E1000_WRITE_REG(hw, E1000_VET,
1706 RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1707 e1000_get_phy_info(hw);
1708 e1000_check_for_link(hw);
1713 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1715 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1719 uint64_t old_gprc = stats->gprc;
1720 uint64_t old_gptc = stats->gptc;
1721 uint64_t old_tpr = stats->tpr;
1722 uint64_t old_tpt = stats->tpt;
1723 uint64_t old_rpthc = stats->rpthc;
1724 uint64_t old_hgptc = stats->hgptc;
1726 if(hw->phy.media_type == e1000_media_type_copper ||
1727 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1729 E1000_READ_REG(hw,E1000_SYMERRS);
1730 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1733 stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1734 stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1735 stats->scc += E1000_READ_REG(hw, E1000_SCC);
1736 stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1738 stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1739 stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1740 stats->colc += E1000_READ_REG(hw, E1000_COLC);
1741 stats->dc += E1000_READ_REG(hw, E1000_DC);
1742 stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1743 stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1744 stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1746 ** For watchdog management we need to know if we have been
1747 ** paused during the last interval, so capture that here.
1749 pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1750 stats->xoffrxc += pause_frames;
1751 stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1752 stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1753 stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1754 stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1755 stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1756 stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1757 stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1758 stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1759 stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1760 stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1761 stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1762 stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1764 /* For the 64-bit byte counters the low dword must be read first. */
1765 /* Both registers clear on the read of the high dword */
1767 /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1768 stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1769 stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1770 stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
1771 stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1772 stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1773 stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
1775 stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1776 stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1777 stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1778 stats->roc += E1000_READ_REG(hw, E1000_ROC);
1779 stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1781 stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1782 stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1784 stats->tor += E1000_READ_REG(hw, E1000_TORL);
1785 stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1786 stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
1787 stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1788 stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1789 stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
1791 stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1792 stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1793 stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1794 stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1795 stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1796 stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1797 stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1798 stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1800 /* Interrupt Counts */
1802 stats->iac += E1000_READ_REG(hw, E1000_IAC);
1803 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1804 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1805 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1806 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1807 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1808 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1809 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1810 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1812 /* Host to Card Statistics */
1814 stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1815 stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1816 stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1817 stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1818 stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1819 stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1820 stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1821 stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1822 stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1823 stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
1824 stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1825 stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1826 stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
1827 stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1828 stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1829 stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1831 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1832 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1833 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1834 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1835 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1836 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1840 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1842 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1843 struct e1000_hw_stats *stats =
1844 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1846 igb_read_stats_registers(hw, stats);
1848 if (rte_stats == NULL)
1852 rte_stats->imissed = stats->mpc;
1853 rte_stats->ierrors = stats->crcerrs +
1854 stats->rlec + stats->ruc + stats->roc +
1855 stats->rxerrc + stats->algnerrc + stats->cexterr;
1858 rte_stats->oerrors = stats->ecol + stats->latecol;
1860 rte_stats->ipackets = stats->gprc;
1861 rte_stats->opackets = stats->gptc;
1862 rte_stats->ibytes = stats->gorc;
1863 rte_stats->obytes = stats->gotc;
1868 eth_igb_stats_reset(struct rte_eth_dev *dev)
1870 struct e1000_hw_stats *hw_stats =
1871 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1873 /* HW registers are cleared on read */
1874 eth_igb_stats_get(dev, NULL);
1876 /* Reset software totals */
1877 memset(hw_stats, 0, sizeof(*hw_stats));
1883 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1885 struct e1000_hw_stats *stats =
1886 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1888 /* HW registers are cleared on read */
1889 eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1891 /* Reset software totals */
1892 memset(stats, 0, sizeof(*stats));
1897 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1898 struct rte_eth_xstat_name *xstats_names,
1899 __rte_unused unsigned int size)
1903 if (xstats_names == NULL)
1904 return IGB_NB_XSTATS;
1906 /* Note: limit checked in rte_eth_xstats_names() */
1908 for (i = 0; i < IGB_NB_XSTATS; i++) {
1909 strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name,
1910 sizeof(xstats_names[i].name));
1913 return IGB_NB_XSTATS;
1916 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1917 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1923 if (xstats_names == NULL)
1924 return IGB_NB_XSTATS;
1926 for (i = 0; i < IGB_NB_XSTATS; i++)
1927 strlcpy(xstats_names[i].name,
1928 rte_igb_stats_strings[i].name,
1929 sizeof(xstats_names[i].name));
1931 return IGB_NB_XSTATS;
1934 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1936 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1939 for (i = 0; i < limit; i++) {
1940 if (ids[i] >= IGB_NB_XSTATS) {
1941 PMD_INIT_LOG(ERR, "id value isn't valid");
1944 strcpy(xstats_names[i].name,
1945 xstats_names_copy[ids[i]].name);
1952 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1955 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1956 struct e1000_hw_stats *hw_stats =
1957 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1960 if (n < IGB_NB_XSTATS)
1961 return IGB_NB_XSTATS;
1963 igb_read_stats_registers(hw, hw_stats);
1965 /* If this is a reset xstats is NULL, and we have cleared the
1966 * registers by reading them.
1971 /* Extended stats */
1972 for (i = 0; i < IGB_NB_XSTATS; i++) {
1974 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1975 rte_igb_stats_strings[i].offset);
1978 return IGB_NB_XSTATS;
1982 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1983 uint64_t *values, unsigned int n)
1988 struct e1000_hw *hw =
1989 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1990 struct e1000_hw_stats *hw_stats =
1991 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1993 if (n < IGB_NB_XSTATS)
1994 return IGB_NB_XSTATS;
1996 igb_read_stats_registers(hw, hw_stats);
1998 /* If this is a reset xstats is NULL, and we have cleared the
1999 * registers by reading them.
2004 /* Extended stats */
2005 for (i = 0; i < IGB_NB_XSTATS; i++)
2006 values[i] = *(uint64_t *)(((char *)hw_stats) +
2007 rte_igb_stats_strings[i].offset);
2009 return IGB_NB_XSTATS;
2012 uint64_t values_copy[IGB_NB_XSTATS];
2014 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
2017 for (i = 0; i < n; i++) {
2018 if (ids[i] >= IGB_NB_XSTATS) {
2019 PMD_INIT_LOG(ERR, "id value isn't valid");
2022 values[i] = values_copy[ids[i]];
2029 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2031 /* Good Rx packets, include VF loopback */
2032 UPDATE_VF_STAT(E1000_VFGPRC,
2033 hw_stats->last_gprc, hw_stats->gprc);
2035 /* Good Rx octets, include VF loopback */
2036 UPDATE_VF_STAT(E1000_VFGORC,
2037 hw_stats->last_gorc, hw_stats->gorc);
2039 /* Good Tx packets, include VF loopback */
2040 UPDATE_VF_STAT(E1000_VFGPTC,
2041 hw_stats->last_gptc, hw_stats->gptc);
2043 /* Good Tx octets, include VF loopback */
2044 UPDATE_VF_STAT(E1000_VFGOTC,
2045 hw_stats->last_gotc, hw_stats->gotc);
2047 /* Rx Multicst packets */
2048 UPDATE_VF_STAT(E1000_VFMPRC,
2049 hw_stats->last_mprc, hw_stats->mprc);
2051 /* Good Rx loopback packets */
2052 UPDATE_VF_STAT(E1000_VFGPRLBC,
2053 hw_stats->last_gprlbc, hw_stats->gprlbc);
2055 /* Good Rx loopback octets */
2056 UPDATE_VF_STAT(E1000_VFGORLBC,
2057 hw_stats->last_gorlbc, hw_stats->gorlbc);
2059 /* Good Tx loopback packets */
2060 UPDATE_VF_STAT(E1000_VFGPTLBC,
2061 hw_stats->last_gptlbc, hw_stats->gptlbc);
2063 /* Good Tx loopback octets */
2064 UPDATE_VF_STAT(E1000_VFGOTLBC,
2065 hw_stats->last_gotlbc, hw_stats->gotlbc);
2068 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2069 struct rte_eth_xstat_name *xstats_names,
2070 __rte_unused unsigned limit)
2074 if (xstats_names != NULL)
2075 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2076 strlcpy(xstats_names[i].name,
2077 rte_igbvf_stats_strings[i].name,
2078 sizeof(xstats_names[i].name));
2080 return IGBVF_NB_XSTATS;
2084 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2087 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2088 struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2089 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2092 if (n < IGBVF_NB_XSTATS)
2093 return IGBVF_NB_XSTATS;
2095 igbvf_read_stats_registers(hw, hw_stats);
2100 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2102 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2103 rte_igbvf_stats_strings[i].offset);
2106 return IGBVF_NB_XSTATS;
2110 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2112 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2113 struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2114 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2116 igbvf_read_stats_registers(hw, hw_stats);
2118 if (rte_stats == NULL)
2121 rte_stats->ipackets = hw_stats->gprc;
2122 rte_stats->ibytes = hw_stats->gorc;
2123 rte_stats->opackets = hw_stats->gptc;
2124 rte_stats->obytes = hw_stats->gotc;
2129 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2131 struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2132 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2134 /* Sync HW register to the last stats */
2135 eth_igbvf_stats_get(dev, NULL);
2137 /* reset HW current stats*/
2138 memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2139 offsetof(struct e1000_vf_stats, gprc));
2145 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2148 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2149 struct e1000_fw_version fw;
2152 e1000_get_fw_version(hw, &fw);
2154 switch (hw->mac.type) {
2157 if (!(e1000_get_flash_presence_i210(hw))) {
2158 ret = snprintf(fw_version, fw_size,
2160 fw.invm_major, fw.invm_minor,
2166 /* if option rom is valid, display its version too */
2168 ret = snprintf(fw_version, fw_size,
2169 "%d.%d, 0x%08x, %d.%d.%d",
2170 fw.eep_major, fw.eep_minor, fw.etrack_id,
2171 fw.or_major, fw.or_build, fw.or_patch);
2174 if (fw.etrack_id != 0X0000) {
2175 ret = snprintf(fw_version, fw_size,
2177 fw.eep_major, fw.eep_minor,
2180 ret = snprintf(fw_version, fw_size,
2182 fw.eep_major, fw.eep_minor,
2189 ret += 1; /* add the size of '\0' */
2190 if (fw_size < (u32)ret)
2197 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2199 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2201 dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2202 dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
