common/mlx5: fix default devargs initialization
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    6
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 struct ena_stats {
42         char name[ETH_GSTRING_LEN];
43         int stat_offset;
44 };
45
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47         .name = #stat, \
48         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50
51 #define ENA_STAT_RX_ENTRY(stat) \
52         ENA_STAT_ENTRY(stat, rx)
53
54 #define ENA_STAT_TX_ENTRY(stat) \
55         ENA_STAT_ENTRY(stat, tx)
56
57 #define ENA_STAT_ENI_ENTRY(stat) \
58         ENA_STAT_ENTRY(stat, eni)
59
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61         ENA_STAT_ENTRY(stat, dev)
62
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65 /* Timeout in seconds after which a single uncompleted Tx packet should be
66  * considered as a missing.
67  */
68 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
69
70 /*
71  * Each rte_memzone should have unique name.
72  * To satisfy it, count number of allocation and add it to name.
73  */
74 rte_atomic64_t ena_alloc_cnt;
75
76 static const struct ena_stats ena_stats_global_strings[] = {
77         ENA_STAT_GLOBAL_ENTRY(wd_expired),
78         ENA_STAT_GLOBAL_ENTRY(dev_start),
79         ENA_STAT_GLOBAL_ENTRY(dev_stop),
80         ENA_STAT_GLOBAL_ENTRY(tx_drops),
81 };
82
83 static const struct ena_stats ena_stats_eni_strings[] = {
84         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
85         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
86         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
87         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
88         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
89 };
90
91 static const struct ena_stats ena_stats_tx_strings[] = {
92         ENA_STAT_TX_ENTRY(cnt),
93         ENA_STAT_TX_ENTRY(bytes),
94         ENA_STAT_TX_ENTRY(prepare_ctx_err),
95         ENA_STAT_TX_ENTRY(tx_poll),
96         ENA_STAT_TX_ENTRY(doorbells),
97         ENA_STAT_TX_ENTRY(bad_req_id),
98         ENA_STAT_TX_ENTRY(available_desc),
99         ENA_STAT_TX_ENTRY(missed_tx),
100 };
101
102 static const struct ena_stats ena_stats_rx_strings[] = {
103         ENA_STAT_RX_ENTRY(cnt),
104         ENA_STAT_RX_ENTRY(bytes),
105         ENA_STAT_RX_ENTRY(refill_partial),
106         ENA_STAT_RX_ENTRY(l3_csum_bad),
107         ENA_STAT_RX_ENTRY(l4_csum_bad),
108         ENA_STAT_RX_ENTRY(l4_csum_good),
109         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110         ENA_STAT_RX_ENTRY(bad_desc_num),
111         ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113
114 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
118
119 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
120                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
121                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
122                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
124                        RTE_MBUF_F_TX_IP_CKSUM |\
125                        RTE_MBUF_F_TX_TCP_SEG)
126
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF            0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
132
133 #define ENA_TX_OFFLOAD_MASK     (RTE_MBUF_F_TX_L4_MASK |         \
134         RTE_MBUF_F_TX_IPV6 |            \
135         RTE_MBUF_F_TX_IPV4 |            \
136         RTE_MBUF_F_TX_IP_CKSUM |        \
137         RTE_MBUF_F_TX_TCP_SEG)
138
139 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
140         (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
141
142 /** HW specific offloads capabilities. */
143 /* IPv4 checksum offload. */
144 #define ENA_L3_IPV4_CSUM                0x0001
145 /* TCP/UDP checksum offload for IPv4 packets. */
146 #define ENA_L4_IPV4_CSUM                0x0002
147 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
148 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
149 /* TCP/UDP checksum offload for IPv6 packets. */
150 #define ENA_L4_IPV6_CSUM                0x0008
151 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
152 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
153 /* TSO support for IPv4 packets. */
154 #define ENA_IPV4_TSO                    0x0020
155
156 /* Device supports setting RSS hash. */
157 #define ENA_RX_RSS_HASH                 0x0040
158
159 static const struct rte_pci_id pci_id_ena_map[] = {
160         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
161         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
162         { .device_id = 0 },
163 };
164
165 static struct ena_aenq_handlers aenq_handlers;
166
167 static int ena_device_init(struct ena_adapter *adapter,
168                            struct rte_pci_device *pdev,
169                            struct ena_com_dev_get_features_ctx *get_feat_ctx);
170 static int ena_dev_configure(struct rte_eth_dev *dev);
171 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
172         struct ena_tx_buffer *tx_info,
173         struct rte_mbuf *mbuf,
174         void **push_header,
175         uint16_t *header_len);
176 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
177 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179                                   uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181                 uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183                               uint16_t nb_desc, unsigned int socket_id,
184                               const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186                               uint16_t nb_desc, unsigned int socket_id,
187                               const struct rte_eth_rxconf *rx_conf,
188                               struct rte_mempool *mp);
189 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
191                                     struct ena_com_rx_buf_info *ena_bufs,
192                                     uint32_t descs,
193                                     uint16_t *next_to_clean,
194                                     uint8_t offset);
195 static uint16_t eth_ena_recv_pkts(void *rx_queue,
196                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
197 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
198                                   struct rte_mbuf *mbuf, uint16_t id);
199 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
200 static void ena_init_rings(struct ena_adapter *adapter,
201                            bool disable_meta_caching);
202 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
203 static int ena_start(struct rte_eth_dev *dev);
204 static int ena_stop(struct rte_eth_dev *dev);
205 static int ena_close(struct rte_eth_dev *dev);
206 static int ena_dev_reset(struct rte_eth_dev *dev);
207 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
208 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
209 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
210 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
211 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
212 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
213 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
214 static int ena_link_update(struct rte_eth_dev *dev,
215                            int wait_to_complete);
216 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
217 static void ena_queue_stop(struct ena_ring *ring);
218 static void ena_queue_stop_all(struct rte_eth_dev *dev,
219                               enum ena_ring_type ring_type);
220 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
221 static int ena_queue_start_all(struct rte_eth_dev *dev,
222                                enum ena_ring_type ring_type);
223 static void ena_stats_restart(struct rte_eth_dev *dev);
224 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
225 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
226 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
228 static int ena_infos_get(struct rte_eth_dev *dev,
229                          struct rte_eth_dev_info *dev_info);
230 static void ena_interrupt_handler_rte(void *cb_arg);
231 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
232 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
233 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
234 static int ena_xstats_get_names(struct rte_eth_dev *dev,
235                                 struct rte_eth_xstat_name *xstats_names,
236                                 unsigned int n);
237 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
238                                       const uint64_t *ids,
239                                       struct rte_eth_xstat_name *xstats_names,
240                                       unsigned int size);
241 static int ena_xstats_get(struct rte_eth_dev *dev,
242                           struct rte_eth_xstat *stats,
243                           unsigned int n);
244 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
245                                 const uint64_t *ids,
246                                 uint64_t *values,
247                                 unsigned int n);
248 static int ena_process_bool_devarg(const char *key,
249                                    const char *value,
250                                    void *opaque);
251 static int ena_parse_devargs(struct ena_adapter *adapter,
252                              struct rte_devargs *devargs);
253 static int ena_copy_eni_stats(struct ena_adapter *adapter,
254                               struct ena_stats_eni *stats);
255 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
256 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
257                                     uint16_t queue_id);
258 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
259                                      uint16_t queue_id);
260 static int ena_configure_aenq(struct ena_adapter *adapter);
261 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
262                                  const void *peer);
263
264 static const struct eth_dev_ops ena_dev_ops = {
265         .dev_configure          = ena_dev_configure,
266         .dev_infos_get          = ena_infos_get,
267         .rx_queue_setup         = ena_rx_queue_setup,
268         .tx_queue_setup         = ena_tx_queue_setup,
269         .dev_start              = ena_start,
270         .dev_stop               = ena_stop,
271         .link_update            = ena_link_update,
272         .stats_get              = ena_stats_get,
273         .xstats_get_names       = ena_xstats_get_names,
274         .xstats_get_names_by_id = ena_xstats_get_names_by_id,
275         .xstats_get             = ena_xstats_get,
276         .xstats_get_by_id       = ena_xstats_get_by_id,
277         .mtu_set                = ena_mtu_set,
278         .rx_queue_release       = ena_rx_queue_release,
279         .tx_queue_release       = ena_tx_queue_release,
280         .dev_close              = ena_close,
281         .dev_reset              = ena_dev_reset,
282         .reta_update            = ena_rss_reta_update,
283         .reta_query             = ena_rss_reta_query,
284         .rx_queue_intr_enable   = ena_rx_queue_intr_enable,
285         .rx_queue_intr_disable  = ena_rx_queue_intr_disable,
286         .rss_hash_update        = ena_rss_hash_update,
287         .rss_hash_conf_get      = ena_rss_hash_conf_get,
288         .tx_done_cleanup        = ena_tx_cleanup,
289 };
290
291 /*********************************************************************
292  *  Multi-Process communication bits
293  *********************************************************************/
294 /* rte_mp IPC message name */
295 #define ENA_MP_NAME     "net_ena_mp"
296 /* Request timeout in seconds */
297 #define ENA_MP_REQ_TMO  5
298
299 /** Proxy request type */
300 enum ena_mp_req {
301         ENA_MP_DEV_STATS_GET,
302         ENA_MP_ENI_STATS_GET,
303         ENA_MP_MTU_SET,
304         ENA_MP_IND_TBL_GET,
305         ENA_MP_IND_TBL_SET
306 };
307
308 /** Proxy message body. Shared between requests and responses. */
309 struct ena_mp_body {
310         /* Message type */
311         enum ena_mp_req type;
312         int port_id;
313         /* Processing result. Set in replies. 0 if message succeeded, negative
314          * error code otherwise.
