4 * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 #include <rte_interrupts.h>
44 #include <rte_debug.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memcpy.h>
49 #include <rte_malloc.h>
50 #include <rte_random.h>
52 #include "base/e1000_defines.h"
53 #include "base/e1000_regs.h"
54 #include "base/e1000_hw.h"
55 #include "e1000_ethdev.h"
57 static inline uint16_t
58 dev_num_vf(struct rte_eth_dev *eth_dev)
60 return eth_dev->pci_dev->max_vfs;
64 int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num)
66 unsigned char vf_mac_addr[ETHER_ADDR_LEN];
67 struct e1000_vf_info *vfinfo =
68 *E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
71 for (vfn = 0; vfn < vf_num; vfn++) {
72 eth_random_addr(vf_mac_addr);
73 /* keep the random address as default */
74 memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr,
82 igb_mb_intr_setup(struct rte_eth_dev *dev)
84 struct e1000_interrupt *intr =
85 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
87 intr->mask |= E1000_ICR_VMMB;
92 void igb_pf_host_init(struct rte_eth_dev *eth_dev)
94 struct e1000_vf_info **vfinfo =
95 E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private);
97 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
101 RTE_ETH_DEV_SRIOV(eth_dev).active = 0;
102 if (0 == (vf_num = dev_num_vf(eth_dev)))
105 if (hw->mac.type == e1000_i350)
107 else if(hw->mac.type == e1000_82576)
108 /* per datasheet, it should be 2, but 1 seems correct */
113 *vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0);
115 rte_panic("Cannot allocate memory for private VF data\n");
117 RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS;
118 RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue;
119 RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num;
120 RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue);
122 igb_vf_perm_addr_gen(eth_dev, vf_num);
124 /* set mb interrupt mask */
125 igb_mb_intr_setup(eth_dev);
130 #define E1000_RAH_POOLSEL_SHIFT (18)
131 int igb_pf_host_configure(struct rte_eth_dev *eth_dev)
135 struct e1000_hw *hw =
136 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
141 if (0 == (vf_num = dev_num_vf(eth_dev)))
144 /* enable VMDq and set the default pool for PF */
145 vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
146 vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK;
147 vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx
148 << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
149 vtctl |= E1000_VT_CTL_VM_REPL_EN;
150 E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
152 /* Enable pools reserved to PF only */
153 E1000_WRITE_REG(hw, E1000_VFRE, (~0) << vf_num);
154 E1000_WRITE_REG(hw, E1000_VFTE, (~0) << vf_num);
156 /* PFDMA Tx General Switch Control Enables VMDQ loopback */
157 if (hw->mac.type == e1000_i350)
158 E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
160 E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
162 /* clear VMDq map to perment rar 0 */
163 rah = E1000_READ_REG(hw, E1000_RAH(0));
164 rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
165 E1000_WRITE_REG(hw, E1000_RAH(0), rah);
167 /* clear VMDq map to scan rar 32 */
168 rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count));
169 rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
170 E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah);
172 /* set VMDq map to default PF pool */
173 rah = E1000_READ_REG(hw, E1000_RAH(0));
174 rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx +
175 E1000_RAH_POOLSEL_SHIFT));
176 E1000_WRITE_REG(hw, E1000_RAH(0), rah);
179 * enable vlan filtering and allow all vlan tags through
181 vlanctrl = E1000_READ_REG(hw, E1000_RCTL);
182 vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */
183 E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl);
185 /* VFTA - enable all vlan filters */
186 for (i = 0; i < IGB_VFTA_SIZE; i++) {
187 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF);
190 /* Enable/Disable MAC Anti-Spoofing */
191 e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num);
197 set_rx_mode(struct rte_eth_dev *dev)
199 struct rte_eth_dev_data *dev_data =
200 (struct rte_eth_dev_data*)dev->data->dev_private;
201 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
202 uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE;
203 uint16_t vfn = dev_num_vf(dev);
205 /* Check for Promiscuous and All Multicast modes */
206 fctrl = E1000_READ_REG(hw, E1000_RCTL);
208 /* set all bits that we expect to always be set */
209 fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */
210 fctrl |= E1000_RCTL_BAM;;
212 /* clear the bits we are changing the status of */
213 fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
215 if (dev_data->promiscuous) {
216 fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
217 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
219 if (dev_data->all_multicast) {
220 fctrl |= E1000_RCTL_MPE;
221 vmolr |= E1000_VMOLR_MPME;
223 vmolr |= E1000_VMOLR_ROMPE;
227 if ((hw->mac.type == e1000_82576) ||
228 (hw->mac.type == e1000_i350)) {
229 vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
230 ~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE |
232 E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
235 E1000_WRITE_REG(hw, E1000_RCTL, fctrl);
239 igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf)
241 struct e1000_hw *hw =
242 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
243 struct e1000_vf_info *vfinfo =
244 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
245 uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
247 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE |
248 E1000_VMOLR_BAM | E1000_VMOLR_AUPE);
249 E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
251 E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
253 /* reset multicast table array for vf */
254 vfinfo[vf].num_vf_mc_hashes = 0;
261 igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf)
263 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
266 /* enable transmit and receive for vf */
267 reg = E1000_READ_REG(hw, E1000_VFTE);
268 reg |= (reg | (1 << vf));
269 E1000_WRITE_REG(hw, E1000_VFTE, reg);
271 reg = E1000_READ_REG(hw, E1000_VFRE);
