4d2601d15a57f3a530e88ece24e96c34ee965a7a
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    5
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 enum ethtool_stringset {
42         ETH_SS_TEST             = 0,
43         ETH_SS_STATS,
44 };
45
46 struct ena_stats {
47         char name[ETH_GSTRING_LEN];
48         int stat_offset;
49 };
50
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52         .name = #stat, \
53         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55
56 #define ENA_STAT_RX_ENTRY(stat) \
57         ENA_STAT_ENTRY(stat, rx)
58
59 #define ENA_STAT_TX_ENTRY(stat) \
60         ENA_STAT_ENTRY(stat, tx)
61
62 #define ENA_STAT_ENI_ENTRY(stat) \
63         ENA_STAT_ENTRY(stat, eni)
64
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66         ENA_STAT_ENTRY(stat, dev)
67
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76
77 static const struct ena_stats ena_stats_global_strings[] = {
78         ENA_STAT_GLOBAL_ENTRY(wd_expired),
79         ENA_STAT_GLOBAL_ENTRY(dev_start),
80         ENA_STAT_GLOBAL_ENTRY(dev_stop),
81         ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83
84 static const struct ena_stats ena_stats_eni_strings[] = {
85         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91
92 static const struct ena_stats ena_stats_tx_strings[] = {
93         ENA_STAT_TX_ENTRY(cnt),
94         ENA_STAT_TX_ENTRY(bytes),
95         ENA_STAT_TX_ENTRY(prepare_ctx_err),
96         ENA_STAT_TX_ENTRY(linearize),
97         ENA_STAT_TX_ENTRY(linearize_failed),
98         ENA_STAT_TX_ENTRY(tx_poll),
99         ENA_STAT_TX_ENTRY(doorbells),
100         ENA_STAT_TX_ENTRY(bad_req_id),
101         ENA_STAT_TX_ENTRY(available_desc),
102         ENA_STAT_TX_ENTRY(missed_tx),
103 };
104
105 static const struct ena_stats ena_stats_rx_strings[] = {
106         ENA_STAT_RX_ENTRY(cnt),
107         ENA_STAT_RX_ENTRY(bytes),
108         ENA_STAT_RX_ENTRY(refill_partial),
109         ENA_STAT_RX_ENTRY(bad_csum),
110         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
111         ENA_STAT_RX_ENTRY(bad_desc_num),
112         ENA_STAT_RX_ENTRY(bad_req_id),
113 };
114
115 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
116 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
117 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
119
120 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
121                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
122                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
123                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
125                        PKT_TX_IP_CKSUM |\
126                        PKT_TX_TCP_SEG)
127
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF            0xEC20
132 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
133
134 #define ENA_TX_OFFLOAD_MASK     (\
135         PKT_TX_L4_MASK |         \
136         PKT_TX_IPV6 |            \
137         PKT_TX_IPV4 |            \
138         PKT_TX_IP_CKSUM |        \
139         PKT_TX_TCP_SEG)
140
141 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
142         (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
143
144 /** HW specific offloads capabilities. */
145 /* IPv4 checksum offload. */
146 #define ENA_L3_IPV4_CSUM                0x0001
147 /* TCP/UDP checksum offload for IPv4 packets. */
148 #define ENA_L4_IPV4_CSUM                0x0002
149 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
150 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
151 /* TCP/UDP checksum offload for IPv6 packets. */
152 #define ENA_L4_IPV6_CSUM                0x0008
153 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
154 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
155 /* TSO support for IPv4 packets. */
156 #define ENA_IPV4_TSO                    0x0020
157
158 /* Device supports setting RSS hash. */
159 #define ENA_RX_RSS_HASH                 0x0040
160
161 static const struct rte_pci_id pci_id_ena_map[] = {
162         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
163         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
164         { .device_id = 0 },
165 };
166
167 static struct ena_aenq_handlers aenq_handlers;
168
169 static int ena_device_init(struct ena_com_dev *ena_dev,
170                            struct rte_pci_device *pdev,
171                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
172                            bool *wd_state);
173 static int ena_dev_configure(struct rte_eth_dev *dev);
174 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
175         struct ena_tx_buffer *tx_info,
176         struct rte_mbuf *mbuf,
177         void **push_header,
178         uint16_t *header_len);
179 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
180 static void ena_tx_cleanup(struct ena_ring *tx_ring);
181 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
182                                   uint16_t nb_pkts);
183 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
184                 uint16_t nb_pkts);
185 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186                               uint16_t nb_desc, unsigned int socket_id,
187                               const struct rte_eth_txconf *tx_conf);
188 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
189                               uint16_t nb_desc, unsigned int socket_id,
190                               const struct rte_eth_rxconf *rx_conf,
191                               struct rte_mempool *mp);
192 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
193 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
194                                     struct ena_com_rx_buf_info *ena_bufs,
195                                     uint32_t descs,
196                                     uint16_t *next_to_clean,
197                                     uint8_t offset);
198 static uint16_t eth_ena_recv_pkts(void *rx_queue,
199                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
200 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
201                                   struct rte_mbuf *mbuf, uint16_t id);
202 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
203 static void ena_init_rings(struct ena_adapter *adapter,
204                            bool disable_meta_caching);
205 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
206 static int ena_start(struct rte_eth_dev *dev);
207 static int ena_stop(struct rte_eth_dev *dev);
208 static int ena_close(struct rte_eth_dev *dev);
209 static int ena_dev_reset(struct rte_eth_dev *dev);
210 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
211 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
212 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
213 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
214 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
215 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
216 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
217 static int ena_link_update(struct rte_eth_dev *dev,
218                            int wait_to_complete);
219 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
220 static void ena_queue_stop(struct ena_ring *ring);
221 static void ena_queue_stop_all(struct rte_eth_dev *dev,
222                               enum ena_ring_type ring_type);
223 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
224 static int ena_queue_start_all(struct rte_eth_dev *dev,
225                                enum ena_ring_type ring_type);
226 static void ena_stats_restart(struct rte_eth_dev *dev);
227 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
228 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
229 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
230 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
231 static int ena_infos_get(struct rte_eth_dev *dev,
232                          struct rte_eth_dev_info *dev_info);
233 static void ena_interrupt_handler_rte(void *cb_arg);
234 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
235 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
236 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
237 static int ena_xstats_get_names(struct rte_eth_dev *dev,
238                                 struct rte_eth_xstat_name *xstats_names,
239                                 unsigned int n);
240 static int ena_xstats_get(struct rte_eth_dev *dev,
241                           struct rte_eth_xstat *stats,
242                           unsigned int n);
243 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
244                                 const uint64_t *ids,
245                                 uint64_t *values,
246                                 unsigned int n);
247 static int ena_process_bool_devarg(const char *key,
248                                    const char *value,
249                                    void *opaque);
250 static int ena_parse_devargs(struct ena_adapter *adapter,
251                              struct rte_devargs *devargs);
252 static int ena_copy_eni_stats(struct ena_adapter *adapter);
253 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
254 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
255                                     uint16_t queue_id);
256 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
257                                      uint16_t queue_id);
258
259 static const struct eth_dev_ops ena_dev_ops = {
260         .dev_configure        = ena_dev_configure,
261         .dev_infos_get        = ena_infos_get,
262         .rx_queue_setup       = ena_rx_queue_setup,
263         .tx_queue_setup       = ena_tx_queue_setup,
264         .dev_start            = ena_start,
265         .dev_stop             = ena_stop,
266         .link_update          = ena_link_update,
267         .stats_get            = ena_stats_get,
268         .xstats_get_names     = ena_xstats_get_names,
269         .xstats_get           = ena_xstats_get,
270         .xstats_get_by_id     = ena_xstats_get_by_id,
271         .mtu_set              = ena_mtu_set,
272         .rx_queue_release     = ena_rx_queue_release,
273         .tx_queue_release     = ena_tx_queue_release,
274         .dev_close            = ena_close,
275         .dev_reset            = ena_dev_reset,
276         .reta_update          = ena_rss_reta_update,
277         .reta_query           = ena_rss_reta_query,
278         .rx_queue_intr_enable = ena_rx_queue_intr_enable,
279         .rx_queue_intr_disable = ena_rx_queue_intr_disable,
280         .rss_hash_update      = ena_rss_hash_update,
281         .rss_hash_conf_get    = ena_rss_hash_conf_get,
282 };
283
284 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
285                                        struct ena_com_rx_ctx *ena_rx_ctx,
286                                        bool fill_hash)
287 {
288         uint64_t ol_flags = 0;
289         uint32_t packet_type = 0;
290
291         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
292                 packet_type |= RTE_PTYPE_L4_TCP;
293         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
294                 packet_type |= RTE_PTYPE_L4_UDP;
295
296         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
297                 packet_type |= RTE_PTYPE_L3_IPV4;
298                 if (unlikely(ena_rx_ctx->l3_csum_err))
299                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
300                 else
301                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
302         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
303                 packet_type |= RTE_PTYPE_L3_IPV6;
304         }
305
306         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
307                 ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
308         else
309                 if (unlikely(ena_rx_ctx->l4_csum_err))
310                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
311                 else
312                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
313
314         if (fill_hash &&
315             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
316                 ol_flags |= PKT_RX_RSS_HASH;
317                 mbuf->hash.rss = ena_rx_ctx->hash;
318         }
319
320         mbuf->ol_flags = ol_flags;
321         mbuf->packet_type = packet_type;
322 }
323
324 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
325                                        struct ena_com_tx_ctx *ena_tx_ctx,
326                                        uint64_t queue_offloads,
327                                        bool disable_meta_caching)
328 {
329         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
330
331         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
332             (queue_offloads & QUEUE_OFFLOADS)) {
333                 /* check if TSO is required */
334                 if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
335                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
336                         ena_tx_ctx->tso_enable = true;
337
338                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
339                 }
340
341                 /* check if L3 checksum is needed */
342                 if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
343                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
344                         ena_tx_ctx->l3_csum_enable = true;
345
346                 if (mbuf->ol_flags & PKT_TX_IPV6) {
347                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
348                 } else {
349                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
350
351                         /* set don't fragment (DF) flag */
352                         if (mbuf->packet_type &
353                                 (RTE_PTYPE_L4_NONFRAG
354                                  | RTE_PTYPE_INNER_L4_NONFRAG))
355                                 ena_tx_ctx->df = true;
356                 }
357
358                 /* check if L4 checksum is needed */
359                 if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
360                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
361                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
362                         ena_tx_ctx->l4_csum_enable = true;
363                 } else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
364                                 PKT_TX_UDP_CKSUM) &&
365                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
366                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
367                         ena_tx_ctx->l4_csum_enable = true;
368                 } else {
369                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
370                         ena_tx_ctx->l4_csum_enable = false;
371                 }
372
373                 ena_meta->mss = mbuf->tso_segsz;
374                 ena_meta->l3_hdr_len = mbuf->l3_len;
375                 ena_meta->l3_hdr_offset = mbuf->l2_len;
376
377                 ena_tx_ctx->meta_valid = true;
378         } else if (disable_meta_caching) {
379                 memset(ena_meta, 0, sizeof(*ena_meta));
380                 ena_tx_ctx->meta_valid = true;
381         } else {
382                 ena_tx_ctx->meta_valid = false;
383         }
384 }
385
386 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
387 {
388         struct ena_tx_buffer *tx_info = NULL;
389
390         if (likely(req_id < tx_ring->ring_size)) {
391                 tx_info = &tx_ring->tx_buffer_info[req_id];
392                 if (likely(tx_info->mbuf))
393                         return 0;
394         }
395
396         if (tx_info)
397                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
398         else
399                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
400
401         /* Trigger device reset */
402         ++tx_ring->tx_stats.bad_req_id;
403         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
404         tx_ring->adapter->trigger_reset = true;
405         return -EFAULT;
406 }
407
408 static void ena_config_host_info(struct ena_com_dev *ena_dev)
409 {
410         struct ena_admin_host_info *host_info;
411         int rc;
412
413         /* Allocate only the host info */
414         rc = ena_com_allocate_host_info(ena_dev);
415         if (rc) {
416                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
417                 return;
418         }
419
420         host_info = ena_dev->host_attr.host_info;
421
422         host_info->os_type = ENA_ADMIN_OS_DPDK;
423         host_info->kernel_ver = RTE_VERSION;
424         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
425                 sizeof(host_info->kernel_ver_str));
426         host_info->os_dist = RTE_VERSION;
427         strlcpy((char *)host_info->os_dist_str, rte_version(),
428                 sizeof(host_info->os_dist_str));
429         host_info->driver_version =
430                 (DRV_MODULE_VER_MAJOR) |
431                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
432                 (DRV_MODULE_VER_SUBMINOR <<
433                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
434         host_info->num_cpus = rte_lcore_count();
435
436         host_info->driver_supported_features =
437                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
438                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
439
440         rc = ena_com_set_host_attributes(ena_dev);
441         if (rc) {
442                 if (rc == -ENA_COM_UNSUPPORTED)
443                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
444                 else
445                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
446
447                 goto err;
448         }
449
450         return;
451
452 err:
453         ena_com_delete_host_info(ena_dev);
454 }
455
456 /* This function calculates the number of xstats based on the current config */
457 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
458 {
459         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
460                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
461                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
462 }
463
464 static void ena_config_debug_area(struct ena_adapter *adapter)
465 {
466         u32 debug_area_size;
467         int rc, ss_count;
468
469         ss_count = ena_xstats_calc_num(adapter->edev_data);
470
471         /* allocate 32 bytes for each string and 64bit for the value */
472         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
473
474         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
475         if (rc) {
476                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
477                 return;
478         }
479
480         rc = ena_com_set_host_attributes(&adapter->ena_dev);
481         if (rc) {
482                 if (rc == -ENA_COM_UNSUPPORTED)
483                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
484                 else
485                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
486
487                 goto err;
488         }
489
490         return;
491 err:
492         ena_com_delete_debug_area(&adapter->ena_dev);
493 }
494
495 static int ena_close(struct rte_eth_dev *dev)
496 {
497         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
498         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
499         struct ena_adapter *adapter = dev->data->dev_private;
500         int ret = 0;
501
502         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
503                 return 0;
504
505         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
506                 ret = ena_stop(dev);
507         adapter->state = ENA_ADAPTER_STATE_CLOSED;
508
509         ena_rx_queue_release_all(dev);
510         ena_tx_queue_release_all(dev);
511
512         rte_free(adapter->drv_stats);
513         adapter->drv_stats = NULL;
514
515         rte_intr_disable(intr_handle);
516         rte_intr_callback_unregister(intr_handle,
517                                      ena_interrupt_handler_rte,
518                                      dev);
519
520         /*
521          * MAC is not allocated dynamically. Setting NULL should prevent from
522          * release of the resource in the rte_eth_dev_release_port().