315          */
316         int result;
317         union {
318                 int mtu; /* For ENA_MP_MTU_SET */
319         } args;
320 };
321
322 /**
323  * Initialize IPC message.
324  *
325  * @param[out] msg
326  *   Pointer to the message to initialize.
327  * @param[in] type
328  *   Message type.
329  * @param[in] port_id
330  *   Port ID of target device.
331  *
332  */
333 static void
334 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
335 {
336         struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
337
338         memset(msg, 0, sizeof(*msg));
339         strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
340         msg->len_param = sizeof(*body);
341         body->type = type;
342         body->port_id = port_id;
343 }
344
345 /*********************************************************************
346  *  Multi-Process communication PMD API
347  *********************************************************************/
348 /**
349  * Define proxy request descriptor
350  *
351  * Used to define all structures and functions required for proxying a given
352  * function to the primary process including the code to perform to prepare the
353  * request and process the response.
354  *
355  * @param[in] f
356  *   Name of the function to proxy
357  * @param[in] t
358  *   Message type to use
359  * @param[in] prep
360  *   Body of a function to prepare the request in form of a statement
361  *   expression. It is passed all the original function arguments along with two
362  *   extra ones:
363  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
364  *   - struct ena_mp_body *req - body of a request to prepare.
365  * @param[in] proc
366  *   Body of a function to process the response in form of a statement
367  *   expression. It is passed all the original function arguments along with two
368  *   extra ones:
369  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
370  *   - struct ena_mp_body *rsp - body of a response to process.
371  * @param ...
372  *   Proxied function's arguments
373  *
374  * @note Inside prep and proc any parameters which aren't used should be marked
375  *       as such (with ENA_TOUCH or __rte_unused).
376  */
377 #define ENA_PROXY_DESC(f, t, prep, proc, ...)                   \
378         static const enum ena_mp_req mp_type_ ## f =  t;        \
379         static const char *mp_name_ ## f = #t;                  \
380         static void mp_prep_ ## f(struct ena_adapter *adapter,  \
381                                   struct ena_mp_body *req,      \
382                                   __VA_ARGS__)                  \
383         {                                                       \
384                 prep;                                           \
385         }                                                       \
386         static void mp_proc_ ## f(struct ena_adapter *adapter,  \
387                                   struct ena_mp_body *rsp,      \
388                                   __VA_ARGS__)                  \
389         {                                                       \
390                 proc;                                           \
391         }
392
393 /**
394  * Proxy wrapper for calling primary functions in a secondary process.
395  *
396  * Depending on whether called in primary or secondary process, calls the
397  * @p func directly or proxies the call to the primary process via rte_mp IPC.
398  * This macro requires a proxy request descriptor to be defined for @p func
399  * using ENA_PROXY_DESC() macro.
400  *
401  * @param[in/out] a
402  *   Device PMD data. Used for sending the message and sharing message results
403  *   between primary and secondary.
404  * @param[in] f
405  *   Function to proxy.
406  * @param ...
407  *   Arguments of @p func.
408  *
409  * @return
410  *   - 0: Processing succeeded and response handler was called.
411  *   - -EPERM: IPC is unavailable on this platform. This means only primary
412  *             process may call the proxied function.
413  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
414  *             error code.
415  *   - Negative error code from the proxied function.
416  *
417  * @note This mechanism is geared towards control-path tasks. Avoid calling it
418  *       in fast-path unless unbound delays are allowed. This is due to the IPC
419  *       mechanism itself (socket based).
420  * @note Due to IPC parameter size limitations the proxy logic shares call
421  *       results through the struct ena_adapter shared memory. This makes the
422  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
423  *       calls to the same proxied function under the same lock.
424  */
425 #define ENA_PROXY(a, f, ...)                                            \
426 ({                                                                      \
427         struct ena_adapter *_a = (a);                                   \
428         struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };              \
429         struct ena_mp_body *req, *rsp;                                  \
430         struct rte_mp_reply mp_rep;                                     \
431         struct rte_mp_msg mp_req;                                       \
432         int ret;                                                        \
433                                                                         \
434         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {               \
435                 ret = f(__VA_ARGS__);                                   \
436         } else {                                                        \
437                 /* Prepare and send request */                          \
438                 req = (struct ena_mp_body *)&mp_req.param;              \
439                 mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
440                 mp_prep_ ## f(_a, req, ## __VA_ARGS__);                 \
441                                                                         \
442                 ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);       \
443                 if (likely(!ret)) {                                     \
444                         RTE_ASSERT(mp_rep.nb_received == 1);            \
445                         rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
446                         ret = rsp->result;                              \
447                         if (ret == 0) {                                 \
448                                 mp_proc_##f(_a, rsp, ## __VA_ARGS__);   \
449                         } else {                                        \
450                                 PMD_DRV_LOG(ERR,                        \
451                                             "%s returned error: %d\n",  \
452                                             mp_name_ ## f, rsp->result);\
453                         }                                               \
454                         free(mp_rep.msgs);                              \
455                 } else if (rte_errno == ENOTSUP) {                      \
456                         PMD_DRV_LOG(ERR,                                \
457                                     "No IPC, can't proxy to primary\n");\
458                         ret = -rte_errno;                               \
459                 } else {                                                \
460                         PMD_DRV_LOG(ERR, "Request %s failed: %s\n",     \
461                                     mp_name_ ## f,                      \
462                                     rte_strerror(rte_errno));           \
463                         ret = -EIO;                                     \
464                 }                                                       \
465         }                                                               \
466         ret;                                                            \
467 })
468
469 /*********************************************************************
470  *  Multi-Process communication request descriptors
471  *********************************************************************/
472
473 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
474 ({
475         ENA_TOUCH(adapter);
476         ENA_TOUCH(req);
477         ENA_TOUCH(ena_dev);
478         ENA_TOUCH(stats);
479 }),
480 ({
481         ENA_TOUCH(rsp);
482         ENA_TOUCH(ena_dev);
483         if (stats != &adapter->basic_stats)
484                 rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
485 }),
486         struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
487
488 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
489 ({
490         ENA_TOUCH(adapter);
491         ENA_TOUCH(req);
492         ENA_TOUCH(ena_dev);
493         ENA_TOUCH(stats);
494 }),
495 ({
496         ENA_TOUCH(rsp);
497         ENA_TOUCH(ena_dev);
498         if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
499                 rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
500 }),
501         struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
502
503 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
504 ({
505         ENA_TOUCH(adapter);
506         ENA_TOUCH(ena_dev);
507         req->args.mtu = mtu;
508 }),
509 ({
510         ENA_TOUCH(adapter);
511         ENA_TOUCH(rsp);
512         ENA_TOUCH(ena_dev);
513         ENA_TOUCH(mtu);
514 }),
515         struct ena_com_dev *ena_dev, int mtu);
516
517 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
518 ({
519         ENA_TOUCH(adapter);
520         ENA_TOUCH(req);
521         ENA_TOUCH(ena_dev);
522 }),
523 ({
524         ENA_TOUCH(adapter);
525         ENA_TOUCH(rsp);
526         ENA_TOUCH(ena_dev);
527 }),
528         struct ena_com_dev *ena_dev);
529
530 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
531 ({
532         ENA_TOUCH(adapter);
533         ENA_TOUCH(req);
534         ENA_TOUCH(ena_dev);
535         ENA_TOUCH(ind_tbl);
536 }),
537 ({
538         ENA_TOUCH(rsp);
539         ENA_TOUCH(ena_dev);
540         if (ind_tbl != adapter->indirect_table)
541                 rte_memcpy(ind_tbl, adapter->indirect_table,
542                            sizeof(adapter->indirect_table));
543 }),
544         struct ena_com_dev *ena_dev, u32 *ind_tbl);
545
546 static inline void ena_trigger_reset(struct ena_adapter *adapter,
547                                      enum ena_regs_reset_reason_types reason)
548 {
549         if (likely(!adapter->trigger_reset)) {
550                 adapter->reset_reason = reason;
551                 adapter->trigger_reset = true;
552         }
553 }
554
555 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
