net/ena: check memory BAR before initializing LLQ
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    5
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 struct ena_stats {
42         char name[ETH_GSTRING_LEN];
43         int stat_offset;
44 };
45
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47         .name = #stat, \
48         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50
51 #define ENA_STAT_RX_ENTRY(stat) \
52         ENA_STAT_ENTRY(stat, rx)
53
54 #define ENA_STAT_TX_ENTRY(stat) \
55         ENA_STAT_ENTRY(stat, tx)
56
57 #define ENA_STAT_ENI_ENTRY(stat) \
58         ENA_STAT_ENTRY(stat, eni)
59
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61         ENA_STAT_ENTRY(stat, dev)
62
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65 /* Timeout in seconds after which a single uncompleted Tx packet should be
66  * considered as a missing.
67  */
68 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
69
70 /*
71  * Each rte_memzone should have unique name.
72  * To satisfy it, count number of allocation and add it to name.
73  */
74 rte_atomic64_t ena_alloc_cnt;
75
76 static const struct ena_stats ena_stats_global_strings[] = {
77         ENA_STAT_GLOBAL_ENTRY(wd_expired),
78         ENA_STAT_GLOBAL_ENTRY(dev_start),
79         ENA_STAT_GLOBAL_ENTRY(dev_stop),
80         ENA_STAT_GLOBAL_ENTRY(tx_drops),
81 };
82
83 static const struct ena_stats ena_stats_eni_strings[] = {
84         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
85         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
86         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
87         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
88         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
89 };
90
91 static const struct ena_stats ena_stats_tx_strings[] = {
92         ENA_STAT_TX_ENTRY(cnt),
93         ENA_STAT_TX_ENTRY(bytes),
94         ENA_STAT_TX_ENTRY(prepare_ctx_err),
95         ENA_STAT_TX_ENTRY(tx_poll),
96         ENA_STAT_TX_ENTRY(doorbells),
97         ENA_STAT_TX_ENTRY(bad_req_id),
98         ENA_STAT_TX_ENTRY(available_desc),
99         ENA_STAT_TX_ENTRY(missed_tx),
100 };
101
102 static const struct ena_stats ena_stats_rx_strings[] = {
103         ENA_STAT_RX_ENTRY(cnt),
104         ENA_STAT_RX_ENTRY(bytes),
105         ENA_STAT_RX_ENTRY(refill_partial),
106         ENA_STAT_RX_ENTRY(l3_csum_bad),
107         ENA_STAT_RX_ENTRY(l4_csum_bad),
108         ENA_STAT_RX_ENTRY(l4_csum_good),
109         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110         ENA_STAT_RX_ENTRY(bad_desc_num),
111         ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113
114 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
118
119 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
120                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
121                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
122                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
124                        RTE_MBUF_F_TX_IP_CKSUM |\
125                        RTE_MBUF_F_TX_TCP_SEG)
126
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF            0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
132
133 #define ENA_TX_OFFLOAD_MASK     (RTE_MBUF_F_TX_L4_MASK |         \
134         RTE_MBUF_F_TX_IPV6 |            \
135         RTE_MBUF_F_TX_IPV4 |            \
136         RTE_MBUF_F_TX_IP_CKSUM |        \
137         RTE_MBUF_F_TX_TCP_SEG)
138
139 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
140         (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
141
142 /** HW specific offloads capabilities. */
143 /* IPv4 checksum offload. */
144 #define ENA_L3_IPV4_CSUM                0x0001
145 /* TCP/UDP checksum offload for IPv4 packets. */
146 #define ENA_L4_IPV4_CSUM                0x0002
147 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
148 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
149 /* TCP/UDP checksum offload for IPv6 packets. */
150 #define ENA_L4_IPV6_CSUM                0x0008
151 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
152 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
153 /* TSO support for IPv4 packets. */
154 #define ENA_IPV4_TSO                    0x0020
155
156 /* Device supports setting RSS hash. */
157 #define ENA_RX_RSS_HASH                 0x0040
158
159 static const struct rte_pci_id pci_id_ena_map[] = {
160         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
161         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
162         { .device_id = 0 },
163 };
164
165 static struct ena_aenq_handlers aenq_handlers;
166
167 static int ena_device_init(struct ena_adapter *adapter,
168                            struct rte_pci_device *pdev,
169                            struct ena_com_dev_get_features_ctx *get_feat_ctx);
170 static int ena_dev_configure(struct rte_eth_dev *dev);
171 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
172         struct ena_tx_buffer *tx_info,
173         struct rte_mbuf *mbuf,
174         void **push_header,
175         uint16_t *header_len);
176 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
177 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179                                   uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181                 uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183                               uint16_t nb_desc, unsigned int socket_id,
184                               const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186                               uint16_t nb_desc, unsigned int socket_id,
187                               const struct rte_eth_rxconf *rx_conf,
188                               struct rte_mempool *mp);
189 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
191                                     struct ena_com_rx_buf_info *ena_bufs,
192                                     uint32_t descs,
193                                     uint16_t *next_to_clean,
194                                     uint8_t offset);
195 static uint16_t eth_ena_recv_pkts(void *rx_queue,
196                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
197 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
198                                   struct rte_mbuf *mbuf, uint16_t id);
199 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
200 static void ena_init_rings(struct ena_adapter *adapter,
201                            bool disable_meta_caching);
202 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
203 static int ena_start(struct rte_eth_dev *dev);
204 static int ena_stop(struct rte_eth_dev *dev);
205 static int ena_close(struct rte_eth_dev *dev);
206 static int ena_dev_reset(struct rte_eth_dev *dev);
207 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
208 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
209 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
210 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
211 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
212 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
213 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
214 static int ena_link_update(struct rte_eth_dev *dev,
215                            int wait_to_complete);
216 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
217 static void ena_queue_stop(struct ena_ring *ring);
218 static void ena_queue_stop_all(struct rte_eth_dev *dev,
219                               enum ena_ring_type ring_type);
220 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
221 static int ena_queue_start_all(struct rte_eth_dev *dev,
222                                enum ena_ring_type ring_type);
223 static void ena_stats_restart(struct rte_eth_dev *dev);
224 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
225 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
226 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
228 static int ena_infos_get(struct rte_eth_dev *dev,
229                          struct rte_eth_dev_info *dev_info);
230 static void ena_interrupt_handler_rte(void *cb_arg);
231 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
232 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
233 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
234 static int ena_xstats_get_names(struct rte_eth_dev *dev,
235                                 struct rte_eth_xstat_name *xstats_names,
236                                 unsigned int n);
237 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
238                                       const uint64_t *ids,
239                                       struct rte_eth_xstat_name *xstats_names,
240                                       unsigned int size);
241 static int ena_xstats_get(struct rte_eth_dev *dev,
242                           struct rte_eth_xstat *stats,
243                           unsigned int n);
244 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
245                                 const uint64_t *ids,
246                                 uint64_t *values,
247                                 unsigned int n);
248 static int ena_process_bool_devarg(const char *key,
249                                    const char *value,
250                                    void *opaque);
251 static int ena_parse_devargs(struct ena_adapter *adapter,
252                              struct rte_devargs *devargs);
253 static int ena_copy_eni_stats(struct ena_adapter *adapter,
254                               struct ena_stats_eni *stats);
255 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
256 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
257                                     uint16_t queue_id);
258 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
259                                      uint16_t queue_id);
260 static int ena_configure_aenq(struct ena_adapter *adapter);
261 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
262                                  const void *peer);
263
264 static const struct eth_dev_ops ena_dev_ops = {
265         .dev_configure          = ena_dev_configure,
266         .dev_infos_get          = ena_infos_get,
267         .rx_queue_setup         = ena_rx_queue_setup,
268         .tx_queue_setup         = ena_tx_queue_setup,
269         .dev_start              = ena_start,
270         .dev_stop               = ena_stop,
271         .link_update            = ena_link_update,
272         .stats_get              = ena_stats_get,
273         .xstats_get_names       = ena_xstats_get_names,
274         .xstats_get_names_by_id = ena_xstats_get_names_by_id,
275         .xstats_get             = ena_xstats_get,
276         .xstats_get_by_id       = ena_xstats_get_by_id,
277         .mtu_set                = ena_mtu_set,
278         .rx_queue_release       = ena_rx_queue_release,
279         .tx_queue_release       = ena_tx_queue_release,
280         .dev_close              = ena_close,
281         .dev_reset              = ena_dev_reset,
282         .reta_update            = ena_rss_reta_update,
283         .reta_query             = ena_rss_reta_query,
284         .rx_queue_intr_enable   = ena_rx_queue_intr_enable,
285         .rx_queue_intr_disable  = ena_rx_queue_intr_disable,
286         .rss_hash_update        = ena_rss_hash_update,
287         .rss_hash_conf_get      = ena_rss_hash_conf_get,
288         .tx_done_cleanup        = ena_tx_cleanup,
289 };
290
291 /*********************************************************************
292  *  Multi-Process communication bits
293  *********************************************************************/
294 /* rte_mp IPC message name */
295 #define ENA_MP_NAME     "net_ena_mp"
296 /* Request timeout in seconds */
297 #define ENA_MP_REQ_TMO  5
298
299 /** Proxy request type */
300 enum ena_mp_req {
301         ENA_MP_DEV_STATS_GET,
302         ENA_MP_ENI_STATS_GET,
303         ENA_MP_MTU_SET,
304         ENA_MP_IND_TBL_GET,
305         ENA_MP_IND_TBL_SET
306 };
307
308 /** Proxy message body. Shared between requests and responses. */
309 struct ena_mp_body {
310         /* Message type */
311         enum ena_mp_req type;
312         int port_id;
313         /* Processing result. Set in replies. 0 if message succeeded, negative
314          * error code otherwise.
315          */
316         int result;
317         union {
318                 int mtu; /* For ENA_MP_MTU_SET */
319         } args;
320 };
321
322 /**
323  * Initialize IPC message.
324  *
325  * @param[out] msg
326  *   Pointer to the message to initialize.
327  * @param[in] type
328  *   Message type.
329  * @param[in] port_id
330  *   Port ID of target device.
331  *
332  */
333 static void
334 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
335 {
336         struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
337
338         memset(msg, 0, sizeof(*msg));
339         strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
340         msg->len_param = sizeof(*body);
341         body->type = type;
342         body->port_id = port_id;
343 }
344
345 /*********************************************************************
346  *  Multi-Process communication PMD API
347  *********************************************************************/
348 /**
349  * Define proxy request descriptor
350  *
351  * Used to define all structures and functions required for proxying a given
352  * function to the primary process including the code to perform to prepare the
353  * request and process the response.
354  *
355  * @param[in] f
356  *   Name of the function to proxy
357  * @param[in] t
358  *   Message type to use
359  * @param[in] prep
360  *   Body of a function to prepare the request in form of a statement
361  *   expression. It is passed all the original function arguments along with two
362  *   extra ones:
363  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
364  *   - struct ena_mp_body *req - body of a request to prepare.
365  * @param[in] proc
366  *   Body of a function to process the response in form of a statement
367  *   expression. It is passed all the original function arguments along with two
368  *   extra ones:
369  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
370  *   - struct ena_mp_body *rsp - body of a response to process.
371  * @param ...
372  *   Proxied function's arguments
373  *
374  * @note Inside prep and proc any parameters which aren't used should be marked
375  *       as such (with ENA_TOUCH or __rte_unused).
376  */
377 #define ENA_PROXY_DESC(f, t, prep, proc, ...)                   \
378         static const enum ena_mp_req mp_type_ ## f =  t;        \
379         static const char *mp_name_ ## f = #t;                  \
380         static void mp_prep_ ## f(struct ena_adapter *adapter,  \
381                                   struct ena_mp_body *req,      \
382                                   __VA_ARGS__)                  \
383         {                                                       \
384                 prep;                                           \
385         }                                                       \
386         static void mp_proc_ ## f(struct ena_adapter *adapter,  \
387                                   struct ena_mp_body *rsp,      \
388                                   __VA_ARGS__)                  \
389         {                                                       \
390                 proc;                                           \
391         }
392
393 /**
394  * Proxy wrapper for calling primary functions in a secondary process.
395  *
396  * Depending on whether called in primary or secondary process, calls the
397  * @p func directly or proxies the call to the primary process via rte_mp IPC.
398  * This macro requires a proxy request descriptor to be defined for @p func
399  * using ENA_PROXY_DESC() macro.
400  *
401  * @param[in/out] a
402  *   Device PMD data. Used for sending the message and sharing message results
403  *   between primary and secondary.
404  * @param[in] f
405  *   Function to proxy.
406  * @param ...
407  *   Arguments of @p func.
408  *
409  * @return
410  *   - 0: Processing succeeded and response handler was called.
411  *   - -EPERM: IPC is unavailable on this platform. This means only primary
412  *             process may call the proxied function.
413  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
414  *             error code.
415  *   - Negative error code from the proxied function.
416  *
417  * @note This mechanism is geared towards control-path tasks. Avoid calling it
418  *       in fast-path unless unbound delays are allowed. This is due to the IPC
419  *       mechanism itself (socket based).
420  * @note Due to IPC parameter size limitations the proxy logic shares call
421  *       results through the struct ena_adapter shared memory. This makes the
422  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
423  *       calls to the same proxied function under the same lock.
