net/bnxt: fix Tx and Rx burst for secondary process
[dpdk.git] / drivers / net / e1000 / igb_pf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <errno.h>
7 #include <stdint.h>
8 #include <stdlib.h>
9 #include <unistd.h>
10 #include <stdarg.h>
11 #include <inttypes.h>
12
13 #include <rte_bus_pci.h>
14 #include <rte_interrupts.h>
15 #include <rte_log.h>
16 #include <rte_debug.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_memcpy.h>
21 #include <rte_malloc.h>
22 #include <rte_random.h>
23
24 #include "base/e1000_defines.h"
25 #include "base/e1000_regs.h"
26 #include "base/e1000_hw.h"
27 #include "e1000_ethdev.h"
28
29 static inline uint16_t
30 dev_num_vf(struct rte_eth_dev *eth_dev)
31 {
32         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
33
34         return pci_dev->max_vfs;
35 }
36
37 static inline
38 int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num)
39 {
40         unsigned char vf_mac_addr[ETHER_ADDR_LEN];
41         struct e1000_vf_info *vfinfo =
42                 *E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
43         uint16_t vfn;
44
45         for (vfn = 0; vfn < vf_num; vfn++) {
46                 eth_random_addr(vf_mac_addr);
47                 /* keep the random address as default */
48                 memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr,
49                                 ETHER_ADDR_LEN);
50         }
51
52         return 0;
53 }
54
55 static inline int
56 igb_mb_intr_setup(struct rte_eth_dev *dev)
57 {
58         struct e1000_interrupt *intr =
59                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
60
61         intr->mask |= E1000_ICR_VMMB;
62
63         return 0;
64 }
65
66 void igb_pf_host_init(struct rte_eth_dev *eth_dev)
67 {
68         struct e1000_vf_info **vfinfo =
69                 E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private);
70         struct e1000_hw *hw =
71                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
72         uint16_t vf_num;
73         uint8_t nb_queue;
74
75         RTE_ETH_DEV_SRIOV(eth_dev).active = 0;
76         if (0 == (vf_num = dev_num_vf(eth_dev)))
77                 return;
78
79         if (hw->mac.type == e1000_i350)
80                 nb_queue = 1;
81         else if(hw->mac.type == e1000_82576)
82                 /* per datasheet, it should be 2, but 1 seems correct */
83                 nb_queue = 1;
84         else
85                 return;
86
87         *vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0);
88         if (*vfinfo == NULL)
89                 rte_panic("Cannot allocate memory for private VF data\n");
90
91         RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS;
92         RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue;
93         RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num;
94         RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue);
95
96         igb_vf_perm_addr_gen(eth_dev, vf_num);
97
98         /* set mb interrupt mask */
99         igb_mb_intr_setup(eth_dev);
100
101         return;
102 }
103
104 void igb_pf_host_uninit(struct rte_eth_dev *dev)
105 {
106         struct e1000_vf_info **vfinfo;
107         uint16_t vf_num;
108
109         PMD_INIT_FUNC_TRACE();
110
111         vfinfo = E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
112
113         RTE_ETH_DEV_SRIOV(dev).active = 0;
114         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 0;
115         RTE_ETH_DEV_SRIOV(dev).def_vmdq_idx = 0;
116         RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx = 0;
117
118         vf_num = dev_num_vf(dev);
119         if (vf_num == 0)
120                 return;
121
122         rte_free(*vfinfo);
123         *vfinfo = NULL;
124 }
125
126 #define E1000_RAH_POOLSEL_SHIFT    (18)
127 int igb_pf_host_configure(struct rte_eth_dev *eth_dev)
128 {
129         uint32_t vtctl;
130         uint16_t vf_num;
131         struct e1000_hw *hw =
132                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
133         uint32_t vlanctrl;
134         int i;
135         uint32_t rah;
136
137         if (0 == (vf_num = dev_num_vf(eth_dev)))
138                 return -1;
139
140         /* enable VMDq and set the default pool for PF */
141         vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
142         vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK;
143         vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx
144                 << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
145         vtctl |= E1000_VT_CTL_VM_REPL_EN;
146         E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
147
148         /* Enable pools reserved to PF only */
149         E1000_WRITE_REG(hw, E1000_VFRE, (~0U) << vf_num);
150         E1000_WRITE_REG(hw, E1000_VFTE, (~0U) << vf_num);
151
152         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
153         if (hw->mac.type == e1000_i350)
154                 E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
155         else
156                 E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
157
158         /* clear VMDq map to perment rar 0 */
159         rah = E1000_READ_REG(hw, E1000_RAH(0));
160         rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
161         E1000_WRITE_REG(hw, E1000_RAH(0), rah);
162
163         /* clear VMDq map to scan rar 32 */
164         rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count));
165         rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
166         E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah);
167
168         /* set VMDq map to default PF pool */
169         rah = E1000_READ_REG(hw, E1000_RAH(0));
170         rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx +
171                         E1000_RAH_POOLSEL_SHIFT));
172         E1000_WRITE_REG(hw, E1000_RAH(0), rah);
173
174         /*
175          * enable vlan filtering and allow all vlan tags through
176          */
177         vlanctrl = E1000_READ_REG(hw, E1000_RCTL);
178         vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */
179         E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl);
180
181         /* VFTA - enable all vlan filters */
182         for (i = 0; i < IGB_VFTA_SIZE; i++) {