556                                        struct rte_mbuf *mbuf,
557                                        struct ena_com_rx_ctx *ena_rx_ctx,
558                                        bool fill_hash)
559 {
560         struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
561         uint64_t ol_flags = 0;
562         uint32_t packet_type = 0;
563
564         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
565                 packet_type |= RTE_PTYPE_L4_TCP;
566         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
567                 packet_type |= RTE_PTYPE_L4_UDP;
568
569         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
570                 packet_type |= RTE_PTYPE_L3_IPV4;
571                 if (unlikely(ena_rx_ctx->l3_csum_err)) {
572                         ++rx_stats->l3_csum_bad;
573                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
574                 } else {
575                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
576                 }
577         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
578                 packet_type |= RTE_PTYPE_L3_IPV6;
579         }
580
581         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
582                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
583         } else {
584                 if (unlikely(ena_rx_ctx->l4_csum_err)) {
585                         ++rx_stats->l4_csum_bad;
586                         /*
587                          * For the L4 Rx checksum offload the HW may indicate
588                          * bad checksum although it's valid. Because of that,
589                          * we're setting the UNKNOWN flag to let the app
590                          * re-verify the checksum.
591                          */
592                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
593                 } else {
594                         ++rx_stats->l4_csum_good;
595                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
596                 }
597         }
598
599         if (fill_hash &&
600             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
601                 ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
602                 mbuf->hash.rss = ena_rx_ctx->hash;
603         }
604
605         mbuf->ol_flags = ol_flags;
606         mbuf->packet_type = packet_type;
607 }
608
609 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
610                                        struct ena_com_tx_ctx *ena_tx_ctx,
611                                        uint64_t queue_offloads,
612                                        bool disable_meta_caching)
613 {
614         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
615
616         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
617             (queue_offloads & QUEUE_OFFLOADS)) {
618                 /* check if TSO is required */
619                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
620                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
621                         ena_tx_ctx->tso_enable = true;
622
623                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
624                 }
625
626                 /* check if L3 checksum is needed */
627                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
628                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
629                         ena_tx_ctx->l3_csum_enable = true;
630
631                 if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
632                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
633                         /* For the IPv6 packets, DF always needs to be true. */
634                         ena_tx_ctx->df = 1;
635                 } else {
636                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
637
638                         /* set don't fragment (DF) flag */
639                         if (mbuf->packet_type &
640                                 (RTE_PTYPE_L4_NONFRAG
641                                  | RTE_PTYPE_INNER_L4_NONFRAG))
642                                 ena_tx_ctx->df = 1;
643                 }
644
645                 /* check if L4 checksum is needed */
646                 if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
647                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
648                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
649                         ena_tx_ctx->l4_csum_enable = true;
650                 } else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
651                                 RTE_MBUF_F_TX_UDP_CKSUM) &&
652                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
653                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
654                         ena_tx_ctx->l4_csum_enable = true;
655                 } else {
656                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
657                         ena_tx_ctx->l4_csum_enable = false;
658                 }
659
660                 ena_meta->mss = mbuf->tso_segsz;
661                 ena_meta->l3_hdr_len = mbuf->l3_len;
662                 ena_meta->l3_hdr_offset = mbuf->l2_len;
663
664                 ena_tx_ctx->meta_valid = true;
665         } else if (disable_meta_caching) {
666                 memset(ena_meta, 0, sizeof(*ena_meta));
667                 ena_tx_ctx->meta_valid = true;
668         } else {
669                 ena_tx_ctx->meta_valid = false;
670         }
671 }
672
673 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
674 {
675         struct ena_tx_buffer *tx_info = NULL;
676
677         if (likely(req_id < tx_ring->ring_size)) {
678                 tx_info = &tx_ring->tx_buffer_info[req_id];
679                 if (likely(tx_info->mbuf))
680                         return 0;
681         }
682
683         if (tx_info)
684                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
685                         tx_ring->port_id, tx_ring->id, req_id);
686         else
687                 PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
688                         req_id, tx_ring->port_id, tx_ring->id);
689
690         /* Trigger device reset */
691         ++tx_ring->tx_stats.bad_req_id;
692         ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
693         return -EFAULT;
694 }
695
696 static void ena_config_host_info(struct ena_com_dev *ena_dev)
697 {
698         struct ena_admin_host_info *host_info;
699         int rc;
700
701         /* Allocate only the host info */
702         rc = ena_com_allocate_host_info(ena_dev);
703         if (rc) {
704                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
705                 return;
706         }
707
708         host_info = ena_dev->host_attr.host_info;
709
710         host_info->os_type = ENA_ADMIN_OS_DPDK;
711         host_info->kernel_ver = RTE_VERSION;
712         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
713                 sizeof(host_info->kernel_ver_str));
714         host_info->os_dist = RTE_VERSION;
715         strlcpy((char *)host_info->os_dist_str, rte_version(),
716                 sizeof(host_info->os_dist_str));
717         host_info->driver_version =
718                 (DRV_MODULE_VER_MAJOR) |
719                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
720                 (DRV_MODULE_VER_SUBMINOR <<
721                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
722         host_info->num_cpus = rte_lcore_count();
723
724         host_info->driver_supported_features =
725                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
726                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
727
728         rc = ena_com_set_host_attributes(ena_dev);
729         if (rc) {
730                 if (rc == -ENA_COM_UNSUPPORTED)
731                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
732                 else
733                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
734
735                 goto err;
736         }
737
738         return;
739
740 err:
741         ena_com_delete_host_info(ena_dev);
742 }
743
744 /* This function calculates the number of xstats based on the current config */
745 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
746 {
747         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
748                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
749                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
750 }
751
752 static void ena_config_debug_area(struct ena_adapter *adapter)
753 {
754         u32 debug_area_size;
755         int rc, ss_count;
756
757         ss_count = ena_xstats_calc_num(adapter->edev_data);
758
759         /* allocate 32 bytes for each string and 64bit for the value */
760         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
761
762         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
763         if (rc) {
764                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
765                 return;
766         }
767
768         rc = ena_com_set_host_attributes(&adapter->ena_dev);
769         if (rc) {
770                 if (rc == -ENA_COM_UNSUPPORTED)
771                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
772                 else
773                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
774
775                 goto err;
776         }
777
778         return;
779 err:
780         ena_com_delete_debug_area(&adapter->ena_dev);
781 }
782
783 static int ena_close(struct rte_eth_dev *dev)
784 {
785         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
786         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
787         struct ena_adapter *adapter = dev->data->dev_private;
788         int ret = 0;
789
790         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
791                 return 0;
792
793         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
794                 ret = ena_stop(dev);
795         adapter->state = ENA_ADAPTER_STATE_CLOSED;
796
797         ena_rx_queue_release_all(dev);
798         ena_tx_queue_release_all(dev);
799
800         rte_free(adapter->drv_stats);
801         adapter->drv_stats = NULL;
802
803         rte_intr_disable(intr_handle);
804         rte_intr_callback_unregister(intr_handle,
805                                      ena_interrupt_handler_rte,
806                                      dev);
807
808         /*
809          * MAC is not allocated dynamically. Setting NULL should prevent from
810          * release of the resource in the rte_eth_dev_release_port().