424  */
425 #define ENA_PROXY(a, f, ...)                                            \
426 ({                                                                      \
427         struct ena_adapter *_a = (a);                                   \
428         struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };              \
429         struct ena_mp_body *req, *rsp;                                  \
430         struct rte_mp_reply mp_rep;                                     \
431         struct rte_mp_msg mp_req;                                       \
432         int ret;                                                        \
433                                                                         \
434         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {               \
435                 ret = f(__VA_ARGS__);                                   \
436         } else {                                                        \
437                 /* Prepare and send request */                          \
438                 req = (struct ena_mp_body *)&mp_req.param;              \
439                 mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
440                 mp_prep_ ## f(_a, req, ## __VA_ARGS__);                 \
441                                                                         \
442                 ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);       \
443                 if (likely(!ret)) {                                     \
444                         RTE_ASSERT(mp_rep.nb_received == 1);            \
445                         rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
446                         ret = rsp->result;                              \
447                         if (ret == 0) {                                 \
448                                 mp_proc_##f(_a, rsp, ## __VA_ARGS__);   \
449                         } else {                                        \
450                                 PMD_DRV_LOG(ERR,                        \
451                                             "%s returned error: %d\n",  \
452                                             mp_name_ ## f, rsp->result);\
453                         }                                               \
454                         free(mp_rep.msgs);                              \
455                 } else if (rte_errno == ENOTSUP) {                      \
456                         PMD_DRV_LOG(ERR,                                \
457                                     "No IPC, can't proxy to primary\n");\
458                         ret = -rte_errno;                               \
459                 } else {                                                \
460                         PMD_DRV_LOG(ERR, "Request %s failed: %s\n",     \
461                                     mp_name_ ## f,                      \
462                                     rte_strerror(rte_errno));           \
463                         ret = -EIO;                                     \
464                 }                                                       \
465         }                                                               \
466         ret;                                                            \
467 })
468
469 /*********************************************************************
470  *  Multi-Process communication request descriptors
471  *********************************************************************/
472
473 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
474 ({
475         ENA_TOUCH(adapter);
476         ENA_TOUCH(req);
477         ENA_TOUCH(ena_dev);
478         ENA_TOUCH(stats);
479 }),
480 ({
481         ENA_TOUCH(rsp);
482         ENA_TOUCH(ena_dev);
483         if (stats != &adapter->basic_stats)
484                 rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
485 }),
486         struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
487
488 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
489 ({
490         ENA_TOUCH(adapter);
491         ENA_TOUCH(req);
492         ENA_TOUCH(ena_dev);
493         ENA_TOUCH(stats);
494 }),
495 ({
496         ENA_TOUCH(rsp);
497         ENA_TOUCH(ena_dev);
498         if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
499                 rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
500 }),
501         struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
502
503 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
504 ({
505         ENA_TOUCH(adapter);
506         ENA_TOUCH(ena_dev);
507         req->args.mtu = mtu;
508 }),
509 ({
510         ENA_TOUCH(adapter);
511         ENA_TOUCH(rsp);
512         ENA_TOUCH(ena_dev);
513         ENA_TOUCH(mtu);
514 }),
515         struct ena_com_dev *ena_dev, int mtu);
516
517 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
518 ({
519         ENA_TOUCH(adapter);
520         ENA_TOUCH(req);
521         ENA_TOUCH(ena_dev);
522 }),
523 ({
524         ENA_TOUCH(adapter);
525         ENA_TOUCH(rsp);
526         ENA_TOUCH(ena_dev);
527 }),
528         struct ena_com_dev *ena_dev);
529
530 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
531 ({
532         ENA_TOUCH(adapter);
533         ENA_TOUCH(req);
534         ENA_TOUCH(ena_dev);
535         ENA_TOUCH(ind_tbl);
536 }),
537 ({
538         ENA_TOUCH(rsp);
539         ENA_TOUCH(ena_dev);
540         if (ind_tbl != adapter->indirect_table)
541                 rte_memcpy(ind_tbl, adapter->indirect_table,
542                            sizeof(adapter->indirect_table));
543 }),
544         struct ena_com_dev *ena_dev, u32 *ind_tbl);
545
546 static inline void ena_trigger_reset(struct ena_adapter *adapter,
547                                      enum ena_regs_reset_reason_types reason)
548 {
549         if (likely(!adapter->trigger_reset)) {
550                 adapter->reset_reason = reason;
551                 adapter->trigger_reset = true;
552         }
553 }
554
555 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
556                                        struct rte_mbuf *mbuf,
557                                        struct ena_com_rx_ctx *ena_rx_ctx,
558                                        bool fill_hash)
559 {
560         struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
561         uint64_t ol_flags = 0;
562         uint32_t packet_type = 0;
563
564         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
565                 packet_type |= RTE_PTYPE_L4_TCP;
566         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
567                 packet_type |= RTE_PTYPE_L4_UDP;
568
569         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
570                 packet_type |= RTE_PTYPE_L3_IPV4;
571                 if (unlikely(ena_rx_ctx->l3_csum_err)) {
572                         ++rx_stats->l3_csum_bad;
573                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
574                 } else {
575                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
576                 }
577         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
578                 packet_type |= RTE_PTYPE_L3_IPV6;
579         }
580
581         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
582                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
583         } else {
584                 if (unlikely(ena_rx_ctx->l4_csum_err)) {
585                         ++rx_stats->l4_csum_bad;
586                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
587                 } else {
588                         ++rx_stats->l4_csum_good;
589                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
590                 }
591         }
592
593         if (fill_hash &&
594             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
595                 ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
596                 mbuf->hash.rss = ena_rx_ctx->hash;
597         }
598
599         mbuf->ol_flags = ol_flags;
600         mbuf->packet_type = packet_type;
601 }
602
603 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
604                                        struct ena_com_tx_ctx *ena_tx_ctx,
605                                        uint64_t queue_offloads,
606                                        bool disable_meta_caching)
607 {
608         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
609
610         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
611             (queue_offloads & QUEUE_OFFLOADS)) {
612                 /* check if TSO is required */
613                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
614                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
615                         ena_tx_ctx->tso_enable = true;
616
617                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
618                 }
619
620                 /* check if L3 checksum is needed */
621                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
622                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
623                         ena_tx_ctx->l3_csum_enable = true;
624
625                 if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
626                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
627                         /* For the IPv6 packets, DF always needs to be true. */
628                         ena_tx_ctx->df = 1;
629                 } else {
630                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
631
632                         /* set don't fragment (DF) flag */
633                         if (mbuf->packet_type &
634                                 (RTE_PTYPE_L4_NONFRAG
635                                  | RTE_PTYPE_INNER_L4_NONFRAG))
636                                 ena_tx_ctx->df = 1;
637                 }
638
639                 /* check if L4 checksum is needed */
640                 if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
641                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
642                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
643                         ena_tx_ctx->l4_csum_enable = true;
644                 } else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
645                                 RTE_MBUF_F_TX_UDP_CKSUM) &&
646                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
647                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
648                         ena_tx_ctx->l4_csum_enable = true;
649                 } else {
650                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
651                         ena_tx_ctx->l4_csum_enable = false;
652                 }
653
654                 ena_meta->mss = mbuf->tso_segsz;
655                 ena_meta->l3_hdr_len = mbuf->l3_len;
656                 ena_meta->l3_hdr_offset = mbuf->l2_len;
657
658                 ena_tx_ctx->meta_valid = true;
659         } else if (disable_meta_caching) {
660                 memset(ena_meta, 0, sizeof(*ena_meta));
661                 ena_tx_ctx->meta_valid = true;
662         } else {
663                 ena_tx_ctx->meta_valid = false;
664         }
665 }
666
667 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
668 {
669         struct ena_tx_buffer *tx_info = NULL;
670
671         if (likely(req_id < tx_ring->ring_size)) {
672                 tx_info = &tx_ring->tx_buffer_info[req_id];
673                 if (likely(tx_info->mbuf))
674                         return 0;
675         }
676
677         if (tx_info)
678                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
679                         tx_ring->port_id, tx_ring->id, req_id);
680         else
681                 PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
682                         req_id, tx_ring->port_id, tx_ring->id);
683
684         /* Trigger device reset */
685         ++tx_ring->tx_stats.bad_req_id;
686         ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
687         return -EFAULT;
688 }
689
690 static void ena_config_host_info(struct ena_com_dev *ena_dev)
691 {
692         struct ena_admin_host_info *host_info;
693         int rc;
694
695         /* Allocate only the host info */
696         rc = ena_com_allocate_host_info(ena_dev);
697         if (rc) {
698                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
699                 return;
700         }
701
702         host_info = ena_dev->host_attr.host_info;
703
704         host_info->os_type = ENA_ADMIN_OS_DPDK;
705         host_info->kernel_ver = RTE_VERSION;
706         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
707                 sizeof(host_info->kernel_ver_str));
708         host_info->os_dist = RTE_VERSION;
709         strlcpy((char *)host_info->os_dist_str, rte_version(),
710                 sizeof(host_info->os_dist_str));
711         host_info->driver_version =
712                 (DRV_MODULE_VER_MAJOR) |
713                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
714                 (DRV_MODULE_VER_SUBMINOR <<
715                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
716         host_info->num_cpus = rte_lcore_count();
717
718         host_info->driver_supported_features =
719                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
720                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
721
722         rc = ena_com_set_host_attributes(ena_dev);
723         if (rc) {
724                 if (rc == -ENA_COM_UNSUPPORTED)
725                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
726                 else
727                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
728
729                 goto err;
730         }
731
732         return;
733
734 err:
735         ena_com_delete_host_info(ena_dev);
736 }
737
738 /* This function calculates the number of xstats based on the current config */
739 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
740 {
741         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
742                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
743                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
744 }
745
746 static void ena_config_debug_area(struct ena_adapter *adapter)
747 {
748         u32 debug_area_size;
749         int rc, ss_count;
750
751         ss_count = ena_xstats_calc_num(adapter->edev_data);
752
753         /* allocate 32 bytes for each string and 64bit for the value */
754         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
755
756         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
757         if (rc) {
758                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
759                 return;
760         }
761
762         rc = ena_com_set_host_attributes(&adapter->ena_dev);
763         if (rc) {
764                 if (rc == -ENA_COM_UNSUPPORTED)
765                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
766                 else
767                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
768
769                 goto err;
770         }
771
772         return;
773 err:
774         ena_com_delete_debug_area(&adapter->ena_dev);
775 }
776
777 static int ena_close(struct rte_eth_dev *dev)
778 {
779         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
780         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
781         struct ena_adapter *adapter = dev->data->dev_private;
782         int ret = 0;
783
784         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
785                 return 0;
786
787         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
788                 ret = ena_stop(dev);
789         adapter->state = ENA_ADAPTER_STATE_CLOSED;
790
791         ena_rx_queue_release_all(dev);
792         ena_tx_queue_release_all(dev);
793
794         rte_free(adapter->drv_stats);
795         adapter->drv_stats = NULL;
796
797         rte_intr_disable(intr_handle);
798         rte_intr_callback_unregister(intr_handle,
799                                      ena_interrupt_handler_rte,
800                                      dev);
801
802         /*
803          * MAC is not allocated dynamically. Setting NULL should prevent from
804          * release of the resource in the rte_eth_dev_release_port().