2203 dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2204 dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2205 dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2206 dev_info->rx_queue_offload_capa;
2207 dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2208 dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2209 dev_info->tx_queue_offload_capa;
2211 switch (hw->mac.type) {
2213 dev_info->max_rx_queues = 4;
2214 dev_info->max_tx_queues = 4;
2215 dev_info->max_vmdq_pools = 0;
2219 dev_info->max_rx_queues = 16;
2220 dev_info->max_tx_queues = 16;
2221 dev_info->max_vmdq_pools = ETH_8_POOLS;
2222 dev_info->vmdq_queue_num = 16;
2226 dev_info->max_rx_queues = 8;
2227 dev_info->max_tx_queues = 8;
2228 dev_info->max_vmdq_pools = ETH_8_POOLS;
2229 dev_info->vmdq_queue_num = 8;
2233 dev_info->max_rx_queues = 8;
2234 dev_info->max_tx_queues = 8;
2235 dev_info->max_vmdq_pools = ETH_8_POOLS;
2236 dev_info->vmdq_queue_num = 8;
2240 dev_info->max_rx_queues = 8;
2241 dev_info->max_tx_queues = 8;
2245 dev_info->max_rx_queues = 4;
2246 dev_info->max_tx_queues = 4;
2247 dev_info->max_vmdq_pools = 0;
2251 dev_info->max_rx_queues = 2;
2252 dev_info->max_tx_queues = 2;
2253 dev_info->max_vmdq_pools = 0;
2257 /* Should not happen */
2260 dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2261 dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2262 dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2264 dev_info->default_rxconf = (struct rte_eth_rxconf) {
2266 .pthresh = IGB_DEFAULT_RX_PTHRESH,
2267 .hthresh = IGB_DEFAULT_RX_HTHRESH,
2268 .wthresh = IGB_DEFAULT_RX_WTHRESH,
2270 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2275 dev_info->default_txconf = (struct rte_eth_txconf) {
2277 .pthresh = IGB_DEFAULT_TX_PTHRESH,
2278 .hthresh = IGB_DEFAULT_TX_HTHRESH,
2279 .wthresh = IGB_DEFAULT_TX_WTHRESH,
2284 dev_info->rx_desc_lim = rx_desc_lim;
2285 dev_info->tx_desc_lim = tx_desc_lim;
2287 dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2288 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2291 dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2292 dev_info->min_mtu = RTE_ETHER_MIN_MTU;
2297 static const uint32_t *
2298 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2300 static const uint32_t ptypes[] = {
2301 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2304 RTE_PTYPE_L3_IPV4_EXT,
2306 RTE_PTYPE_L3_IPV6_EXT,
2310 RTE_PTYPE_TUNNEL_IP,
2311 RTE_PTYPE_INNER_L3_IPV6,
2312 RTE_PTYPE_INNER_L3_IPV6_EXT,
2313 RTE_PTYPE_INNER_L4_TCP,
2314 RTE_PTYPE_INNER_L4_UDP,
2318 if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2319 dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2325 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2327 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2329 dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2330 dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
2331 dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2332 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2333 DEV_TX_OFFLOAD_IPV4_CKSUM |
2334 DEV_TX_OFFLOAD_UDP_CKSUM |
2335 DEV_TX_OFFLOAD_TCP_CKSUM |
2336 DEV_TX_OFFLOAD_SCTP_CKSUM |
2337 DEV_TX_OFFLOAD_TCP_TSO;
2338 switch (hw->mac.type) {
2340 dev_info->max_rx_queues = 2;
2341 dev_info->max_tx_queues = 2;
2343 case e1000_vfadapt_i350:
2344 dev_info->max_rx_queues = 1;
2345 dev_info->max_tx_queues = 1;
2348 /* Should not happen */
2352 dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2353 dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2354 dev_info->rx_queue_offload_capa;
2355 dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2356 dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2357 dev_info->tx_queue_offload_capa;
2359 dev_info->default_rxconf = (struct rte_eth_rxconf) {
2361 .pthresh = IGB_DEFAULT_RX_PTHRESH,
2362 .hthresh = IGB_DEFAULT_RX_HTHRESH,
2363 .wthresh = IGB_DEFAULT_RX_WTHRESH,
2365 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2370 dev_info->default_txconf = (struct rte_eth_txconf) {
2372 .pthresh = IGB_DEFAULT_TX_PTHRESH,
2373 .hthresh = IGB_DEFAULT_TX_HTHRESH,
2374 .wthresh = IGB_DEFAULT_TX_WTHRESH,
2379 dev_info->rx_desc_lim = rx_desc_lim;
2380 dev_info->tx_desc_lim = tx_desc_lim;
2385 /* return 0 means link status changed, -1 means not changed */
2387 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2389 struct e1000_hw *hw =
2390 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2391 struct rte_eth_link link;
2392 int link_check, count;
2395 hw->mac.get_link_status = 1;
2397 /* possible wait-to-complete in up to 9 seconds */
2398 for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2399 /* Read the real link status */
2400 switch (hw->phy.media_type) {
2401 case e1000_media_type_copper:
2402 /* Do the work to read phy */
2403 e1000_check_for_link(hw);
2404 link_check = !hw->mac.get_link_status;
2407 case e1000_media_type_fiber:
2408 e1000_check_for_link(hw);
2409 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2413 case e1000_media_type_internal_serdes:
2414 e1000_check_for_link(hw);
2415 link_check = hw->mac.serdes_has_link;
2418 /* VF device is type_unknown */
2419 case e1000_media_type_unknown:
2420 eth_igbvf_link_update(hw);
2421 link_check = !hw->mac.get_link_status;
2427 if (link_check || wait_to_complete == 0)
2429 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2431 memset(&link, 0, sizeof(link));
2433 /* Now we check if a transition has happened */
2435 uint16_t duplex, speed;
2436 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2437 link.link_duplex = (duplex == FULL_DUPLEX) ?
2438 ETH_LINK_FULL_DUPLEX :
2439 ETH_LINK_HALF_DUPLEX;
2440 link.link_speed = speed;
2441 link.link_status = ETH_LINK_UP;
2442 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2443 ETH_LINK_SPEED_FIXED);
2444 } else if (!link_check) {
2445 link.link_speed = 0;
2446 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2447 link.link_status = ETH_LINK_DOWN;
2448 link.link_autoneg = ETH_LINK_FIXED;
2451 return rte_eth_linkstatus_set(dev, &link);
2455 * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2456 * For ASF and Pass Through versions of f/w this means
2457 * that the driver is loaded.
2460 igb_hw_control_acquire(struct e1000_hw *hw)
2464 /* Let firmware know the driver has taken over */
2465 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2466 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2470 * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2471 * For ASF and Pass Through versions of f/w this means that the
2472 * driver is no longer loaded.
2475 igb_hw_control_release(struct e1000_hw *hw)
2479 /* Let firmware taken over control of h/w */
2480 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2481 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2482 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2486 * Bit of a misnomer, what this really means is
2487 * to enable OS management of the system... aka
2488 * to disable special hardware management features.
2491 igb_init_manageability(struct e1000_hw *hw)
2493 if (e1000_enable_mng_pass_thru(hw)) {
2494 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2495 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2497 /* disable hardware interception of ARP */
2498 manc &= ~(E1000_MANC_ARP_EN);
2500 /* enable receiving management packets to the host */
2501 manc |= E1000_MANC_EN_MNG2HOST;
2502 manc2h |= 1 << 5; /* Mng Port 623 */
2503 manc2h |= 1 << 6; /* Mng Port 664 */
2504 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2505 E1000_WRITE_REG(hw, E1000_MANC, manc);
2510 igb_release_manageability(struct e1000_hw *hw)
2512 if (e1000_enable_mng_pass_thru(hw)) {
2513 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2515 manc |= E1000_MANC_ARP_EN;
2516 manc &= ~E1000_MANC_EN_MNG2HOST;
2518 E1000_WRITE_REG(hw, E1000_MANC, manc);
2523 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2525 struct e1000_hw *hw =
2526 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2529 rctl = E1000_READ_REG(hw, E1000_RCTL);
2530 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2531 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2537 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2539 struct e1000_hw *hw =
2540 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2543 rctl = E1000_READ_REG(hw, E1000_RCTL);
2544 rctl &= (~E1000_RCTL_UPE);
2545 if (dev->data->all_multicast == 1)
2546 rctl |= E1000_RCTL_MPE;
2548 rctl &= (~E1000_RCTL_MPE);
2549 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2555 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2557 struct e1000_hw *hw =
2558 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2561 rctl = E1000_READ_REG(hw, E1000_RCTL);
2562 rctl |= E1000_RCTL_MPE;
2563 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2569 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2571 struct e1000_hw *hw =
2572 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2575 if (dev->data->promiscuous == 1)
2576 return 0; /* must remain in all_multicast mode */
2577 rctl = E1000_READ_REG(hw, E1000_RCTL);
2578 rctl &= (~E1000_RCTL_MPE);
2579 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2585 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2587 struct e1000_hw *hw =
2588 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2589 struct e1000_vfta * shadow_vfta =
2590 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2595 vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2596 E1000_VFTA_ENTRY_MASK);
2597 vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2598 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2603 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2605 /* update local VFTA copy */
2606 shadow_vfta->vfta[vid_idx] = vfta;
2612 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2613 enum rte_vlan_type vlan_type,
2616 struct e1000_hw *hw =
2617 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2620 qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2621 qinq &= E1000_CTRL_EXT_EXT_VLAN;
2623 /* only outer TPID of double VLAN can be configured*/
2624 if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2625 reg = E1000_READ_REG(hw, E1000_VET);
2626 reg = (reg & (~E1000_VET_VET_EXT)) |
2627 ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2628 E1000_WRITE_REG(hw, E1000_VET, reg);
2633 /* all other TPID values are read-only*/
2634 PMD_DRV_LOG(ERR, "Not supported");
2640 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2642 struct e1000_hw *hw =
2643 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2646 /* Filter Table Disable */
2647 reg = E1000_READ_REG(hw, E1000_RCTL);
2648 reg &= ~E1000_RCTL_CFIEN;
2649 reg &= ~E1000_RCTL_VFE;
2650 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2654 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2656 struct e1000_hw *hw =
2657 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2658 struct e1000_vfta * shadow_vfta =
2659 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2663 /* Filter Table Enable, CFI not used for packet acceptance */
2664 reg = E1000_READ_REG(hw, E1000_RCTL);
2665 reg &= ~E1000_RCTL_CFIEN;
2666 reg |= E1000_RCTL_VFE;
2667 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2669 /* restore VFTA table */
2670 for (i = 0; i < IGB_VFTA_SIZE; i++)
2671 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2675 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2677 struct e1000_hw *hw =
2678 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2681 /* VLAN Mode Disable */
2682 reg = E1000_READ_REG(hw, E1000_CTRL);
2683 reg &= ~E1000_CTRL_VME;
2684 E1000_WRITE_REG(hw, E1000_CTRL, reg);
2688 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2690 struct e1000_hw *hw =
2691 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2694 /* VLAN Mode Enable */
2695 reg = E1000_READ_REG(hw, E1000_CTRL);
2696 reg |= E1000_CTRL_VME;
2697 E1000_WRITE_REG(hw, E1000_CTRL, reg);
2701 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2703 struct e1000_hw *hw =
2704 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2707 /* CTRL_EXT: Extended VLAN */
2708 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2709 reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2710 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2712 /* Update maximum packet length */
2713 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2714 E1000_WRITE_REG(hw, E1000_RLPML,
2715 dev->data->dev_conf.rxmode.max_rx_pkt_len +
2720 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2722 struct e1000_hw *hw =
2723 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2726 /* CTRL_EXT: Extended VLAN */
2727 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2728 reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2729 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2731 /* Update maximum packet length */
2732 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2733 E1000_WRITE_REG(hw, E1000_RLPML,
2734 dev->data->dev_conf.rxmode.max_rx_pkt_len +
2739 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2741 struct rte_eth_rxmode *rxmode;
2743 rxmode = &dev->data->dev_conf.rxmode;
2744 if(mask & ETH_VLAN_STRIP_MASK){
2745 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2746 igb_vlan_hw_strip_enable(dev);
2748 igb_vlan_hw_strip_disable(dev);
2751 if(mask & ETH_VLAN_FILTER_MASK){
2752 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2753 igb_vlan_hw_filter_enable(dev);
2755 igb_vlan_hw_filter_disable(dev);
2758 if(mask & ETH_VLAN_EXTEND_MASK){
2759 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2760 igb_vlan_hw_extend_enable(dev);
2762 igb_vlan_hw_extend_disable(dev);
2770 * It enables the interrupt mask and then enable the interrupt.