811          */
812         dev->data->mac_addrs = NULL;
813
814         return ret;
815 }
816
817 static int
818 ena_dev_reset(struct rte_eth_dev *dev)
819 {
820         int rc = 0;
821
822         /* Cannot release memory in secondary process */
823         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
824                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
825                 return -EPERM;
826         }
827
828         ena_destroy_device(dev);
829         rc = eth_ena_dev_init(dev);
830         if (rc)
831                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
832
833         return rc;
834 }
835
836 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
837 {
838         int nb_queues = dev->data->nb_rx_queues;
839         int i;
840
841         for (i = 0; i < nb_queues; i++)
842                 ena_rx_queue_release(dev, i);
843 }
844
845 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
846 {
847         int nb_queues = dev->data->nb_tx_queues;
848         int i;
849
850         for (i = 0; i < nb_queues; i++)
851                 ena_tx_queue_release(dev, i);
852 }
853
854 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
855 {
856         struct ena_ring *ring = dev->data->rx_queues[qid];
857
858         /* Free ring resources */
859         rte_free(ring->rx_buffer_info);
860         ring->rx_buffer_info = NULL;
861
862         rte_free(ring->rx_refill_buffer);
863         ring->rx_refill_buffer = NULL;
864
865         rte_free(ring->empty_rx_reqs);
866         ring->empty_rx_reqs = NULL;
867
868         ring->configured = 0;
869
870         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
871                 ring->port_id, ring->id);
872 }
873
874 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
875 {
876         struct ena_ring *ring = dev->data->tx_queues[qid];
877
878         /* Free ring resources */
879         rte_free(ring->push_buf_intermediate_buf);
880
881         rte_free(ring->tx_buffer_info);
882
883         rte_free(ring->empty_tx_reqs);
884
885         ring->empty_tx_reqs = NULL;
886         ring->tx_buffer_info = NULL;
887         ring->push_buf_intermediate_buf = NULL;
888
889         ring->configured = 0;
890
891         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
892                 ring->port_id, ring->id);
893 }
894
895 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
896 {
897         unsigned int i;
898
899         for (i = 0; i < ring->ring_size; ++i) {
900                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
901                 if (rx_info->mbuf) {
902                         rte_mbuf_raw_free(rx_info->mbuf);
903                         rx_info->mbuf = NULL;
904                 }
905         }
906 }
907
908 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
909 {
910         unsigned int i;
911
912         for (i = 0; i < ring->ring_size; ++i) {
913                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
914
915                 if (tx_buf->mbuf) {
916                         rte_pktmbuf_free(tx_buf->mbuf);
917                         tx_buf->mbuf = NULL;
918                 }
919         }
920 }
921
922 static int ena_link_update(struct rte_eth_dev *dev,
923                            __rte_unused int wait_to_complete)
924 {
925         struct rte_eth_link *link = &dev->data->dev_link;
926         struct ena_adapter *adapter = dev->data->dev_private;
927
928         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
929         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
930         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
931
932         return 0;
933 }
934
935 static int ena_queue_start_all(struct rte_eth_dev *dev,
936                                enum ena_ring_type ring_type)
937 {
938         struct ena_adapter *adapter = dev->data->dev_private;
939         struct ena_ring *queues = NULL;
940         int nb_queues;
941         int i = 0;
942         int rc = 0;
943
944         if (ring_type == ENA_RING_TYPE_RX) {
945                 queues = adapter->rx_ring;
946                 nb_queues = dev->data->nb_rx_queues;
947         } else {
948                 queues = adapter->tx_ring;
949                 nb_queues = dev->data->nb_tx_queues;
950         }
951         for (i = 0; i < nb_queues; i++) {
952                 if (queues[i].configured) {
953                         if (ring_type == ENA_RING_TYPE_RX) {
954                                 ena_assert_msg(
955                                         dev->data->rx_queues[i] == &queues[i],
956                                         "Inconsistent state of Rx queues\n");
957                         } else {
958                                 ena_assert_msg(
959                                         dev->data->tx_queues[i] == &queues[i],
960                                         "Inconsistent state of Tx queues\n");
961                         }
962
963                         rc = ena_queue_start(dev, &queues[i]);
964
965                         if (rc) {
966                                 PMD_INIT_LOG(ERR,
967                                         "Failed to start queue[%d] of type(%d)\n",
968                                         i, ring_type);
969                                 goto err;
970                         }
971                 }
972         }
973
974         return 0;
975
976 err:
977         while (i--)
978                 if (queues[i].configured)
979                         ena_queue_stop(&queues[i]);
980
981         return rc;
982 }
983
984 static int ena_check_valid_conf(struct ena_adapter *adapter)
985 {
986         uint32_t mtu = adapter->edev_data->mtu;
987
988         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
989                 PMD_INIT_LOG(ERR,
990                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
991                         mtu, adapter->max_mtu, ENA_MIN_MTU);
992                 return ENA_COM_UNSUPPORTED;
993         }
994
995         return 0;
996 }
997
998 static int
999 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1000                        bool use_large_llq_hdr)
1001 {
1002         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
1003         struct ena_com_dev *ena_dev = ctx->ena_dev;
1004         uint32_t max_tx_queue_size;
1005         uint32_t max_rx_queue_size;
1006
1007         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1008                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1009                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1010                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1011                         max_queue_ext->max_rx_sq_depth);
1012                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1013
1014                 if (ena_dev->tx_mem_queue_type ==
1015                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1016                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1017                                 llq->max_llq_depth);
1018                 } else {
1019                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1020                                 max_queue_ext->max_tx_sq_depth);
1021                 }
1022
1023                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1024                         max_queue_ext->max_per_packet_rx_descs);
1025                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1026                         max_queue_ext->max_per_packet_tx_descs);
1027         } else {
1028                 struct ena_admin_queue_feature_desc *max_queues =
1029                         &ctx->get_feat_ctx->max_queues;
1030                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1031                         max_queues->max_sq_depth);
1032                 max_tx_queue_size = max_queues->max_cq_depth;
1033
1034                 if (ena_dev->tx_mem_queue_type ==
1035                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1036                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1037                                 llq->max_llq_depth);
1038                 } else {
1039                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1040                                 max_queues->max_sq_depth);
1041                 }
1042
1043                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1044                         max_queues->max_packet_rx_descs);
1045                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1046                         max_queues->max_packet_tx_descs);
1047         }
1048
1049         /* Round down to the nearest power of 2 */
1050         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1051         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1052
1053         if (use_large_llq_hdr) {
1054                 if ((llq->entry_size_ctrl_supported &
1055                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1056                     (ena_dev->tx_mem_queue_type ==
1057                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1058                         max_tx_queue_size /= 2;
1059                         PMD_INIT_LOG(INFO,
1060                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
1061                                 max_tx_queue_size);
1062                 } else {
1063                         PMD_INIT_LOG(ERR,
1064                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1065                 }
1066         }
1067
1068         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1069                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
1070                 return -EFAULT;
1071         }
1072
1073         ctx->max_tx_queue_size = max_tx_queue_size;
1074         ctx->max_rx_queue_size = max_rx_queue_size;
1075
1076         return 0;
1077 }
1078
1079 static void ena_stats_restart(struct rte_eth_dev *dev)
1080 {
1081         struct ena_adapter *adapter = dev->data->dev_private;
1082
1083         rte_atomic64_init(&adapter->drv_stats->ierrors);
1084         rte_atomic64_init(&adapter->drv_stats->oerrors);
1085         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1086         adapter->drv_stats->rx_drops = 0;
1087 }
1088
1089 static int ena_stats_get(struct rte_eth_dev *dev,
1090                           struct rte_eth_stats *stats)
1091 {
1092         struct ena_admin_basic_stats ena_stats;
1093         struct ena_adapter *adapter = dev->data->dev_private;
1094         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1095         int rc;
1096         int i;
1097         int max_rings_stats;
1098
1099         memset(&ena_stats, 0, sizeof(ena_stats));
1100
1101         rte_spinlock_lock(&adapter->admin_lock);
1102         rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1103                        &ena_stats);
1104         rte_spinlock_unlock(&adapter->admin_lock);
1105         if (unlikely(rc)) {
1106                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1107                 return rc;
1108         }
1109
1110         /* Set of basic statistics from ENA */
1111         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1112                                           ena_stats.rx_pkts_low);