183                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF);
184         }
185
186         /* Enable/Disable MAC Anti-Spoofing */
187         e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num);
188
189         return 0;
190 }
191
192 static void
193 set_rx_mode(struct rte_eth_dev *dev)
194 {
195         struct rte_eth_dev_data *dev_data = dev->data;
196         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
197         uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE;
198         uint16_t vfn = dev_num_vf(dev);
199
200         /* Check for Promiscuous and All Multicast modes */
201         fctrl = E1000_READ_REG(hw, E1000_RCTL);
202
203         /* set all bits that we expect to always be set */
204         fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */
205         fctrl |= E1000_RCTL_BAM;
206
207         /* clear the bits we are changing the status of */
208         fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
209
210         if (dev_data->promiscuous) {
211                 fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
212                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
213         } else {
214                 if (dev_data->all_multicast) {
215                         fctrl |= E1000_RCTL_MPE;
216                         vmolr |= E1000_VMOLR_MPME;
217                 } else {
218                         vmolr |= E1000_VMOLR_ROMPE;
219                 }
220         }
221
222         if ((hw->mac.type == e1000_82576) ||
223                 (hw->mac.type == e1000_i350)) {
224                 vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
225                          ~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE |
226                            E1000_VMOLR_ROPE);
227                 E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
228         }
229
230         E1000_WRITE_REG(hw, E1000_RCTL, fctrl);
231 }
232
233 static inline void
234 igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf)
235 {
236         struct e1000_hw *hw =
237                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
238         struct e1000_vf_info *vfinfo =
239                 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
240         uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
241
242         vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE |
243                         E1000_VMOLR_BAM | E1000_VMOLR_AUPE);
244         E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
245
246         E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
247
248         /* reset multicast table array for vf */
249         vfinfo[vf].num_vf_mc_hashes = 0;
250
251         /* reset rx mode */
252         set_rx_mode(dev);
253 }
254
255 static inline void
256 igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf)
257 {
258         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
259         uint32_t reg;
260
261         /* enable transmit and receive for vf */
262         reg = E1000_READ_REG(hw, E1000_VFTE);
263         reg |= (reg | (1 << vf));
264         E1000_WRITE_REG(hw, E1000_VFTE, reg);
265
266         reg = E1000_READ_REG(hw, E1000_VFRE);
267         reg |= (reg | (1 << vf));
268         E1000_WRITE_REG(hw, E1000_VFRE, reg);
269
270         igb_vf_reset_event(dev, vf);
271 }
272
273 static int
274 igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf)
275 {
276         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
277         struct e1000_vf_info *vfinfo =
278                 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
279         unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses;
280         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
281         uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
282         uint32_t rah;
283
284         igb_vf_reset_msg(dev, vf);
285
286         hw->mac.ops.rar_set(hw, vf_mac, rar_entry);
287         rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
288         rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT));
289         E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
290
291         /* reply to reset with ack and vf mac address */
292         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
293         rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN);
294         e1000_write_mbx(hw, msgbuf, 3, vf);
295
296         return 0;
297 }
298
299 static int
300 igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
301 {
302         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
303         struct e1000_vf_info *vfinfo =
304                 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
305         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
306         uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
307         int rah;
308
309         if (is_unicast_ether_addr((struct ether_addr *)new_mac)) {
310                 if (!is_zero_ether_addr((struct ether_addr *)new_mac))
311                         rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac,
312                                 sizeof(vfinfo[vf].vf_mac_addresses));
313                 hw->mac.ops.rar_set(hw, new_mac, rar_entry);
314                 rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
315                 rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + vf));
316                 E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
317                 return 0;
318         }
319         return -1;
320 }
321
322 static int
323 igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf)
324 {
325         int i;
326         uint32_t vector_bit;
327         uint32_t vector_reg;
328         uint32_t mta_reg;
329         int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >>
330                 E1000_VT_MSGINFO_SHIFT;
331         uint16_t *hash_list = (uint16_t *)&msgbuf[1];
332         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
333         struct e1000_vf_info *vfinfo =
334                 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
335
336         /* only so many hash values supported */
337         entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES);
338
339         /*
340          * salt away the number of multi cast addresses assigned