805          */
806         dev->data->mac_addrs = NULL;
807
808         return ret;
809 }
810
811 static int
812 ena_dev_reset(struct rte_eth_dev *dev)
813 {
814         int rc = 0;
815
816         /* Cannot release memory in secondary process */
817         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
818                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
819                 return -EPERM;
820         }
821
822         ena_destroy_device(dev);
823         rc = eth_ena_dev_init(dev);
824         if (rc)
825                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
826
827         return rc;
828 }
829
830 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
831 {
832         int nb_queues = dev->data->nb_rx_queues;
833         int i;
834
835         for (i = 0; i < nb_queues; i++)
836                 ena_rx_queue_release(dev, i);
837 }
838
839 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
840 {
841         int nb_queues = dev->data->nb_tx_queues;
842         int i;
843
844         for (i = 0; i < nb_queues; i++)
845                 ena_tx_queue_release(dev, i);
846 }
847
848 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
849 {
850         struct ena_ring *ring = dev->data->rx_queues[qid];
851
852         /* Free ring resources */
853         rte_free(ring->rx_buffer_info);
854         ring->rx_buffer_info = NULL;
855
856         rte_free(ring->rx_refill_buffer);
857         ring->rx_refill_buffer = NULL;
858
859         rte_free(ring->empty_rx_reqs);
860         ring->empty_rx_reqs = NULL;
861
862         ring->configured = 0;
863
864         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
865                 ring->port_id, ring->id);
866 }
867
868 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
869 {
870         struct ena_ring *ring = dev->data->tx_queues[qid];
871
872         /* Free ring resources */
873         rte_free(ring->push_buf_intermediate_buf);
874
875         rte_free(ring->tx_buffer_info);
876
877         rte_free(ring->empty_tx_reqs);
878
879         ring->empty_tx_reqs = NULL;
880         ring->tx_buffer_info = NULL;
881         ring->push_buf_intermediate_buf = NULL;
882
883         ring->configured = 0;
884
885         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
886                 ring->port_id, ring->id);
887 }
888
889 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
890 {
891         unsigned int i;
892
893         for (i = 0; i < ring->ring_size; ++i) {
894                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
895                 if (rx_info->mbuf) {
896                         rte_mbuf_raw_free(rx_info->mbuf);
897                         rx_info->mbuf = NULL;
898                 }
899         }
900 }
901
902 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
903 {
904         unsigned int i;
905
906         for (i = 0; i < ring->ring_size; ++i) {
907                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
908
909                 if (tx_buf->mbuf) {
910                         rte_pktmbuf_free(tx_buf->mbuf);
911                         tx_buf->mbuf = NULL;
912                 }
913         }
914 }
915
916 static int ena_link_update(struct rte_eth_dev *dev,
917                            __rte_unused int wait_to_complete)
918 {
919         struct rte_eth_link *link = &dev->data->dev_link;
920         struct ena_adapter *adapter = dev->data->dev_private;
921
922         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
923         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
924         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
925
926         return 0;
927 }
928
929 static int ena_queue_start_all(struct rte_eth_dev *dev,
930                                enum ena_ring_type ring_type)
931 {
932         struct ena_adapter *adapter = dev->data->dev_private;
933         struct ena_ring *queues = NULL;
934         int nb_queues;
935         int i = 0;
936         int rc = 0;
937
938         if (ring_type == ENA_RING_TYPE_RX) {
939                 queues = adapter->rx_ring;
940                 nb_queues = dev->data->nb_rx_queues;
941         } else {
942                 queues = adapter->tx_ring;
943                 nb_queues = dev->data->nb_tx_queues;
944         }
945         for (i = 0; i < nb_queues; i++) {
946                 if (queues[i].configured) {
947                         if (ring_type == ENA_RING_TYPE_RX) {
948                                 ena_assert_msg(
949                                         dev->data->rx_queues[i] == &queues[i],
950                                         "Inconsistent state of Rx queues\n");
951                         } else {
952                                 ena_assert_msg(
953                                         dev->data->tx_queues[i] == &queues[i],
954                                         "Inconsistent state of Tx queues\n");
955                         }
956
957                         rc = ena_queue_start(dev, &queues[i]);
958
959                         if (rc) {
960                                 PMD_INIT_LOG(ERR,
961                                         "Failed to start queue[%d] of type(%d)\n",
962                                         i, ring_type);
963                                 goto err;
964                         }
965                 }
966         }
967
968         return 0;
969
970 err:
971         while (i--)
972                 if (queues[i].configured)
973                         ena_queue_stop(&queues[i]);
974
975         return rc;
976 }
977
978 static int ena_check_valid_conf(struct ena_adapter *adapter)
979 {
980         uint32_t mtu = adapter->edev_data->mtu;
981
982         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
983                 PMD_INIT_LOG(ERR,
984                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
985                         mtu, adapter->max_mtu, ENA_MIN_MTU);
986                 return ENA_COM_UNSUPPORTED;
987         }
988
989         return 0;
990 }
991
992 static int
993 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
994                        bool use_large_llq_hdr)
995 {
996         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
997         struct ena_com_dev *ena_dev = ctx->ena_dev;
998         uint32_t max_tx_queue_size;
999         uint32_t max_rx_queue_size;
1000
1001         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1002                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1003                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1004                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1005                         max_queue_ext->max_rx_sq_depth);
1006                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1007
1008                 if (ena_dev->tx_mem_queue_type ==
1009                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1010                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1011                                 llq->max_llq_depth);
1012                 } else {
1013                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1014                                 max_queue_ext->max_tx_sq_depth);
1015                 }
1016
1017                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1018                         max_queue_ext->max_per_packet_rx_descs);
1019                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1020                         max_queue_ext->max_per_packet_tx_descs);
1021         } else {
1022                 struct ena_admin_queue_feature_desc *max_queues =
1023                         &ctx->get_feat_ctx->max_queues;
1024                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1025                         max_queues->max_sq_depth);
1026                 max_tx_queue_size = max_queues->max_cq_depth;
1027
1028                 if (ena_dev->tx_mem_queue_type ==
1029                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1030                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1031                                 llq->max_llq_depth);
1032                 } else {
1033                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1034                                 max_queues->max_sq_depth);
1035                 }
1036
1037                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1038                         max_queues->max_packet_rx_descs);
1039                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1040                         max_queues->max_packet_tx_descs);
1041         }
1042
1043         /* Round down to the nearest power of 2 */
1044         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1045         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1046
1047         if (use_large_llq_hdr) {
1048                 if ((llq->entry_size_ctrl_supported &
1049                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1050                     (ena_dev->tx_mem_queue_type ==
1051                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1052                         max_tx_queue_size /= 2;
1053                         PMD_INIT_LOG(INFO,
1054                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
1055                                 max_tx_queue_size);
1056                 } else {
1057                         PMD_INIT_LOG(ERR,
1058                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1059                 }
1060         }
1061
1062         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1063                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
1064                 return -EFAULT;
1065         }
1066
1067         ctx->max_tx_queue_size = max_tx_queue_size;
1068         ctx->max_rx_queue_size = max_rx_queue_size;
1069
1070         return 0;
1071 }
1072
1073 static void ena_stats_restart(struct rte_eth_dev *dev)
1074 {
1075         struct ena_adapter *adapter = dev->data->dev_private;
1076
1077         rte_atomic64_init(&adapter->drv_stats->ierrors);
1078         rte_atomic64_init(&adapter->drv_stats->oerrors);
1079         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1080         adapter->drv_stats->rx_drops = 0;
1081 }
1082
1083 static int ena_stats_get(struct rte_eth_dev *dev,
1084                           struct rte_eth_stats *stats)
1085 {
1086         struct ena_admin_basic_stats ena_stats;
1087         struct ena_adapter *adapter = dev->data->dev_private;
1088         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1089         int rc;
1090         int i;
1091         int max_rings_stats;
1092
1093         memset(&ena_stats, 0, sizeof(ena_stats));
1094
1095         rte_spinlock_lock(&adapter->admin_lock);
1096         rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1097                        &ena_stats);
1098         rte_spinlock_unlock(&adapter->admin_lock);
1099         if (unlikely(rc)) {
1100                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1101                 return rc;
1102         }
1103
1104         /* Set of basic statistics from ENA */
1105         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1106                                           ena_stats.rx_pkts_low);
1107         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1108                                           ena_stats.tx_pkts_low);
1109         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1110                                         ena_stats.rx_bytes_low);
1111         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1112                                         ena_stats.tx_bytes_low);
1113
1114         /* Driver related stats */
1115         stats->imissed = adapter->drv_stats->rx_drops;
1116         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1117         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1118         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1119
1120         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1121                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1122         for (i = 0; i < max_rings_stats; ++i) {
1123                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1124
1125                 stats->q_ibytes[i] = rx_stats->bytes;
1126                 stats->q_ipackets[i] = rx_stats->cnt;
1127                 stats->q_errors[i] = rx_stats->bad_desc_num +
1128                         rx_stats->bad_req_id;
1129         }
1130
1131         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1132                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1133         for (i = 0; i < max_rings_stats; ++i) {
1134                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1135
1136                 stats->q_obytes[i] = tx_stats->bytes;
1137                 stats->q_opackets[i] = tx_stats->cnt;
1138         }
1139
1140         return 0;
1141 }
1142
1143 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1144 {
1145         struct ena_adapter *adapter;
1146         struct ena_com_dev *ena_dev;
1147         int rc = 0;
1148
1149         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1150         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1151         adapter = dev->data->dev_private;
1152
1153         ena_dev = &adapter->ena_dev;
1154         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1155
1156         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1157                 PMD_DRV_LOG(ERR,
1158                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1159                         mtu, adapter->max_mtu, ENA_MIN_MTU);
1160                 return -EINVAL;
1161         }
1162
1163         rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1164         if (rc)
1165                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1166         else
1167                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1168
1169         return rc;
1170 }
1171
1172 static int ena_start(struct rte_eth_dev *dev)
1173 {
1174         struct ena_adapter *adapter = dev->data->dev_private;
1175         uint64_t ticks;
1176         int rc = 0;
1177
1178         /* Cannot allocate memory in secondary process */
1179         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1180                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1181                 return -EPERM;
1182         }
1183
1184         rc = ena_check_valid_conf(adapter);
1185         if (rc)
1186                 return rc;
1187
1188         rc = ena_setup_rx_intr(dev);
1189         if (rc)
1190                 return rc;
1191
1192         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1193         if (rc)
1194                 return rc;
1195
1196         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1197         if (rc)
1198                 goto err_start_tx;
1199
1200         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1201                 rc = ena_rss_configure(adapter);
1202                 if (rc)
1203                         goto err_rss_init;
1204         }
1205
1206         ena_stats_restart(dev);
1207
1208         adapter->timestamp_wd = rte_get_timer_cycles();
1209         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1210
1211         ticks = rte_get_timer_hz();
1212         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1213                         ena_timer_wd_callback, dev);
1214
1215         ++adapter->dev_stats.dev_start;
1216         adapter->state = ENA_ADAPTER_STATE_RUNNING;
1217
1218         return 0;
1219
1220 err_rss_init:
1221         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1222 err_start_tx:
1223         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1224         return rc;
1225 }
1226
1227 static int ena_stop(struct rte_eth_dev *dev)
1228 {
1229         struct ena_adapter *adapter = dev->data->dev_private;
1230         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1231         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1232         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1233         int rc;
1234
1235         /* Cannot free memory in secondary process */
1236         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1237                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1238                 return -EPERM;
1239         }
1240
1241         rte_timer_stop_sync(&adapter->timer_wd);
1242         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1243         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1244
1245         if (adapter->trigger_reset) {
1246                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1247                 if (rc)
1248                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1249         }
1250
1251         rte_intr_disable(intr_handle);
1252
1253         rte_intr_efd_disable(intr_handle);
1254
1255         /* Cleanup vector list */
1256         rte_intr_vec_list_free(intr_handle);
1257
1258         rte_intr_enable(intr_handle);
1259
1260         ++adapter->dev_stats.dev_stop;
1261         adapter->state = ENA_ADAPTER_STATE_STOPPED;
1262         dev->data->dev_started = 0;
1263
1264         return 0;
1265 }
1266
1267 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1268 {
1269         struct ena_adapter *adapter = ring->adapter;
1270         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1271         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1272         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1273         struct ena_com_create_io_ctx ctx =
1274                 /* policy set to _HOST just to satisfy icc compiler */
1275                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1276                   0, 0, 0, 0, 0 };
1277         uint16_t ena_qid;
1278         unsigned int i;
1279         int rc;
1280
1281         ctx.msix_vector = -1;
1282         if (ring->type == ENA_RING_TYPE_TX) {
1283                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1284                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1285                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1286                 for (i = 0; i < ring->ring_size; i++)
1287                         ring->empty_tx_reqs[i] = i;
1288         } else {
1289                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1290                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1291                 if (rte_intr_dp_is_en(intr_handle))
1292                         ctx.msix_vector =
1293                                 rte_intr_vec_list_index_get(intr_handle,
1294                                                                    ring->id);
1295
1296                 for (i = 0; i < ring->ring_size; i++)
1297                         ring->empty_rx_reqs[i] = i;
1298         }
1299         ctx.queue_size = ring->ring_size;
1300         ctx.qid = ena_qid;
1301         ctx.numa_node = ring->numa_socket_id;
1302
1303         rc = ena_com_create_io_queue(ena_dev, &ctx);
1304         if (rc) {
1305                 PMD_DRV_LOG(ERR,
1306                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1307                         ring->id, ena_qid, rc);
1308                 return rc;
1309         }
1310
1311         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1312                                      &ring->ena_com_io_sq,
1313                                      &ring->ena_com_io_cq);
1314         if (rc) {
1315                 PMD_DRV_LOG(ERR,
1316                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1317                         ring->id, rc);
1318                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1319                 return rc;
1320         }
1321
1322         if (ring->type == ENA_RING_TYPE_TX)
1323                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1324
1325         /* Start with Rx interrupts being masked. */
1326         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1327                 ena_rx_queue_intr_disable(dev, ring->id);
1328
1329         return 0;
1330 }
1331
1332 static void ena_queue_stop(struct ena_ring *ring)
1333 {
1334         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1335
1336         if (ring->type == ENA_RING_TYPE_RX) {
1337                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1338                 ena_rx_queue_release_bufs(ring);
1339         } else {
1340                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1341                 ena_tx_queue_release_bufs(ring);
1342         }
1343 }
1344
1345 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1346                               enum ena_ring_type ring_type)
1347 {
1348         struct ena_adapter *adapter = dev->data->dev_private;
1349         struct ena_ring *queues = NULL;
1350         uint16_t nb_queues, i;
1351
1352         if (ring_type == ENA_RING_TYPE_RX) {
1353                 queues = adapter->rx_ring;
1354                 nb_queues = dev->data->nb_rx_queues;
1355         } else {
1356                 queues = adapter->tx_ring;
1357                 nb_queues = dev->data->nb_tx_queues;
1358         }
1359
1360         for (i = 0; i < nb_queues; ++i)
1361                 if (queues[i].configured)
1362                         ena_queue_stop(&queues[i]);
1363 }
1364
1365 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1366 {
1367         int rc, bufs_num;
1368
1369         ena_assert_msg(ring->configured == 1,
1370                        "Trying to start unconfigured queue\n");
1371
1372         rc = ena_create_io_queue(dev, ring);
1373         if (rc) {
1374                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1375                 return rc;
1376         }
1377
1378         ring->next_to_clean = 0;
1379         ring->next_to_use = 0;
1380
1381         if (ring->type == ENA_RING_TYPE_TX) {
1382                 ring->tx_stats.available_desc =
1383                         ena_com_free_q_entries(ring->ena_com_io_sq);
1384                 return 0;
1385         }
1386
1387         bufs_num = ring->ring_size - 1;
1388         rc = ena_populate_rx_queue(ring, bufs_num);
1389         if (rc != bufs_num) {
1390                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1391                                          ENA_IO_RXQ_IDX(ring->id));
1392                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1393                 return ENA_COM_FAULT;
1394         }
1395         /* Flush per-core RX buffers pools cache as they can be used on other
1396          * cores as well.