1113         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1114                                           ena_stats.tx_pkts_low);
1115         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1116                                         ena_stats.rx_bytes_low);
1117         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1118                                         ena_stats.tx_bytes_low);
1119
1120         /* Driver related stats */
1121         stats->imissed = adapter->drv_stats->rx_drops;
1122         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1123         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1124         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1125
1126         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1127                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1128         for (i = 0; i < max_rings_stats; ++i) {
1129                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1130
1131                 stats->q_ibytes[i] = rx_stats->bytes;
1132                 stats->q_ipackets[i] = rx_stats->cnt;
1133                 stats->q_errors[i] = rx_stats->bad_desc_num +
1134                         rx_stats->bad_req_id;
1135         }
1136
1137         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1138                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1139         for (i = 0; i < max_rings_stats; ++i) {
1140                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1141
1142                 stats->q_obytes[i] = tx_stats->bytes;
1143                 stats->q_opackets[i] = tx_stats->cnt;
1144         }
1145
1146         return 0;
1147 }
1148
1149 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1150 {
1151         struct ena_adapter *adapter;
1152         struct ena_com_dev *ena_dev;
1153         int rc = 0;
1154
1155         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1156         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1157         adapter = dev->data->dev_private;
1158
1159         ena_dev = &adapter->ena_dev;
1160         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1161
1162         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1163                 PMD_DRV_LOG(ERR,
1164                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1165                         mtu, adapter->max_mtu, ENA_MIN_MTU);
1166                 return -EINVAL;
1167         }
1168
1169         rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1170         if (rc)
1171                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1172         else
1173                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1174
1175         return rc;
1176 }
1177
1178 static int ena_start(struct rte_eth_dev *dev)
1179 {
1180         struct ena_adapter *adapter = dev->data->dev_private;
1181         uint64_t ticks;
1182         int rc = 0;
1183
1184         /* Cannot allocate memory in secondary process */
1185         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1186                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1187                 return -EPERM;
1188         }
1189
1190         rc = ena_check_valid_conf(adapter);
1191         if (rc)
1192                 return rc;
1193
1194         rc = ena_setup_rx_intr(dev);
1195         if (rc)
1196                 return rc;
1197
1198         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1199         if (rc)
1200                 return rc;
1201
1202         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1203         if (rc)
1204                 goto err_start_tx;
1205
1206         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1207                 rc = ena_rss_configure(adapter);
1208                 if (rc)
1209                         goto err_rss_init;
1210         }
1211
1212         ena_stats_restart(dev);
1213
1214         adapter->timestamp_wd = rte_get_timer_cycles();
1215         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1216
1217         ticks = rte_get_timer_hz();
1218         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1219                         ena_timer_wd_callback, dev);
1220
1221         ++adapter->dev_stats.dev_start;
1222         adapter->state = ENA_ADAPTER_STATE_RUNNING;
1223
1224         return 0;
1225
1226 err_rss_init:
1227         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1228 err_start_tx:
1229         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1230         return rc;
1231 }
1232
1233 static int ena_stop(struct rte_eth_dev *dev)
1234 {
1235         struct ena_adapter *adapter = dev->data->dev_private;
1236         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1237         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1238         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1239         int rc;
1240
1241         /* Cannot free memory in secondary process */
1242         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1243                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1244                 return -EPERM;
1245         }
1246
1247         rte_timer_stop_sync(&adapter->timer_wd);
1248         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1249         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1250
1251         if (adapter->trigger_reset) {
1252                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1253                 if (rc)
1254                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1255         }
1256
1257         rte_intr_disable(intr_handle);
1258
1259         rte_intr_efd_disable(intr_handle);
1260
1261         /* Cleanup vector list */
1262         rte_intr_vec_list_free(intr_handle);
1263
1264         rte_intr_enable(intr_handle);
1265
1266         ++adapter->dev_stats.dev_stop;
1267         adapter->state = ENA_ADAPTER_STATE_STOPPED;
1268         dev->data->dev_started = 0;
1269
1270         return 0;
1271 }
1272
1273 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1274 {
1275         struct ena_adapter *adapter = ring->adapter;
1276         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1277         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1278         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1279         struct ena_com_create_io_ctx ctx =
1280                 /* policy set to _HOST just to satisfy icc compiler */
1281                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1282                   0, 0, 0, 0, 0 };
1283         uint16_t ena_qid;
1284         unsigned int i;
1285         int rc;
1286
1287         ctx.msix_vector = -1;
1288         if (ring->type == ENA_RING_TYPE_TX) {
1289                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1290                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1291                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1292                 for (i = 0; i < ring->ring_size; i++)
1293                         ring->empty_tx_reqs[i] = i;
1294         } else {
1295                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1296                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1297                 if (rte_intr_dp_is_en(intr_handle))
1298                         ctx.msix_vector =
1299                                 rte_intr_vec_list_index_get(intr_handle,
1300                                                                    ring->id);
1301
1302                 for (i = 0; i < ring->ring_size; i++)
1303                         ring->empty_rx_reqs[i] = i;
1304         }
1305         ctx.queue_size = ring->ring_size;
1306         ctx.qid = ena_qid;
1307         ctx.numa_node = ring->numa_socket_id;
1308
1309         rc = ena_com_create_io_queue(ena_dev, &ctx);
1310         if (rc) {
1311                 PMD_DRV_LOG(ERR,
1312                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1313                         ring->id, ena_qid, rc);
1314                 return rc;
1315         }
1316
1317         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1318                                      &ring->ena_com_io_sq,
1319                                      &ring->ena_com_io_cq);
1320         if (rc) {
1321                 PMD_DRV_LOG(ERR,
1322                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1323                         ring->id, rc);
1324                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1325                 return rc;
1326         }
1327
1328         if (ring->type == ENA_RING_TYPE_TX)
1329                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1330
1331         /* Start with Rx interrupts being masked. */
1332         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1333                 ena_rx_queue_intr_disable(dev, ring->id);
1334
1335         return 0;
1336 }
1337
1338 static void ena_queue_stop(struct ena_ring *ring)
1339 {
1340         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1341
1342         if (ring->type == ENA_RING_TYPE_RX) {
1343                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1344                 ena_rx_queue_release_bufs(ring);
1345         } else {
1346                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1347                 ena_tx_queue_release_bufs(ring);
1348         }
1349 }
1350
1351 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1352                               enum ena_ring_type ring_type)
1353 {
1354         struct ena_adapter *adapter = dev->data->dev_private;
1355         struct ena_ring *queues = NULL;
1356         uint16_t nb_queues, i;
1357
1358         if (ring_type == ENA_RING_TYPE_RX) {
1359                 queues = adapter->rx_ring;
1360                 nb_queues = dev->data->nb_rx_queues;
1361         } else {
1362                 queues = adapter->tx_ring;
1363                 nb_queues = dev->data->nb_tx_queues;
1364         }
1365
1366         for (i = 0; i < nb_queues; ++i)
1367                 if (queues[i].configured)
1368                         ena_queue_stop(&queues[i]);
1369 }
1370
1371 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1372 {
1373         int rc, bufs_num;
1374
1375         ena_assert_msg(ring->configured == 1,
1376                        "Trying to start unconfigured queue\n");
1377
1378         rc = ena_create_io_queue(dev, ring);
1379         if (rc) {
1380                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1381                 return rc;
1382         }
1383
1384         ring->next_to_clean = 0;
1385         ring->next_to_use = 0;
1386
1387         if (ring->type == ENA_RING_TYPE_TX) {
1388                 ring->tx_stats.available_desc =
1389                         ena_com_free_q_entries(ring->ena_com_io_sq);
1390                 return 0;
1391         }
1392
1393         bufs_num = ring->ring_size - 1;
1394         rc = ena_populate_rx_queue(ring, bufs_num);
1395         if (rc != bufs_num) {
1396                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1397                                          ENA_IO_RXQ_IDX(ring->id));
1398                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1399                 return ENA_COM_FAULT;
1400         }
1401         /* Flush per-core RX buffers pools cache as they can be used on other
1402          * cores as well.