341          * to this VF for later use to restore when the PF multi cast
342          * list changes
343          */
344         vfinfo->num_vf_mc_hashes = (uint16_t)entries;
345
346         /*
347          * VFs are limited to using the MTA hash table for their multicast
348          * addresses
349          */
350         for (i = 0; i < entries; i++) {
351                 vfinfo->vf_mc_hashes[i] = hash_list[i];
352         }
353
354         for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) {
355                 vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F;
356                 vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F;
357                 mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg);
358                 mta_reg |= (1 << vector_bit);
359                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg);
360         }
361
362         return 0;
363 }
364
365 static int
366 igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
367 {
368         int add, vid;
369         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
370         struct e1000_vf_info *vfinfo =
371                 *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
372         uint32_t vid_idx, vid_bit, vfta;
373
374         add = (msgbuf[0] & E1000_VT_MSGINFO_MASK)
375                 >> E1000_VT_MSGINFO_SHIFT;
376         vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
377
378         if (add)
379                 vfinfo[vf].vlan_count++;
380         else if (vfinfo[vf].vlan_count)
381                 vfinfo[vf].vlan_count--;
382
383         vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) &
384                              E1000_VFTA_ENTRY_MASK);
385         vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
386         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
387         if (add)
388                 vfta |= vid_bit;
389         else
390                 vfta &= ~vid_bit;
391
392         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
393         E1000_WRITE_FLUSH(hw);
394
395         return 0;
396 }
397
398 static int
399 igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
400 {
401         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
402         uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK;
403         uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN;
404         uint32_t vmolr;
405
406         if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN))
407                 return -1;
408
409         vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
410
411         vmolr &= ~E1000_VMOLR_RLPML_MASK;
412         vmolr |= rlpml;
413
414         /* Enable Long Packet support */
415         vmolr |= E1000_VMOLR_LPE;
416
417         E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
418         E1000_WRITE_FLUSH(hw);
419
420         return 0;
421 }
422
423 static int
424 igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf)
425 {
426         uint16_t mbx_size = E1000_VFMAILBOX_SIZE;
427         uint32_t msgbuf[E1000_VFMAILBOX_SIZE];
428         int32_t retval;
429         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
430
431         retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf);
432         if (retval) {
433                 PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf);
434                 return retval;
435         }
436
437         /* do nothing with the message already processed */
438         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
439                 return retval;
440
441         /* flush the ack before we write any messages back */
442         E1000_WRITE_FLUSH(hw);
443
444         /* perform VF reset */
445         if (msgbuf[0] == E1000_VF_RESET) {
446                 return igb_vf_reset(dev, vf, msgbuf);
447         }
448
449         /* check & process VF to PF mailbox message */
450         switch ((msgbuf[0] & 0xFFFF)) {
451         case E1000_VF_SET_MAC_ADDR:
452                 retval = igb_vf_set_mac_addr(dev, vf, msgbuf);
453                 break;
454         case E1000_VF_SET_MULTICAST:
455                 retval = igb_vf_set_multicast(dev, vf, msgbuf);
456                 break;
457         case E1000_VF_SET_LPE:
458                 retval = igb_vf_set_rlpml(dev, vf, msgbuf);
459                 break;
460         case E1000_VF_SET_VLAN:
461                 retval = igb_vf_set_vlan(dev, vf, msgbuf);
462                 break;
463         default:
464                 PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x",
465                              (unsigned) msgbuf[0]);
466                 retval = E1000_ERR_MBX;
467                 break;
468         }
469
470         /* response the VF according to the message process result */
471         if (retval)
472                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
473         else
474                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
475
476         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
477
478         e1000_write_mbx(hw, msgbuf, 1, vf);
479
480         return retval;
481 }
482
483 static inline void
484 igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf)
485 {
486         uint32_t msg = E1000_VT_MSGTYPE_NACK;
487         struct e1000_hw *hw =
488                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
489
490         e1000_write_mbx(hw, &msg, 1, vf);
491 }
492
493 void igb_pf_mbx_process(struct rte_eth_dev *eth_dev)
494 {
495         uint16_t vf;
496         struct e1000_hw *hw =
497                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
498
499         for (vf = 0; vf < dev_num_vf(eth_dev); vf++) {
500                 /* check & process vf function level reset */
501                 if (!e1000_check_for_rst(hw, vf))
502                         igb_vf_reset_event(eth_dev, vf);
503
504                 /* check & process vf mailbox messages */
505                 if (!e1000_check_for_msg(hw, vf))
506                         igb_rcv_msg_from_vf(eth_dev, vf);
507
508                 /* check & process acks from vf */
509                 if (!e1000_check_for_ack(hw, vf))
510                         igb_rcv_ack_from_vf(eth_dev, vf);
511         }
512 }