2773 * Pointer to struct rte_eth_dev.
2778 * - On success, zero.
2779 * - On failure, a negative value.
2782 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2784 struct e1000_interrupt *intr =
2785 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2788 intr->mask |= E1000_ICR_LSC;
2790 intr->mask &= ~E1000_ICR_LSC;
2795 /* It clears the interrupt causes and enables the interrupt.
2796 * It will be called once only during nic initialized.
2799 * Pointer to struct rte_eth_dev.
2802 * - On success, zero.
2803 * - On failure, a negative value.
2805 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2807 uint32_t mask, regval;
2809 struct e1000_hw *hw =
2810 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2811 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2812 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2813 int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2814 struct rte_eth_dev_info dev_info;
2816 memset(&dev_info, 0, sizeof(dev_info));
2817 ret = eth_igb_infos_get(dev, &dev_info);
2821 mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2822 regval = E1000_READ_REG(hw, E1000_EIMS);
2823 E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2829 * It reads ICR and gets interrupt causes, check it and set a bit flag
2830 * to update link status.
2833 * Pointer to struct rte_eth_dev.
2836 * - On success, zero.
2837 * - On failure, a negative value.
2840 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2843 struct e1000_hw *hw =
2844 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2845 struct e1000_interrupt *intr =
2846 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2848 igb_intr_disable(dev);
2850 /* read-on-clear nic registers here */
2851 icr = E1000_READ_REG(hw, E1000_ICR);
2854 if (icr & E1000_ICR_LSC) {
2855 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2858 if (icr & E1000_ICR_VMMB)
2859 intr->flags |= E1000_FLAG_MAILBOX;
2865 * It executes link_update after knowing an interrupt is prsent.
2868 * Pointer to struct rte_eth_dev.
2871 * - On success, zero.
2872 * - On failure, a negative value.
2875 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2876 struct rte_intr_handle *intr_handle)
2878 struct e1000_hw *hw =
2879 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2880 struct e1000_interrupt *intr =
2881 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2882 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2883 struct rte_eth_link link;
2886 if (intr->flags & E1000_FLAG_MAILBOX) {
2887 igb_pf_mbx_process(dev);
2888 intr->flags &= ~E1000_FLAG_MAILBOX;
2891 igb_intr_enable(dev);
2892 rte_intr_ack(intr_handle);
2894 if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2895 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2897 /* set get_link_status to check register later */
2898 hw->mac.get_link_status = 1;
2899 ret = eth_igb_link_update(dev, 0);
2901 /* check if link has changed */
2905 rte_eth_linkstatus_get(dev, &link);
2906 if (link.link_status) {
2908 " Port %d: Link Up - speed %u Mbps - %s",
2910 (unsigned)link.link_speed,
2911 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2912 "full-duplex" : "half-duplex");
2914 PMD_INIT_LOG(INFO, " Port %d: Link Down",
2915 dev->data->port_id);
2918 PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
2919 pci_dev->addr.domain,
2921 pci_dev->addr.devid,
2922 pci_dev->addr.function);
2923 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2931 * Interrupt handler which shall be registered at first.
2934 * Pointer to interrupt handle.
2936 * The address of parameter (struct rte_eth_dev *) regsitered before.
2942 eth_igb_interrupt_handler(void *param)
2944 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2946 eth_igb_interrupt_get_status(dev);
2947 eth_igb_interrupt_action(dev, dev->intr_handle);
2951 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2954 struct e1000_hw *hw =
2955 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2956 struct e1000_interrupt *intr =
2957 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2959 igbvf_intr_disable(hw);
2961 /* read-on-clear nic registers here */
2962 eicr = E1000_READ_REG(hw, E1000_EICR);
2965 if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2966 intr->flags |= E1000_FLAG_MAILBOX;
2971 void igbvf_mbx_process(struct rte_eth_dev *dev)
2973 struct e1000_hw *hw =
2974 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2975 struct e1000_mbx_info *mbx = &hw->mbx;
2978 /* peek the message first */
2979 in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2981 /* PF reset VF event */
2982 if (in_msg == E1000_PF_CONTROL_MSG) {
2983 /* dummy mbx read to ack pf */
2984 if (mbx->ops.read(hw, &in_msg, 1, 0))
2986 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2992 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2994 struct e1000_interrupt *intr =
2995 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2997 if (intr->flags & E1000_FLAG_MAILBOX) {
2998 igbvf_mbx_process(dev);
2999 intr->flags &= ~E1000_FLAG_MAILBOX;
3002 igbvf_intr_enable(dev);
3003 rte_intr_ack(intr_handle);
3009 eth_igbvf_interrupt_handler(void *param)
3011 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
3013 eth_igbvf_interrupt_get_status(dev);
3014 eth_igbvf_interrupt_action(dev, dev->intr_handle);
3018 eth_igb_led_on(struct rte_eth_dev *dev)
3020 struct e1000_hw *hw;
3022 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3023 return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3027 eth_igb_led_off(struct rte_eth_dev *dev)
3029 struct e1000_hw *hw;
3031 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3032 return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3036 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3038 struct e1000_hw *hw;
3043 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3044 fc_conf->pause_time = hw->fc.pause_time;
3045 fc_conf->high_water = hw->fc.high_water;
3046 fc_conf->low_water = hw->fc.low_water;
3047 fc_conf->send_xon = hw->fc.send_xon;
3048 fc_conf->autoneg = hw->mac.autoneg;
3051 * Return rx_pause and tx_pause status according to actual setting of
3052 * the TFCE and RFCE bits in the CTRL register.
3054 ctrl = E1000_READ_REG(hw, E1000_CTRL);
3055 if (ctrl & E1000_CTRL_TFCE)
3060 if (ctrl & E1000_CTRL_RFCE)
3065 if (rx_pause && tx_pause)
3066 fc_conf->mode = RTE_FC_FULL;
3068 fc_conf->mode = RTE_FC_RX_PAUSE;
3070 fc_conf->mode = RTE_FC_TX_PAUSE;
3072 fc_conf->mode = RTE_FC_NONE;
3078 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3080 struct e1000_hw *hw;
3082 enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3088 uint32_t rx_buf_size;
3089 uint32_t max_high_water;
3092 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3093 if (fc_conf->autoneg != hw->mac.autoneg)
3095 rx_buf_size = igb_get_rx_buffer_size(hw);
3096 PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3098 /* At least reserve one Ethernet frame for watermark */
3099 max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
3100 if ((fc_conf->high_water > max_high_water) ||
3101 (fc_conf->high_water < fc_conf->low_water)) {
3102 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3103 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
3107 hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3108 hw->fc.pause_time = fc_conf->pause_time;
3109 hw->fc.high_water = fc_conf->high_water;
3110 hw->fc.low_water = fc_conf->low_water;
3111 hw->fc.send_xon = fc_conf->send_xon;
3113 err = e1000_setup_link_generic(hw);
3114 if (err == E1000_SUCCESS) {
3116 /* check if we want to forward MAC frames - driver doesn't have native
3117 * capability to do that, so we'll write the registers ourselves */
3119 rctl = E1000_READ_REG(hw, E1000_RCTL);
3121 /* set or clear MFLCN.PMCF bit depending on configuration */
3122 if (fc_conf->mac_ctrl_frame_fwd != 0)
3123 rctl |= E1000_RCTL_PMCF;
3125 rctl &= ~E1000_RCTL_PMCF;
3127 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3128 E1000_WRITE_FLUSH(hw);
3133 PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3137 #define E1000_RAH_POOLSEL_SHIFT (18)
3139 eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
3140 uint32_t index, uint32_t pool)
3142 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3145 e1000_rar_set(hw, mac_addr->addr_bytes, index);
3146 rah = E1000_READ_REG(hw, E1000_RAH(index));
3147 rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3148 E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3153 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3155 uint8_t addr[RTE_ETHER_ADDR_LEN];
3156 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3158 memset(addr, 0, sizeof(addr));
3160 e1000_rar_set(hw, addr, index);
3164 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3165 struct rte_ether_addr *addr)
3167 eth_igb_rar_clear(dev, 0);
3168 eth_igb_rar_set(dev, (void *)addr, 0, 0);
3173 * Virtual Function operations
3176 igbvf_intr_disable(struct e1000_hw *hw)
3178 PMD_INIT_FUNC_TRACE();
3180 /* Clear interrupt mask to stop from interrupts being generated */
3181 E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3183 E1000_WRITE_FLUSH(hw);
3187 igbvf_stop_adapter(struct rte_eth_dev *dev)
3191 struct rte_eth_dev_info dev_info;
3192 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3195 memset(&dev_info, 0, sizeof(dev_info));
3196 ret = eth_igbvf_infos_get(dev, &dev_info);
3200 /* Clear interrupt mask to stop from interrupts being generated */
3201 igbvf_intr_disable(hw);
3203 /* Clear any pending interrupts, flush previous writes */
3204 E1000_READ_REG(hw, E1000_EICR);
3206 /* Disable the transmit unit. Each queue must be disabled. */
3207 for (i = 0; i < dev_info.max_tx_queues; i++)
3208 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3210 /* Disable the receive unit by stopping each queue */
3211 for (i = 0; i < dev_info.max_rx_queues; i++) {
3212 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3213 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3214 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3215 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3219 /* flush all queues disables */
3220 E1000_WRITE_FLUSH(hw);
3224 static int eth_igbvf_link_update(struct e1000_hw *hw)
3226 struct e1000_mbx_info *mbx = &hw->mbx;
3227 struct e1000_mac_info *mac = &hw->mac;
3228 int ret_val = E1000_SUCCESS;
3230 PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3233 * We only want to run this if there has been a rst asserted.