523          */
524         dev->data->mac_addrs = NULL;
525
526         return ret;
527 }
528
529 static int
530 ena_dev_reset(struct rte_eth_dev *dev)
531 {
532         int rc = 0;
533
534         /* Cannot release memory in secondary process */
535         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
536                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
537                 return -EPERM;
538         }
539
540         ena_destroy_device(dev);
541         rc = eth_ena_dev_init(dev);
542         if (rc)
543                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
544
545         return rc;
546 }
547
548 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
549 {
550         int nb_queues = dev->data->nb_rx_queues;
551         int i;
552
553         for (i = 0; i < nb_queues; i++)
554                 ena_rx_queue_release(dev, i);
555 }
556
557 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
558 {
559         int nb_queues = dev->data->nb_tx_queues;
560         int i;
561
562         for (i = 0; i < nb_queues; i++)
563                 ena_tx_queue_release(dev, i);
564 }
565
566 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
567 {
568         struct ena_ring *ring = dev->data->rx_queues[qid];
569
570         /* Free ring resources */
571         if (ring->rx_buffer_info)
572                 rte_free(ring->rx_buffer_info);
573         ring->rx_buffer_info = NULL;
574
575         if (ring->rx_refill_buffer)
576                 rte_free(ring->rx_refill_buffer);
577         ring->rx_refill_buffer = NULL;
578
579         if (ring->empty_rx_reqs)
580                 rte_free(ring->empty_rx_reqs);
581         ring->empty_rx_reqs = NULL;
582
583         ring->configured = 0;
584
585         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
586                 ring->port_id, ring->id);
587 }
588
589 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
590 {
591         struct ena_ring *ring = dev->data->tx_queues[qid];
592
593         /* Free ring resources */
594         if (ring->push_buf_intermediate_buf)
595                 rte_free(ring->push_buf_intermediate_buf);
596
597         if (ring->tx_buffer_info)
598                 rte_free(ring->tx_buffer_info);
599
600         if (ring->empty_tx_reqs)
601                 rte_free(ring->empty_tx_reqs);
602
603         ring->empty_tx_reqs = NULL;
604         ring->tx_buffer_info = NULL;
605         ring->push_buf_intermediate_buf = NULL;
606
607         ring->configured = 0;
608
609         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
610                 ring->port_id, ring->id);
611 }
612
613 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
614 {
615         unsigned int i;
616
617         for (i = 0; i < ring->ring_size; ++i) {
618                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
619                 if (rx_info->mbuf) {
620                         rte_mbuf_raw_free(rx_info->mbuf);
621                         rx_info->mbuf = NULL;
622                 }
623         }
624 }
625
626 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
627 {
628         unsigned int i;
629
630         for (i = 0; i < ring->ring_size; ++i) {
631                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
632
633                 if (tx_buf->mbuf) {
634                         rte_pktmbuf_free(tx_buf->mbuf);
635                         tx_buf->mbuf = NULL;
636                 }
637         }
638 }
639
640 static int ena_link_update(struct rte_eth_dev *dev,
641                            __rte_unused int wait_to_complete)
642 {
643         struct rte_eth_link *link = &dev->data->dev_link;
644         struct ena_adapter *adapter = dev->data->dev_private;
645
646         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
647         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
648         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
649
650         return 0;
651 }
652
653 static int ena_queue_start_all(struct rte_eth_dev *dev,
654                                enum ena_ring_type ring_type)
655 {
656         struct ena_adapter *adapter = dev->data->dev_private;
657         struct ena_ring *queues = NULL;
658         int nb_queues;
659         int i = 0;
660         int rc = 0;
661
662         if (ring_type == ENA_RING_TYPE_RX) {
663                 queues = adapter->rx_ring;
664                 nb_queues = dev->data->nb_rx_queues;
665         } else {
666                 queues = adapter->tx_ring;
667                 nb_queues = dev->data->nb_tx_queues;
668         }
669         for (i = 0; i < nb_queues; i++) {
670                 if (queues[i].configured) {
671                         if (ring_type == ENA_RING_TYPE_RX) {
672                                 ena_assert_msg(
673                                         dev->data->rx_queues[i] == &queues[i],
674                                         "Inconsistent state of Rx queues\n");
675                         } else {
676                                 ena_assert_msg(
677                                         dev->data->tx_queues[i] == &queues[i],
678                                         "Inconsistent state of Tx queues\n");
679                         }
680
681                         rc = ena_queue_start(dev, &queues[i]);
682
683                         if (rc) {
684                                 PMD_INIT_LOG(ERR,
685                                         "Failed to start queue[%d] of type(%d)\n",
686                                         i, ring_type);
687                                 goto err;
688                         }
689                 }
690         }
691
692         return 0;
693
694 err:
695         while (i--)
696                 if (queues[i].configured)
697                         ena_queue_stop(&queues[i]);
698
699         return rc;
700 }
701
702 static int ena_check_valid_conf(struct ena_adapter *adapter)
703 {
704         uint32_t mtu = adapter->edev_data->mtu;
705
706         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
707                 PMD_INIT_LOG(ERR,
708                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
709                         mtu, adapter->max_mtu, ENA_MIN_MTU);
710                 return ENA_COM_UNSUPPORTED;
711         }
712
713         return 0;
714 }
715
716 static int
717 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
718                        bool use_large_llq_hdr)
719 {
720         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
721         struct ena_com_dev *ena_dev = ctx->ena_dev;
722         uint32_t max_tx_queue_size;
723         uint32_t max_rx_queue_size;
724
725         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
726                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
727                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
728                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
729                         max_queue_ext->max_rx_sq_depth);
730                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
731
732                 if (ena_dev->tx_mem_queue_type ==
733                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
734                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
735                                 llq->max_llq_depth);
736                 } else {
737                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
738                                 max_queue_ext->max_tx_sq_depth);
739                 }
740
741                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
742                         max_queue_ext->max_per_packet_rx_descs);
743                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
744                         max_queue_ext->max_per_packet_tx_descs);
745         } else {
746                 struct ena_admin_queue_feature_desc *max_queues =
747                         &ctx->get_feat_ctx->max_queues;
748                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
749                         max_queues->max_sq_depth);
750                 max_tx_queue_size = max_queues->max_cq_depth;
751
752                 if (ena_dev->tx_mem_queue_type ==
753                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
754                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
755                                 llq->max_llq_depth);
756                 } else {
757                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
758                                 max_queues->max_sq_depth);
759                 }
760
761                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
762                         max_queues->max_packet_rx_descs);
763                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
764                         max_queues->max_packet_tx_descs);
765         }
766
767         /* Round down to the nearest power of 2 */
768         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
769         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
770
771         if (use_large_llq_hdr) {
772                 if ((llq->entry_size_ctrl_supported &
773                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
774                     (ena_dev->tx_mem_queue_type ==
775                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
776                         max_tx_queue_size /= 2;
777                         PMD_INIT_LOG(INFO,
778                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
779                                 max_tx_queue_size);
780                 } else {
781                         PMD_INIT_LOG(ERR,
782                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
783                 }
784         }
785
786         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
787                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
788                 return -EFAULT;
789         }
790
791         ctx->max_tx_queue_size = max_tx_queue_size;
792         ctx->max_rx_queue_size = max_rx_queue_size;
793
794         return 0;
795 }
796
797 static void ena_stats_restart(struct rte_eth_dev *dev)
798 {
799         struct ena_adapter *adapter = dev->data->dev_private;
800
801         rte_atomic64_init(&adapter->drv_stats->ierrors);
802         rte_atomic64_init(&adapter->drv_stats->oerrors);
803         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
804         adapter->drv_stats->rx_drops = 0;
805 }
806
807 static int ena_stats_get(struct rte_eth_dev *dev,
808                           struct rte_eth_stats *stats)
809 {
810         struct ena_admin_basic_stats ena_stats;
811         struct ena_adapter *adapter = dev->data->dev_private;
812         struct ena_com_dev *ena_dev = &adapter->ena_dev;
813         int rc;
814         int i;
815         int max_rings_stats;
816
817         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
818                 return -ENOTSUP;
819
820         memset(&ena_stats, 0, sizeof(ena_stats));
821
822         rte_spinlock_lock(&adapter->admin_lock);
823         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
824         rte_spinlock_unlock(&adapter->admin_lock);
825         if (unlikely(rc)) {
826                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
827                 return rc;
828         }
829
830         /* Set of basic statistics from ENA */
831         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
832                                           ena_stats.rx_pkts_low);
833         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
834                                           ena_stats.tx_pkts_low);
835         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
836                                         ena_stats.rx_bytes_low);
837         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
838                                         ena_stats.tx_bytes_low);
839
840         /* Driver related stats */
841         stats->imissed = adapter->drv_stats->rx_drops;
842         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
843         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
844         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
845
846         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
847                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
848         for (i = 0; i < max_rings_stats; ++i) {
849                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
850
851                 stats->q_ibytes[i] = rx_stats->bytes;
852                 stats->q_ipackets[i] = rx_stats->cnt;
853                 stats->q_errors[i] = rx_stats->bad_desc_num +
854                         rx_stats->bad_req_id;
855         }
856
857         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
858                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
859         for (i = 0; i < max_rings_stats; ++i) {
860                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
861
862                 stats->q_obytes[i] = tx_stats->bytes;
863                 stats->q_opackets[i] = tx_stats->cnt;
864         }
865
866         return 0;
867 }
868
869 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
870 {
871         struct ena_adapter *adapter;
872         struct ena_com_dev *ena_dev;
873         int rc = 0;
874
875         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
876         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
877         adapter = dev->data->dev_private;
878
879         ena_dev = &adapter->ena_dev;
880         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
881
882         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
883                 PMD_DRV_LOG(ERR,
884                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
885                         mtu, adapter->max_mtu, ENA_MIN_MTU);
886                 return -EINVAL;
887         }
888
889         rc = ena_com_set_dev_mtu(ena_dev, mtu);
890         if (rc)
891                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