1403          */
1404         rte_mempool_cache_flush(NULL, ring->mb_pool);
1405
1406         return 0;
1407 }
1408
1409 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1410                               uint16_t queue_idx,
1411                               uint16_t nb_desc,
1412                               unsigned int socket_id,
1413                               const struct rte_eth_txconf *tx_conf)
1414 {
1415         struct ena_ring *txq = NULL;
1416         struct ena_adapter *adapter = dev->data->dev_private;
1417         unsigned int i;
1418         uint16_t dyn_thresh;
1419
1420         txq = &adapter->tx_ring[queue_idx];
1421
1422         if (txq->configured) {
1423                 PMD_DRV_LOG(CRIT,
1424                         "API violation. Queue[%d] is already configured\n",
1425                         queue_idx);
1426                 return ENA_COM_FAULT;
1427         }
1428
1429         if (!rte_is_power_of_2(nb_desc)) {
1430                 PMD_DRV_LOG(ERR,
1431                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1432                         nb_desc);
1433                 return -EINVAL;
1434         }
1435
1436         if (nb_desc > adapter->max_tx_ring_size) {
1437                 PMD_DRV_LOG(ERR,
1438                         "Unsupported size of Tx queue (max size: %d)\n",
1439                         adapter->max_tx_ring_size);
1440                 return -EINVAL;
1441         }
1442
1443         txq->port_id = dev->data->port_id;
1444         txq->next_to_clean = 0;
1445         txq->next_to_use = 0;
1446         txq->ring_size = nb_desc;
1447         txq->size_mask = nb_desc - 1;
1448         txq->numa_socket_id = socket_id;
1449         txq->pkts_without_db = false;
1450         txq->last_cleanup_ticks = 0;
1451
1452         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1453                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1454                 RTE_CACHE_LINE_SIZE,
1455                 socket_id);
1456         if (!txq->tx_buffer_info) {
1457                 PMD_DRV_LOG(ERR,
1458                         "Failed to allocate memory for Tx buffer info\n");
1459                 return -ENOMEM;
1460         }
1461
1462         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1463                 sizeof(uint16_t) * txq->ring_size,
1464                 RTE_CACHE_LINE_SIZE,
1465                 socket_id);
1466         if (!txq->empty_tx_reqs) {
1467                 PMD_DRV_LOG(ERR,
1468                         "Failed to allocate memory for empty Tx requests\n");
1469                 rte_free(txq->tx_buffer_info);
1470                 return -ENOMEM;
1471         }
1472
1473         txq->push_buf_intermediate_buf =
1474                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1475                         txq->tx_max_header_size,
1476                         RTE_CACHE_LINE_SIZE,
1477                         socket_id);
1478         if (!txq->push_buf_intermediate_buf) {
1479                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1480                 rte_free(txq->tx_buffer_info);
1481                 rte_free(txq->empty_tx_reqs);
1482                 return -ENOMEM;
1483         }
1484
1485         for (i = 0; i < txq->ring_size; i++)
1486                 txq->empty_tx_reqs[i] = i;
1487
1488         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1489
1490         /* Check if caller provided the Tx cleanup threshold value. */
1491         if (tx_conf->tx_free_thresh != 0) {
1492                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1493         } else {
1494                 dyn_thresh = txq->ring_size -
1495                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1496                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1497                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1498         }
1499
1500         txq->missing_tx_completion_threshold =
1501                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1502
1503         /* Store pointer to this queue in upper layer */
1504         txq->configured = 1;
1505         dev->data->tx_queues[queue_idx] = txq;
1506
1507         return 0;
1508 }
1509
1510 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1511                               uint16_t queue_idx,
1512                               uint16_t nb_desc,
1513                               unsigned int socket_id,
1514                               const struct rte_eth_rxconf *rx_conf,
1515                               struct rte_mempool *mp)
1516 {
1517         struct ena_adapter *adapter = dev->data->dev_private;
1518         struct ena_ring *rxq = NULL;
1519         size_t buffer_size;
1520         int i;
1521         uint16_t dyn_thresh;
1522
1523         rxq = &adapter->rx_ring[queue_idx];
1524         if (rxq->configured) {
1525                 PMD_DRV_LOG(CRIT,
1526                         "API violation. Queue[%d] is already configured\n",
1527                         queue_idx);
1528                 return ENA_COM_FAULT;
1529         }
1530
1531         if (!rte_is_power_of_2(nb_desc)) {
1532                 PMD_DRV_LOG(ERR,
1533                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1534                         nb_desc);
1535                 return -EINVAL;
1536         }
1537
1538         if (nb_desc > adapter->max_rx_ring_size) {
1539                 PMD_DRV_LOG(ERR,
1540                         "Unsupported size of Rx queue (max size: %d)\n",
1541                         adapter->max_rx_ring_size);
1542                 return -EINVAL;
1543         }
1544
1545         /* ENA isn't supporting buffers smaller than 1400 bytes */
1546         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1547         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1548                 PMD_DRV_LOG(ERR,
1549                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1550                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1551                 return -EINVAL;
1552         }
1553
1554         rxq->port_id = dev->data->port_id;
1555         rxq->next_to_clean = 0;
1556         rxq->next_to_use = 0;
1557         rxq->ring_size = nb_desc;
1558         rxq->size_mask = nb_desc - 1;
1559         rxq->numa_socket_id = socket_id;
1560         rxq->mb_pool = mp;
1561
1562         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1563                 sizeof(struct ena_rx_buffer) * nb_desc,
1564                 RTE_CACHE_LINE_SIZE,
1565                 socket_id);
1566         if (!rxq->rx_buffer_info) {
1567                 PMD_DRV_LOG(ERR,
1568                         "Failed to allocate memory for Rx buffer info\n");
1569                 return -ENOMEM;
1570         }
1571
1572         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1573                 sizeof(struct rte_mbuf *) * nb_desc,
1574                 RTE_CACHE_LINE_SIZE,
1575                 socket_id);
1576         if (!rxq->rx_refill_buffer) {
1577                 PMD_DRV_LOG(ERR,
1578                         "Failed to allocate memory for Rx refill buffer\n");
1579                 rte_free(rxq->rx_buffer_info);
1580                 rxq->rx_buffer_info = NULL;
1581                 return -ENOMEM;
1582         }
1583
1584         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1585                 sizeof(uint16_t) * nb_desc,
1586                 RTE_CACHE_LINE_SIZE,
1587                 socket_id);
1588         if (!rxq->empty_rx_reqs) {
1589                 PMD_DRV_LOG(ERR,
1590                         "Failed to allocate memory for empty Rx requests\n");
1591                 rte_free(rxq->rx_buffer_info);
1592                 rxq->rx_buffer_info = NULL;
1593                 rte_free(rxq->rx_refill_buffer);
1594                 rxq->rx_refill_buffer = NULL;
1595                 return -ENOMEM;
1596         }
1597
1598         for (i = 0; i < nb_desc; i++)
1599                 rxq->empty_rx_reqs[i] = i;
1600
1601         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1602
1603         if (rx_conf->rx_free_thresh != 0) {
1604                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1605         } else {
1606                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1607                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1608                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1609         }
1610
1611         /* Store pointer to this queue in upper layer */
1612         rxq->configured = 1;
1613         dev->data->rx_queues[queue_idx] = rxq;
1614
1615         return 0;
1616 }
1617
1618 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1619                                   struct rte_mbuf *mbuf, uint16_t id)
1620 {
1621         struct ena_com_buf ebuf;
1622         int rc;
1623
1624         /* prepare physical address for DMA transaction */
1625         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1626         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1627
1628         /* pass resource to device */
1629         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1630         if (unlikely(rc != 0))
1631                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1632
1633         return rc;
1634 }
1635
1636 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1637 {
1638         unsigned int i;
1639         int rc;
1640         uint16_t next_to_use = rxq->next_to_use;
1641         uint16_t req_id;
1642 #ifdef RTE_ETHDEV_DEBUG_RX
1643         uint16_t in_use;
1644 #endif
1645         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1646
1647         if (unlikely(!count))