3234 * in this case that could mean a link change, device reset,
3235 * or a virtual function reset
3238 /* If we were hit with a reset or timeout drop the link */
3239 if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3240 mac->get_link_status = TRUE;
3242 if (!mac->get_link_status)
3245 /* if link status is down no point in checking to see if pf is up */
3246 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3249 /* if we passed all the tests above then the link is up and we no
3250 * longer need to check for link */
3251 mac->get_link_status = FALSE;
3259 igbvf_dev_configure(struct rte_eth_dev *dev)
3261 struct rte_eth_conf* conf = &dev->data->dev_conf;
3263 PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3264 dev->data->port_id);
3266 if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
3267 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
3270 * VF has no ability to enable/disable HW CRC
3271 * Keep the persistent behavior the same as Host PF
3273 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3274 if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3275 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3276 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3279 if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3280 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3281 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3289 igbvf_dev_start(struct rte_eth_dev *dev)
3291 struct e1000_hw *hw =
3292 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3293 struct e1000_adapter *adapter =
3294 E1000_DEV_PRIVATE(dev->data->dev_private);
3295 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3296 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3298 uint32_t intr_vector = 0;
3300 PMD_INIT_FUNC_TRACE();
3302 hw->mac.ops.reset_hw(hw);
3303 adapter->stopped = 0;
3306 igbvf_set_vfta_all(dev,1);
3308 eth_igbvf_tx_init(dev);
3310 /* This can fail when allocating mbufs for descriptor rings */
3311 ret = eth_igbvf_rx_init(dev);
3313 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3314 igb_dev_clear_queues(dev);
3318 /* check and configure queue intr-vector mapping */
3319 if (rte_intr_cap_multiple(intr_handle) &&
3320 dev->data->dev_conf.intr_conf.rxq) {
3321 intr_vector = dev->data->nb_rx_queues;
3322 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3327 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3328 intr_handle->intr_vec =
3329 rte_zmalloc("intr_vec",
3330 dev->data->nb_rx_queues * sizeof(int), 0);
3331 if (!intr_handle->intr_vec) {
3332 PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3333 " intr_vec", dev->data->nb_rx_queues);
3338 eth_igbvf_configure_msix_intr(dev);
3340 /* enable uio/vfio intr/eventfd mapping */
3341 rte_intr_enable(intr_handle);
3343 /* resume enabled intr since hw reset */
3344 igbvf_intr_enable(dev);
3350 igbvf_dev_stop(struct rte_eth_dev *dev)
3352 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3353 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3354 struct e1000_adapter *adapter =
3355 E1000_DEV_PRIVATE(dev->data->dev_private);
3357 if (adapter->stopped)
3360 PMD_INIT_FUNC_TRACE();
3362 igbvf_stop_adapter(dev);
3365 * Clear what we set, but we still keep shadow_vfta to
3366 * restore after device starts
3368 igbvf_set_vfta_all(dev,0);
3370 igb_dev_clear_queues(dev);
3372 /* disable intr eventfd mapping */
3373 rte_intr_disable(intr_handle);
3375 /* Clean datapath event and queue/vec mapping */
3376 rte_intr_efd_disable(intr_handle);
3377 if (intr_handle->intr_vec) {
3378 rte_free(intr_handle->intr_vec);
3379 intr_handle->intr_vec = NULL;
3382 adapter->stopped = true;
3386 igbvf_dev_close(struct rte_eth_dev *dev)
3388 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3389 struct rte_ether_addr addr;
3390 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3392 PMD_INIT_FUNC_TRACE();
3396 igbvf_dev_stop(dev);
3398 igb_dev_free_queues(dev);
3401 * reprogram the RAR with a zero mac address,
3402 * to ensure that the VF traffic goes to the PF
3403 * after stop, close and detach of the VF.
3406 memset(&addr, 0, sizeof(addr));
3407 igbvf_default_mac_addr_set(dev, &addr);
3409 dev->dev_ops = NULL;
3410 dev->rx_pkt_burst = NULL;
3411 dev->tx_pkt_burst = NULL;
3413 rte_intr_callback_unregister(&pci_dev->intr_handle,
3414 eth_igbvf_interrupt_handler,
3419 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3421 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3423 /* Set both unicast and multicast promisc */
3424 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3430 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3432 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3434 /* If in allmulticast mode leave multicast promisc */
3435 if (dev->data->all_multicast == 1)
3436 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3438 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3444 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3446 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3448 /* In promiscuous mode multicast promisc already set */
3449 if (dev->data->promiscuous == 0)
3450 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3456 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3458 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3460 /* In promiscuous mode leave multicast promisc enabled */
3461 if (dev->data->promiscuous == 0)
3462 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3467 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3469 struct e1000_mbx_info *mbx = &hw->mbx;
3473 /* After set vlan, vlan strip will also be enabled in igb driver*/
3474 msgbuf[0] = E1000_VF_SET_VLAN;
3476 /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3478 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3480 err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3484 err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3488 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3489 if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3496 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3498 struct e1000_hw *hw =
3499 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3500 struct e1000_vfta * shadow_vfta =
3501 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3502 int i = 0, j = 0, vfta = 0, mask = 1;
3504 for (i = 0; i < IGB_VFTA_SIZE; i++){
3505 vfta = shadow_vfta->vfta[i];
3508 for (j = 0; j < 32; j++){
3511 (uint16_t)((i<<5)+j), on);
3520 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3522 struct e1000_hw *hw =
3523 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3524 struct e1000_vfta * shadow_vfta =
3525 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3526 uint32_t vid_idx = 0;
3527 uint32_t vid_bit = 0;
3530 PMD_INIT_FUNC_TRACE();
3532 /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3533 ret = igbvf_set_vfta(hw, vlan_id, !!on);
3535 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3538 vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3539 vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3541 /*Save what we set and retore it after device reset*/
3543 shadow_vfta->vfta[vid_idx] |= vid_bit;
3545 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3551 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr)
3553 struct e1000_hw *hw =
3554 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3556 /* index is not used by rar_set() */
3557 hw->mac.ops.rar_set(hw, (void *)addr, 0);
3563 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3564 struct rte_eth_rss_reta_entry64 *reta_conf,
3569 uint16_t idx, shift;
3570 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3572 if (reta_size != ETH_RSS_RETA_SIZE_128) {
3573 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3574 "(%d) doesn't match the number hardware can supported "
3575 "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3579 for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3580 idx = i / RTE_RETA_GROUP_SIZE;
3581 shift = i % RTE_RETA_GROUP_SIZE;
3582 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3586 if (mask == IGB_4_BIT_MASK)
3589 r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3590 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3591 if (mask & (0x1 << j))
3592 reta |= reta_conf[idx].reta[shift + j] <<
3595 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3597 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3604 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3605 struct rte_eth_rss_reta_entry64 *reta_conf,
3610 uint16_t idx, shift;
3611 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3613 if (reta_size != ETH_RSS_RETA_SIZE_128) {
3614 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3615 "(%d) doesn't match the number hardware can supported "
3616 "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3620 for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3621 idx = i / RTE_RETA_GROUP_SIZE;
3622 shift = i % RTE_RETA_GROUP_SIZE;
3623 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3627 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3628 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3629 if (mask & (0x1 << j))
3630 reta_conf[idx].reta[shift + j] =
3631 ((reta >> (CHAR_BIT * j)) &
3640 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3641 struct rte_eth_syn_filter *filter,
3644 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3645 struct e1000_filter_info *filter_info =
3646 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3647 uint32_t synqf, rfctl;
3649 if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3652 synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3655 if (synqf & E1000_SYN_FILTER_ENABLE)
3658 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3659 E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3661 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3662 if (filter->hig_pri)
3663 rfctl |= E1000_RFCTL_SYNQFP;
3665 rfctl &= ~E1000_RFCTL_SYNQFP;
3667 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3669 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3674 filter_info->syn_info = synqf;
3675 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3676 E1000_WRITE_FLUSH(hw);
3681 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3682 struct rte_eth_syn_filter *filter)
3684 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3685 uint32_t synqf, rfctl;
3687 synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3688 if (synqf & E1000_SYN_FILTER_ENABLE) {