272 reg |= (reg | (1 << vf));
273 E1000_WRITE_REG(hw, E1000_VFRE, reg);
275 igb_vf_reset_event(dev, vf);
279 igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf)
281 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
282 struct e1000_vf_info *vfinfo =
283 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
284 unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses;
285 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
286 uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
289 igb_vf_reset_msg(dev, vf);
291 hw->mac.ops.rar_set(hw, vf_mac, rar_entry);
292 rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
293 rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT));
294 E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
296 /* reply to reset with ack and vf mac address */
297 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
298 rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN);
299 e1000_write_mbx(hw, msgbuf, 3, vf);
305 igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
307 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
308 struct e1000_vf_info *vfinfo =
309 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
310 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
311 uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
313 if (is_valid_assigned_ether_addr((struct ether_addr*)new_mac)) {
314 rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac, 6);
315 hw->mac.ops.rar_set(hw, new_mac, rar_entry);
322 igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf)
328 int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >>
329 E1000_VT_MSGINFO_SHIFT;
330 uint16_t *hash_list = (uint16_t *)&msgbuf[1];
331 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
332 struct e1000_vf_info *vfinfo =
333 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
335 /* only so many hash values supported */
336 entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES);
339 * salt away the number of multi cast addresses assigned
340 * to this VF for later use to restore when the PF multi cast
343 vfinfo->num_vf_mc_hashes = (uint16_t)entries;
346 * VFs are limited to using the MTA hash table for their multicast
349 for (i = 0; i < entries; i++) {
350 vfinfo->vf_mc_hashes[i] = hash_list[i];
353 for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) {
354 vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F;
355 vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F;
356 mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg);
357 mta_reg |= (1 << vector_bit);
358 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg);
365 igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
368 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
369 struct e1000_vf_info *vfinfo =
370 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
371 uint32_t vid_idx, vid_bit, vfta;
373 add = (msgbuf[0] & E1000_VT_MSGINFO_MASK)
374 >> E1000_VT_MSGINFO_SHIFT;
375 vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
378 vfinfo[vf].vlan_count++;
379 else if (vfinfo[vf].vlan_count)
380 vfinfo[vf].vlan_count--;
382 vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) &
383 E1000_VFTA_ENTRY_MASK);
384 vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
385 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
391 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
392 E1000_WRITE_FLUSH(hw);
398 igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
400 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
401 uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK;
402 uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN;
405 if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN))
408 vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
410 vmolr &= ~E1000_VMOLR_RLPML_MASK;
413 /* Enable Long Packet support */
414 vmolr |= E1000_VMOLR_LPE;
416 E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
417 E1000_WRITE_FLUSH(hw);
423 igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf)
425 uint16_t mbx_size = E1000_VFMAILBOX_SIZE;
426 uint32_t msgbuf[E1000_VFMAILBOX_SIZE];
428 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
430 retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf);
432 PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf);
436 /* do nothing with the message already processed */
437 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
440 /* flush the ack before we write any messages back */
441 E1000_WRITE_FLUSH(hw);
443 /* perform VF reset */
444 if (msgbuf[0] == E1000_VF_RESET) {
445 return igb_vf_reset(dev, vf, msgbuf);
448 /* check & process VF to PF mailbox message */
449 switch ((msgbuf[0] & 0xFFFF)) {
450 case E1000_VF_SET_MAC_ADDR:
451 retval = igb_vf_set_mac_addr(dev, vf, msgbuf);
453 case E1000_VF_SET_MULTICAST:
454 retval = igb_vf_set_multicast(dev, vf, msgbuf);
456 case E1000_VF_SET_LPE:
457 retval = igb_vf_set_rlpml(dev, vf, msgbuf);
459 case E1000_VF_SET_VLAN:
460 retval = igb_vf_set_vlan(dev, vf, msgbuf);
463 PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x",
464 (unsigned) msgbuf[0]);
465 retval = E1000_ERR_MBX;
469 /* response the VF according to the message process result */
471 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
473 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
475 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
477 e1000_write_mbx(hw, msgbuf, 1, vf);
483 igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf)
485 uint32_t msg = E1000_VT_MSGTYPE_NACK;
486 struct e1000_hw *hw =
487 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
489 e1000_write_mbx(hw, &msg, 1, vf);
492 void igb_pf_mbx_process(struct rte_eth_dev *eth_dev)
495 struct e1000_hw *hw =
496 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
498 for (vf = 0; vf < dev_num_vf(eth_dev); vf++) {
499 /* check & process vf function level reset */
500 if (!e1000_check_for_rst(hw, vf))
501 igb_vf_reset_event(eth_dev, vf);
503 /* check & process vf mailbox messages */
504 if (!e1000_check_for_msg(hw, vf))
505 igb_rcv_msg_from_vf(eth_dev, vf);
507 /* check & process acks from vf */
508 if (!e1000_check_for_ack(hw, vf))
509 igb_rcv_ack_from_vf(eth_dev, vf);