1648                 return 0;
1649
1650 #ifdef RTE_ETHDEV_DEBUG_RX
1651         in_use = rxq->ring_size - 1 -
1652                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1653         if (unlikely((in_use + count) >= rxq->ring_size))
1654                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1655 #endif
1656
1657         /* get resources for incoming packets */
1658         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1659         if (unlikely(rc < 0)) {
1660                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1661                 ++rxq->rx_stats.mbuf_alloc_fail;
1662                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1663                 return 0;
1664         }
1665
1666         for (i = 0; i < count; i++) {
1667                 struct rte_mbuf *mbuf = mbufs[i];
1668                 struct ena_rx_buffer *rx_info;
1669
1670                 if (likely((i + 4) < count))
1671                         rte_prefetch0(mbufs[i + 4]);
1672
1673                 req_id = rxq->empty_rx_reqs[next_to_use];
1674                 rx_info = &rxq->rx_buffer_info[req_id];
1675
1676                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1677                 if (unlikely(rc != 0))
1678                         break;
1679
1680                 rx_info->mbuf = mbuf;
1681                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1682         }
1683
1684         if (unlikely(i < count)) {
1685                 PMD_RX_LOG(WARNING,
1686                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1687                         rxq->id, i, count);
1688                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1689                 ++rxq->rx_stats.refill_partial;
1690         }
1691
1692         /* When we submitted free resources to device... */
1693         if (likely(i > 0)) {
1694                 /* ...let HW know that it can fill buffers with data. */
1695                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1696
1697                 rxq->next_to_use = next_to_use;
1698         }
1699
1700         return i;
1701 }
1702
1703 static int ena_device_init(struct ena_adapter *adapter,
1704                            struct rte_pci_device *pdev,
1705                            struct ena_com_dev_get_features_ctx *get_feat_ctx)
1706 {
1707         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1708         uint32_t aenq_groups;
1709         int rc;
1710         bool readless_supported;
1711
1712         /* Initialize mmio registers */
1713         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1714         if (rc) {
1715                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1716                 return rc;
1717         }
1718
1719         /* The PCIe configuration space revision id indicate if mmio reg
1720          * read is disabled.
1721          */
1722         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1723         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1724
1725         /* reset device */
1726         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1727         if (rc) {
1728                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1729                 goto err_mmio_read_less;
1730         }
1731
1732         /* check FW version */
1733         rc = ena_com_validate_version(ena_dev);
1734         if (rc) {
1735                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1736                 goto err_mmio_read_less;
1737         }
1738
1739         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1740
1741         /* ENA device administration layer init */
1742         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1743         if (rc) {
1744                 PMD_DRV_LOG(ERR,
1745                         "Cannot initialize ENA admin queue\n");
1746                 goto err_mmio_read_less;
1747         }
1748
1749         /* To enable the msix interrupts the driver needs to know the number
1750          * of queues. So the driver uses polling mode to retrieve this
1751          * information.
1752          */
1753         ena_com_set_admin_polling_mode(ena_dev, true);
1754
1755         ena_config_host_info(ena_dev);
1756
1757         /* Get Device Attributes and features */
1758         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1759         if (rc) {
1760                 PMD_DRV_LOG(ERR,
1761                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1762                 goto err_admin_init;
1763         }
1764
1765         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1766                       BIT(ENA_ADMIN_NOTIFICATION) |
1767                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1768                       BIT(ENA_ADMIN_FATAL_ERROR) |
1769                       BIT(ENA_ADMIN_WARNING);
1770
1771         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1772
1773         adapter->all_aenq_groups = aenq_groups;
1774
1775         return 0;
1776
1777 err_admin_init:
1778         ena_com_admin_destroy(ena_dev);
1779
1780 err_mmio_read_less:
1781         ena_com_mmio_reg_read_request_destroy(ena_dev);
1782
1783         return rc;
1784 }
1785
1786 static void ena_interrupt_handler_rte(void *cb_arg)
1787 {
1788         struct rte_eth_dev *dev = cb_arg;
1789         struct ena_adapter *adapter = dev->data->dev_private;
1790         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1791
1792         ena_com_admin_q_comp_intr_handler(ena_dev);
1793         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1794                 ena_com_aenq_intr_handler(ena_dev, dev);
1795 }
1796
1797 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1798 {
1799         if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1800                 return;
1801
1802         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1803                 return;
1804
1805         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1806             adapter->keep_alive_timeout)) {
1807                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1808                 ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1809                 ++adapter->dev_stats.wd_expired;
1810         }
1811 }
1812
1813 /* Check if admin queue is enabled */
1814 static void check_for_admin_com_state(struct ena_adapter *adapter)
1815 {
1816         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1817                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1818                 ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1819         }
1820 }
1821
1822 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1823                                             struct ena_ring *tx_ring)
1824 {
1825         struct ena_tx_buffer *tx_buf;
1826         uint64_t timestamp;
1827         uint64_t completion_delay;
1828         uint32_t missed_tx = 0;
1829         unsigned int i;
1830         int rc = 0;
1831
1832         for (i = 0; i < tx_ring->ring_size; ++i) {
1833                 tx_buf = &tx_ring->tx_buffer_info[i];
1834                 timestamp = tx_buf->timestamp;
1835
1836                 if (timestamp == 0)
1837                         continue;
1838
1839                 completion_delay = rte_get_timer_cycles() - timestamp;
1840                 if (completion_delay > adapter->missing_tx_completion_to) {
1841                         if (unlikely(!tx_buf->print_once)) {
1842                                 PMD_TX_LOG(WARNING,
1843                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1844                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1845                                         tx_ring->id, i, completion_delay /
1846                                         rte_get_timer_hz() * 1000);
1847                                 tx_buf->print_once = true;
1848                         }
1849                         ++missed_tx;
1850                 }
1851         }
1852
1853         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1854                 PMD_DRV_LOG(ERR,
1855                         "The number of lost Tx completions is above the threshold (%d > %d). "
1856                         "Trigger the device reset.\n",
1857                         missed_tx,
1858                         tx_ring->missing_tx_completion_threshold);
1859                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1860                 adapter->trigger_reset = true;
1861                 rc = -EIO;
1862         }
1863
1864         tx_ring->tx_stats.missed_tx += missed_tx;
1865
1866         return rc;
1867 }
1868
1869 static void check_for_tx_completions(struct ena_adapter *adapter)
1870 {
1871         struct ena_ring *tx_ring;
1872         uint64_t tx_cleanup_delay;
1873         size_t qid;
1874         int budget;
1875         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1876
1877         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1878                 return;
1879
1880         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1881         budget = adapter->missing_tx_completion_budget;
1882
1883         qid = adapter->last_tx_comp_qid;
1884         while (budget-- > 0) {
1885                 tx_ring = &adapter->tx_ring[qid];
1886
1887                 /* Tx cleanup is called only by the burst function and can be
1888                  * called dynamically by the application. Also cleanup is
1889                  * limited by the threshold. To avoid false detection of the
1890                  * missing HW Tx completion, get the delay since last cleanup
1891                  * function was called.