3689 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3690 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3691 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3692 E1000_SYN_FILTER_QUEUE_SHIFT);
3700 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3701 enum rte_filter_op filter_op,
3704 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3707 MAC_TYPE_FILTER_SUP(hw->mac.type);
3709 if (filter_op == RTE_ETH_FILTER_NOP)
3713 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3718 switch (filter_op) {
3719 case RTE_ETH_FILTER_ADD:
3720 ret = eth_igb_syn_filter_set(dev,
3721 (struct rte_eth_syn_filter *)arg,
3724 case RTE_ETH_FILTER_DELETE:
3725 ret = eth_igb_syn_filter_set(dev,
3726 (struct rte_eth_syn_filter *)arg,
3729 case RTE_ETH_FILTER_GET:
3730 ret = eth_igb_syn_filter_get(dev,
3731 (struct rte_eth_syn_filter *)arg);
3734 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3742 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3744 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3745 struct e1000_2tuple_filter_info *filter_info)
3747 if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3749 if (filter->priority > E1000_2TUPLE_MAX_PRI)
3750 return -EINVAL; /* filter index is out of range. */
3751 if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
3752 return -EINVAL; /* flags is invalid. */
3754 switch (filter->dst_port_mask) {
3756 filter_info->dst_port_mask = 0;
3757 filter_info->dst_port = filter->dst_port;
3760 filter_info->dst_port_mask = 1;
3763 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3767 switch (filter->proto_mask) {
3769 filter_info->proto_mask = 0;
3770 filter_info->proto = filter->proto;
3773 filter_info->proto_mask = 1;
3776 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3780 filter_info->priority = (uint8_t)filter->priority;
3781 if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3782 filter_info->tcp_flags = filter->tcp_flags;
3784 filter_info->tcp_flags = 0;
3789 static inline struct e1000_2tuple_filter *
3790 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3791 struct e1000_2tuple_filter_info *key)
3793 struct e1000_2tuple_filter *it;
3795 TAILQ_FOREACH(it, filter_list, entries) {
3796 if (memcmp(key, &it->filter_info,
3797 sizeof(struct e1000_2tuple_filter_info)) == 0) {
3804 /* inject a igb 2tuple filter to HW */
3806 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3807 struct e1000_2tuple_filter *filter)
3809 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3810 uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3811 uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3815 imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3816 if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3817 imir |= E1000_IMIR_PORT_BP;
3819 imir &= ~E1000_IMIR_PORT_BP;
3821 imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3823 ttqf |= E1000_TTQF_QUEUE_ENABLE;
3824 ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3825 ttqf |= (uint32_t)(filter->filter_info.proto &
3826 E1000_TTQF_PROTOCOL_MASK);
3827 if (filter->filter_info.proto_mask == 0)
3828 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3830 /* tcp flags bits setting. */
3831 if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
3832 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
3833 imir_ext |= E1000_IMIREXT_CTRL_URG;
3834 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
3835 imir_ext |= E1000_IMIREXT_CTRL_ACK;
3836 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
3837 imir_ext |= E1000_IMIREXT_CTRL_PSH;
3838 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
3839 imir_ext |= E1000_IMIREXT_CTRL_RST;
3840 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
3841 imir_ext |= E1000_IMIREXT_CTRL_SYN;
3842 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
3843 imir_ext |= E1000_IMIREXT_CTRL_FIN;
3845 imir_ext |= E1000_IMIREXT_CTRL_BP;
3847 E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3848 E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3849 E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3853 * igb_add_2tuple_filter - add a 2tuple filter
3856 * dev: Pointer to struct rte_eth_dev.
3857 * ntuple_filter: ponter to the filter that will be added.
3860 * - On success, zero.
3861 * - On failure, a negative value.
3864 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3865 struct rte_eth_ntuple_filter *ntuple_filter)
3867 struct e1000_filter_info *filter_info =
3868 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3869 struct e1000_2tuple_filter *filter;
3872 filter = rte_zmalloc("e1000_2tuple_filter",
3873 sizeof(struct e1000_2tuple_filter), 0);
3877 ret = ntuple_filter_to_2tuple(ntuple_filter,
3878 &filter->filter_info);
3883 if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3884 &filter->filter_info) != NULL) {
3885 PMD_DRV_LOG(ERR, "filter exists.");
3889 filter->queue = ntuple_filter->queue;
3892 * look for an unused 2tuple filter index,
3893 * and insert the filter to list.
3895 for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3896 if (!(filter_info->twotuple_mask & (1 << i))) {
3897 filter_info->twotuple_mask |= 1 << i;
3899 TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3905 if (i >= E1000_MAX_TTQF_FILTERS) {
3906 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3911 igb_inject_2uple_filter(dev, filter);
3916 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3917 struct e1000_2tuple_filter *filter)
3919 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3920 struct e1000_filter_info *filter_info =
3921 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3923 filter_info->twotuple_mask &= ~(1 << filter->index);
3924 TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3927 E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3928 E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3929 E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3934 * igb_remove_2tuple_filter - remove a 2tuple filter
3937 * dev: Pointer to struct rte_eth_dev.
3938 * ntuple_filter: ponter to the filter that will be removed.
3941 * - On success, zero.
3942 * - On failure, a negative value.
3945 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3946 struct rte_eth_ntuple_filter *ntuple_filter)
3948 struct e1000_filter_info *filter_info =
3949 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3950 struct e1000_2tuple_filter_info filter_2tuple;
3951 struct e1000_2tuple_filter *filter;
3954 memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3955 ret = ntuple_filter_to_2tuple(ntuple_filter,
3960 filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3962 if (filter == NULL) {
3963 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3967 igb_delete_2tuple_filter(dev, filter);
3972 /* inject a igb flex filter to HW */
3974 igb_inject_flex_filter(struct rte_eth_dev *dev,
3975 struct e1000_flex_filter *filter)
3977 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3978 uint32_t wufc, queueing;
3982 wufc = E1000_READ_REG(hw, E1000_WUFC);
3983 if (filter->index < E1000_MAX_FHFT)
3984 reg_off = E1000_FHFT(filter->index);
3986 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3988 E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3989 (E1000_WUFC_FLX0 << filter->index));
3990 queueing = filter->filter_info.len |
3991 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3992 (filter->filter_info.priority <<
3993 E1000_FHFT_QUEUEING_PRIO_SHIFT);
3994 E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3997 for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3998 E1000_WRITE_REG(hw, reg_off,
3999 filter->filter_info.dwords[j]);
4000 reg_off += sizeof(uint32_t);
4001 E1000_WRITE_REG(hw, reg_off,
4002 filter->filter_info.dwords[++j]);
4003 reg_off += sizeof(uint32_t);
4004 E1000_WRITE_REG(hw, reg_off,
4005 (uint32_t)filter->filter_info.mask[i]);
4006 reg_off += sizeof(uint32_t) * 2;
4011 static inline struct e1000_flex_filter *
4012 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
4013 struct e1000_flex_filter_info *key)
4015 struct e1000_flex_filter *it;
4017 TAILQ_FOREACH(it, filter_list, entries) {
4018 if (memcmp(key, &it->filter_info,
4019 sizeof(struct e1000_flex_filter_info)) == 0)
4026 /* remove a flex byte filter
4028 * dev: Pointer to struct rte_eth_dev.
4029 * filter: the pointer of the filter will be removed.
4032 igb_remove_flex_filter(struct rte_eth_dev *dev,
4033 struct e1000_flex_filter *filter)
4035 struct e1000_filter_info *filter_info =
4036 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4037 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4041 wufc = E1000_READ_REG(hw, E1000_WUFC);
4042 if (filter->index < E1000_MAX_FHFT)
4043 reg_off = E1000_FHFT(filter->index);
4045 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
4047 for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
4048 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4050 E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4051 (~(E1000_WUFC_FLX0 << filter->index)));
4053 filter_info->flex_mask &= ~(1 << filter->index);
4054 TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4059 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4060 struct rte_eth_flex_filter *filter,
4063 struct e1000_filter_info *filter_info =
4064 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4065 struct e1000_flex_filter *flex_filter, *it;
4069 flex_filter = rte_zmalloc("e1000_flex_filter",
4070 sizeof(struct e1000_flex_filter), 0);
4071 if (flex_filter == NULL)
4074 flex_filter->filter_info.len = filter->len;
4075 flex_filter->filter_info.priority = filter->priority;
4076 memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4077 for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4079 /* reverse bits in flex filter's mask*/
4080 for (shift = 0; shift < CHAR_BIT; shift++) {
4081 if (filter->mask[i] & (0x01 << shift))
4082 mask |= (0x80 >> shift);
4084 flex_filter->filter_info.mask[i] = mask;
4087 it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4088 &flex_filter->filter_info);
4089 if (it == NULL && !add) {
4090 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4091 rte_free(flex_filter);
4094 if (it != NULL && add) {
4095 PMD_DRV_LOG(ERR, "filter exists.");
4096 rte_free(flex_filter);
4101 flex_filter->queue = filter->queue;
4103 * look for an unused flex filter index
4104 * and insert the filter into the list.