1397          */
1398         rte_mempool_cache_flush(NULL, ring->mb_pool);
1399
1400         return 0;
1401 }
1402
1403 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1404                               uint16_t queue_idx,
1405                               uint16_t nb_desc,
1406                               unsigned int socket_id,
1407                               const struct rte_eth_txconf *tx_conf)
1408 {
1409         struct ena_ring *txq = NULL;
1410         struct ena_adapter *adapter = dev->data->dev_private;
1411         unsigned int i;
1412         uint16_t dyn_thresh;
1413
1414         txq = &adapter->tx_ring[queue_idx];
1415
1416         if (txq->configured) {
1417                 PMD_DRV_LOG(CRIT,
1418                         "API violation. Queue[%d] is already configured\n",
1419                         queue_idx);
1420                 return ENA_COM_FAULT;
1421         }
1422
1423         if (!rte_is_power_of_2(nb_desc)) {
1424                 PMD_DRV_LOG(ERR,
1425                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1426                         nb_desc);
1427                 return -EINVAL;
1428         }
1429
1430         if (nb_desc > adapter->max_tx_ring_size) {
1431                 PMD_DRV_LOG(ERR,
1432                         "Unsupported size of Tx queue (max size: %d)\n",
1433                         adapter->max_tx_ring_size);
1434                 return -EINVAL;
1435         }
1436
1437         txq->port_id = dev->data->port_id;
1438         txq->next_to_clean = 0;
1439         txq->next_to_use = 0;
1440         txq->ring_size = nb_desc;
1441         txq->size_mask = nb_desc - 1;
1442         txq->numa_socket_id = socket_id;
1443         txq->pkts_without_db = false;
1444         txq->last_cleanup_ticks = 0;
1445
1446         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1447                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1448                 RTE_CACHE_LINE_SIZE,
1449                 socket_id);
1450         if (!txq->tx_buffer_info) {
1451                 PMD_DRV_LOG(ERR,
1452                         "Failed to allocate memory for Tx buffer info\n");
1453                 return -ENOMEM;
1454         }
1455
1456         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1457                 sizeof(uint16_t) * txq->ring_size,
1458                 RTE_CACHE_LINE_SIZE,
1459                 socket_id);
1460         if (!txq->empty_tx_reqs) {
1461                 PMD_DRV_LOG(ERR,
1462                         "Failed to allocate memory for empty Tx requests\n");
1463                 rte_free(txq->tx_buffer_info);
1464                 return -ENOMEM;
1465         }
1466
1467         txq->push_buf_intermediate_buf =
1468                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1469                         txq->tx_max_header_size,
1470                         RTE_CACHE_LINE_SIZE,
1471                         socket_id);
1472         if (!txq->push_buf_intermediate_buf) {
1473                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1474                 rte_free(txq->tx_buffer_info);
1475                 rte_free(txq->empty_tx_reqs);
1476                 return -ENOMEM;
1477         }
1478
1479         for (i = 0; i < txq->ring_size; i++)
1480                 txq->empty_tx_reqs[i] = i;
1481
1482         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1483
1484         /* Check if caller provided the Tx cleanup threshold value. */
1485         if (tx_conf->tx_free_thresh != 0) {
1486                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1487         } else {
1488                 dyn_thresh = txq->ring_size -
1489                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1490                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1491                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1492         }
1493
1494         txq->missing_tx_completion_threshold =
1495                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1496
1497         /* Store pointer to this queue in upper layer */
1498         txq->configured = 1;
1499         dev->data->tx_queues[queue_idx] = txq;
1500
1501         return 0;
1502 }
1503
1504 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1505                               uint16_t queue_idx,
1506                               uint16_t nb_desc,
1507                               unsigned int socket_id,
1508                               const struct rte_eth_rxconf *rx_conf,
1509                               struct rte_mempool *mp)
1510 {
1511         struct ena_adapter *adapter = dev->data->dev_private;
1512         struct ena_ring *rxq = NULL;
1513         size_t buffer_size;
1514         int i;
1515         uint16_t dyn_thresh;
1516
1517         rxq = &adapter->rx_ring[queue_idx];
1518         if (rxq->configured) {
1519                 PMD_DRV_LOG(CRIT,
1520                         "API violation. Queue[%d] is already configured\n",
1521                         queue_idx);
1522                 return ENA_COM_FAULT;
1523         }
1524
1525         if (!rte_is_power_of_2(nb_desc)) {
1526                 PMD_DRV_LOG(ERR,
1527                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1528                         nb_desc);
1529                 return -EINVAL;
1530         }
1531
1532         if (nb_desc > adapter->max_rx_ring_size) {
1533                 PMD_DRV_LOG(ERR,
1534                         "Unsupported size of Rx queue (max size: %d)\n",
1535                         adapter->max_rx_ring_size);
1536                 return -EINVAL;
1537         }
1538
1539         /* ENA isn't supporting buffers smaller than 1400 bytes */
1540         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1541         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1542                 PMD_DRV_LOG(ERR,
1543                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1544                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1545                 return -EINVAL;
1546         }
1547
1548         rxq->port_id = dev->data->port_id;
1549         rxq->next_to_clean = 0;
1550         rxq->next_to_use = 0;
1551         rxq->ring_size = nb_desc;
1552         rxq->size_mask = nb_desc - 1;
1553         rxq->numa_socket_id = socket_id;
1554         rxq->mb_pool = mp;
1555
1556         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1557                 sizeof(struct ena_rx_buffer) * nb_desc,
1558                 RTE_CACHE_LINE_SIZE,
1559                 socket_id);
1560         if (!rxq->rx_buffer_info) {
1561                 PMD_DRV_LOG(ERR,
1562                         "Failed to allocate memory for Rx buffer info\n");
1563                 return -ENOMEM;
1564         }
1565
1566         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1567                 sizeof(struct rte_mbuf *) * nb_desc,
1568                 RTE_CACHE_LINE_SIZE,
1569                 socket_id);
1570         if (!rxq->rx_refill_buffer) {
1571                 PMD_DRV_LOG(ERR,
1572                         "Failed to allocate memory for Rx refill buffer\n");
1573                 rte_free(rxq->rx_buffer_info);
1574                 rxq->rx_buffer_info = NULL;
1575                 return -ENOMEM;
1576         }
1577
1578         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1579                 sizeof(uint16_t) * nb_desc,
1580                 RTE_CACHE_LINE_SIZE,
1581                 socket_id);
1582         if (!rxq->empty_rx_reqs) {
1583                 PMD_DRV_LOG(ERR,
1584                         "Failed to allocate memory for empty Rx requests\n");
1585                 rte_free(rxq->rx_buffer_info);
1586                 rxq->rx_buffer_info = NULL;
1587                 rte_free(rxq->rx_refill_buffer);
1588                 rxq->rx_refill_buffer = NULL;
1589                 return -ENOMEM;
1590         }
1591
1592         for (i = 0; i < nb_desc; i++)
1593                 rxq->empty_rx_reqs[i] = i;
1594
1595         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1596
1597         if (rx_conf->rx_free_thresh != 0) {
1598                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1599         } else {
1600                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1601                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1602                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1603         }
1604
1605         /* Store pointer to this queue in upper layer */
1606         rxq->configured = 1;
1607         dev->data->rx_queues[queue_idx] = rxq;
1608
1609         return 0;
1610 }
1611
1612 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1613                                   struct rte_mbuf *mbuf, uint16_t id)
1614 {
1615         struct ena_com_buf ebuf;
1616         int rc;
1617
1618         /* prepare physical address for DMA transaction */
1619         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1620         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1621
1622         /* pass resource to device */
1623         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1624         if (unlikely(rc != 0))
1625                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1626
1627         return rc;
1628 }
1629
1630 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1631 {
1632         unsigned int i;
1633         int rc;
1634         uint16_t next_to_use = rxq->next_to_use;
1635         uint16_t req_id;
1636 #ifdef RTE_ETHDEV_DEBUG_RX
1637         uint16_t in_use;
1638 #endif
1639         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1640
1641         if (unlikely(!count))
1642                 return 0;
1643
1644 #ifdef RTE_ETHDEV_DEBUG_RX
1645         in_use = rxq->ring_size - 1 -
1646                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1647         if (unlikely((in_use + count) >= rxq->ring_size))
1648                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1649 #endif
1650
1651         /* get resources for incoming packets */
1652         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1653         if (unlikely(rc < 0)) {
1654                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1655                 ++rxq->rx_stats.mbuf_alloc_fail;
1656                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1657                 return 0;
1658         }
1659
1660         for (i = 0; i < count; i++) {
1661                 struct rte_mbuf *mbuf = mbufs[i];
1662                 struct ena_rx_buffer *rx_info;
1663
1664                 if (likely((i + 4) < count))
1665                         rte_prefetch0(mbufs[i + 4]);
1666
1667                 req_id = rxq->empty_rx_reqs[next_to_use];
1668                 rx_info = &rxq->rx_buffer_info[req_id];
1669
1670                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1671                 if (unlikely(rc != 0))
1672                         break;
1673
1674                 rx_info->mbuf = mbuf;
1675                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1676         }
1677
1678         if (unlikely(i < count)) {
1679                 PMD_RX_LOG(WARNING,
1680                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1681                         rxq->id, i, count);
1682                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1683                 ++rxq->rx_stats.refill_partial;
1684         }
1685
1686         /* When we submitted free resources to device... */
1687         if (likely(i > 0)) {
1688                 /* ...let HW know that it can fill buffers with data. */
1689                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1690
1691                 rxq->next_to_use = next_to_use;
1692         }
1693
1694         return i;
1695 }
1696
1697 static int ena_device_init(struct ena_adapter *adapter,
1698                            struct rte_pci_device *pdev,
1699                            struct ena_com_dev_get_features_ctx *get_feat_ctx)
1700 {
1701         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1702         uint32_t aenq_groups;
1703         int rc;
1704         bool readless_supported;
1705
1706         /* Initialize mmio registers */
1707         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1708         if (rc) {
1709                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1710                 return rc;
1711         }
1712
1713         /* The PCIe configuration space revision id indicate if mmio reg
1714          * read is disabled.
1715          */
1716         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1717         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1718
1719         /* reset device */
1720         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1721         if (rc) {
1722                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1723                 goto err_mmio_read_less;
1724         }
1725
1726         /* check FW version */
1727         rc = ena_com_validate_version(ena_dev);
1728         if (rc) {
1729                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1730                 goto err_mmio_read_less;
1731         }
1732
1733         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1734
1735         /* ENA device administration layer init */
1736         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1737         if (rc) {
1738                 PMD_DRV_LOG(ERR,
1739                         "Cannot initialize ENA admin queue\n");
1740                 goto err_mmio_read_less;
1741         }
1742
1743         /* To enable the msix interrupts the driver needs to know the number
1744          * of queues. So the driver uses polling mode to retrieve this
1745          * information.
1746          */
1747         ena_com_set_admin_polling_mode(ena_dev, true);
1748
1749         ena_config_host_info(ena_dev);
1750
1751         /* Get Device Attributes and features */
1752         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1753         if (rc) {
1754                 PMD_DRV_LOG(ERR,
1755                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1756                 goto err_admin_init;
1757         }
1758
1759         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1760                       BIT(ENA_ADMIN_NOTIFICATION) |
1761                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1762                       BIT(ENA_ADMIN_FATAL_ERROR) |
1763                       BIT(ENA_ADMIN_WARNING);
1764
1765         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1766
1767         adapter->all_aenq_groups = aenq_groups;
1768
1769         return 0;
1770
1771 err_admin_init:
1772         ena_com_admin_destroy(ena_dev);
1773
1774 err_mmio_read_less:
1775         ena_com_mmio_reg_read_request_destroy(ena_dev);
1776
1777         return rc;
1778 }
1779
1780 static void ena_interrupt_handler_rte(void *cb_arg)
1781 {
1782         struct rte_eth_dev *dev = cb_arg;
1783         struct ena_adapter *adapter = dev->data->dev_private;
1784         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1785
1786         ena_com_admin_q_comp_intr_handler(ena_dev);
1787         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1788                 ena_com_aenq_intr_handler(ena_dev, dev);
1789 }
1790
1791 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1792 {
1793         if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1794                 return;
1795
1796         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1797                 return;
1798
1799         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1800             adapter->keep_alive_timeout)) {
1801                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1802                 ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1803                 ++adapter->dev_stats.wd_expired;
1804         }
1805 }
1806
1807 /* Check if admin queue is enabled */
1808 static void check_for_admin_com_state(struct ena_adapter *adapter)
1809 {
1810         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1811                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1812                 ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1813         }
1814 }
1815
1816 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1817                                             struct ena_ring *tx_ring)
1818 {
1819         struct ena_tx_buffer *tx_buf;
1820         uint64_t timestamp;
1821         uint64_t completion_delay;
1822         uint32_t missed_tx = 0;
1823         unsigned int i;
1824         int rc = 0;
1825
1826         for (i = 0; i < tx_ring->ring_size; ++i) {
1827                 tx_buf = &tx_ring->tx_buffer_info[i];
1828                 timestamp = tx_buf->timestamp;
1829
1830                 if (timestamp == 0)
1831                         continue;
1832
1833                 completion_delay = rte_get_timer_cycles() - timestamp;
1834                 if (completion_delay > adapter->missing_tx_completion_to) {
1835                         if (unlikely(!tx_buf->print_once)) {
1836                                 PMD_TX_LOG(WARNING,
1837                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1838                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1839                                         tx_ring->id, i, completion_delay /
1840                                         rte_get_timer_hz() * 1000);
1841                                 tx_buf->print_once = true;
1842                         }
1843                         ++missed_tx;
1844                 }
1845         }
1846
1847         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1848                 PMD_DRV_LOG(ERR,
1849                         "The number of lost Tx completions is above the threshold (%d > %d). "
1850                         "Trigger the device reset.\n",
1851                         missed_tx,
1852                         tx_ring->missing_tx_completion_threshold);
1853                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1854                 adapter->trigger_reset = true;
1855                 rc = -EIO;
1856         }
1857
1858         tx_ring->tx_stats.missed_tx += missed_tx;
1859
1860         return rc;
1861 }
1862
1863 static void check_for_tx_completions(struct ena_adapter *adapter)
1864 {
1865         struct ena_ring *tx_ring;
1866         uint64_t tx_cleanup_delay;
1867         size_t qid;
1868         int budget;
1869         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1870
1871         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1872                 return;
1873
1874         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1875         budget = adapter->missing_tx_completion_budget;
1876
1877         qid = adapter->last_tx_comp_qid;
1878         while (budget-- > 0) {
1879                 tx_ring = &adapter->tx_ring[qid];
1880
1881                 /* Tx cleanup is called only by the burst function and can be
1882                  * called dynamically by the application. Also cleanup is
1883                  * limited by the threshold. To avoid false detection of the
1884                  * missing HW Tx completion, get the delay since last cleanup
1885                  * function was called.