892         else
893                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
894
895         return rc;
896 }
897
898 static int ena_start(struct rte_eth_dev *dev)
899 {
900         struct ena_adapter *adapter = dev->data->dev_private;
901         uint64_t ticks;
902         int rc = 0;
903
904         /* Cannot allocate memory in secondary process */
905         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
906                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
907                 return -EPERM;
908         }
909
910         rc = ena_check_valid_conf(adapter);
911         if (rc)
912                 return rc;
913
914         rc = ena_setup_rx_intr(dev);
915         if (rc)
916                 return rc;
917
918         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
919         if (rc)
920                 return rc;
921
922         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
923         if (rc)
924                 goto err_start_tx;
925
926         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
927                 rc = ena_rss_configure(adapter);
928                 if (rc)
929                         goto err_rss_init;
930         }
931
932         ena_stats_restart(dev);
933
934         adapter->timestamp_wd = rte_get_timer_cycles();
935         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
936
937         ticks = rte_get_timer_hz();
938         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
939                         ena_timer_wd_callback, dev);
940
941         ++adapter->dev_stats.dev_start;
942         adapter->state = ENA_ADAPTER_STATE_RUNNING;
943
944         return 0;
945
946 err_rss_init:
947         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
948 err_start_tx:
949         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
950         return rc;
951 }
952
953 static int ena_stop(struct rte_eth_dev *dev)
954 {
955         struct ena_adapter *adapter = dev->data->dev_private;
956         struct ena_com_dev *ena_dev = &adapter->ena_dev;
957         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
958         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
959         int rc;
960
961         /* Cannot free memory in secondary process */
962         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
963                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
964                 return -EPERM;
965         }
966
967         rte_timer_stop_sync(&adapter->timer_wd);
968         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
969         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
970
971         if (adapter->trigger_reset) {
972                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
973                 if (rc)
974                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
975         }
976
977         rte_intr_disable(intr_handle);
978
979         rte_intr_efd_disable(intr_handle);
980         if (intr_handle->intr_vec != NULL) {
981                 rte_free(intr_handle->intr_vec);
982                 intr_handle->intr_vec = NULL;
983         }
984
985         rte_intr_enable(intr_handle);
986
987         ++adapter->dev_stats.dev_stop;
988         adapter->state = ENA_ADAPTER_STATE_STOPPED;
989         dev->data->dev_started = 0;
990
991         return 0;
992 }
993
994 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
995 {
996         struct ena_adapter *adapter = ring->adapter;
997         struct ena_com_dev *ena_dev = &adapter->ena_dev;
998         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
999         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1000         struct ena_com_create_io_ctx ctx =
1001                 /* policy set to _HOST just to satisfy icc compiler */
1002                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1003                   0, 0, 0, 0, 0 };
1004         uint16_t ena_qid;
1005         unsigned int i;
1006         int rc;
1007
1008         ctx.msix_vector = -1;
1009         if (ring->type == ENA_RING_TYPE_TX) {
1010                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1011                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1012                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1013                 for (i = 0; i < ring->ring_size; i++)
1014                         ring->empty_tx_reqs[i] = i;
1015         } else {
1016                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1017                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1018                 if (rte_intr_dp_is_en(intr_handle))
1019                         ctx.msix_vector = intr_handle->intr_vec[ring->id];
1020                 for (i = 0; i < ring->ring_size; i++)
1021                         ring->empty_rx_reqs[i] = i;
1022         }
1023         ctx.queue_size = ring->ring_size;
1024         ctx.qid = ena_qid;
1025         ctx.numa_node = ring->numa_socket_id;
1026
1027         rc = ena_com_create_io_queue(ena_dev, &ctx);
1028         if (rc) {
1029                 PMD_DRV_LOG(ERR,
1030                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1031                         ring->id, ena_qid, rc);
1032                 return rc;
1033         }
1034
1035         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1036                                      &ring->ena_com_io_sq,
1037                                      &ring->ena_com_io_cq);
1038         if (rc) {
1039                 PMD_DRV_LOG(ERR,
1040                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1041                         ring->id, rc);
1042                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1043                 return rc;
1044         }
1045
1046         if (ring->type == ENA_RING_TYPE_TX)
1047                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1048
1049         /* Start with Rx interrupts being masked. */
1050         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1051                 ena_rx_queue_intr_disable(dev, ring->id);
1052
1053         return 0;
1054 }
1055
1056 static void ena_queue_stop(struct ena_ring *ring)
1057 {
1058         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1059
1060         if (ring->type == ENA_RING_TYPE_RX) {
1061                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1062                 ena_rx_queue_release_bufs(ring);
1063         } else {
1064                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1065                 ena_tx_queue_release_bufs(ring);
1066         }
1067 }
1068
1069 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1070                               enum ena_ring_type ring_type)
1071 {
1072         struct ena_adapter *adapter = dev->data->dev_private;
1073         struct ena_ring *queues = NULL;
1074         uint16_t nb_queues, i;
1075
1076         if (ring_type == ENA_RING_TYPE_RX) {
1077                 queues = adapter->rx_ring;
1078                 nb_queues = dev->data->nb_rx_queues;
1079         } else {
1080                 queues = adapter->tx_ring;
1081                 nb_queues = dev->data->nb_tx_queues;
1082         }
1083
1084         for (i = 0; i < nb_queues; ++i)
1085                 if (queues[i].configured)
1086                         ena_queue_stop(&queues[i]);
1087 }
1088
1089 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1090 {
1091         int rc, bufs_num;
1092
1093         ena_assert_msg(ring->configured == 1,
1094                        "Trying to start unconfigured queue\n");
1095
1096         rc = ena_create_io_queue(dev, ring);
1097         if (rc) {
1098                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1099                 return rc;
1100         }
1101
1102         ring->next_to_clean = 0;
1103         ring->next_to_use = 0;
1104
1105         if (ring->type == ENA_RING_TYPE_TX) {
1106                 ring->tx_stats.available_desc =
1107                         ena_com_free_q_entries(ring->ena_com_io_sq);
1108                 return 0;
1109         }
1110
1111         bufs_num = ring->ring_size - 1;
1112         rc = ena_populate_rx_queue(ring, bufs_num);
1113         if (rc != bufs_num) {
1114                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1115                                          ENA_IO_RXQ_IDX(ring->id));
1116                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1117                 return ENA_COM_FAULT;
1118         }
1119         /* Flush per-core RX buffers pools cache as they can be used on other
1120          * cores as well.
1121          */
1122         rte_mempool_cache_flush(NULL, ring->mb_pool);
1123
1124         return 0;
1125 }
1126
1127 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1128                               uint16_t queue_idx,
1129                               uint16_t nb_desc,
1130                               unsigned int socket_id,
1131                               const struct rte_eth_txconf *tx_conf)
1132 {
1133         struct ena_ring *txq = NULL;
1134         struct ena_adapter *adapter = dev->data->dev_private;
1135         unsigned int i;
1136         uint16_t dyn_thresh;
1137
1138         txq = &adapter->tx_ring[queue_idx];
1139
1140         if (txq->configured) {
1141                 PMD_DRV_LOG(CRIT,
1142                         "API violation. Queue[%d] is already configured\n",
1143                         queue_idx);
1144                 return ENA_COM_FAULT;
1145         }
1146
1147         if (!rte_is_power_of_2(nb_desc)) {
1148                 PMD_DRV_LOG(ERR,
1149                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1150                         nb_desc);
1151                 return -EINVAL;
1152         }
1153
1154         if (nb_desc > adapter->max_tx_ring_size) {
1155                 PMD_DRV_LOG(ERR,
1156                         "Unsupported size of Tx queue (max size: %d)\n",
1157                         adapter->max_tx_ring_size);
1158                 return -EINVAL;
1159         }
1160
1161         txq->port_id = dev->data->port_id;
1162         txq->next_to_clean = 0;
1163         txq->next_to_use = 0;
1164         txq->ring_size = nb_desc;
1165         txq->size_mask = nb_desc - 1;
1166         txq->numa_socket_id = socket_id;
1167         txq->pkts_without_db = false;
1168         txq->last_cleanup_ticks = 0;
1169
1170         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1171                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1172                 RTE_CACHE_LINE_SIZE,
1173                 socket_id);
1174         if (!txq->tx_buffer_info) {
1175                 PMD_DRV_LOG(ERR,
1176                         "Failed to allocate memory for Tx buffer info\n");
1177                 return -ENOMEM;
1178         }
1179
1180         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1181                 sizeof(uint16_t) * txq->ring_size,
1182                 RTE_CACHE_LINE_SIZE,
1183                 socket_id);
1184         if (!txq->empty_tx_reqs) {
1185                 PMD_DRV_LOG(ERR,
1186                         "Failed to allocate memory for empty Tx requests\n");
1187                 rte_free(txq->tx_buffer_info);
1188                 return -ENOMEM;
1189         }
1190
1191         txq->push_buf_intermediate_buf =
1192                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1193                         txq->tx_max_header_size,
1194                         RTE_CACHE_LINE_SIZE,
1195                         socket_id);
1196         if (!txq->push_buf_intermediate_buf) {
1197                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1198                 rte_free(txq->tx_buffer_info);
1199                 rte_free(txq->empty_tx_reqs);
1200                 return -ENOMEM;
1201         }
1202
1203         for (i = 0; i < txq->ring_size; i++)
1204                 txq->empty_tx_reqs[i] = i;
1205
1206         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1207
1208         /* Check if caller provided the Tx cleanup threshold value. */
1209         if (tx_conf->tx_free_thresh != 0) {
1210                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1211         } else {
1212                 dyn_thresh = txq->ring_size -
1213                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1214                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1215                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1216         }
1217
1218         txq->missing_tx_completion_threshold =
1219                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1220
1221         /* Store pointer to this queue in upper layer */
1222         txq->configured = 1;
1223         dev->data->tx_queues[queue_idx] = txq;
1224
1225         return 0;
1226 }
1227
1228 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1229                               uint16_t queue_idx,
1230                               uint16_t nb_desc,
1231                               unsigned int socket_id,
1232                               const struct rte_eth_rxconf *rx_conf,
1233                               struct rte_mempool *mp)
1234 {
1235         struct ena_adapter *adapter = dev->data->dev_private;
1236         struct ena_ring *rxq = NULL;
1237         size_t buffer_size;
1238         int i;
1239         uint16_t dyn_thresh;
1240
1241         rxq = &adapter->rx_ring[queue_idx];
1242         if (rxq->configured) {
1243                 PMD_DRV_LOG(CRIT,
1244                         "API violation. Queue[%d] is already configured\n",
1245                         queue_idx);
1246                 return ENA_COM_FAULT;
1247         }
1248
1249         if (!rte_is_power_of_2(nb_desc)) {
1250                 PMD_DRV_LOG(ERR,
1251                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1252                         nb_desc);
1253                 return -EINVAL;
1254         }
1255
1256         if (nb_desc > adapter->max_rx_ring_size) {
1257                 PMD_DRV_LOG(ERR,
1258                         "Unsupported size of Rx queue (max size: %d)\n",