4106 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4107 if (!(filter_info->flex_mask & (1 << i))) {
4108 filter_info->flex_mask |= 1 << i;
4109 flex_filter->index = i;
4110 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4116 if (i >= E1000_MAX_FLEX_FILTERS) {
4117 PMD_DRV_LOG(ERR, "flex filters are full.");
4118 rte_free(flex_filter);
4122 igb_inject_flex_filter(dev, flex_filter);
4125 igb_remove_flex_filter(dev, it);
4126 rte_free(flex_filter);
4133 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4134 struct rte_eth_flex_filter *filter)
4136 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4137 struct e1000_filter_info *filter_info =
4138 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4139 struct e1000_flex_filter flex_filter, *it;
4140 uint32_t wufc, queueing, wufc_en = 0;
4142 memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4143 flex_filter.filter_info.len = filter->len;
4144 flex_filter.filter_info.priority = filter->priority;
4145 memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4146 memcpy(flex_filter.filter_info.mask, filter->mask,
4147 RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4149 it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4150 &flex_filter.filter_info);
4152 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4156 wufc = E1000_READ_REG(hw, E1000_WUFC);
4157 wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4159 if ((wufc & wufc_en) == wufc_en) {
4160 uint32_t reg_off = 0;
4161 if (it->index < E1000_MAX_FHFT)
4162 reg_off = E1000_FHFT(it->index);
4164 reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4166 queueing = E1000_READ_REG(hw,
4167 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4168 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4169 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4170 E1000_FHFT_QUEUEING_PRIO_SHIFT;
4171 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4172 E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4179 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4180 enum rte_filter_op filter_op,
4183 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4184 struct rte_eth_flex_filter *filter;
4187 MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4189 if (filter_op == RTE_ETH_FILTER_NOP)
4193 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4198 filter = (struct rte_eth_flex_filter *)arg;
4199 if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4200 || filter->len % sizeof(uint64_t) != 0) {
4201 PMD_DRV_LOG(ERR, "filter's length is out of range");
4204 if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4205 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4209 switch (filter_op) {
4210 case RTE_ETH_FILTER_ADD:
4211 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4213 case RTE_ETH_FILTER_DELETE:
4214 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4216 case RTE_ETH_FILTER_GET:
4217 ret = eth_igb_get_flex_filter(dev, filter);
4220 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4228 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4230 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4231 struct e1000_5tuple_filter_info *filter_info)
4233 if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4235 if (filter->priority > E1000_2TUPLE_MAX_PRI)
4236 return -EINVAL; /* filter index is out of range. */
4237 if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
4238 return -EINVAL; /* flags is invalid. */
4240 switch (filter->dst_ip_mask) {
4242 filter_info->dst_ip_mask = 0;
4243 filter_info->dst_ip = filter->dst_ip;
4246 filter_info->dst_ip_mask = 1;
4249 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4253 switch (filter->src_ip_mask) {
4255 filter_info->src_ip_mask = 0;
4256 filter_info->src_ip = filter->src_ip;
4259 filter_info->src_ip_mask = 1;
4262 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4266 switch (filter->dst_port_mask) {
4268 filter_info->dst_port_mask = 0;
4269 filter_info->dst_port = filter->dst_port;
4272 filter_info->dst_port_mask = 1;
4275 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4279 switch (filter->src_port_mask) {
4281 filter_info->src_port_mask = 0;
4282 filter_info->src_port = filter->src_port;
4285 filter_info->src_port_mask = 1;
4288 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4292 switch (filter->proto_mask) {
4294 filter_info->proto_mask = 0;
4295 filter_info->proto = filter->proto;
4298 filter_info->proto_mask = 1;
4301 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4305 filter_info->priority = (uint8_t)filter->priority;
4306 if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4307 filter_info->tcp_flags = filter->tcp_flags;
4309 filter_info->tcp_flags = 0;
4314 static inline struct e1000_5tuple_filter *
4315 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4316 struct e1000_5tuple_filter_info *key)
4318 struct e1000_5tuple_filter *it;
4320 TAILQ_FOREACH(it, filter_list, entries) {
4321 if (memcmp(key, &it->filter_info,
4322 sizeof(struct e1000_5tuple_filter_info)) == 0) {
4329 /* inject a igb 5-tuple filter to HW */
4331 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4332 struct e1000_5tuple_filter *filter)
4334 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4335 uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4336 uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4340 ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4341 if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4342 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4343 if (filter->filter_info.dst_ip_mask == 0)
4344 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4345 if (filter->filter_info.src_port_mask == 0)
4346 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4347 if (filter->filter_info.proto_mask == 0)
4348 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4349 ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4350 E1000_FTQF_QUEUE_MASK;
4351 ftqf |= E1000_FTQF_QUEUE_ENABLE;
4352 E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4353 E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4354 E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4356 spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4357 E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4359 imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4360 if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4361 imir |= E1000_IMIR_PORT_BP;
4363 imir &= ~E1000_IMIR_PORT_BP;
4364 imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4366 /* tcp flags bits setting. */
4367 if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
4368 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
4369 imir_ext |= E1000_IMIREXT_CTRL_URG;
4370 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
4371 imir_ext |= E1000_IMIREXT_CTRL_ACK;
4372 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
4373 imir_ext |= E1000_IMIREXT_CTRL_PSH;
4374 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
4375 imir_ext |= E1000_IMIREXT_CTRL_RST;
4376 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
4377 imir_ext |= E1000_IMIREXT_CTRL_SYN;
4378 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
4379 imir_ext |= E1000_IMIREXT_CTRL_FIN;
4381 imir_ext |= E1000_IMIREXT_CTRL_BP;
4383 E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4384 E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4388 * igb_add_5tuple_filter_82576 - add a 5tuple filter
4391 * dev: Pointer to struct rte_eth_dev.
4392 * ntuple_filter: ponter to the filter that will be added.
4395 * - On success, zero.
4396 * - On failure, a negative value.
4399 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4400 struct rte_eth_ntuple_filter *ntuple_filter)
4402 struct e1000_filter_info *filter_info =
4403 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4404 struct e1000_5tuple_filter *filter;
4408 filter = rte_zmalloc("e1000_5tuple_filter",
4409 sizeof(struct e1000_5tuple_filter), 0);
4413 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4414 &filter->filter_info);
4420 if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4421 &filter->filter_info) != NULL) {
4422 PMD_DRV_LOG(ERR, "filter exists.");
4426 filter->queue = ntuple_filter->queue;
4429 * look for an unused 5tuple filter index,
4430 * and insert the filter to list.
4432 for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4433 if (!(filter_info->fivetuple_mask & (1 << i))) {
4434 filter_info->fivetuple_mask |= 1 << i;
4436 TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4442 if (i >= E1000_MAX_FTQF_FILTERS) {
4443 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4448 igb_inject_5tuple_filter_82576(dev, filter);
4453 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4454 struct e1000_5tuple_filter *filter)
4456 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4457 struct e1000_filter_info *filter_info =
4458 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4460 filter_info->fivetuple_mask &= ~(1 << filter->index);
4461 TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4464 E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4465 E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4466 E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4467 E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4468 E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4469 E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4470 E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4475 * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4478 * dev: Pointer to struct rte_eth_dev.
4479 * ntuple_filter: ponter to the filter that will be removed.
4482 * - On success, zero.
4483 * - On failure, a negative value.
4486 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4487 struct rte_eth_ntuple_filter *ntuple_filter)
4489 struct e1000_filter_info *filter_info =
4490 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4491 struct e1000_5tuple_filter_info filter_5tuple;
4492 struct e1000_5tuple_filter *filter;
4495 memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4496 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4501 filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4503 if (filter == NULL) {
4504 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4508 igb_delete_5tuple_filter_82576(dev, filter);
4514 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4517 struct e1000_hw *hw;
4518 struct rte_eth_dev_info dev_info;
4519 uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4522 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4524 #ifdef RTE_LIBRTE_82571_SUPPORT
4525 /* XXX: not bigger than max_rx_pktlen */
4526 if (hw->mac.type == e1000_82571)
4529 ret = eth_igb_infos_get(dev, &dev_info);
4533 /* check that mtu is within the allowed range */
4534 if (mtu < RTE_ETHER_MIN_MTU ||
4535 frame_size > dev_info.max_rx_pktlen)
4538 /* refuse mtu that requires the support of scattered packets when this
4539 * feature has not been enabled before. */
4540 if (!dev->data->scattered_rx &&
4541 frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4544 rctl = E1000_READ_REG(hw, E1000_RCTL);
4546 /* switch to jumbo mode if needed */
4547 if (frame_size > RTE_ETHER_MAX_LEN) {
4548 dev->data->dev_conf.rxmode.offloads |=
4549 DEV_RX_OFFLOAD_JUMBO_FRAME;
4550 rctl |= E1000_RCTL_LPE;
4552 dev->data->dev_conf.rxmode.offloads &=
4553 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4554 rctl &= ~E1000_RCTL_LPE;
4556 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4558 /* update max frame size */
4559 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4561 E1000_WRITE_REG(hw, E1000_RLPML,
4562 dev->data->dev_conf.rxmode.max_rx_pkt_len);
4568 * igb_add_del_ntuple_filter - add or delete a ntuple filter
4571 * dev: Pointer to struct rte_eth_dev.
4572 * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4573 * add: if true, add filter, if false, remove filter
4576 * - On success, zero.
4577 * - On failure, a negative value.
4580 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4581 struct rte_eth_ntuple_filter *ntuple_filter,
4584 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4587 switch (ntuple_filter->flags) {
4588 case RTE_5TUPLE_FLAGS:
4589 case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4590 if (hw->mac.type != e1000_82576)
4593 ret = igb_add_5tuple_filter_82576(dev,
4596 ret = igb_remove_5tuple_filter_82576(dev,
4599 case RTE_2TUPLE_FLAGS:
4600 case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4601 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4602 hw->mac.type != e1000_i210 &&
4603 hw->mac.type != e1000_i211)
4606 ret = igb_add_2tuple_filter(dev, ntuple_filter);
4608 ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4619 * igb_get_ntuple_filter - get a ntuple filter
4622 * dev: Pointer to struct rte_eth_dev.
4623 * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4626 * - On success, zero.
4627 * - On failure, a negative value.
4630 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4631 struct rte_eth_ntuple_filter *ntuple_filter)
4633 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4634 struct e1000_filter_info *filter_info =
4635 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4636 struct e1000_5tuple_filter_info filter_5tuple;
4637 struct e1000_2tuple_filter_info filter_2tuple;
4638 struct e1000_5tuple_filter *p_5tuple_filter;
4639 struct e1000_2tuple_filter *p_2tuple_filter;
4642 switch (ntuple_filter->flags) {
4643 case RTE_5TUPLE_FLAGS:
4644 case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4645 if (hw->mac.type != e1000_82576)
4647 memset(&filter_5tuple,
4649 sizeof(struct e1000_5tuple_filter_info));
4650 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4654 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4655 &filter_info->fivetuple_list,
4657 if (p_5tuple_filter == NULL) {
4658 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4661 ntuple_filter->queue = p_5tuple_filter->queue;
4663 case RTE_2TUPLE_FLAGS:
4664 case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4665 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4667 memset(&filter_2tuple,
4669 sizeof(struct e1000_2tuple_filter_info));
4670 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4673 p_2tuple_filter = igb_2tuple_filter_lookup(
4674 &filter_info->twotuple_list,
4676 if (p_2tuple_filter == NULL) {
4677 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4680 ntuple_filter->queue = p_2tuple_filter->queue;
4691 * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4692 * @dev: pointer to rte_eth_dev structure
4693 * @filter_op:operation will be taken.