1886                  */
1887                 tx_cleanup_delay = rte_get_timer_cycles() -
1888                         tx_ring->last_cleanup_ticks;
1889                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1890                         check_for_tx_completion_in_queue(adapter, tx_ring);
1891                 qid = (qid + 1) % nb_tx_queues;
1892         }
1893
1894         adapter->last_tx_comp_qid = qid;
1895 }
1896
1897 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1898                                   void *arg)
1899 {
1900         struct rte_eth_dev *dev = arg;
1901         struct ena_adapter *adapter = dev->data->dev_private;
1902
1903         if (unlikely(adapter->trigger_reset))
1904                 return;
1905
1906         check_for_missing_keep_alive(adapter);
1907         check_for_admin_com_state(adapter);
1908         check_for_tx_completions(adapter);
1909
1910         if (unlikely(adapter->trigger_reset)) {
1911                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1912                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1913                         NULL);
1914         }
1915 }
1916
1917 static inline void
1918 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1919                                struct ena_admin_feature_llq_desc *llq,
1920                                bool use_large_llq_hdr)
1921 {
1922         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1923         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1924         llq_config->llq_num_decs_before_header =
1925                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1926
1927         if (use_large_llq_hdr &&
1928             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1929                 llq_config->llq_ring_entry_size =
1930                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1931                 llq_config->llq_ring_entry_size_value = 256;
1932         } else {
1933                 llq_config->llq_ring_entry_size =
1934                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1935                 llq_config->llq_ring_entry_size_value = 128;
1936         }
1937 }
1938
1939 static int
1940 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1941                                 struct ena_com_dev *ena_dev,
1942                                 struct ena_admin_feature_llq_desc *llq,
1943                                 struct ena_llq_configurations *llq_default_configurations)
1944 {
1945         int rc;
1946         u32 llq_feature_mask;
1947
1948         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1949         if (!(ena_dev->supported_features & llq_feature_mask)) {
1950                 PMD_DRV_LOG(INFO,
1951                         "LLQ is not supported. Fallback to host mode policy.\n");
1952                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1953                 return 0;
1954         }
1955
1956         if (adapter->dev_mem_base == NULL) {
1957                 PMD_DRV_LOG(ERR,
1958                         "LLQ is advertised as supported, but device doesn't expose mem bar\n");
1959                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1960                 return 0;
1961         }
1962
1963         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1964         if (unlikely(rc)) {
1965                 PMD_INIT_LOG(WARNING,
1966                         "Failed to config dev mode. Fallback to host mode policy.\n");
1967                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1968                 return 0;
1969         }
1970
1971         /* Nothing to config, exit */
1972         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1973                 return 0;
1974
1975         ena_dev->mem_bar = adapter->dev_mem_base;
1976
1977         return 0;
1978 }
1979
1980 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1981         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1982 {
1983         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1984
1985         /* Regular queues capabilities */
1986         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1987                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1988                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1989                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1990                                     max_queue_ext->max_rx_cq_num);
1991                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1992                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1993         } else {
1994                 struct ena_admin_queue_feature_desc *max_queues =
1995                         &get_feat_ctx->max_queues;
1996                 io_tx_sq_num = max_queues->max_sq_num;
1997                 io_tx_cq_num = max_queues->max_cq_num;
1998                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1999         }
2000
2001         /* In case of LLQ use the llq number in the get feature cmd */
2002         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2003                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2004
2005         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2006         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2007         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2008
2009         if (unlikely(max_num_io_queues == 0)) {
2010                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2011                 return -EFAULT;
2012         }
2013
2014         return max_num_io_queues;
2015 }
2016
2017 static void
2018 ena_set_offloads(struct ena_offloads *offloads,
2019                  struct ena_admin_feature_offload_desc *offload_desc)
2020 {
2021         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2022                 offloads->tx_offloads |= ENA_IPV4_TSO;
2023
2024         /* Tx IPv4 checksum offloads */
2025         if (offload_desc->tx &
2026             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2027                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2028         if (offload_desc->tx &
2029             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2030                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2031         if (offload_desc->tx &
2032             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2033                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2034
2035         /* Tx IPv6 checksum offloads */
2036         if (offload_desc->tx &
2037             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2038                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2039         if (offload_desc->tx &
2040              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2041                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2042
2043         /* Rx IPv4 checksum offloads */
2044         if (offload_desc->rx_supported &
2045             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2046                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2047         if (offload_desc->rx_supported &
2048             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2049                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2050
2051         /* Rx IPv6 checksum offloads */
2052         if (offload_desc->rx_supported &
2053             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2054                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2055
2056         if (offload_desc->rx_supported &
2057             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2058                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
2059 }
2060
2061 static int ena_init_once(void)
2062 {
2063         static bool init_done;
2064
2065         if (init_done)
2066                 return 0;
2067
2068         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2069                 /* Init timer subsystem for the ENA timer service. */
2070                 rte_timer_subsystem_init();
2071                 /* Register handler for requests from secondary processes. */
2072                 rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2073         }
2074
2075         init_done = true;
2076         return 0;
2077 }
2078
2079 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2080 {
2081         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2082         struct rte_pci_device *pci_dev;
2083         struct rte_intr_handle *intr_handle;
2084         struct ena_adapter *adapter = eth_dev->data->dev_private;
2085         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2086         struct ena_com_dev_get_features_ctx get_feat_ctx;
2087         struct ena_llq_configurations llq_config;
2088         const char *queue_type_str;
2089         uint32_t max_num_io_queues;
2090         int rc;
2091         static int adapters_found;
2092         bool disable_meta_caching;
2093
2094         eth_dev->dev_ops = &ena_dev_ops;
2095         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2096         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2097         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2098
2099         rc = ena_init_once();
2100         if (rc != 0)
2101                 return rc;
2102
2103         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2104                 return 0;
2105
2106         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2107
2108         memset(adapter, 0, sizeof(struct ena_adapter));
2109         ena_dev = &adapter->ena_dev;
2110
2111         adapter->edev_data = eth_dev->data;
2112
2113         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2114
2115         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2116                      pci_dev->addr.domain,
2117                      pci_dev->addr.bus,
2118                      pci_dev->addr.devid,
2119                      pci_dev->addr.function);
2120
2121         intr_handle = pci_dev->intr_handle;
2122
2123         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2124         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2125
2126         if (!adapter->regs) {
2127                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2128                              ENA_REGS_BAR);
2129                 return -ENXIO;
2130         }
2131
2132         ena_dev->reg_bar = adapter->regs;
2133         /* Pass device data as a pointer which can be passed to the IO functions
2134          * by the ena_com (for example - the memory allocation).
2135          */
2136         ena_dev->dmadev = eth_dev->data;
2137
2138         adapter->id_number = adapters_found;
2139
2140         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2141                  adapter->id_number);
2142
2143         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2144
2145         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2146         if (rc != 0) {
2147                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2148                 goto err;
2149         }
2150
2151         /* device specific initialization routine */
2152         rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2153         if (rc) {
2154                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2155                 goto err;
2156         }
2157
2158         /* Check if device supports LSC */
2159         if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2160                 adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2161
2162         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2163                 adapter->use_large_llq_hdr);
2164         rc = ena_set_queues_placement_policy(adapter, ena_dev,
2165                                              &get_feat_ctx.llq, &llq_config);
2166         if (unlikely(rc)) {
2167                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2168                 return rc;
2169         }
2170
2171         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2172                 queue_type_str = "Regular";
2173         else
2174                 queue_type_str = "Low latency";
2175         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2176
2177         calc_queue_ctx.ena_dev = ena_dev;
2178         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2179
2180         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2181         rc = ena_calc_io_queue_size(&calc_queue_ctx,
2182                 adapter->use_large_llq_hdr);
2183         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2184                 rc = -EFAULT;
2185                 goto err_device_destroy;
2186         }
2187
2188         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2189         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2190         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2191         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2192         adapter->max_num_io_queues = max_num_io_queues;
2193
2194         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2195                 disable_meta_caching =
2196                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2197                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
2198         } else {
2199                 disable_meta_caching = false;
2200         }
2201
2202         /* prepare ring structures */
2203         ena_init_rings(adapter, disable_meta_caching);
2204
2205         ena_config_debug_area(adapter);
2206
2207         /* Set max MTU for this device */
2208         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2209
2210         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2211
2212         /* Copy MAC address and point DPDK to it */
2213         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2214         rte_ether_addr_copy((struct rte_ether_addr *)
2215                         get_feat_ctx.dev_attr.mac_addr,
2216                         (struct rte_ether_addr *)adapter->mac_addr);
2217
2218         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2219         if (unlikely(rc != 0)) {
2220                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2221                 goto err_delete_debug_area;
2222         }
2223
2224         adapter->drv_stats = rte_zmalloc("adapter stats",
2225                                          sizeof(*adapter->drv_stats),
2226                                          RTE_CACHE_LINE_SIZE);
2227         if (!adapter->drv_stats) {
2228                 PMD_DRV_LOG(ERR,
2229                         "Failed to allocate memory for adapter statistics\n");
2230                 rc = -ENOMEM;
2231                 goto err_rss_destroy;
2232         }
2233
2234         rte_spinlock_init(&adapter->admin_lock);
2235
2236         rte_intr_callback_register(intr_handle,
2237                                    ena_interrupt_handler_rte,
2238                                    eth_dev);
2239         rte_intr_enable(intr_handle);
2240         ena_com_set_admin_polling_mode(ena_dev, false);
2241         ena_com_admin_aenq_enable(ena_dev);
2242
2243         rte_timer_init(&adapter->timer_wd);
2244
2245         adapters_found++;
2246         adapter->state = ENA_ADAPTER_STATE_INIT;
2247
2248         return 0;
2249
2250 err_rss_destroy:
2251         ena_com_rss_destroy(ena_dev);
2252 err_delete_debug_area:
2253         ena_com_delete_debug_area(ena_dev);
2254
2255 err_device_destroy:
2256         ena_com_delete_host_info(ena_dev);
2257         ena_com_admin_destroy(ena_dev);
2258
2259 err:
2260         return rc;
2261 }
2262
2263 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2264 {
2265         struct ena_adapter *adapter = eth_dev->data->dev_private;
2266         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2267
2268         if (adapter->state == ENA_ADAPTER_STATE_FREE)
2269                 return;
2270
2271         ena_com_set_admin_running_state(ena_dev, false);
2272
2273         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2274                 ena_close(eth_dev);
2275
2276         ena_com_rss_destroy(ena_dev);
2277
2278         ena_com_delete_debug_area(ena_dev);
2279         ena_com_delete_host_info(ena_dev);
2280
2281         ena_com_abort_admin_commands(ena_dev);
2282         ena_com_wait_for_abort_completion(ena_dev);
2283         ena_com_admin_destroy(ena_dev);
2284         ena_com_mmio_reg_read_request_destroy(ena_dev);
2285
2286         adapter->state = ENA_ADAPTER_STATE_FREE;
2287 }
2288
2289 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2290 {
2291         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2292                 return 0;
2293
2294         ena_destroy_device(eth_dev);
2295
2296         return 0;
2297 }
2298
2299 static int ena_dev_configure(struct rte_eth_dev *dev)
2300 {
2301         struct ena_adapter *adapter = dev->data->dev_private;
2302         int rc;
2303
2304         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2305
2306         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2307                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2308         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2309
2310         /* Scattered Rx cannot be turned off in the HW, so this capability must
2311          * be forced.
2312          */
2313         dev->data->scattered_rx = 1;
2314
2315         adapter->last_tx_comp_qid = 0;
2316
2317         adapter->missing_tx_completion_budget =
2318                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2319
2320         /* To avoid detection of the spurious Tx completion timeout due to
2321          * application not calling the Tx cleanup function, set timeout for the
2322          * Tx queue which should be half of the missing completion timeout for a
2323          * safety. If there will be a lot of missing Tx completions in the
2324          * queue, they will be detected sooner or later.
2325          */
2326         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2327
2328         rc = ena_configure_aenq(adapter);
2329
2330         return rc;
2331 }
2332
2333 static void ena_init_rings(struct ena_adapter *adapter,
2334                            bool disable_meta_caching)
2335 {
2336         size_t i;
2337
2338         for (i = 0; i < adapter->max_num_io_queues; i++) {
2339                 struct ena_ring *ring = &adapter->tx_ring[i];
2340
2341                 ring->configured = 0;
2342                 ring->type = ENA_RING_TYPE_TX;
2343                 ring->adapter = adapter;
2344                 ring->id = i;
2345                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2346                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2347                 ring->sgl_size = adapter->max_tx_sgl_size;
2348                 ring->disable_meta_caching = disable_meta_caching;
2349         }
2350
2351         for (i = 0; i < adapter->max_num_io_queues; i++) {
2352                 struct ena_ring *ring = &adapter->rx_ring[i];
2353
2354                 ring->configured = 0;
2355                 ring->type = ENA_RING_TYPE_RX;
2356                 ring->adapter = adapter;
2357                 ring->id = i;
2358                 ring->sgl_size = adapter->max_rx_sgl_size;
2359         }
2360 }
2361
2362 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2363 {
2364         uint64_t port_offloads = 0;
2365
2366         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2367                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2368
2369         if (adapter->offloads.rx_offloads &
2370             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2371                 port_offloads |=
2372                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2373
2374         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2375                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2376
2377         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2378
2379         return port_offloads;
2380 }
2381
2382 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2383 {
2384         uint64_t port_offloads = 0;
2385
2386         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2387                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2388
2389         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2390                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2391         if (adapter->offloads.tx_offloads &
2392             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2393              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2394                 port_offloads |=
2395                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2396
2397         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2398
2399         return port_offloads;
2400 }
2401
2402 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2403 {
2404         RTE_SET_USED(adapter);
2405
2406         return 0;
2407 }
2408
2409 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2410 {
2411         RTE_SET_USED(adapter);
2412
2413         return 0;
2414 }
2415
2416 static int ena_infos_get(struct rte_eth_dev *dev,
2417                           struct rte_eth_dev_info *dev_info)
2418 {
2419         struct ena_adapter *adapter;
2420         struct ena_com_dev *ena_dev;
2421
2422         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2423         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2424         adapter = dev->data->dev_private;
2425
2426         ena_dev = &adapter->ena_dev;
2427         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2428
2429         dev_info->speed_capa =
2430                         RTE_ETH_LINK_SPEED_1G   |
2431                         RTE_ETH_LINK_SPEED_2_5G |
2432                         RTE_ETH_LINK_SPEED_5G   |
2433                         RTE_ETH_LINK_SPEED_10G  |
2434                         RTE_ETH_LINK_SPEED_25G  |
2435                         RTE_ETH_LINK_SPEED_40G  |
2436                         RTE_ETH_LINK_SPEED_50G  |
2437                         RTE_ETH_LINK_SPEED_100G;
2438
2439         /* Inform framework about available features */
2440         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2441         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2442         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2443         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2444
2445         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2446         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2447
2448         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2449         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2450                 RTE_ETHER_CRC_LEN;
2451         dev_info->min_mtu = ENA_MIN_MTU;
2452         dev_info->max_mtu = adapter->max_mtu;
2453         dev_info->max_mac_addrs = 1;
2454
2455         dev_info->max_rx_queues = adapter->max_num_io_queues;
2456         dev_info->max_tx_queues = adapter->max_num_io_queues;
2457         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2458
2459         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2460         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2461         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2462                                         adapter->max_rx_sgl_size);
2463         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2464                                         adapter->max_rx_sgl_size);
2465
2466         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2467         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2468         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2469                                         adapter->max_tx_sgl_size);
2470         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2471                                         adapter->max_tx_sgl_size);
2472
2473         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2474         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2475
2476         return 0;
2477 }
2478
2479 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2480 {
2481         mbuf->data_len = len;
2482         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2483         mbuf->refcnt = 1;
2484         mbuf->next = NULL;
2485 }
2486
2487 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2488                                     struct ena_com_rx_buf_info *ena_bufs,
2489                                     uint32_t descs,
2490                                     uint16_t *next_to_clean,
2491                                     uint8_t offset)
2492 {
2493         struct rte_mbuf *mbuf;
2494         struct rte_mbuf *mbuf_head;
2495         struct ena_rx_buffer *rx_info;
2496         int rc;
2497         uint16_t ntc, len, req_id, buf = 0;
2498
2499         if (unlikely(descs == 0))
2500                 return NULL;
2501
2502         ntc = *next_to_clean;
2503
2504         len = ena_bufs[buf].len;
2505         req_id = ena_bufs[buf].req_id;
2506
2507         rx_info = &rx_ring->rx_buffer_info[req_id];
2508
2509         mbuf = rx_info->mbuf;
2510         RTE_ASSERT(mbuf != NULL);
2511
2512         ena_init_rx_mbuf(mbuf, len);
2513
2514         /* Fill the mbuf head with the data specific for 1st segment. */
2515         mbuf_head = mbuf;
2516         mbuf_head->nb_segs = descs;
2517         mbuf_head->port = rx_ring->port_id;
2518         mbuf_head->pkt_len = len;
2519         mbuf_head->data_off += offset;
2520
2521         rx_info->mbuf = NULL;
2522         rx_ring->empty_rx_reqs[ntc] = req_id;
2523         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2524
2525         while (--descs) {
2526                 ++buf;
2527                 len = ena_bufs[buf].len;
2528                 req_id = ena_bufs[buf].req_id;
2529
2530                 rx_info = &rx_ring->rx_buffer_info[req_id];
2531                 RTE_ASSERT(rx_info->mbuf != NULL);
2532
2533                 if (unlikely(len == 0)) {
2534                         /*
2535                          * Some devices can pass descriptor with the length 0.