1259                         adapter->max_rx_ring_size);
1260                 return -EINVAL;
1261         }
1262
1263         /* ENA isn't supporting buffers smaller than 1400 bytes */
1264         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1265         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1266                 PMD_DRV_LOG(ERR,
1267                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1268                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1269                 return -EINVAL;
1270         }
1271
1272         rxq->port_id = dev->data->port_id;
1273         rxq->next_to_clean = 0;
1274         rxq->next_to_use = 0;
1275         rxq->ring_size = nb_desc;
1276         rxq->size_mask = nb_desc - 1;
1277         rxq->numa_socket_id = socket_id;
1278         rxq->mb_pool = mp;
1279
1280         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1281                 sizeof(struct ena_rx_buffer) * nb_desc,
1282                 RTE_CACHE_LINE_SIZE,
1283                 socket_id);
1284         if (!rxq->rx_buffer_info) {
1285                 PMD_DRV_LOG(ERR,
1286                         "Failed to allocate memory for Rx buffer info\n");
1287                 return -ENOMEM;
1288         }
1289
1290         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1291                 sizeof(struct rte_mbuf *) * nb_desc,
1292                 RTE_CACHE_LINE_SIZE,
1293                 socket_id);
1294         if (!rxq->rx_refill_buffer) {
1295                 PMD_DRV_LOG(ERR,
1296                         "Failed to allocate memory for Rx refill buffer\n");
1297                 rte_free(rxq->rx_buffer_info);
1298                 rxq->rx_buffer_info = NULL;
1299                 return -ENOMEM;
1300         }
1301
1302         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1303                 sizeof(uint16_t) * nb_desc,
1304                 RTE_CACHE_LINE_SIZE,
1305                 socket_id);
1306         if (!rxq->empty_rx_reqs) {
1307                 PMD_DRV_LOG(ERR,
1308                         "Failed to allocate memory for empty Rx requests\n");
1309                 rte_free(rxq->rx_buffer_info);
1310                 rxq->rx_buffer_info = NULL;
1311                 rte_free(rxq->rx_refill_buffer);
1312                 rxq->rx_refill_buffer = NULL;
1313                 return -ENOMEM;
1314         }
1315
1316         for (i = 0; i < nb_desc; i++)
1317                 rxq->empty_rx_reqs[i] = i;
1318
1319         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1320
1321         if (rx_conf->rx_free_thresh != 0) {
1322                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1323         } else {
1324                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1325                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1326                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1327         }
1328
1329         /* Store pointer to this queue in upper layer */
1330         rxq->configured = 1;
1331         dev->data->rx_queues[queue_idx] = rxq;
1332
1333         return 0;
1334 }
1335
1336 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1337                                   struct rte_mbuf *mbuf, uint16_t id)
1338 {
1339         struct ena_com_buf ebuf;
1340         int rc;
1341
1342         /* prepare physical address for DMA transaction */
1343         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1344         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1345
1346         /* pass resource to device */
1347         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1348         if (unlikely(rc != 0))
1349                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1350
1351         return rc;
1352 }
1353
1354 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1355 {
1356         unsigned int i;
1357         int rc;
1358         uint16_t next_to_use = rxq->next_to_use;
1359         uint16_t req_id;
1360 #ifdef RTE_ETHDEV_DEBUG_RX
1361         uint16_t in_use;
1362 #endif
1363         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1364
1365         if (unlikely(!count))
1366                 return 0;
1367
1368 #ifdef RTE_ETHDEV_DEBUG_RX
1369         in_use = rxq->ring_size - 1 -
1370                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1371         if (unlikely((in_use + count) >= rxq->ring_size))
1372                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1373 #endif
1374
1375         /* get resources for incoming packets */
1376         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1377         if (unlikely(rc < 0)) {
1378                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1379                 ++rxq->rx_stats.mbuf_alloc_fail;
1380                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1381                 return 0;
1382         }
1383
1384         for (i = 0; i < count; i++) {
1385                 struct rte_mbuf *mbuf = mbufs[i];
1386                 struct ena_rx_buffer *rx_info;
1387
1388                 if (likely((i + 4) < count))
1389                         rte_prefetch0(mbufs[i + 4]);
1390
1391                 req_id = rxq->empty_rx_reqs[next_to_use];
1392                 rx_info = &rxq->rx_buffer_info[req_id];
1393
1394                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1395                 if (unlikely(rc != 0))
1396                         break;
1397
1398                 rx_info->mbuf = mbuf;
1399                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1400         }
1401
1402         if (unlikely(i < count)) {
1403                 PMD_RX_LOG(WARNING,
1404                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1405                         rxq->id, i, count);
1406                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1407                 ++rxq->rx_stats.refill_partial;
1408         }
1409
1410         /* When we submitted free recources to device... */
1411         if (likely(i > 0)) {
1412                 /* ...let HW know that it can fill buffers with data. */
1413                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1414
1415                 rxq->next_to_use = next_to_use;
1416         }
1417
1418         return i;
1419 }
1420
1421 static int ena_device_init(struct ena_com_dev *ena_dev,
1422                            struct rte_pci_device *pdev,
1423                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1424                            bool *wd_state)
1425 {
1426         uint32_t aenq_groups;
1427         int rc;
1428         bool readless_supported;
1429
1430         /* Initialize mmio registers */
1431         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1432         if (rc) {
1433                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1434                 return rc;
1435         }
1436
1437         /* The PCIe configuration space revision id indicate if mmio reg
1438          * read is disabled.
1439          */
1440         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1441         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1442
1443         /* reset device */
1444         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1445         if (rc) {
1446                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1447                 goto err_mmio_read_less;
1448         }
1449
1450         /* check FW version */
1451         rc = ena_com_validate_version(ena_dev);
1452         if (rc) {
1453                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1454                 goto err_mmio_read_less;
1455         }
1456
1457         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1458
1459         /* ENA device administration layer init */
1460         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1461         if (rc) {
1462                 PMD_DRV_LOG(ERR,
1463                         "Cannot initialize ENA admin queue\n");
1464                 goto err_mmio_read_less;
1465         }
1466
1467         /* To enable the msix interrupts the driver needs to know the number
1468          * of queues. So the driver uses polling mode to retrieve this
1469          * information.
1470          */
1471         ena_com_set_admin_polling_mode(ena_dev, true);
1472
1473         ena_config_host_info(ena_dev);
1474
1475         /* Get Device Attributes and features */
1476         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1477         if (rc) {
1478                 PMD_DRV_LOG(ERR,
1479                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1480                 goto err_admin_init;
1481         }
1482
1483         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1484                       BIT(ENA_ADMIN_NOTIFICATION) |
1485                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1486                       BIT(ENA_ADMIN_FATAL_ERROR) |
1487                       BIT(ENA_ADMIN_WARNING);
1488
1489         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1490         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1491         if (rc) {
1492                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1493                 goto err_admin_init;
1494         }
1495
1496         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1497
1498         return 0;
1499
1500 err_admin_init:
1501         ena_com_admin_destroy(ena_dev);
1502
1503 err_mmio_read_less:
1504         ena_com_mmio_reg_read_request_destroy(ena_dev);
1505
1506         return rc;
1507 }
1508
1509 static void ena_interrupt_handler_rte(void *cb_arg)
1510 {
1511         struct rte_eth_dev *dev = cb_arg;
1512         struct ena_adapter *adapter = dev->data->dev_private;
1513         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1514
1515         ena_com_admin_q_comp_intr_handler(ena_dev);
1516         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1517                 ena_com_aenq_intr_handler(ena_dev, dev);
1518 }
1519
1520 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1521 {
1522         if (!adapter->wd_state)
1523                 return;
1524
1525         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1526                 return;
1527
1528         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1529             adapter->keep_alive_timeout)) {
1530                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1531                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1532                 adapter->trigger_reset = true;
1533                 ++adapter->dev_stats.wd_expired;
1534         }
1535 }
1536
1537 /* Check if admin queue is enabled */
1538 static void check_for_admin_com_state(struct ena_adapter *adapter)
1539 {
1540         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1541                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1542                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1543                 adapter->trigger_reset = true;
1544         }
1545 }
1546
1547 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1548                                             struct ena_ring *tx_ring)
1549 {
1550         struct ena_tx_buffer *tx_buf;
1551         uint64_t timestamp;
1552         uint64_t completion_delay;
1553         uint32_t missed_tx = 0;
1554         unsigned int i;
1555         int rc = 0;
1556
1557         for (i = 0; i < tx_ring->ring_size; ++i) {
1558                 tx_buf = &tx_ring->tx_buffer_info[i];
1559                 timestamp = tx_buf->timestamp;
1560
1561                 if (timestamp == 0)
1562                         continue;
1563
1564                 completion_delay = rte_get_timer_cycles() - timestamp;
1565                 if (completion_delay > adapter->missing_tx_completion_to) {
1566                         if (unlikely(!tx_buf->print_once)) {
1567                                 PMD_TX_LOG(WARNING,
1568                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1569                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1570                                         tx_ring->id, i, completion_delay /
1571                                         rte_get_timer_hz() * 1000);
1572                                 tx_buf->print_once = true;
1573                         }
1574                         ++missed_tx;
1575                 }
1576         }
1577
1578         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1579                 PMD_DRV_LOG(ERR,
1580                         "The number of lost Tx completions is above the threshold (%d > %d). "
1581                         "Trigger the device reset.\n",
1582                         missed_tx,
1583                         tx_ring->missing_tx_completion_threshold);
1584                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1585                 adapter->trigger_reset = true;
1586                 rc = -EIO;
1587         }
1588
1589         tx_ring->tx_stats.missed_tx += missed_tx;
1590
1591         return rc;
1592 }
1593
1594 static void check_for_tx_completions(struct ena_adapter *adapter)
1595 {
1596         struct ena_ring *tx_ring;
1597         uint64_t tx_cleanup_delay;
1598         size_t qid;
1599         int budget;
1600         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1601
1602         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1603                 return;
1604
1605         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1606         budget = adapter->missing_tx_completion_budget;
1607
1608         qid = adapter->last_tx_comp_qid;
1609         while (budget-- > 0) {
1610                 tx_ring = &adapter->tx_ring[qid];
1611
1612                 /* Tx cleanup is called only by the burst function and can be
1613                  * called dynamically by the application. Also cleanup is
1614                  * limited by the threshold. To avoid false detection of the
1615                  * missing HW Tx completion, get the delay since last cleanup
1616                  * function was called.