4694 * @arg: a pointer to specific structure corresponding to the filter_op
4697 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4698 enum rte_filter_op filter_op,
4701 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4704 MAC_TYPE_FILTER_SUP(hw->mac.type);
4706 if (filter_op == RTE_ETH_FILTER_NOP)
4710 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4715 switch (filter_op) {
4716 case RTE_ETH_FILTER_ADD:
4717 ret = igb_add_del_ntuple_filter(dev,
4718 (struct rte_eth_ntuple_filter *)arg,
4721 case RTE_ETH_FILTER_DELETE:
4722 ret = igb_add_del_ntuple_filter(dev,
4723 (struct rte_eth_ntuple_filter *)arg,
4726 case RTE_ETH_FILTER_GET:
4727 ret = igb_get_ntuple_filter(dev,
4728 (struct rte_eth_ntuple_filter *)arg);
4731 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4739 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4744 for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4745 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4746 (filter_info->ethertype_mask & (1 << i)))
4753 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4754 uint16_t ethertype, uint32_t etqf)
4758 for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4759 if (!(filter_info->ethertype_mask & (1 << i))) {
4760 filter_info->ethertype_mask |= 1 << i;
4761 filter_info->ethertype_filters[i].ethertype = ethertype;
4762 filter_info->ethertype_filters[i].etqf = etqf;
4770 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4773 if (idx >= E1000_MAX_ETQF_FILTERS)
4775 filter_info->ethertype_mask &= ~(1 << idx);
4776 filter_info->ethertype_filters[idx].ethertype = 0;
4777 filter_info->ethertype_filters[idx].etqf = 0;
4783 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4784 struct rte_eth_ethertype_filter *filter,
4787 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4788 struct e1000_filter_info *filter_info =
4789 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4793 if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
4794 filter->ether_type == RTE_ETHER_TYPE_IPV6) {
4795 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4796 " ethertype filter.", filter->ether_type);
4800 if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4801 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4804 if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4805 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4809 ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4810 if (ret >= 0 && add) {
4811 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4812 filter->ether_type);
4815 if (ret < 0 && !add) {
4816 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4817 filter->ether_type);
4822 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4823 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4824 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4825 ret = igb_ethertype_filter_insert(filter_info,
4826 filter->ether_type, etqf);
4828 PMD_DRV_LOG(ERR, "ethertype filters are full.");
4832 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4836 E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4837 E1000_WRITE_FLUSH(hw);
4843 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4844 struct rte_eth_ethertype_filter *filter)
4846 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4847 struct e1000_filter_info *filter_info =
4848 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4852 ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4854 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4855 filter->ether_type);
4859 etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4860 if (etqf & E1000_ETQF_FILTER_ENABLE) {
4861 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4863 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4864 E1000_ETQF_QUEUE_SHIFT;
4872 * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4873 * @dev: pointer to rte_eth_dev structure
4874 * @filter_op:operation will be taken.
4875 * @arg: a pointer to specific structure corresponding to the filter_op
4878 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4879 enum rte_filter_op filter_op,
4882 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4885 MAC_TYPE_FILTER_SUP(hw->mac.type);
4887 if (filter_op == RTE_ETH_FILTER_NOP)
4891 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4896 switch (filter_op) {
4897 case RTE_ETH_FILTER_ADD:
4898 ret = igb_add_del_ethertype_filter(dev,
4899 (struct rte_eth_ethertype_filter *)arg,
4902 case RTE_ETH_FILTER_DELETE:
4903 ret = igb_add_del_ethertype_filter(dev,
4904 (struct rte_eth_ethertype_filter *)arg,
4907 case RTE_ETH_FILTER_GET:
4908 ret = igb_get_ethertype_filter(dev,
4909 (struct rte_eth_ethertype_filter *)arg);
4912 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4920 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4921 enum rte_filter_type filter_type,
4922 enum rte_filter_op filter_op,
4927 switch (filter_type) {
4928 case RTE_ETH_FILTER_NTUPLE:
4929 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4931 case RTE_ETH_FILTER_ETHERTYPE:
4932 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4934 case RTE_ETH_FILTER_SYN:
4935 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4937 case RTE_ETH_FILTER_FLEXIBLE:
4938 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4940 case RTE_ETH_FILTER_GENERIC:
4941 if (filter_op != RTE_ETH_FILTER_GET)
4943 *(const void **)arg = &igb_flow_ops;
4946 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4955 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4956 struct rte_ether_addr *mc_addr_set,
4957 uint32_t nb_mc_addr)
4959 struct e1000_hw *hw;
4961 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4962 e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4967 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4969 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4970 uint64_t systime_cycles;
4972 switch (hw->mac.type) {
4976 * Need to read System Time Residue Register to be able
4977 * to read the other two registers.
4979 E1000_READ_REG(hw, E1000_SYSTIMR);
4980 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4981 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4982 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4989 * Need to read System Time Residue Register to be able
4990 * to read the other two registers.
4992 E1000_READ_REG(hw, E1000_SYSTIMR);
4993 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4994 /* Only the 8 LSB are valid. */
4995 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4999 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
5000 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
5005 return systime_cycles;
5009 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
5011 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5012 uint64_t rx_tstamp_cycles;
5014 switch (hw->mac.type) {
5017 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
5018 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
5019 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
5025 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
5026 /* Only the 8 LSB are valid. */
5027 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
5031 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
5032 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
5037 return rx_tstamp_cycles;
5041 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
5043 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5044 uint64_t tx_tstamp_cycles;
5046 switch (hw->mac.type) {
5049 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
5050 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5051 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5057 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5058 /* Only the 8 LSB are valid. */
5059 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
5063 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5064 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5069 return tx_tstamp_cycles;
5073 igb_start_timecounters(struct rte_eth_dev *dev)
5075 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5076 struct e1000_adapter *adapter = dev->data->dev_private;
5077 uint32_t incval = 1;
5079 uint64_t mask = E1000_CYCLECOUNTER_MASK;
5081 switch (hw->mac.type) {
5085 /* 32 LSB bits + 8 MSB bits = 40 bits */
5086 mask = (1ULL << 40) - 1;
5091 * Start incrementing the register
5092 * used to timestamp PTP packets.
5094 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5097 incval = E1000_INCVALUE_82576;
5098 shift = IGB_82576_TSYNC_SHIFT;
5099 E1000_WRITE_REG(hw, E1000_TIMINCA,
5100 E1000_INCPERIOD_82576 | incval);
5107 memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5108 memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5109 memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5111 adapter->systime_tc.cc_mask = mask;
5112 adapter->systime_tc.cc_shift = shift;
5113 adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5115 adapter->rx_tstamp_tc.cc_mask = mask;
5116 adapter->rx_tstamp_tc.cc_shift = shift;
5117 adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5119 adapter->tx_tstamp_tc.cc_mask = mask;
5120 adapter->tx_tstamp_tc.cc_shift = shift;
5121 adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5125 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5127 struct e1000_adapter *adapter = dev->data->dev_private;
5129 adapter->systime_tc.nsec += delta;
5130 adapter->rx_tstamp_tc.nsec += delta;
5131 adapter->tx_tstamp_tc.nsec += delta;
5137 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5140 struct e1000_adapter *adapter = dev->data->dev_private;
5142 ns = rte_timespec_to_ns(ts);
5144 /* Set the timecounters to a new value. */
5145 adapter->systime_tc.nsec = ns;
5146 adapter->rx_tstamp_tc.nsec = ns;
5147 adapter->tx_tstamp_tc.nsec = ns;
5153 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5155 uint64_t ns, systime_cycles;
5156 struct e1000_adapter *adapter = dev->data->dev_private;
5158 systime_cycles = igb_read_systime_cyclecounter(dev);
5159 ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5160 *ts = rte_ns_to_timespec(ns);
5166 igb_timesync_enable(struct rte_eth_dev *dev)
5168 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5172 /* Stop the timesync system time. */
5173 E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5174 /* Reset the timesync system time value. */
5175 switch (hw->mac.type) {
5181 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5184 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5185 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5188 /* Not supported. */
5192 /* Enable system time for it isn't on by default. */
5193 tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5194 tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5195 E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5197 igb_start_timecounters(dev);
5199 /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5200 E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5201 (RTE_ETHER_TYPE_1588 |
5202 E1000_ETQF_FILTER_ENABLE |
5205 /* Enable timestamping of received PTP packets. */
5206 tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5207 tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5208 E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5210 /* Enable Timestamping of transmitted PTP packets. */
5211 tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5212 tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5213 E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5219 igb_timesync_disable(struct rte_eth_dev *dev)
5221 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5224 /* Disable timestamping of transmitted PTP packets. */
5225 tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5226 tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5227 E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5229 /* Disable timestamping of received PTP packets. */
5230 tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5231 tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5232 E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5234 /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5235 E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5237 /* Stop incrementating the System Time registers. */
5238 E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5244 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5245 struct timespec *timestamp,
5246 uint32_t flags __rte_unused)
5248 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5249 struct e1000_adapter *adapter = dev->data->dev_private;
5250 uint32_t tsync_rxctl;
5251 uint64_t rx_tstamp_cycles;
5254 tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5255 if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5258 rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5259 ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5260 *timestamp = rte_ns_to_timespec(ns);
5266 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5267 struct timespec *timestamp)
5269 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5270 struct e1000_adapter *adapter = dev->data->dev_private;
5271 uint32_t tsync_txctl;
5272 uint64_t tx_tstamp_cycles;