2536                          * To avoid confusion, the PMD is simply putting the
2537                          * descriptor back, as it was never used. We'll avoid
2538                          * mbuf allocation that way.
2539                          */
2540                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2541                                 rx_info->mbuf, req_id);
2542                         if (unlikely(rc != 0)) {
2543                                 /* Free the mbuf in case of an error. */
2544                                 rte_mbuf_raw_free(rx_info->mbuf);
2545                         } else {
2546                                 /*
2547                                  * If there was no error, just exit the loop as
2548                                  * 0 length descriptor is always the last one.
2549                                  */
2550                                 break;
2551                         }
2552                 } else {
2553                         /* Create an mbuf chain. */
2554                         mbuf->next = rx_info->mbuf;
2555                         mbuf = mbuf->next;
2556
2557                         ena_init_rx_mbuf(mbuf, len);
2558                         mbuf_head->pkt_len += len;
2559                 }
2560
2561                 /*
2562                  * Mark the descriptor as depleted and perform necessary
2563                  * cleanup.
2564                  * This code will execute in two cases:
2565                  *  1. Descriptor len was greater than 0 - normal situation.
2566                  *  2. Descriptor len was 0 and we failed to add the descriptor
2567                  *     to the device. In that situation, we should try to add
2568                  *     the mbuf again in the populate routine and mark the
2569                  *     descriptor as used up by the device.
2570                  */
2571                 rx_info->mbuf = NULL;
2572                 rx_ring->empty_rx_reqs[ntc] = req_id;
2573                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2574         }
2575
2576         *next_to_clean = ntc;
2577
2578         return mbuf_head;
2579 }
2580
2581 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2582                                   uint16_t nb_pkts)
2583 {
2584         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2585         unsigned int free_queue_entries;
2586         uint16_t next_to_clean = rx_ring->next_to_clean;
2587         uint16_t descs_in_use;
2588         struct rte_mbuf *mbuf;
2589         uint16_t completed;
2590         struct ena_com_rx_ctx ena_rx_ctx;
2591         int i, rc = 0;
2592         bool fill_hash;
2593
2594 #ifdef RTE_ETHDEV_DEBUG_RX
2595         /* Check adapter state */
2596         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2597                 PMD_RX_LOG(ALERT,
2598                         "Trying to receive pkts while device is NOT running\n");
2599                 return 0;
2600         }
2601 #endif
2602
2603         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2604
2605         descs_in_use = rx_ring->ring_size -
2606                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2607         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2608
2609         for (completed = 0; completed < nb_pkts; completed++) {
2610                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2611                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2612                 ena_rx_ctx.descs = 0;
2613                 ena_rx_ctx.pkt_offset = 0;
2614                 /* receive packet context */
2615                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2616                                     rx_ring->ena_com_io_sq,
2617                                     &ena_rx_ctx);
2618                 if (unlikely(rc)) {
2619                         PMD_RX_LOG(ERR,
2620                                 "Failed to get the packet from the device, rc: %d\n",
2621                                 rc);
2622                         if (rc == ENA_COM_NO_SPACE) {
2623                                 ++rx_ring->rx_stats.bad_desc_num;
2624                                 ena_trigger_reset(rx_ring->adapter,
2625                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2626                         } else {
2627                                 ++rx_ring->rx_stats.bad_req_id;
2628                                 ena_trigger_reset(rx_ring->adapter,
2629                                         ENA_REGS_RESET_INV_RX_REQ_ID);
2630                         }
2631                         return 0;
2632                 }
2633
2634                 mbuf = ena_rx_mbuf(rx_ring,
2635                         ena_rx_ctx.ena_bufs,
2636                         ena_rx_ctx.descs,
2637                         &next_to_clean,
2638                         ena_rx_ctx.pkt_offset);
2639                 if (unlikely(mbuf == NULL)) {
2640                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2641                                 rx_ring->empty_rx_reqs[next_to_clean] =
2642                                         rx_ring->ena_bufs[i].req_id;
2643                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2644                                         next_to_clean, rx_ring->size_mask);
2645                         }
2646                         break;
2647                 }
2648
2649                 /* fill mbuf attributes if any */
2650                 ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2651
2652                 if (unlikely(mbuf->ol_flags &
2653                                 (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2654                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2655
2656                 rx_pkts[completed] = mbuf;
2657                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2658         }
2659
2660         rx_ring->rx_stats.cnt += completed;
2661         rx_ring->next_to_clean = next_to_clean;
2662
2663         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2664
2665         /* Burst refill to save doorbells, memory barriers, const interval */
2666         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2667                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2668                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2669         }
2670
2671         return completed;
2672 }
2673
2674 static uint16_t
2675 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2676                 uint16_t nb_pkts)
2677 {
2678         int32_t ret;
2679         uint32_t i;
2680         struct rte_mbuf *m;
2681         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2682         struct ena_adapter *adapter = tx_ring->adapter;
2683         struct rte_ipv4_hdr *ip_hdr;
2684         uint64_t ol_flags;
2685         uint64_t l4_csum_flag;
2686         uint64_t dev_offload_capa;
2687         uint16_t frag_field;
2688         bool need_pseudo_csum;
2689
2690         dev_offload_capa = adapter->offloads.tx_offloads;
2691         for (i = 0; i != nb_pkts; i++) {
2692                 m = tx_pkts[i];
2693                 ol_flags = m->ol_flags;
2694
2695                 /* Check if any offload flag was set */
2696                 if (ol_flags == 0)
2697                         continue;
2698
2699                 l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2700                 /* SCTP checksum offload is not supported by the ENA. */
2701                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2702                     l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2703                         PMD_TX_LOG(DEBUG,
2704                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2705                                 i, ol_flags);
2706                         rte_errno = ENOTSUP;
2707                         return i;
2708                 }
2709
2710                 if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2711                     !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2712                       m->nb_segs == tx_ring->sgl_size &&
2713                       m->data_len < tx_ring->tx_max_header_size))) {
2714                         PMD_TX_LOG(DEBUG,
2715                                 "mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2716                                 i, m->nb_segs);
2717                         rte_errno = EINVAL;
2718                         return i;
2719                 }
2720
2721 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2722                 /* Check if requested offload is also enabled for the queue */
2723                 if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2724                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2725                     (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2726                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2727                     (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2728                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2729                         PMD_TX_LOG(DEBUG,
2730                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2731                                 i, m->nb_segs, tx_ring->id);
2732                         rte_errno = EINVAL;
2733                         return i;
2734                 }
2735
2736                 /* The caller is obligated to set l2 and l3 len if any cksum
2737                  * offload is enabled.
2738                  */
2739                 if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2740                     (m->l2_len == 0 || m->l3_len == 0))) {
2741                         PMD_TX_LOG(DEBUG,
2742                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2743                                 i);
2744                         rte_errno = EINVAL;
2745                         return i;
2746                 }
2747                 ret = rte_validate_tx_offload(m);
2748                 if (ret != 0) {
2749                         rte_errno = -ret;
2750                         return i;
2751                 }
2752 #endif
2753
2754                 /* Verify HW support for requested offloads and determine if
2755                  * pseudo header checksum is needed.
2756                  */
2757                 need_pseudo_csum = false;
2758                 if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2759                         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2760                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2761                                 rte_errno = ENOTSUP;
2762                                 return i;
2763                         }
2764
2765                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2766                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2767                                 rte_errno = ENOTSUP;
2768                                 return i;
2769                         }
2770
2771                         /* Check HW capabilities and if pseudo csum is needed
2772                          * for L4 offloads.
2773                          */
2774                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2775                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2776                                 if (dev_offload_capa &
2777                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2778                                         need_pseudo_csum = true;
2779                                 } else {
2780                                         rte_errno = ENOTSUP;
2781                                         return i;
2782                                 }
2783                         }
2784
2785                         /* Parse the DF flag */
2786                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2787                                 struct rte_ipv4_hdr *, m->l2_len);
2788                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2789                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2790                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2791                         } else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2792                                 /* In case we are supposed to TSO and have DF
2793                                  * not set (DF=0) hardware must be provided with
2794                                  * partial checksum.
2795                                  */
2796                                 need_pseudo_csum = true;
2797                         }
2798                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2799                         /* There is no support for IPv6 TSO as for now. */
2800                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2801                                 rte_errno = ENOTSUP;
2802                                 return i;
2803                         }
2804
2805                         /* Check HW capabilities and if pseudo csum is needed */
2806                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2807                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2808                                 if (dev_offload_capa &
2809                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2810                                         need_pseudo_csum = true;
2811                                 } else {
2812                                         rte_errno = ENOTSUP;
2813                                         return i;
2814                                 }
2815                         }
2816                 }
2817
2818                 if (need_pseudo_csum) {
2819                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2820                         if (ret != 0) {
2821                                 rte_errno = -ret;
2822                                 return i;
2823                         }
2824                 }
2825         }
2826
2827         return i;
2828 }
2829
2830 static void ena_update_hints(struct ena_adapter *adapter,
2831                              struct ena_admin_ena_hw_hints *hints)
2832 {
2833         if (hints->admin_completion_tx_timeout)
2834                 adapter->ena_dev.admin_queue.completion_timeout =
2835                         hints->admin_completion_tx_timeout * 1000;
2836
2837         if (hints->mmio_read_timeout)
2838                 /* convert to usec */
2839                 adapter->ena_dev.mmio_read.reg_read_to =
2840                         hints->mmio_read_timeout * 1000;
2841
2842         if (hints->driver_watchdog_timeout) {
2843                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2844                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2845                 else
2846                         // Convert msecs to ticks
2847                         adapter->keep_alive_timeout =
2848                                 (hints->driver_watchdog_timeout *
2849                                 rte_get_timer_hz()) / 1000;
2850         }
2851 }
2852
2853 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2854         struct ena_tx_buffer *tx_info,
2855         struct rte_mbuf *mbuf,
2856         void **push_header,
2857         uint16_t *header_len)
2858 {
2859         struct ena_com_buf *ena_buf;
2860         uint16_t delta, seg_len, push_len;
2861
2862         delta = 0;
2863         seg_len = mbuf->data_len;
2864
2865         tx_info->mbuf = mbuf;
2866         ena_buf = tx_info->bufs;
2867
2868         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2869                 /*
2870                  * Tx header might be (and will be in most cases) smaller than
2871                  * tx_max_header_size. But it's not an issue to send more data
2872                  * to the device, than actually needed if the mbuf size is
2873                  * greater than tx_max_header_size.
2874                  */
2875                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2876                 *header_len = push_len;
2877
2878                 if (likely(push_len <= seg_len)) {
2879                         /* If the push header is in the single segment, then
2880                          * just point it to the 1st mbuf data.
2881                          */
2882                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2883                 } else {
2884                         /* If the push header lays in the several segments, copy
2885                          * it to the intermediate buffer.