1617                  */
1618                 tx_cleanup_delay = rte_get_timer_cycles() -
1619                         tx_ring->last_cleanup_ticks;
1620                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1621                         check_for_tx_completion_in_queue(adapter, tx_ring);
1622                 qid = (qid + 1) % nb_tx_queues;
1623         }
1624
1625         adapter->last_tx_comp_qid = qid;
1626 }
1627
1628 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1629                                   void *arg)
1630 {
1631         struct rte_eth_dev *dev = arg;
1632         struct ena_adapter *adapter = dev->data->dev_private;
1633
1634         check_for_missing_keep_alive(adapter);
1635         check_for_admin_com_state(adapter);
1636         check_for_tx_completions(adapter);
1637
1638         if (unlikely(adapter->trigger_reset)) {
1639                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1640                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1641                         NULL);
1642         }
1643 }
1644
1645 static inline void
1646 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1647                                struct ena_admin_feature_llq_desc *llq,
1648                                bool use_large_llq_hdr)
1649 {
1650         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1651         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1652         llq_config->llq_num_decs_before_header =
1653                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1654
1655         if (use_large_llq_hdr &&
1656             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1657                 llq_config->llq_ring_entry_size =
1658                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1659                 llq_config->llq_ring_entry_size_value = 256;
1660         } else {
1661                 llq_config->llq_ring_entry_size =
1662                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1663                 llq_config->llq_ring_entry_size_value = 128;
1664         }
1665 }
1666
1667 static int
1668 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1669                                 struct ena_com_dev *ena_dev,
1670                                 struct ena_admin_feature_llq_desc *llq,
1671                                 struct ena_llq_configurations *llq_default_configurations)
1672 {
1673         int rc;
1674         u32 llq_feature_mask;
1675
1676         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1677         if (!(ena_dev->supported_features & llq_feature_mask)) {
1678                 PMD_DRV_LOG(INFO,
1679                         "LLQ is not supported. Fallback to host mode policy.\n");
1680                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1681                 return 0;
1682         }
1683
1684         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1685         if (unlikely(rc)) {
1686                 PMD_INIT_LOG(WARNING,
1687                         "Failed to config dev mode. Fallback to host mode policy.\n");
1688                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1689                 return 0;
1690         }
1691
1692         /* Nothing to config, exit */
1693         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1694                 return 0;
1695
1696         if (!adapter->dev_mem_base) {
1697                 PMD_DRV_LOG(ERR,
1698                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1699                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1700                 return 0;
1701         }
1702
1703         ena_dev->mem_bar = adapter->dev_mem_base;
1704
1705         return 0;
1706 }
1707
1708 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1709         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1710 {
1711         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1712
1713         /* Regular queues capabilities */
1714         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1715                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1716                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1717                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1718                                     max_queue_ext->max_rx_cq_num);
1719                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1720                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1721         } else {
1722                 struct ena_admin_queue_feature_desc *max_queues =
1723                         &get_feat_ctx->max_queues;
1724                 io_tx_sq_num = max_queues->max_sq_num;
1725                 io_tx_cq_num = max_queues->max_cq_num;
1726                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1727         }
1728
1729         /* In case of LLQ use the llq number in the get feature cmd */
1730         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1731                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1732
1733         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1734         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1735         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1736
1737         if (unlikely(max_num_io_queues == 0)) {
1738                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1739                 return -EFAULT;
1740         }
1741
1742         return max_num_io_queues;
1743 }
1744
1745 static void
1746 ena_set_offloads(struct ena_offloads *offloads,
1747                  struct ena_admin_feature_offload_desc *offload_desc)
1748 {
1749         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1750                 offloads->tx_offloads |= ENA_IPV4_TSO;
1751
1752         /* Tx IPv4 checksum offloads */
1753         if (offload_desc->tx &
1754             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1755                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1756         if (offload_desc->tx &
1757             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1758                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1759         if (offload_desc->tx &
1760             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1761                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1762
1763         /* Tx IPv6 checksum offloads */
1764         if (offload_desc->tx &
1765             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1766                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1767         if (offload_desc->tx &
1768              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1769                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1770
1771         /* Rx IPv4 checksum offloads */
1772         if (offload_desc->rx_supported &
1773             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1774                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1775         if (offload_desc->rx_supported &
1776             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1777                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1778
1779         /* Rx IPv6 checksum offloads */
1780         if (offload_desc->rx_supported &
1781             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1782                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1783
1784         if (offload_desc->rx_supported &
1785             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1786                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
1787 }
1788
1789 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1790 {
1791         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1792         struct rte_pci_device *pci_dev;
1793         struct rte_intr_handle *intr_handle;
1794         struct ena_adapter *adapter = eth_dev->data->dev_private;
1795         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1796         struct ena_com_dev_get_features_ctx get_feat_ctx;
1797         struct ena_llq_configurations llq_config;
1798         const char *queue_type_str;
1799         uint32_t max_num_io_queues;
1800         int rc;
1801         static int adapters_found;
1802         bool disable_meta_caching;
1803         bool wd_state = false;
1804
1805         eth_dev->dev_ops = &ena_dev_ops;
1806         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1807         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1808         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1809
1810         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1811                 return 0;
1812
1813         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1814
1815         memset(adapter, 0, sizeof(struct ena_adapter));
1816         ena_dev = &adapter->ena_dev;
1817
1818         adapter->edev_data = eth_dev->data;
1819
1820         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1821
1822         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1823                      pci_dev->addr.domain,
1824                      pci_dev->addr.bus,
1825                      pci_dev->addr.devid,
1826                      pci_dev->addr.function);
1827
1828         intr_handle = &pci_dev->intr_handle;
1829
1830         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1831         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1832
1833         if (!adapter->regs) {
1834                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1835                              ENA_REGS_BAR);
1836                 return -ENXIO;
1837         }
1838
1839         ena_dev->reg_bar = adapter->regs;
1840         /* This is a dummy pointer for ena_com functions. */
1841         ena_dev->dmadev = adapter;
1842
1843         adapter->id_number = adapters_found;
1844
1845         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1846                  adapter->id_number);
1847
1848         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1849         if (rc != 0) {
1850                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1851                 goto err;
1852         }
1853
1854         /* device specific initialization routine */
1855         rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1856         if (rc) {
1857                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1858                 goto err;
1859         }
1860         adapter->wd_state = wd_state;
1861
1862         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1863                 adapter->use_large_llq_hdr);
1864         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1865                                              &get_feat_ctx.llq, &llq_config);
1866         if (unlikely(rc)) {
1867                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1868                 return rc;
1869         }
1870
1871         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1872                 queue_type_str = "Regular";
1873         else
1874                 queue_type_str = "Low latency";
1875         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1876
1877         calc_queue_ctx.ena_dev = ena_dev;
1878         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1879
1880         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1881         rc = ena_calc_io_queue_size(&calc_queue_ctx,
1882                 adapter->use_large_llq_hdr);
1883         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1884                 rc = -EFAULT;
1885                 goto err_device_destroy;
1886         }
1887
1888         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1889         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1890         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1891         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1892         adapter->max_num_io_queues = max_num_io_queues;
1893
1894         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1895                 disable_meta_caching =
1896                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1897                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
1898         } else {
1899                 disable_meta_caching = false;
1900         }
1901
1902         /* prepare ring structures */
1903         ena_init_rings(adapter, disable_meta_caching);
1904
1905         ena_config_debug_area(adapter);
1906
1907         /* Set max MTU for this device */
1908         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1909
1910         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1911
1912         /* Copy MAC address and point DPDK to it */
1913         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1914         rte_ether_addr_copy((struct rte_ether_addr *)
1915                         get_feat_ctx.dev_attr.mac_addr,
1916                         (struct rte_ether_addr *)adapter->mac_addr);
1917
1918         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1919         if (unlikely(rc != 0)) {
1920                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1921                 goto err_delete_debug_area;
1922         }
1923
1924         adapter->drv_stats = rte_zmalloc("adapter stats",
1925                                          sizeof(*adapter->drv_stats),
1926                                          RTE_CACHE_LINE_SIZE);
1927         if (!adapter->drv_stats) {
1928                 PMD_DRV_LOG(ERR,
1929                         "Failed to allocate memory for adapter statistics\n");
1930                 rc = -ENOMEM;
1931                 goto err_rss_destroy;
1932         }
1933
1934         rte_spinlock_init(&adapter->admin_lock);
1935
1936         rte_intr_callback_register(intr_handle,
1937                                    ena_interrupt_handler_rte,
1938                                    eth_dev);
1939         rte_intr_enable(intr_handle);
1940         ena_com_set_admin_polling_mode(ena_dev, false);
1941         ena_com_admin_aenq_enable(ena_dev);
1942
1943         if (adapters_found == 0)
1944                 rte_timer_subsystem_init();
1945         rte_timer_init(&adapter->timer_wd);
1946
1947         adapters_found++;
1948         adapter->state = ENA_ADAPTER_STATE_INIT;
1949
1950         return 0;
1951
1952 err_rss_destroy:
1953         ena_com_rss_destroy(ena_dev);
1954 err_delete_debug_area:
1955         ena_com_delete_debug_area(ena_dev);
1956
1957 err_device_destroy:
1958         ena_com_delete_host_info(ena_dev);
1959         ena_com_admin_destroy(ena_dev);
1960
1961 err:
1962         return rc;
1963 }
1964
1965 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1966 {
1967         struct ena_adapter *adapter = eth_dev->data->dev_private;
1968         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1969
1970         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1971                 return;
1972
1973         ena_com_set_admin_running_state(ena_dev, false);
1974
1975         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1976                 ena_close(eth_dev);
1977
1978         ena_com_rss_destroy(ena_dev);
1979
1980         ena_com_delete_debug_area(ena_dev);
1981         ena_com_delete_host_info(ena_dev);
1982
1983         ena_com_abort_admin_commands(ena_dev);
1984         ena_com_wait_for_abort_completion(ena_dev);
1985         ena_com_admin_destroy(ena_dev);
1986         ena_com_mmio_reg_read_request_destroy(ena_dev);
1987
1988         adapter->state = ENA_ADAPTER_STATE_FREE;
1989 }
1990
1991 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1992 {
1993         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1994                 return 0;
1995
1996         ena_destroy_device(eth_dev);
1997
1998         return 0;
1999 }
2000
2001 static int ena_dev_configure(struct rte_eth_dev *dev)
2002 {
2003         struct ena_adapter *adapter = dev->data->dev_private;
2004
2005         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2006
2007         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2008                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2009         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2010
2011         /* Scattered Rx cannot be turned off in the HW, so this capability must
2012          * be forced.
2013          */
2014         dev->data->scattered_rx = 1;
2015
2016         adapter->last_tx_comp_qid = 0;
2017
2018         adapter->missing_tx_completion_budget =
2019                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2020
2021         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2022         /* To avoid detection of the spurious Tx completion timeout due to
2023          * application not calling the Tx cleanup function, set timeout for the
2024          * Tx queue which should be half of the missing completion timeout for a
2025          * safety. If there will be a lot of missing Tx completions in the
2026          * queue, they will be detected sooner or later.
2027          */
2028         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2029
2030         adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
2031         adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
2032
2033         return 0;
2034 }
2035
2036 static void ena_init_rings(struct ena_adapter *adapter,
2037                            bool disable_meta_caching)
2038 {
2039         size_t i;
2040
2041         for (i = 0; i < adapter->max_num_io_queues; i++) {
2042                 struct ena_ring *ring = &adapter->tx_ring[i];
2043
2044                 ring->configured = 0;
2045                 ring->type = ENA_RING_TYPE_TX;
2046                 ring->adapter = adapter;
2047                 ring->id = i;
2048                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2049                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2050                 ring->sgl_size = adapter->max_tx_sgl_size;
2051                 ring->disable_meta_caching = disable_meta_caching;
2052         }
2053
2054         for (i = 0; i < adapter->max_num_io_queues; i++) {
2055                 struct ena_ring *ring = &adapter->rx_ring[i];
2056
2057                 ring->configured = 0;
2058                 ring->type = ENA_RING_TYPE_RX;
2059                 ring->adapter = adapter;
2060                 ring->id = i;
2061                 ring->sgl_size = adapter->max_rx_sgl_size;
2062         }
2063 }
2064
2065 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2066 {
2067         uint64_t port_offloads = 0;
2068
2069         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2070                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2071
2072         if (adapter->offloads.rx_offloads &
2073             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2074                 port_offloads |=
2075                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2076
2077         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2078                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2079
2080         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2081
2082         return port_offloads;
2083 }
2084
2085 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2086 {
2087         uint64_t port_offloads = 0;
2088
2089         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2090                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2091
2092         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2093                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2094         if (adapter->offloads.tx_offloads &
2095             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2096              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2097                 port_offloads |=
2098                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2099
2100         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2101
2102         return port_offloads;
2103 }
2104
2105 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2106 {
2107         RTE_SET_USED(adapter);
2108
2109         return 0;
2110 }
2111
2112 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2113 {
2114         RTE_SET_USED(adapter);
2115
2116         return 0;
2117 }
2118
2119 static int ena_infos_get(struct rte_eth_dev *dev,
2120                           struct rte_eth_dev_info *dev_info)
2121 {
2122         struct ena_adapter *adapter;
2123         struct ena_com_dev *ena_dev;
2124
2125         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2126         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2127         adapter = dev->data->dev_private;
2128
2129         ena_dev = &adapter->ena_dev;
2130         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2131
2132         dev_info->speed_capa =
2133                         RTE_ETH_LINK_SPEED_1G   |
2134                         RTE_ETH_LINK_SPEED_2_5G |
2135                         RTE_ETH_LINK_SPEED_5G   |
2136                         RTE_ETH_LINK_SPEED_10G  |
2137                         RTE_ETH_LINK_SPEED_25G  |
2138                         RTE_ETH_LINK_SPEED_40G  |
2139                         RTE_ETH_LINK_SPEED_50G  |
2140                         RTE_ETH_LINK_SPEED_100G;
2141
2142         /* Inform framework about available features */
2143         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2144         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2145         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2146         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2147
2148         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2149         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2150
2151         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2152         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2153                 RTE_ETHER_CRC_LEN;
2154         dev_info->min_mtu = ENA_MIN_MTU;
2155         dev_info->max_mtu = adapter->max_mtu;
2156         dev_info->max_mac_addrs = 1;
2157
2158         dev_info->max_rx_queues = adapter->max_num_io_queues;
2159         dev_info->max_tx_queues = adapter->max_num_io_queues;
2160         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2161
2162         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2163         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2164         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2165                                         adapter->max_rx_sgl_size);
2166         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2167                                         adapter->max_rx_sgl_size);
2168
2169         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2170         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2171         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2172                                         adapter->max_tx_sgl_size);
2173         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2174                                         adapter->max_tx_sgl_size);
2175
2176         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2177         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2178
2179         return 0;
2180 }
2181
2182 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2183 {
2184         mbuf->data_len = len;
2185         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2186         mbuf->refcnt = 1;
2187         mbuf->next = NULL;
2188 }
2189
2190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2191                                     struct ena_com_rx_buf_info *ena_bufs,
2192                                     uint32_t descs,
2193                                     uint16_t *next_to_clean,
2194                                     uint8_t offset)
2195 {
2196         struct rte_mbuf *mbuf;
2197         struct rte_mbuf *mbuf_head;
2198         struct ena_rx_buffer *rx_info;
2199         int rc;
2200         uint16_t ntc, len, req_id, buf = 0;
2201
2202         if (unlikely(descs == 0))
2203                 return NULL;
2204
2205         ntc = *next_to_clean;
2206
2207         len = ena_bufs[buf].len;
2208         req_id = ena_bufs[buf].req_id;
2209
2210         rx_info = &rx_ring->rx_buffer_info[req_id];
2211
2212         mbuf = rx_info->mbuf;
2213         RTE_ASSERT(mbuf != NULL);
2214
2215         ena_init_rx_mbuf(mbuf, len);
2216
2217         /* Fill the mbuf head with the data specific for 1st segment. */
2218         mbuf_head = mbuf;
2219         mbuf_head->nb_segs = descs;
2220         mbuf_head->port = rx_ring->port_id;
2221         mbuf_head->pkt_len = len;
2222         mbuf_head->data_off += offset;
2223
2224         rx_info->mbuf = NULL;
2225         rx_ring->empty_rx_reqs[ntc] = req_id;
2226         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2227
2228         while (--descs) {
2229                 ++buf;
2230                 len = ena_bufs[buf].len;
2231                 req_id = ena_bufs[buf].req_id;
2232
2233                 rx_info = &rx_ring->rx_buffer_info[req_id];
2234                 RTE_ASSERT(rx_info->mbuf != NULL);
2235
2236                 if (unlikely(len == 0)) {
2237                         /*
2238                          * Some devices can pass descriptor with the length 0.