5275 tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5276 if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5279 tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5280 ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5281 *timestamp = rte_ns_to_timespec(ns);
5287 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5291 const struct reg_info *reg_group;
5293 while ((reg_group = igb_regs[g_ind++]))
5294 count += igb_reg_group_count(reg_group);
5300 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5304 const struct reg_info *reg_group;
5306 while ((reg_group = igbvf_regs[g_ind++]))
5307 count += igb_reg_group_count(reg_group);
5313 eth_igb_get_regs(struct rte_eth_dev *dev,
5314 struct rte_dev_reg_info *regs)
5316 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5317 uint32_t *data = regs->data;
5320 const struct reg_info *reg_group;
5323 regs->length = eth_igb_get_reg_length(dev);
5324 regs->width = sizeof(uint32_t);
5328 /* Support only full register dump */
5329 if ((regs->length == 0) ||
5330 (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5331 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5333 while ((reg_group = igb_regs[g_ind++]))
5334 count += igb_read_regs_group(dev, &data[count],
5343 igbvf_get_regs(struct rte_eth_dev *dev,
5344 struct rte_dev_reg_info *regs)
5346 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5347 uint32_t *data = regs->data;
5350 const struct reg_info *reg_group;
5353 regs->length = igbvf_get_reg_length(dev);
5354 regs->width = sizeof(uint32_t);
5358 /* Support only full register dump */
5359 if ((regs->length == 0) ||
5360 (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5361 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5363 while ((reg_group = igbvf_regs[g_ind++]))
5364 count += igb_read_regs_group(dev, &data[count],
5373 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5375 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5377 /* Return unit is byte count */
5378 return hw->nvm.word_size * 2;
5382 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5383 struct rte_dev_eeprom_info *in_eeprom)
5385 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5386 struct e1000_nvm_info *nvm = &hw->nvm;
5387 uint16_t *data = in_eeprom->data;
5390 first = in_eeprom->offset >> 1;
5391 length = in_eeprom->length >> 1;
5392 if ((first >= hw->nvm.word_size) ||
5393 ((first + length) >= hw->nvm.word_size))
5396 in_eeprom->magic = hw->vendor_id |
5397 ((uint32_t)hw->device_id << 16);
5399 if ((nvm->ops.read) == NULL)
5402 return nvm->ops.read(hw, first, length, data);
5406 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5407 struct rte_dev_eeprom_info *in_eeprom)
5409 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5410 struct e1000_nvm_info *nvm = &hw->nvm;
5411 uint16_t *data = in_eeprom->data;
5414 first = in_eeprom->offset >> 1;
5415 length = in_eeprom->length >> 1;
5416 if ((first >= hw->nvm.word_size) ||
5417 ((first + length) >= hw->nvm.word_size))
5420 in_eeprom->magic = (uint32_t)hw->vendor_id |
5421 ((uint32_t)hw->device_id << 16);
5423 if ((nvm->ops.write) == NULL)
5425 return nvm->ops.write(hw, first, length, data);
5429 eth_igb_get_module_info(struct rte_eth_dev *dev,
5430 struct rte_eth_dev_module_info *modinfo)
5432 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5434 uint32_t status = 0;
5435 uint16_t sff8472_rev, addr_mode;
5436 bool page_swap = false;
5438 if (hw->phy.media_type == e1000_media_type_copper ||
5439 hw->phy.media_type == e1000_media_type_unknown)
5442 /* Check whether we support SFF-8472 or not */
5443 status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5447 /* addressing mode is not supported */
5448 status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5452 /* addressing mode is not supported */
5453 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5455 "Address change required to access page 0xA2, "
5456 "but not supported. Please report the module "
5457 "type to the driver maintainers.\n");
5461 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5462 /* We have an SFP, but it does not support SFF-8472 */
5463 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5464 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5466 /* We have an SFP which supports a revision of SFF-8472 */
5467 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5468 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5475 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5476 struct rte_dev_eeprom_info *info)
5478 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5480 uint32_t status = 0;
5481 uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5482 u16 first_word, last_word;
5485 if (info->length == 0)
5488 first_word = info->offset >> 1;
5489 last_word = (info->offset + info->length - 1) >> 1;
5491 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5492 for (i = 0; i < last_word - first_word + 1; i++) {
5493 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5496 /* Error occurred while reading module */
5500 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5503 memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5509 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5511 struct e1000_hw *hw =
5512 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5513 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5514 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5515 uint32_t vec = E1000_MISC_VEC_ID;
5517 if (rte_intr_allow_others(intr_handle))
5518 vec = E1000_RX_VEC_START;
5520 uint32_t mask = 1 << (queue_id + vec);
5522 E1000_WRITE_REG(hw, E1000_EIMC, mask);
5523 E1000_WRITE_FLUSH(hw);
5529 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5531 struct e1000_hw *hw =
5532 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5533 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5534 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5535 uint32_t vec = E1000_MISC_VEC_ID;
5537 if (rte_intr_allow_others(intr_handle))
5538 vec = E1000_RX_VEC_START;
5540 uint32_t mask = 1 << (queue_id + vec);
5543 regval = E1000_READ_REG(hw, E1000_EIMS);
5544 E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5545 E1000_WRITE_FLUSH(hw);
5547 rte_intr_ack(intr_handle);
5553 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
5554 uint8_t index, uint8_t offset)
5556 uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5559 val &= ~((uint32_t)0xFF << offset);
5561 /* write vector and valid bit */
5562 val |= (msix_vector | E1000_IVAR_VALID) << offset;
5564 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5568 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5569 uint8_t queue, uint8_t msix_vector)
5573 if (hw->mac.type == e1000_82575) {
5575 tmp = E1000_EICR_RX_QUEUE0 << queue;
5576 else if (direction == 1)
5577 tmp = E1000_EICR_TX_QUEUE0 << queue;
5578 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5579 } else if (hw->mac.type == e1000_82576) {
5580 if ((direction == 0) || (direction == 1))
5581 eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5582 ((queue & 0x8) << 1) +
5584 } else if ((hw->mac.type == e1000_82580) ||
5585 (hw->mac.type == e1000_i350) ||
5586 (hw->mac.type == e1000_i354) ||
5587 (hw->mac.type == e1000_i210) ||
5588 (hw->mac.type == e1000_i211)) {
5589 if ((direction == 0) || (direction == 1))
5590 eth_igb_write_ivar(hw, msix_vector,
5592 ((queue & 0x1) << 4) +
5597 /* Sets up the hardware to generate MSI-X interrupts properly
5599 * board private structure
5602 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5605 uint32_t tmpval, regval, intr_mask;
5606 struct e1000_hw *hw =
5607 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5608 uint32_t vec = E1000_MISC_VEC_ID;
5609 uint32_t base = E1000_MISC_VEC_ID;
5610 uint32_t misc_shift = 0;
5611 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5612 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5614 /* won't configure msix register if no mapping is done
5615 * between intr vector and event fd
5617 if (!rte_intr_dp_is_en(intr_handle))
5620 if (rte_intr_allow_others(intr_handle)) {
5621 vec = base = E1000_RX_VEC_START;
5625 /* set interrupt vector for other causes */
5626 if (hw->mac.type == e1000_82575) {
5627 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5628 /* enable MSI-X PBA support */
5629 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5631 /* Auto-Mask interrupts upon ICR read */
5632 tmpval |= E1000_CTRL_EXT_EIAME;
5633 tmpval |= E1000_CTRL_EXT_IRCA;
5635 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5637 /* enable msix_other interrupt */
5638 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5639 regval = E1000_READ_REG(hw, E1000_EIAC);
5640 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5641 regval = E1000_READ_REG(hw, E1000_EIAM);
5642 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5643 } else if ((hw->mac.type == e1000_82576) ||
5644 (hw->mac.type == e1000_82580) ||
5645 (hw->mac.type == e1000_i350) ||
5646 (hw->mac.type == e1000_i354) ||
5647 (hw->mac.type == e1000_i210) ||
5648 (hw->mac.type == e1000_i211)) {
5649 /* turn on MSI-X capability first */
5650 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5651 E1000_GPIE_PBA | E1000_GPIE_EIAME |
5653 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5656 if (dev->data->dev_conf.intr_conf.lsc != 0)
5657 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5659 regval = E1000_READ_REG(hw, E1000_EIAC);
5660 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5662 /* enable msix_other interrupt */
5663 regval = E1000_READ_REG(hw, E1000_EIMS);
5664 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5665 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5666 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5669 /* use EIAM to auto-mask when MSI-X interrupt
5670 * is asserted, this saves a register write for every interrupt
5672 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5675 if (dev->data->dev_conf.intr_conf.lsc != 0)
5676 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5678 regval = E1000_READ_REG(hw, E1000_EIAM);
5679 E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5681 for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5682 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5683 intr_handle->intr_vec[queue_id] = vec;
5684 if (vec < base + intr_handle->nb_efd - 1)
5688 E1000_WRITE_FLUSH(hw);
5691 /* restore n-tuple filter */
5693 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5695 struct e1000_filter_info *filter_info =
5696 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5697 struct e1000_5tuple_filter *p_5tuple;
5698 struct e1000_2tuple_filter *p_2tuple;
5700 TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5701 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5704 TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5705 igb_inject_2uple_filter(dev, p_2tuple);
5709 /* restore SYN filter */
5711 igb_syn_filter_restore(struct rte_eth_dev *dev)
5713 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5714 struct e1000_filter_info *filter_info =
5715 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5718 synqf = filter_info->syn_info;
5720 if (synqf & E1000_SYN_FILTER_ENABLE) {
5721 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5722 E1000_WRITE_FLUSH(hw);
5726 /* restore ethernet type filter */
5728 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5730 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5731 struct e1000_filter_info *filter_info =
5732 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5735 for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5736 if (filter_info->ethertype_mask & (1 << i)) {
5737 E1000_WRITE_REG(hw, E1000_ETQF(i),
5738 filter_info->ethertype_filters[i].etqf);
5739 E1000_WRITE_FLUSH(hw);
5744 /* restore flex byte filter */
5746 igb_flex_filter_restore(struct rte_eth_dev *dev)
5748 struct e1000_filter_info *filter_info =
5749 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5750 struct e1000_flex_filter *flex_filter;
5752 TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5753 igb_inject_flex_filter(dev, flex_filter);
5757 /* restore rss filter */
5759 igb_rss_filter_restore(struct rte_eth_dev *dev)
5761 struct e1000_filter_info *filter_info =
5762 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5764 if (filter_info->rss_info.conf.queue_num)
5765 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5768 /* restore all types filter */
5770 igb_filter_restore(struct rte_eth_dev *dev)
5772 igb_ntuple_filter_restore(dev);
5773 igb_ethertype_filter_restore(dev);
5774 igb_syn_filter_restore(dev);
5775 igb_flex_filter_restore(dev);
5776 igb_rss_filter_restore(dev);
5781 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5782 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5783 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5784 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5785 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5786 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5788 /* see e1000_logs.c */
5789 RTE_INIT(e1000_init_log)
5791 e1000_igb_init_log();