2886                          */
2887                         rte_pktmbuf_read(mbuf, 0, push_len,
2888                                 tx_ring->push_buf_intermediate_buf);
2889                         *push_header = tx_ring->push_buf_intermediate_buf;
2890                         delta = push_len - seg_len;
2891                 }
2892         } else {
2893                 *push_header = NULL;
2894                 *header_len = 0;
2895                 push_len = 0;
2896         }
2897
2898         /* Process first segment taking into consideration pushed header */
2899         if (seg_len > push_len) {
2900                 ena_buf->paddr = mbuf->buf_iova +
2901                                 mbuf->data_off +
2902                                 push_len;
2903                 ena_buf->len = seg_len - push_len;
2904                 ena_buf++;
2905                 tx_info->num_of_bufs++;
2906         }
2907
2908         while ((mbuf = mbuf->next) != NULL) {
2909                 seg_len = mbuf->data_len;
2910
2911                 /* Skip mbufs if whole data is pushed as a header */
2912                 if (unlikely(delta > seg_len)) {
2913                         delta -= seg_len;
2914                         continue;
2915                 }
2916
2917                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2918                 ena_buf->len = seg_len - delta;
2919                 ena_buf++;
2920                 tx_info->num_of_bufs++;
2921
2922                 delta = 0;
2923         }
2924 }
2925
2926 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2927 {
2928         struct ena_tx_buffer *tx_info;
2929         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2930         uint16_t next_to_use;
2931         uint16_t header_len;
2932         uint16_t req_id;
2933         void *push_header;
2934         int nb_hw_desc;
2935         int rc;
2936
2937         /* Checking for space for 2 additional metadata descriptors due to
2938          * possible header split and metadata descriptor
2939          */
2940         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2941                                           mbuf->nb_segs + 2)) {
2942                 PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2943                 return ENA_COM_NO_MEM;
2944         }
2945
2946         next_to_use = tx_ring->next_to_use;
2947
2948         req_id = tx_ring->empty_tx_reqs[next_to_use];
2949         tx_info = &tx_ring->tx_buffer_info[req_id];
2950         tx_info->num_of_bufs = 0;
2951         RTE_ASSERT(tx_info->mbuf == NULL);
2952
2953         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2954
2955         ena_tx_ctx.ena_bufs = tx_info->bufs;
2956         ena_tx_ctx.push_header = push_header;
2957         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2958         ena_tx_ctx.req_id = req_id;
2959         ena_tx_ctx.header_len = header_len;
2960
2961         /* Set Tx offloads flags, if applicable */
2962         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2963                 tx_ring->disable_meta_caching);
2964
2965         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2966                         &ena_tx_ctx))) {
2967                 PMD_TX_LOG(DEBUG,
2968                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2969                         tx_ring->id);
2970                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2971                 tx_ring->tx_stats.doorbells++;
2972                 tx_ring->pkts_without_db = false;
2973         }
2974
2975         /* prepare the packet's descriptors to dma engine */
2976         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2977                 &nb_hw_desc);
2978         if (unlikely(rc)) {
2979                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2980                 ++tx_ring->tx_stats.prepare_ctx_err;
2981                 ena_trigger_reset(tx_ring->adapter,
2982                         ENA_REGS_RESET_DRIVER_INVALID_STATE);
2983                 return rc;
2984         }
2985
2986         tx_info->tx_descs = nb_hw_desc;
2987         tx_info->timestamp = rte_get_timer_cycles();
2988
2989         tx_ring->tx_stats.cnt++;
2990         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2991
2992         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2993                 tx_ring->size_mask);
2994
2995         return 0;
2996 }
2997
2998 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
2999 {
3000         struct ena_ring *tx_ring = (struct ena_ring *)txp;
3001         unsigned int total_tx_descs = 0;
3002         unsigned int total_tx_pkts = 0;
3003         uint16_t cleanup_budget;
3004         uint16_t next_to_clean = tx_ring->next_to_clean;
3005
3006         /*
3007          * If free_pkt_cnt is equal to 0, it means that the user requested
3008          * full cleanup, so attempt to release all Tx descriptors
3009          * (ring_size - 1 -> size_mask)
3010          */
3011         cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3012
3013         while (likely(total_tx_pkts < cleanup_budget)) {
3014                 struct rte_mbuf *mbuf;
3015                 struct ena_tx_buffer *tx_info;
3016                 uint16_t req_id;
3017
3018                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3019                         break;
3020
3021                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3022                         break;
3023
3024                 /* Get Tx info & store how many descs were processed  */
3025                 tx_info = &tx_ring->tx_buffer_info[req_id];
3026                 tx_info->timestamp = 0;
3027
3028                 mbuf = tx_info->mbuf;
3029                 rte_pktmbuf_free(mbuf);
3030
3031                 tx_info->mbuf = NULL;
3032                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3033
3034                 total_tx_descs += tx_info->tx_descs;
3035                 total_tx_pkts++;
3036
3037                 /* Put back descriptor to the ring for reuse */
3038                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3039                         tx_ring->size_mask);
3040         }
3041
3042         if (likely(total_tx_descs > 0)) {
3043                 /* acknowledge completion of sent packets */
3044                 tx_ring->next_to_clean = next_to_clean;
3045                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3046                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3047         }
3048
3049         /* Notify completion handler that full cleanup was performed */
3050         if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3051                 tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3052
3053         return total_tx_pkts;
3054 }
3055
3056 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3057                                   uint16_t nb_pkts)
3058 {
3059         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3060         int available_desc;
3061         uint16_t sent_idx = 0;
3062
3063 #ifdef RTE_ETHDEV_DEBUG_TX
3064         /* Check adapter state */
3065         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3066                 PMD_TX_LOG(ALERT,
3067                         "Trying to xmit pkts while device is NOT running\n");
3068                 return 0;
3069         }
3070 #endif
3071
3072         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3073         if (available_desc < tx_ring->tx_free_thresh)
3074                 ena_tx_cleanup((void *)tx_ring, 0);
3075
3076         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3077                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3078                         break;
3079                 tx_ring->pkts_without_db = true;
3080                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3081                         tx_ring->size_mask)]);
3082         }
3083
3084         /* If there are ready packets to be xmitted... */
3085         if (likely(tx_ring->pkts_without_db)) {
3086                 /* ...let HW do its best :-) */
3087                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3088                 tx_ring->tx_stats.doorbells++;
3089                 tx_ring->pkts_without_db = false;
3090         }
3091
3092         tx_ring->tx_stats.available_desc =
3093                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3094         tx_ring->tx_stats.tx_poll++;
3095
3096         return sent_idx;
3097 }
3098
3099 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3100 {
3101         int rc;
3102
3103         rte_spinlock_lock(&adapter->admin_lock);
3104         /* Retrieve and store the latest statistics from the AQ. This ensures
3105          * that previous value is returned in case of a com error.
3106          */
3107         rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3108                 (struct ena_admin_eni_stats *)stats);
3109         rte_spinlock_unlock(&adapter->admin_lock);
3110         if (rc != 0) {
3111                 if (rc == ENA_COM_UNSUPPORTED) {
3112                         PMD_DRV_LOG(DEBUG,
3113                                 "Retrieving ENI metrics is not supported\n");
3114                 } else {
3115                         PMD_DRV_LOG(WARNING,
3116                                 "Failed to get ENI metrics, rc: %d\n", rc);
3117                 }
3118                 return rc;
3119         }
3120
3121         return 0;
3122 }
3123
3124 /**
3125  * DPDK callback to retrieve names of extended device statistics
3126  *
3127  * @param dev
3128  *   Pointer to Ethernet device structure.
3129  * @param[out] xstats_names
3130  *   Buffer to insert names into.
3131  * @param n
3132  *   Number of names.
3133  *
3134  * @return
3135  *   Number of xstats names.
3136  */
3137 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3138                                 struct rte_eth_xstat_name *xstats_names,
3139                                 unsigned int n)
3140 {
3141         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3142         unsigned int stat, i, count = 0;
3143
3144         if (n < xstats_count || !xstats_names)
3145                 return xstats_count;
3146
3147         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3148                 strcpy(xstats_names[count].name,
3149                         ena_stats_global_strings[stat].name);
3150
3151         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3152                 strcpy(xstats_names[count].name,
3153                         ena_stats_eni_strings[stat].name);
3154
3155         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3156                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3157                         snprintf(xstats_names[count].name,
3158                                 sizeof(xstats_names[count].name),
3159                                 "rx_q%d_%s", i,
3160                                 ena_stats_rx_strings[stat].name);
3161
3162         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3163                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3164                         snprintf(xstats_names[count].name,
3165                                 sizeof(xstats_names[count].name),
3166                                 "tx_q%d_%s", i,
3167                                 ena_stats_tx_strings[stat].name);
3168
3169         return xstats_count;
3170 }
3171
3172 /**
3173  * DPDK callback to retrieve names of extended device statistics for the given
3174  * ids.
3175  *
3176  * @param dev
3177  *   Pointer to Ethernet device structure.
3178  * @param[out] xstats_names
3179  *   Buffer to insert names into.
3180  * @param ids
3181  *   IDs array for which the names should be retrieved.
3182  * @param size
3183  *   Number of ids.
3184  *
3185  * @return
3186  *   Positive value: number of xstats names. Negative value: error code.
3187  */
3188 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3189                                       const uint64_t *ids,
3190                                       struct rte_eth_xstat_name *xstats_names,
3191                                       unsigned int size)
3192 {
3193         uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3194         uint64_t id, qid;
3195         unsigned int i;
3196
3197         if (xstats_names == NULL)
3198                 return xstats_count;
3199
3200         for (i = 0; i < size; ++i) {
3201                 id = ids[i];
3202                 if (id > xstats_count) {
3203                         PMD_DRV_LOG(ERR,
3204                                 "ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3205                                  id, xstats_count);
3206                         return -EINVAL;
3207                 }
3208
3209                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3210                         strcpy(xstats_names[i].name,
3211                                ena_stats_global_strings[id].name);
3212                         continue;
3213                 }
3214
3215                 id -= ENA_STATS_ARRAY_GLOBAL;
3216                 if (id < ENA_STATS_ARRAY_ENI) {
3217                         strcpy(xstats_names[i].name,
3218                                ena_stats_eni_strings[id].name);
3219                         continue;
3220                 }
3221
3222                 id -= ENA_STATS_ARRAY_ENI;
3223                 if (id < ENA_STATS_ARRAY_RX) {
3224                         qid = id / dev->data->nb_rx_queues;
3225                         id %= dev->data->nb_rx_queues;
3226                         snprintf(xstats_names[i].name,
3227                                  sizeof(xstats_names[i].name),
3228                                  "rx_q%" PRIu64 "d_%s",
3229                                  qid, ena_stats_rx_strings[id].name);
3230                         continue;
3231                 }
3232
3233                 id -= ENA_STATS_ARRAY_RX;
3234                 /* Although this condition is not needed, it was added for
3235                  * compatibility if new xstat structure would be ever added.
3236                  */
3237                 if (id < ENA_STATS_ARRAY_TX) {
3238                         qid = id / dev->data->nb_tx_queues;
3239                         id %= dev->data->nb_tx_queues;
3240                         snprintf(xstats_names[i].name,
3241                                  sizeof(xstats_names[i].name),
3242                                  "tx_q%" PRIu64 "_%s",
3243                                  qid, ena_stats_tx_strings[id].name);
3244                         continue;
3245                 }
3246         }
3247
3248         return i;
3249 }
3250
3251 /**
3252  * DPDK callback to get extended device statistics.
3253  *
3254  * @param dev
3255  *   Pointer to Ethernet device structure.
3256  * @param[out] stats
3257  *   Stats table output buffer.
3258  * @param n
3259  *   The size of the stats table.
3260  *
3261  * @return
3262  *   Number of xstats on success, negative on failure.
3263  */
3264 static int ena_xstats_get(struct rte_eth_dev *dev,
3265                           struct rte_eth_xstat *xstats,
3266                           unsigned int n)
3267 {
3268         struct ena_adapter *adapter = dev->data->dev_private;
3269         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3270         struct ena_stats_eni eni_stats;
3271         unsigned int stat, i, count = 0;
3272         int stat_offset;
3273         void *stats_begin;
3274
3275         if (n < xstats_count)
3276                 return xstats_count;
3277
3278         if (!xstats)
3279                 return 0;
3280
3281         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3282                 stat_offset = ena_stats_global_strings[stat].stat_offset;
3283                 stats_begin = &adapter->dev_stats;
3284
3285                 xstats[count].id = count;
3286                 xstats[count].value = *((uint64_t *)
3287                         ((char *)stats_begin + stat_offset));
3288         }
3289
3290         /* Even if the function below fails, we should copy previous (or initial
3291          * values) to keep structure of rte_eth_xstat consistent.
3292          */
3293         ena_copy_eni_stats(adapter, &eni_stats);
3294         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3295                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
3296                 stats_begin = &eni_stats;
3297
3298                 xstats[count].id = count;
3299                 xstats[count].value = *((uint64_t *)
3300                     ((char *)stats_begin + stat_offset));
3301         }
3302
3303         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3304                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3305                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
3306                         stats_begin = &adapter->rx_ring[i].rx_stats;
3307
3308                         xstats[count].id = count;
3309                         xstats[count].value = *((uint64_t *)
3310                                 ((char *)stats_begin + stat_offset));
3311                 }
3312         }
3313
3314         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3315                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3316                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
3317                         stats_begin = &adapter->tx_ring[i].rx_stats;
3318
3319                         xstats[count].id = count;
3320                         xstats[count].value = *((uint64_t *)
3321                                 ((char *)stats_begin + stat_offset));
3322                 }
3323         }
3324
3325         return count;
3326 }
3327
3328 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3329                                 const uint64_t *ids,
3330                                 uint64_t *values,
3331                                 unsigned int n)
3332 {
3333         struct ena_adapter *adapter = dev->data->dev_private;
3334         struct ena_stats_eni eni_stats;
3335         uint64_t id;
3336         uint64_t rx_entries, tx_entries;
3337         unsigned int i;
3338         int qid;
3339         int valid = 0;
3340         bool was_eni_copied = false;
3341
3342         for (i = 0; i < n; ++i) {
3343                 id = ids[i];
3344                 /* Check if id belongs to global statistics */
3345                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3346                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
3347                         ++valid;
3348                         continue;
3349                 }
3350
3351                 /* Check if id belongs to ENI statistics */
3352                 id -= ENA_STATS_ARRAY_GLOBAL;
3353                 if (id < ENA_STATS_ARRAY_ENI) {
3354                         /* Avoid reading ENI stats multiple times in a single
3355                          * function call, as it requires communication with the
3356                          * admin queue.