2239                          * To avoid confusion, the PMD is simply putting the
2240                          * descriptor back, as it was never used. We'll avoid
2241                          * mbuf allocation that way.
2242                          */
2243                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2244                                 rx_info->mbuf, req_id);
2245                         if (unlikely(rc != 0)) {
2246                                 /* Free the mbuf in case of an error. */
2247                                 rte_mbuf_raw_free(rx_info->mbuf);
2248                         } else {
2249                                 /*
2250                                  * If there was no error, just exit the loop as
2251                                  * 0 length descriptor is always the last one.
2252                                  */
2253                                 break;
2254                         }
2255                 } else {
2256                         /* Create an mbuf chain. */
2257                         mbuf->next = rx_info->mbuf;
2258                         mbuf = mbuf->next;
2259
2260                         ena_init_rx_mbuf(mbuf, len);
2261                         mbuf_head->pkt_len += len;
2262                 }
2263
2264                 /*
2265                  * Mark the descriptor as depleted and perform necessary
2266                  * cleanup.
2267                  * This code will execute in two cases:
2268                  *  1. Descriptor len was greater than 0 - normal situation.
2269                  *  2. Descriptor len was 0 and we failed to add the descriptor
2270                  *     to the device. In that situation, we should try to add
2271                  *     the mbuf again in the populate routine and mark the
2272                  *     descriptor as used up by the device.
2273                  */
2274                 rx_info->mbuf = NULL;
2275                 rx_ring->empty_rx_reqs[ntc] = req_id;
2276                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2277         }
2278
2279         *next_to_clean = ntc;
2280
2281         return mbuf_head;
2282 }
2283
2284 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2285                                   uint16_t nb_pkts)
2286 {
2287         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2288         unsigned int free_queue_entries;
2289         uint16_t next_to_clean = rx_ring->next_to_clean;
2290         uint16_t descs_in_use;
2291         struct rte_mbuf *mbuf;
2292         uint16_t completed;
2293         struct ena_com_rx_ctx ena_rx_ctx;
2294         int i, rc = 0;
2295         bool fill_hash;
2296
2297 #ifdef RTE_ETHDEV_DEBUG_RX
2298         /* Check adapter state */
2299         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2300                 PMD_RX_LOG(ALERT,
2301                         "Trying to receive pkts while device is NOT running\n");
2302                 return 0;
2303         }
2304 #endif
2305
2306         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2307
2308         descs_in_use = rx_ring->ring_size -
2309                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2310         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2311
2312         for (completed = 0; completed < nb_pkts; completed++) {
2313                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2314                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2315                 ena_rx_ctx.descs = 0;
2316                 ena_rx_ctx.pkt_offset = 0;
2317                 /* receive packet context */
2318                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2319                                     rx_ring->ena_com_io_sq,
2320                                     &ena_rx_ctx);
2321                 if (unlikely(rc)) {
2322                         PMD_RX_LOG(ERR,
2323                                 "Failed to get the packet from the device, rc: %d\n",
2324                                 rc);
2325                         if (rc == ENA_COM_NO_SPACE) {
2326                                 ++rx_ring->rx_stats.bad_desc_num;
2327                                 rx_ring->adapter->reset_reason =
2328                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2329                         } else {
2330                                 ++rx_ring->rx_stats.bad_req_id;
2331                                 rx_ring->adapter->reset_reason =
2332                                         ENA_REGS_RESET_INV_RX_REQ_ID;
2333                         }
2334                         rx_ring->adapter->trigger_reset = true;
2335                         return 0;
2336                 }
2337
2338                 mbuf = ena_rx_mbuf(rx_ring,
2339                         ena_rx_ctx.ena_bufs,
2340                         ena_rx_ctx.descs,
2341                         &next_to_clean,
2342                         ena_rx_ctx.pkt_offset);
2343                 if (unlikely(mbuf == NULL)) {
2344                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2345                                 rx_ring->empty_rx_reqs[next_to_clean] =
2346                                         rx_ring->ena_bufs[i].req_id;
2347                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2348                                         next_to_clean, rx_ring->size_mask);
2349                         }
2350                         break;
2351                 }
2352
2353                 /* fill mbuf attributes if any */
2354                 ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2355
2356                 if (unlikely(mbuf->ol_flags &
2357                                 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2358                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2359                         ++rx_ring->rx_stats.bad_csum;
2360                 }
2361
2362                 rx_pkts[completed] = mbuf;
2363                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2364         }
2365
2366         rx_ring->rx_stats.cnt += completed;
2367         rx_ring->next_to_clean = next_to_clean;
2368
2369         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2370
2371         /* Burst refill to save doorbells, memory barriers, const interval */
2372         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2373                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2374                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2375         }
2376
2377         return completed;
2378 }
2379
2380 static uint16_t
2381 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2382                 uint16_t nb_pkts)
2383 {
2384         int32_t ret;
2385         uint32_t i;
2386         struct rte_mbuf *m;
2387         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2388         struct ena_adapter *adapter = tx_ring->adapter;
2389         struct rte_ipv4_hdr *ip_hdr;
2390         uint64_t ol_flags;
2391         uint64_t l4_csum_flag;
2392         uint64_t dev_offload_capa;
2393         uint16_t frag_field;
2394         bool need_pseudo_csum;
2395
2396         dev_offload_capa = adapter->offloads.tx_offloads;
2397         for (i = 0; i != nb_pkts; i++) {
2398                 m = tx_pkts[i];
2399                 ol_flags = m->ol_flags;
2400
2401                 /* Check if any offload flag was set */
2402                 if (ol_flags == 0)
2403                         continue;
2404
2405                 l4_csum_flag = ol_flags & PKT_TX_L4_MASK;
2406                 /* SCTP checksum offload is not supported by the ENA. */
2407                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2408                     l4_csum_flag == PKT_TX_SCTP_CKSUM) {
2409                         PMD_TX_LOG(DEBUG,
2410                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2411                                 i, ol_flags);
2412                         rte_errno = ENOTSUP;
2413                         return i;
2414                 }
2415
2416 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2417                 /* Check if requested offload is also enabled for the queue */
2418                 if ((ol_flags & PKT_TX_IP_CKSUM &&
2419                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2420                     (l4_csum_flag == PKT_TX_TCP_CKSUM &&
2421                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2422                     (l4_csum_flag == PKT_TX_UDP_CKSUM &&
2423                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2424                         PMD_TX_LOG(DEBUG,
2425                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2426                                 i, m->nb_segs, tx_ring->id);
2427                         rte_errno = EINVAL;
2428                         return i;
2429                 }
2430
2431                 /* The caller is obligated to set l2 and l3 len if any cksum
2432                  * offload is enabled.
2433                  */
2434                 if (unlikely(ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK) &&
2435                     (m->l2_len == 0 || m->l3_len == 0))) {
2436                         PMD_TX_LOG(DEBUG,
2437                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2438                                 i);
2439                         rte_errno = EINVAL;
2440                         return i;
2441                 }
2442                 ret = rte_validate_tx_offload(m);
2443                 if (ret != 0) {
2444                         rte_errno = -ret;
2445                         return i;
2446                 }
2447 #endif
2448
2449                 /* Verify HW support for requested offloads and determine if
2450                  * pseudo header checksum is needed.
2451                  */
2452                 need_pseudo_csum = false;
2453                 if (ol_flags & PKT_TX_IPV4) {
2454                         if (ol_flags & PKT_TX_IP_CKSUM &&
2455                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2456                                 rte_errno = ENOTSUP;
2457                                 return i;
2458                         }
2459
2460                         if (ol_flags & PKT_TX_TCP_SEG &&
2461                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2462                                 rte_errno = ENOTSUP;
2463                                 return i;
2464                         }
2465
2466                         /* Check HW capabilities and if pseudo csum is needed
2467                          * for L4 offloads.
2468                          */
2469                         if (l4_csum_flag != PKT_TX_L4_NO_CKSUM &&
2470                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2471                                 if (dev_offload_capa &
2472                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2473                                         need_pseudo_csum = true;
2474                                 } else {
2475                                         rte_errno = ENOTSUP;
2476                                         return i;
2477                                 }
2478                         }
2479
2480                         /* Parse the DF flag */
2481                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2482                                 struct rte_ipv4_hdr *, m->l2_len);
2483                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2484                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2485                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2486                         } else if (ol_flags & PKT_TX_TCP_SEG) {
2487                                 /* In case we are supposed to TSO and have DF
2488                                  * not set (DF=0) hardware must be provided with
2489                                  * partial checksum.