3357                          */
3358                         if (!was_eni_copied) {
3359                                 was_eni_copied = true;
3360                                 ena_copy_eni_stats(adapter, &eni_stats);
3361                         }
3362                         values[i] = *((uint64_t *)&eni_stats + id);
3363                         ++valid;
3364                         continue;
3365                 }
3366
3367                 /* Check if id belongs to rx queue statistics */
3368                 id -= ENA_STATS_ARRAY_ENI;
3369                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3370                 if (id < rx_entries) {
3371                         qid = id % dev->data->nb_rx_queues;
3372                         id /= dev->data->nb_rx_queues;
3373                         values[i] = *((uint64_t *)
3374                                 &adapter->rx_ring[qid].rx_stats + id);
3375                         ++valid;
3376                         continue;
3377                 }
3378                                 /* Check if id belongs to rx queue statistics */
3379                 id -= rx_entries;
3380                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3381                 if (id < tx_entries) {
3382                         qid = id % dev->data->nb_tx_queues;
3383                         id /= dev->data->nb_tx_queues;
3384                         values[i] = *((uint64_t *)
3385                                 &adapter->tx_ring[qid].tx_stats + id);
3386                         ++valid;
3387                         continue;
3388                 }
3389         }
3390
3391         return valid;
3392 }
3393
3394 static int ena_process_uint_devarg(const char *key,
3395                                   const char *value,
3396                                   void *opaque)
3397 {
3398         struct ena_adapter *adapter = opaque;
3399         char *str_end;
3400         uint64_t uint_value;
3401
3402         uint_value = strtoull(value, &str_end, 10);
3403         if (value == str_end) {
3404                 PMD_INIT_LOG(ERR,
3405                         "Invalid value for key '%s'. Only uint values are accepted.\n",
3406                         key);
3407                 return -EINVAL;
3408         }
3409
3410         if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3411                 if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3412                         PMD_INIT_LOG(ERR,
3413                                 "Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3414                                 uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3415                         return -EINVAL;
3416                 } else if (uint_value == 0) {
3417                         PMD_INIT_LOG(INFO,
3418                                 "Check for missing Tx completions has been disabled.\n");
3419                         adapter->missing_tx_completion_to =
3420                                 ENA_HW_HINTS_NO_TIMEOUT;
3421                 } else {
3422                         PMD_INIT_LOG(INFO,
3423                                 "Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3424                                 uint_value);
3425                         adapter->missing_tx_completion_to =
3426                                 uint_value * rte_get_timer_hz();
3427                 }
3428         }
3429
3430         return 0;
3431 }
3432
3433 static int ena_process_bool_devarg(const char *key,
3434                                    const char *value,
3435                                    void *opaque)
3436 {
3437         struct ena_adapter *adapter = opaque;
3438         bool bool_value;
3439
3440         /* Parse the value. */
3441         if (strcmp(value, "1") == 0) {
3442                 bool_value = true;
3443         } else if (strcmp(value, "0") == 0) {
3444                 bool_value = false;
3445         } else {
3446                 PMD_INIT_LOG(ERR,
3447                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3448                         value, key);
3449                 return -EINVAL;
3450         }
3451
3452         /* Now, assign it to the proper adapter field. */
3453         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3454                 adapter->use_large_llq_hdr = bool_value;
3455
3456         return 0;
3457 }
3458
3459 static int ena_parse_devargs(struct ena_adapter *adapter,
3460                              struct rte_devargs *devargs)
3461 {
3462         static const char * const allowed_args[] = {
3463                 ENA_DEVARG_LARGE_LLQ_HDR,
3464                 ENA_DEVARG_MISS_TXC_TO,
3465                 NULL,
3466         };
3467         struct rte_kvargs *kvlist;
3468         int rc;
3469
3470         if (devargs == NULL)
3471                 return 0;
3472
3473         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3474         if (kvlist == NULL) {
3475                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3476                         devargs->args);
3477                 return -EINVAL;
3478         }
3479
3480         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3481                 ena_process_bool_devarg, adapter);
3482         if (rc != 0)
3483                 goto exit;
3484         rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3485                 ena_process_uint_devarg, adapter);
3486
3487 exit:
3488         rte_kvargs_free(kvlist);
3489
3490         return rc;
3491 }
3492
3493 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3494 {
3495         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3496         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3497         int rc;
3498         uint16_t vectors_nb, i;
3499         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3500
3501         if (!rx_intr_requested)
3502                 return 0;
3503
3504         if (!rte_intr_cap_multiple(intr_handle)) {
3505                 PMD_DRV_LOG(ERR,
3506                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3507                 return -ENOTSUP;
3508         }
3509
3510         /* Disable interrupt mapping before the configuration starts. */
3511         rte_intr_disable(intr_handle);
3512
3513         /* Verify if there are enough vectors available. */
3514         vectors_nb = dev->data->nb_rx_queues;
3515         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3516                 PMD_DRV_LOG(ERR,
3517                         "Too many Rx interrupts requested, maximum number: %d\n",
3518                         RTE_MAX_RXTX_INTR_VEC_ID);
3519                 rc = -ENOTSUP;
3520                 goto enable_intr;
3521         }
3522
3523         /* Allocate the vector list */
3524         if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3525                                            dev->data->nb_rx_queues)) {
3526                 PMD_DRV_LOG(ERR,
3527                         "Failed to allocate interrupt vector for %d queues\n",
3528                         dev->data->nb_rx_queues);
3529                 rc = -ENOMEM;
3530                 goto enable_intr;
3531         }
3532
3533         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3534         if (rc != 0)
3535                 goto free_intr_vec;
3536
3537         if (!rte_intr_allow_others(intr_handle)) {
3538                 PMD_DRV_LOG(ERR,
3539                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3540                 goto disable_intr_efd;
3541         }
3542
3543         for (i = 0; i < vectors_nb; ++i)
3544                 if (rte_intr_vec_list_index_set(intr_handle, i,
3545                                            RTE_INTR_VEC_RXTX_OFFSET + i))
3546                         goto disable_intr_efd;
3547
3548         rte_intr_enable(intr_handle);
3549         return 0;
3550
3551 disable_intr_efd:
3552         rte_intr_efd_disable(intr_handle);
3553 free_intr_vec:
3554         rte_intr_vec_list_free(intr_handle);
3555 enable_intr:
3556         rte_intr_enable(intr_handle);
3557         return rc;
3558 }
3559
3560 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3561                                  uint16_t queue_id,
3562                                  bool unmask)
3563 {
3564         struct ena_adapter *adapter = dev->data->dev_private;
3565         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3566         struct ena_eth_io_intr_reg intr_reg;
3567
3568         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3569         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3570 }
3571
3572 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3573                                     uint16_t queue_id)
3574 {
3575         ena_rx_queue_intr_set(dev, queue_id, true);
3576
3577         return 0;
3578 }
3579
3580 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3581                                      uint16_t queue_id)
3582 {
3583         ena_rx_queue_intr_set(dev, queue_id, false);
3584
3585         return 0;
3586 }
3587
3588 static int ena_configure_aenq(struct ena_adapter *adapter)
3589 {
3590         uint32_t aenq_groups = adapter->all_aenq_groups;
3591         int rc;
3592
3593         /* All_aenq_groups holds all AENQ functions supported by the device and
3594          * the HW, so at first we need to be sure the LSC request is valid.
3595          */
3596         if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3597                 if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3598                         PMD_DRV_LOG(ERR,
3599                                 "LSC requested, but it's not supported by the AENQ\n");
3600                         return -EINVAL;
3601                 }
3602         } else {
3603                 /* If LSC wasn't enabled by the app, let's enable all supported
3604                  * AENQ procedures except the LSC.
3605                  */
3606                 aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3607         }
3608
3609         rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3610         if (rc != 0) {
3611                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3612                 return rc;
3613         }
3614
3615         adapter->active_aenq_groups = aenq_groups;
3616
3617         return 0;
3618 }
3619
3620 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3621 {
3622         return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3623 }
3624
3625 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3626                               uint32_t *indirect_table)
3627 {
3628         return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3629                 indirect_table);
3630 }
3631
3632 /*********************************************************************
3633  *  ena_plat_dpdk.h functions implementations
3634  *********************************************************************/
3635
3636 const struct rte_memzone *
3637 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3638                        int socket_id, unsigned int alignment, void **virt_addr,
3639                        dma_addr_t *phys_addr)
3640 {
3641         char z_name[RTE_MEMZONE_NAMESIZE];
3642         struct ena_adapter *adapter = data->dev_private;
3643         const struct rte_memzone *memzone;
3644         int rc;
3645
3646         rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3647                 data->port_id, adapter->memzone_cnt);
3648         if (rc >= RTE_MEMZONE_NAMESIZE) {
3649                 PMD_DRV_LOG(ERR,
3650                         "Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3651                         data->port_id, adapter->memzone_cnt);
3652                 goto error;
3653         }
3654         adapter->memzone_cnt++;
3655
3656         memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3657                 RTE_MEMZONE_IOVA_CONTIG, alignment);
3658         if (memzone == NULL) {
3659                 PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3660                         z_name);
3661                 goto error;
3662         }
3663
3664         memset(memzone->addr, 0, size);
3665         *virt_addr = memzone->addr;
3666         *phys_addr = memzone->iova;
3667
3668         return memzone;
3669
3670 error:
3671         *virt_addr = NULL;
3672         *phys_addr = 0;
3673
3674         return NULL;
3675 }
3676
3677
3678 /*********************************************************************
3679  *  PMD configuration
3680  *********************************************************************/
3681 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3682         struct rte_pci_device *pci_dev)
3683 {
3684         return rte_eth_dev_pci_generic_probe(pci_dev,
3685                 sizeof(struct ena_adapter), eth_ena_dev_init);
3686 }
3687
3688 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3689 {
3690         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3691 }
3692
3693 static struct rte_pci_driver rte_ena_pmd = {
3694         .id_table = pci_id_ena_map,
3695         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3696                      RTE_PCI_DRV_WC_ACTIVATE,
3697         .probe = eth_ena_pci_probe,
3698         .remove = eth_ena_pci_remove,
3699 };
3700
3701 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3702 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3703 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3704 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3705 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3706 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3707 #ifdef RTE_ETHDEV_DEBUG_RX
3708 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3709 #endif
3710 #ifdef RTE_ETHDEV_DEBUG_TX
3711 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3712 #endif
3713 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3714
3715 /******************************************************************************
3716  ******************************** AENQ Handlers *******************************
3717  *****************************************************************************/
3718 static void ena_update_on_link_change(void *adapter_data,
3719                                       struct ena_admin_aenq_entry *aenq_e)
3720 {
3721         struct rte_eth_dev *eth_dev = adapter_data;
3722         struct ena_adapter *adapter = eth_dev->data->dev_private;
3723         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3724         uint32_t status;
3725
3726         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3727
3728         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3729         adapter->link_status = status;
3730
3731         ena_link_update(eth_dev, 0);
3732         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3733 }
3734
3735 static void ena_notification(void *adapter_data,
3736                              struct ena_admin_aenq_entry *aenq_e)
3737 {
3738         struct rte_eth_dev *eth_dev = adapter_data;
3739         struct ena_adapter *adapter = eth_dev->data->dev_private;
3740         struct ena_admin_ena_hw_hints *hints;
3741
3742         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3743                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3744                         aenq_e->aenq_common_desc.group,
3745                         ENA_ADMIN_NOTIFICATION);
3746
3747         switch (aenq_e->aenq_common_desc.syndrome) {
3748         case ENA_ADMIN_UPDATE_HINTS:
3749                 hints = (struct ena_admin_ena_hw_hints *)
3750                         (&aenq_e->inline_data_w4);
3751                 ena_update_hints(adapter, hints);
3752                 break;
3753         default:
3754                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3755                         aenq_e->aenq_common_desc.syndrome);
3756         }
3757 }
3758
3759 static void ena_keep_alive(void *adapter_data,
3760                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3761 {
3762         struct rte_eth_dev *eth_dev = adapter_data;
3763         struct ena_adapter *adapter = eth_dev->data->dev_private;
3764         struct ena_admin_aenq_keep_alive_desc *desc;
3765         uint64_t rx_drops;
3766         uint64_t tx_drops;
3767
3768         adapter->timestamp_wd = rte_get_timer_cycles();
3769
3770         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3771         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3772         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3773
3774         adapter->drv_stats->rx_drops = rx_drops;
3775         adapter->dev_stats.tx_drops = tx_drops;
3776 }
3777
3778 /**
3779  * This handler will called for unknown event group or unimplemented handlers
3780  **/
3781 static void unimplemented_aenq_handler(__rte_unused void *data,
3782                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3783 {
3784         PMD_DRV_LOG(ERR,
3785                 "Unknown event was received or event with unimplemented handler\n");
3786 }
3787
3788 static struct ena_aenq_handlers aenq_handlers = {
3789         .handlers = {
3790                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3791                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3792                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3793         },
3794         .unimplemented_handler = unimplemented_aenq_handler
3795 };
3796
3797 /*********************************************************************
3798  *  Multi-Process communication request handling (in primary)
3799  *********************************************************************/
3800 static int
3801 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3802 {
3803         const struct ena_mp_body *req =
3804                 (const struct ena_mp_body *)mp_msg->param;
3805         struct ena_adapter *adapter;
3806         struct ena_com_dev *ena_dev;
3807         struct ena_mp_body *rsp;
3808         struct rte_mp_msg mp_rsp;
3809         struct rte_eth_dev *dev;
3810         int res = 0;
3811
3812         rsp = (struct ena_mp_body *)&mp_rsp.param;
3813         mp_msg_init(&mp_rsp, req->type, req->port_id);
3814
3815         if (!rte_eth_dev_is_valid_port(req->port_id)) {
3816                 rte_errno = ENODEV;
3817                 res = -rte_errno;
3818                 PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3819                             req->port_id, req->type);
3820                 goto end;
3821         }
3822         dev = &rte_eth_devices[req->port_id];
3823         adapter = dev->data->dev_private;
3824         ena_dev = &adapter->ena_dev;
3825
3826         switch (req->type) {
3827         case ENA_MP_DEV_STATS_GET:
3828                 res = ena_com_get_dev_basic_stats(ena_dev,
3829                                                   &adapter->basic_stats);
3830                 break;
3831         case ENA_MP_ENI_STATS_GET:
3832                 res = ena_com_get_eni_stats(ena_dev,
3833                         (struct ena_admin_eni_stats *)&adapter->eni_stats);
3834                 break;
3835         case ENA_MP_MTU_SET:
3836                 res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3837                 break;
3838         case ENA_MP_IND_TBL_GET:
3839                 res = ena_com_indirect_table_get(ena_dev,
3840                                                  adapter->indirect_table);
3841                 break;
3842         case ENA_MP_IND_TBL_SET:
3843                 res = ena_com_indirect_table_set(ena_dev);
3844                 break;
3845         default:
3846                 PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3847                 res = -EINVAL;
3848                 break;
3849         }
3850
3851 end:
3852         /* Save processing result in the reply */
3853         rsp->result = res;
3854         /* Return just IPC processing status */
3855         return rte_mp_reply(&mp_rsp, peer);
3856 }