2490                                  */
2491                                 need_pseudo_csum = true;
2492                         }
2493                 } else if (ol_flags & PKT_TX_IPV6) {
2494                         /* There is no support for IPv6 TSO as for now. */
2495                         if (ol_flags & PKT_TX_TCP_SEG) {
2496                                 rte_errno = ENOTSUP;
2497                                 return i;
2498                         }
2499
2500                         /* Check HW capabilities and if pseudo csum is needed */
2501                         if (l4_csum_flag != PKT_TX_L4_NO_CKSUM &&
2502                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2503                                 if (dev_offload_capa &
2504                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2505                                         need_pseudo_csum = true;
2506                                 } else {
2507                                         rte_errno = ENOTSUP;
2508                                         return i;
2509                                 }
2510                         }
2511                 }
2512
2513                 if (need_pseudo_csum) {
2514                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2515                         if (ret != 0) {
2516                                 rte_errno = -ret;
2517                                 return i;
2518                         }
2519                 }
2520         }
2521
2522         return i;
2523 }
2524
2525 static void ena_update_hints(struct ena_adapter *adapter,
2526                              struct ena_admin_ena_hw_hints *hints)
2527 {
2528         if (hints->admin_completion_tx_timeout)
2529                 adapter->ena_dev.admin_queue.completion_timeout =
2530                         hints->admin_completion_tx_timeout * 1000;
2531
2532         if (hints->mmio_read_timeout)
2533                 /* convert to usec */
2534                 adapter->ena_dev.mmio_read.reg_read_to =
2535                         hints->mmio_read_timeout * 1000;
2536
2537         if (hints->missing_tx_completion_timeout) {
2538                 if (hints->missing_tx_completion_timeout ==
2539                     ENA_HW_HINTS_NO_TIMEOUT) {
2540                         adapter->missing_tx_completion_to =
2541                                 ENA_HW_HINTS_NO_TIMEOUT;
2542                 } else {
2543                         /* Convert from msecs to ticks */
2544                         adapter->missing_tx_completion_to = rte_get_timer_hz() *
2545                                 hints->missing_tx_completion_timeout / 1000;
2546                         adapter->tx_cleanup_stall_delay =
2547                                 adapter->missing_tx_completion_to / 2;
2548                 }
2549         }
2550
2551         if (hints->driver_watchdog_timeout) {
2552                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2553                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2554                 else
2555                         // Convert msecs to ticks
2556                         adapter->keep_alive_timeout =
2557                                 (hints->driver_watchdog_timeout *
2558                                 rte_get_timer_hz()) / 1000;
2559         }
2560 }
2561
2562 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2563                                               struct rte_mbuf *mbuf)
2564 {
2565         struct ena_com_dev *ena_dev;
2566         int num_segments, header_len, rc;
2567
2568         ena_dev = &tx_ring->adapter->ena_dev;
2569         num_segments = mbuf->nb_segs;
2570         header_len = mbuf->data_len;
2571
2572         if (likely(num_segments < tx_ring->sgl_size))
2573                 goto checkspace;
2574
2575         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2576             (num_segments == tx_ring->sgl_size) &&
2577             (header_len < tx_ring->tx_max_header_size))
2578                 goto checkspace;
2579
2580         /* Checking for space for 2 additional metadata descriptors due to
2581          * possible header split and metadata descriptor. Linearization will
2582          * be needed so we reduce the segments number from num_segments to 1
2583          */
2584         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2585                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2586                 return ENA_COM_NO_MEM;
2587         }
2588         ++tx_ring->tx_stats.linearize;
2589         rc = rte_pktmbuf_linearize(mbuf);
2590         if (unlikely(rc)) {
2591                 PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2592                 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2593                 ++tx_ring->tx_stats.linearize_failed;
2594                 return rc;
2595         }
2596
2597         return 0;
2598
2599 checkspace:
2600         /* Checking for space for 2 additional metadata descriptors due to
2601          * possible header split and metadata descriptor
2602          */
2603         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2604                                           num_segments + 2)) {
2605                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2606                 return ENA_COM_NO_MEM;
2607         }
2608
2609         return 0;
2610 }
2611
2612 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2613         struct ena_tx_buffer *tx_info,
2614         struct rte_mbuf *mbuf,
2615         void **push_header,
2616         uint16_t *header_len)
2617 {
2618         struct ena_com_buf *ena_buf;
2619         uint16_t delta, seg_len, push_len;
2620
2621         delta = 0;
2622         seg_len = mbuf->data_len;
2623
2624         tx_info->mbuf = mbuf;
2625         ena_buf = tx_info->bufs;
2626
2627         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2628                 /*
2629                  * Tx header might be (and will be in most cases) smaller than
2630                  * tx_max_header_size. But it's not an issue to send more data
2631                  * to the device, than actually needed if the mbuf size is
2632                  * greater than tx_max_header_size.
2633                  */
2634                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2635                 *header_len = push_len;
2636
2637                 if (likely(push_len <= seg_len)) {
2638                         /* If the push header is in the single segment, then
2639                          * just point it to the 1st mbuf data.
2640                          */
2641                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2642                 } else {
2643                         /* If the push header lays in the several segments, copy
2644                          * it to the intermediate buffer.
2645                          */
2646                         rte_pktmbuf_read(mbuf, 0, push_len,
2647                                 tx_ring->push_buf_intermediate_buf);
2648                         *push_header = tx_ring->push_buf_intermediate_buf;
2649                         delta = push_len - seg_len;
2650                 }
2651         } else {
2652                 *push_header = NULL;
2653                 *header_len = 0;
2654                 push_len = 0;
2655         }
2656
2657         /* Process first segment taking into consideration pushed header */
2658         if (seg_len > push_len) {
2659                 ena_buf->paddr = mbuf->buf_iova +
2660                                 mbuf->data_off +
2661                                 push_len;
2662                 ena_buf->len = seg_len - push_len;
2663                 ena_buf++;
2664                 tx_info->num_of_bufs++;
2665         }
2666
2667         while ((mbuf = mbuf->next) != NULL) {
2668                 seg_len = mbuf->data_len;
2669
2670                 /* Skip mbufs if whole data is pushed as a header */
2671                 if (unlikely(delta > seg_len)) {
2672                         delta -= seg_len;
2673                         continue;
2674                 }
2675
2676                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2677                 ena_buf->len = seg_len - delta;
2678                 ena_buf++;
2679                 tx_info->num_of_bufs++;
2680
2681                 delta = 0;
2682         }
2683 }
2684
2685 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2686 {
2687         struct ena_tx_buffer *tx_info;
2688         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2689         uint16_t next_to_use;
2690         uint16_t header_len;
2691         uint16_t req_id;
2692         void *push_header;
2693         int nb_hw_desc;
2694         int rc;
2695
2696         rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2697         if (unlikely(rc))
2698                 return rc;
2699
2700         next_to_use = tx_ring->next_to_use;
2701
2702         req_id = tx_ring->empty_tx_reqs[next_to_use];
2703         tx_info = &tx_ring->tx_buffer_info[req_id];
2704         tx_info->num_of_bufs = 0;
2705
2706         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2707
2708         ena_tx_ctx.ena_bufs = tx_info->bufs;
2709         ena_tx_ctx.push_header = push_header;
2710         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2711         ena_tx_ctx.req_id = req_id;
2712         ena_tx_ctx.header_len = header_len;
2713
2714         /* Set Tx offloads flags, if applicable */
2715         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2716                 tx_ring->disable_meta_caching);
2717
2718         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2719                         &ena_tx_ctx))) {
2720                 PMD_TX_LOG(DEBUG,
2721                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2722                         tx_ring->id);
2723                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2724                 tx_ring->tx_stats.doorbells++;
2725                 tx_ring->pkts_without_db = false;
2726         }
2727
2728         /* prepare the packet's descriptors to dma engine */
2729         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2730                 &nb_hw_desc);
2731         if (unlikely(rc)) {
2732                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2733                 ++tx_ring->tx_stats.prepare_ctx_err;
2734                 tx_ring->adapter->reset_reason =
2735                     ENA_REGS_RESET_DRIVER_INVALID_STATE;
2736                 tx_ring->adapter->trigger_reset = true;
2737                 return rc;
2738         }
2739
2740         tx_info->tx_descs = nb_hw_desc;
2741         tx_info->timestamp = rte_get_timer_cycles();
2742
2743         tx_ring->tx_stats.cnt++;
2744         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2745
2746         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2747                 tx_ring->size_mask);
2748
2749         return 0;
2750 }
2751
2752 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2753 {
2754         unsigned int total_tx_descs = 0;
2755         uint16_t cleanup_budget;
2756         uint16_t next_to_clean = tx_ring->next_to_clean;
2757
2758         /* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2759         cleanup_budget = tx_ring->size_mask;
2760
2761         while (likely(total_tx_descs < cleanup_budget)) {
2762                 struct rte_mbuf *mbuf;
2763                 struct ena_tx_buffer *tx_info;
2764                 uint16_t req_id;
2765
2766                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2767                         break;
2768
2769                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2770                         break;
2771
2772                 /* Get Tx info & store how many descs were processed  */
2773                 tx_info = &tx_ring->tx_buffer_info[req_id];
2774                 tx_info->timestamp = 0;
2775
2776                 mbuf = tx_info->mbuf;
2777                 rte_pktmbuf_free(mbuf);
2778
2779                 tx_info->mbuf = NULL;
2780                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2781
2782                 total_tx_descs += tx_info->tx_descs;
2783
2784                 /* Put back descriptor to the ring for reuse */
2785                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2786                         tx_ring->size_mask);
2787         }
2788
2789         if (likely(total_tx_descs > 0)) {
2790                 /* acknowledge completion of sent packets */
2791                 tx_ring->next_to_clean = next_to_clean;
2792                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2793                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2794         }
2795
2796         /* Notify completion handler that the cleanup was just called */
2797         tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
2798 }
2799
2800 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2801                                   uint16_t nb_pkts)
2802 {
2803         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2804         int available_desc;
2805         uint16_t sent_idx = 0;
2806
2807 #ifdef RTE_ETHDEV_DEBUG_TX
2808         /* Check adapter state */
2809         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2810                 PMD_TX_LOG(ALERT,
2811                         "Trying to xmit pkts while device is NOT running\n");
2812                 return 0;
2813         }
2814 #endif
2815
2816         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2817                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2818                         break;
2819                 tx_ring->pkts_without_db = true;
2820                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2821                         tx_ring->size_mask)]);
2822         }
2823
2824         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2825         tx_ring->tx_stats.available_desc = available_desc;
2826
2827         /* If there are ready packets to be xmitted... */
2828         if (likely(tx_ring->pkts_without_db)) {
2829                 /* ...let HW do its best :-) */
2830                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2831                 tx_ring->tx_stats.doorbells++;
2832                 tx_ring->pkts_without_db = false;
2833         }
2834
2835         if (available_desc < tx_ring->tx_free_thresh)
2836                 ena_tx_cleanup(tx_ring);
2837
2838         tx_ring->tx_stats.available_desc =
2839                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2840         tx_ring->tx_stats.tx_poll++;
2841
2842         return sent_idx;
2843 }
2844
2845 int ena_copy_eni_stats(struct ena_adapter *adapter)
2846 {
2847         struct ena_admin_eni_stats admin_eni_stats;
2848         int rc;
2849
2850         rte_spinlock_lock(&adapter->admin_lock);
2851         rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2852         rte_spinlock_unlock(&adapter->admin_lock);
2853         if (rc != 0) {
2854                 if (rc == ENA_COM_UNSUPPORTED) {
2855                         PMD_DRV_LOG(DEBUG,
2856                                 "Retrieving ENI metrics is not supported\n");
2857                 } else {
2858                         PMD_DRV_LOG(WARNING,
2859                                 "Failed to get ENI metrics, rc: %d\n", rc);
2860                 }
2861                 return rc;
2862         }
2863
2864         rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2865                 sizeof(struct ena_stats_eni));
2866
2867         return 0;
2868 }
2869
2870 /**
2871  * DPDK callback to retrieve names of extended device statistics
2872  *
2873  * @param dev
2874  *   Pointer to Ethernet device structure.
2875  * @param[out] xstats_names
2876  *   Buffer to insert names into.
2877  * @param n
2878  *   Number of names.
2879  *
2880  * @return
2881  *   Number of xstats names.
2882  */
2883 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2884                                 struct rte_eth_xstat_name *xstats_names,
2885                                 unsigned int n)
2886 {
2887         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2888         unsigned int stat, i, count = 0;
2889
2890         if (n < xstats_count || !xstats_names)
2891                 return xstats_count;
2892
2893         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2894                 strcpy(xstats_names[count].name,
2895                         ena_stats_global_strings[stat].name);
2896
2897         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2898                 strcpy(xstats_names[count].name,
2899                         ena_stats_eni_strings[stat].name);
2900
2901         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2902                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2903                         snprintf(xstats_names[count].name,
2904                                 sizeof(xstats_names[count].name),
2905                                 "rx_q%d_%s", i,
2906                                 ena_stats_rx_strings[stat].name);
2907
2908         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2909                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2910                         snprintf(xstats_names[count].name,
2911                                 sizeof(xstats_names[count].name),
2912                                 "tx_q%d_%s", i,
2913                                 ena_stats_tx_strings[stat].name);
2914
2915         return xstats_count;
2916 }
2917
2918 /**
2919  * DPDK callback to get extended device statistics.
2920  *
2921  * @param dev
2922  *   Pointer to Ethernet device structure.
2923  * @param[out] stats
2924  *   Stats table output buffer.
2925  * @param n
2926  *   The size of the stats table.
2927  *
2928  * @return
2929  *   Number of xstats on success, negative on failure.
2930  */
2931 static int ena_xstats_get(struct rte_eth_dev *dev,
2932                           struct rte_eth_xstat *xstats,
2933                           unsigned int n)
2934 {
2935         struct ena_adapter *adapter = dev->data->dev_private;
2936         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2937         unsigned int stat, i, count = 0;
2938         int stat_offset;
2939         void *stats_begin;
2940
2941         if (n < xstats_count)
2942                 return xstats_count;
2943
2944         if (!xstats)
2945                 return 0;
2946
2947         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2948                 stat_offset = ena_stats_global_strings[stat].stat_offset;
2949                 stats_begin = &adapter->dev_stats;
2950
2951                 xstats[count].id = count;
2952                 xstats[count].value = *((uint64_t *)
2953                         ((char *)stats_begin + stat_offset));
2954         }
2955
2956         /* Even if the function below fails, we should copy previous (or initial
2957          * values) to keep structure of rte_eth_xstat consistent.
2958          */
2959         ena_copy_eni_stats(adapter);
2960         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2961                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
2962                 stats_begin = &adapter->eni_stats;
2963
2964                 xstats[count].id = count;
2965                 xstats[count].value = *((uint64_t *)
2966                     ((char *)stats_begin + stat_offset));
2967         }
2968
2969         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2970                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2971                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2972                         stats_begin = &adapter->rx_ring[i].rx_stats;
2973
2974                         xstats[count].id = count;
2975                         xstats[count].value = *((uint64_t *)
2976                                 ((char *)stats_begin + stat_offset));
2977                 }
2978         }
2979
2980         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2981                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2982                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2983                         stats_begin = &adapter->tx_ring[i].rx_stats;
2984
2985                         xstats[count].id = count;
2986                         xstats[count].value = *((uint64_t *)
2987                                 ((char *)stats_begin + stat_offset));
2988                 }
2989         }
2990
2991         return count;
2992 }
2993
2994 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2995                                 const uint64_t *ids,
2996                                 uint64_t *values,
2997                                 unsigned int n)
2998 {
2999         struct ena_adapter *adapter = dev->data->dev_private;
3000         uint64_t id;
3001         uint64_t rx_entries, tx_entries;
3002         unsigned int i;
3003         int qid;
3004         int valid = 0;
3005         bool was_eni_copied = false;
3006
3007         for (i = 0; i < n; ++i) {
3008                 id = ids[i];
3009                 /* Check if id belongs to global statistics */
3010                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3011                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
3012                         ++valid;
3013                         continue;
3014                 }
3015
3016                 /* Check if id belongs to ENI statistics */
3017                 id -= ENA_STATS_ARRAY_GLOBAL;
3018                 if (id < ENA_STATS_ARRAY_ENI) {
3019                         /* Avoid reading ENI stats multiple times in a single
3020                          * function call, as it requires communication with the
3021                          * admin queue.
3022                          */
3023                         if (!was_eni_copied) {
3024                                 was_eni_copied = true;
3025                                 ena_copy_eni_stats(adapter);
3026                         }
3027                         values[i] = *((uint64_t *)&adapter->eni_stats + id);
3028                         ++valid;
3029                         continue;
3030                 }
3031
3032                 /* Check if id belongs to rx queue statistics */
3033                 id -= ENA_STATS_ARRAY_ENI;
3034                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3035                 if (id < rx_entries) {
3036                         qid = id % dev->data->nb_rx_queues;
3037                         id /= dev->data->nb_rx_queues;
3038                         values[i] = *((uint64_t *)
3039                                 &adapter->rx_ring[qid].rx_stats + id);
3040                         ++valid;
3041                         continue;
3042                 }
3043                                 /* Check if id belongs to rx queue statistics */
3044                 id -= rx_entries;
3045                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3046                 if (id < tx_entries) {
3047                         qid = id % dev->data->nb_tx_queues;
3048                         id /= dev->data->nb_tx_queues;
3049                         values[i] = *((uint64_t *)
3050                                 &adapter->tx_ring[qid].tx_stats + id);
3051                         ++valid;
3052                         continue;
3053                 }
3054         }
3055
3056         return valid;
3057 }
3058
3059 static int ena_process_bool_devarg(const char *key,
3060                                    const char *value,
3061                                    void *opaque)
3062 {
3063         struct ena_adapter *adapter = opaque;
3064         bool bool_value;
3065
3066         /* Parse the value. */
3067         if (strcmp(value, "1") == 0) {
3068                 bool_value = true;
3069         } else if (strcmp(value, "0") == 0) {
3070                 bool_value = false;
3071         } else {
3072                 PMD_INIT_LOG(ERR,
3073                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3074                         value, key);
3075                 return -EINVAL;
3076         }
3077
3078         /* Now, assign it to the proper adapter field. */
3079         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3080                 adapter->use_large_llq_hdr = bool_value;
3081
3082         return 0;
3083 }
3084
3085 static int ena_parse_devargs(struct ena_adapter *adapter,
3086                              struct rte_devargs *devargs)
3087 {
3088         static const char * const allowed_args[] = {
3089                 ENA_DEVARG_LARGE_LLQ_HDR,
3090                 NULL,
3091         };
3092         struct rte_kvargs *kvlist;
3093         int rc;
3094
3095         if (devargs == NULL)
3096                 return 0;
3097
3098         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3099         if (kvlist == NULL) {
3100                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3101                         devargs->args);
3102                 return -EINVAL;
3103         }
3104
3105         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3106                 ena_process_bool_devarg, adapter);
3107
3108         rte_kvargs_free(kvlist);
3109
3110         return rc;
3111 }
3112
3113 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3114 {
3115         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3116         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3117         int rc;
3118         uint16_t vectors_nb, i;
3119         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3120
3121         if (!rx_intr_requested)
3122                 return 0;
3123
3124         if (!rte_intr_cap_multiple(intr_handle)) {
3125                 PMD_DRV_LOG(ERR,
3126                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3127                 return -ENOTSUP;
3128         }
3129
3130         /* Disable interrupt mapping before the configuration starts. */
3131         rte_intr_disable(intr_handle);
3132
3133         /* Verify if there are enough vectors available. */
3134         vectors_nb = dev->data->nb_rx_queues;
3135         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3136                 PMD_DRV_LOG(ERR,
3137                         "Too many Rx interrupts requested, maximum number: %d\n",
3138                         RTE_MAX_RXTX_INTR_VEC_ID);
3139                 rc = -ENOTSUP;
3140                 goto enable_intr;
3141         }
3142
3143         intr_handle->intr_vec = rte_zmalloc("intr_vec",
3144                 dev->data->nb_rx_queues * sizeof(*intr_handle->intr_vec), 0);
3145         if (intr_handle->intr_vec == NULL) {
3146                 PMD_DRV_LOG(ERR,
3147                         "Failed to allocate interrupt vector for %d queues\n",
3148                         dev->data->nb_rx_queues);
3149                 rc = -ENOMEM;
3150                 goto enable_intr;
3151         }
3152
3153         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3154         if (rc != 0)
3155                 goto free_intr_vec;
3156
3157         if (!rte_intr_allow_others(intr_handle)) {
3158                 PMD_DRV_LOG(ERR,
3159                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3160                 goto disable_intr_efd;
3161         }
3162
3163         for (i = 0; i < vectors_nb; ++i)
3164                 intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + i;
3165
3166         rte_intr_enable(intr_handle);
3167         return 0;
3168
3169 disable_intr_efd:
3170         rte_intr_efd_disable(intr_handle);
3171 free_intr_vec:
3172         rte_free(intr_handle->intr_vec);
3173         intr_handle->intr_vec = NULL;
3174 enable_intr:
3175         rte_intr_enable(intr_handle);
3176         return rc;
3177 }
3178
3179 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3180                                  uint16_t queue_id,
3181                                  bool unmask)
3182 {
3183         struct ena_adapter *adapter = dev->data->dev_private;
3184         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3185         struct ena_eth_io_intr_reg intr_reg;
3186
3187         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3188         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3189 }
3190
3191 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3192                                     uint16_t queue_id)
3193 {
3194         ena_rx_queue_intr_set(dev, queue_id, true);
3195
3196         return 0;
3197 }
3198
3199 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3200                                      uint16_t queue_id)
3201 {
3202         ena_rx_queue_intr_set(dev, queue_id, false);
3203
3204         return 0;
3205 }
3206
3207 /*********************************************************************
3208  *  PMD configuration
3209  *********************************************************************/
3210 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3211         struct rte_pci_device *pci_dev)
3212 {
3213         return rte_eth_dev_pci_generic_probe(pci_dev,
3214                 sizeof(struct ena_adapter), eth_ena_dev_init);
3215 }
3216
3217 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3218 {
3219         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3220 }
3221
3222 static struct rte_pci_driver rte_ena_pmd = {
3223         .id_table = pci_id_ena_map,
3224         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3225                      RTE_PCI_DRV_WC_ACTIVATE,
3226         .probe = eth_ena_pci_probe,
3227         .remove = eth_ena_pci_remove,
3228 };
3229
3230 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3231 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3232 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3233 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3234 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3235 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3236 #ifdef RTE_ETHDEV_DEBUG_RX
3237 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3238 #endif
3239 #ifdef RTE_ETHDEV_DEBUG_TX
3240 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3241 #endif
3242 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3243
3244 /******************************************************************************
3245  ******************************** AENQ Handlers *******************************
3246  *****************************************************************************/
3247 static void ena_update_on_link_change(void *adapter_data,
3248                                       struct ena_admin_aenq_entry *aenq_e)
3249 {
3250         struct rte_eth_dev *eth_dev = adapter_data;
3251         struct ena_adapter *adapter = eth_dev->data->dev_private;
3252         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3253         uint32_t status;
3254
3255         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3256
3257         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3258         adapter->link_status = status;
3259
3260         ena_link_update(eth_dev, 0);
3261         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3262 }
3263
3264 static void ena_notification(void *adapter_data,
3265                              struct ena_admin_aenq_entry *aenq_e)
3266 {
3267         struct rte_eth_dev *eth_dev = adapter_data;
3268         struct ena_adapter *adapter = eth_dev->data->dev_private;
3269         struct ena_admin_ena_hw_hints *hints;
3270
3271         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3272                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3273                         aenq_e->aenq_common_desc.group,
3274                         ENA_ADMIN_NOTIFICATION);
3275
3276         switch (aenq_e->aenq_common_desc.syndrome) {
3277         case ENA_ADMIN_UPDATE_HINTS:
3278                 hints = (struct ena_admin_ena_hw_hints *)
3279                         (&aenq_e->inline_data_w4);
3280                 ena_update_hints(adapter, hints);
3281                 break;
3282         default:
3283                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3284                         aenq_e->aenq_common_desc.syndrome);
3285         }
3286 }
3287
3288 static void ena_keep_alive(void *adapter_data,
3289                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3290 {
3291         struct rte_eth_dev *eth_dev = adapter_data;
3292         struct ena_adapter *adapter = eth_dev->data->dev_private;
3293         struct ena_admin_aenq_keep_alive_desc *desc;
3294         uint64_t rx_drops;
3295         uint64_t tx_drops;
3296
3297         adapter->timestamp_wd = rte_get_timer_cycles();
3298
3299         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3300         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3301         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3302
3303         adapter->drv_stats->rx_drops = rx_drops;
3304         adapter->dev_stats.tx_drops = tx_drops;
3305 }
3306
3307 /**
3308  * This handler will called for unknown event group or unimplemented handlers
3309  **/
3310 static void unimplemented_aenq_handler(__rte_unused void *data,
3311                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3312 {
3313         PMD_DRV_LOG(ERR,
3314                 "Unknown event was received or event with unimplemented handler\n");
3315 }
3316
3317 static struct ena_aenq_handlers aenq_handlers = {
3318         .handlers = {
3319                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3320                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3321                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3322         },
3323         .unimplemented_handler = unimplemented_aenq_handler
3324 };