1892                  */
1893                 tx_cleanup_delay = rte_get_timer_cycles() -
1894                         tx_ring->last_cleanup_ticks;
1895                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1896                         check_for_tx_completion_in_queue(adapter, tx_ring);
1897                 qid = (qid + 1) % nb_tx_queues;
1898         }
1899
1900         adapter->last_tx_comp_qid = qid;
1901 }
1902
1903 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1904                                   void *arg)
1905 {
1906         struct rte_eth_dev *dev = arg;
1907         struct ena_adapter *adapter = dev->data->dev_private;
1908
1909         if (unlikely(adapter->trigger_reset))
1910                 return;
1911
1912         check_for_missing_keep_alive(adapter);
1913         check_for_admin_com_state(adapter);
1914         check_for_tx_completions(adapter);
1915
1916         if (unlikely(adapter->trigger_reset)) {
1917                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1918                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1919                         NULL);
1920         }
1921 }
1922
1923 static inline void
1924 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1925                                struct ena_admin_feature_llq_desc *llq,
1926                                bool use_large_llq_hdr)
1927 {
1928         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1929         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1930         llq_config->llq_num_decs_before_header =
1931                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1932
1933         if (use_large_llq_hdr &&
1934             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1935                 llq_config->llq_ring_entry_size =
1936                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1937                 llq_config->llq_ring_entry_size_value = 256;
1938         } else {
1939                 llq_config->llq_ring_entry_size =
1940                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1941                 llq_config->llq_ring_entry_size_value = 128;
1942         }
1943 }
1944
1945 static int
1946 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1947                                 struct ena_com_dev *ena_dev,
1948                                 struct ena_admin_feature_llq_desc *llq,
1949                                 struct ena_llq_configurations *llq_default_configurations)
1950 {
1951         int rc;
1952         u32 llq_feature_mask;
1953
1954         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1955         if (!(ena_dev->supported_features & llq_feature_mask)) {
1956                 PMD_DRV_LOG(INFO,
1957                         "LLQ is not supported. Fallback to host mode policy.\n");
1958                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1959                 return 0;
1960         }
1961
1962         if (adapter->dev_mem_base == NULL) {
1963                 PMD_DRV_LOG(ERR,
1964                         "LLQ is advertised as supported, but device doesn't expose mem bar\n");
1965                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1966                 return 0;
1967         }
1968
1969         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1970         if (unlikely(rc)) {
1971                 PMD_INIT_LOG(WARNING,
1972                         "Failed to config dev mode. Fallback to host mode policy.\n");
1973                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1974                 return 0;
1975         }
1976
1977         /* Nothing to config, exit */
1978         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1979                 return 0;
1980
1981         ena_dev->mem_bar = adapter->dev_mem_base;
1982
1983         return 0;
1984 }
1985
1986 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1987         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1988 {
1989         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1990
1991         /* Regular queues capabilities */
1992         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1993                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1994                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1995                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1996                                     max_queue_ext->max_rx_cq_num);
1997                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1998                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1999         } else {
2000                 struct ena_admin_queue_feature_desc *max_queues =
2001                         &get_feat_ctx->max_queues;
2002                 io_tx_sq_num = max_queues->max_sq_num;
2003                 io_tx_cq_num = max_queues->max_cq_num;
2004                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2005         }
2006
2007         /* In case of LLQ use the llq number in the get feature cmd */
2008         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2009                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2010
2011         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2012         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2013         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2014
2015         if (unlikely(max_num_io_queues == 0)) {
2016                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2017                 return -EFAULT;
2018         }
2019
2020         return max_num_io_queues;
2021 }
2022
2023 static void
2024 ena_set_offloads(struct ena_offloads *offloads,
2025                  struct ena_admin_feature_offload_desc *offload_desc)
2026 {
2027         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2028                 offloads->tx_offloads |= ENA_IPV4_TSO;
2029
2030         /* Tx IPv4 checksum offloads */
2031         if (offload_desc->tx &
2032             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2033                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2034         if (offload_desc->tx &
2035             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2036                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2037         if (offload_desc->tx &
2038             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2039                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2040
2041         /* Tx IPv6 checksum offloads */
2042         if (offload_desc->tx &
2043             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2044                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2045         if (offload_desc->tx &
2046              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2047                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2048
2049         /* Rx IPv4 checksum offloads */
2050         if (offload_desc->rx_supported &
2051             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2052                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2053         if (offload_desc->rx_supported &
2054             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2055                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2056
2057         /* Rx IPv6 checksum offloads */
2058         if (offload_desc->rx_supported &
2059             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2060                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2061
2062         if (offload_desc->rx_supported &
2063             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2064                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
2065 }
2066
2067 static int ena_init_once(void)
2068 {
2069         static bool init_done;
2070
2071         if (init_done)
2072                 return 0;
2073
2074         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2075                 /* Init timer subsystem for the ENA timer service. */
2076                 rte_timer_subsystem_init();
2077                 /* Register handler for requests from secondary processes. */
2078                 rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2079         }
2080
2081         init_done = true;
2082         return 0;
2083 }
2084
2085 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2086 {
2087         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2088         struct rte_pci_device *pci_dev;
2089         struct rte_intr_handle *intr_handle;
2090         struct ena_adapter *adapter = eth_dev->data->dev_private;
2091         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2092         struct ena_com_dev_get_features_ctx get_feat_ctx;
2093         struct ena_llq_configurations llq_config;
2094         const char *queue_type_str;
2095         uint32_t max_num_io_queues;
2096         int rc;
2097         static int adapters_found;
2098         bool disable_meta_caching;
2099
2100         eth_dev->dev_ops = &ena_dev_ops;
2101         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2102         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2103         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2104
2105         rc = ena_init_once();
2106         if (rc != 0)
2107                 return rc;
2108
2109         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2110                 return 0;
2111
2112         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2113
2114         memset(adapter, 0, sizeof(struct ena_adapter));
2115         ena_dev = &adapter->ena_dev;
2116
2117         adapter->edev_data = eth_dev->data;
2118
2119         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2120
2121         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2122                      pci_dev->addr.domain,
2123                      pci_dev->addr.bus,
2124                      pci_dev->addr.devid,
2125                      pci_dev->addr.function);
2126
2127         intr_handle = pci_dev->intr_handle;
2128
2129         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2130         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2131
2132         if (!adapter->regs) {
2133                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2134                              ENA_REGS_BAR);
2135                 return -ENXIO;
2136         }
2137
2138         ena_dev->reg_bar = adapter->regs;
2139         /* Pass device data as a pointer which can be passed to the IO functions
2140          * by the ena_com (for example - the memory allocation).
2141          */
2142         ena_dev->dmadev = eth_dev->data;
2143
2144         adapter->id_number = adapters_found;
2145
2146         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2147                  adapter->id_number);
2148
2149         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2150
2151         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2152         if (rc != 0) {
2153                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2154                 goto err;
2155         }
2156
2157         /* device specific initialization routine */
2158         rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2159         if (rc) {
2160                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2161                 goto err;
2162         }
2163
2164         /* Check if device supports LSC */
2165         if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2166                 adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2167
2168         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2169                 adapter->use_large_llq_hdr);
2170         rc = ena_set_queues_placement_policy(adapter, ena_dev,
2171                                              &get_feat_ctx.llq, &llq_config);
2172         if (unlikely(rc)) {
2173                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2174                 return rc;
2175         }
2176
2177         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2178                 queue_type_str = "Regular";
2179         else
2180                 queue_type_str = "Low latency";
2181         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2182
2183         calc_queue_ctx.ena_dev = ena_dev;
2184         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2185
2186         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2187         rc = ena_calc_io_queue_size(&calc_queue_ctx,
2188                 adapter->use_large_llq_hdr);
2189         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2190                 rc = -EFAULT;
2191                 goto err_device_destroy;
2192         }
2193
2194         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2195         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2196         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2197         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2198         adapter->max_num_io_queues = max_num_io_queues;
2199
2200         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2201                 disable_meta_caching =
2202                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2203                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
2204         } else {
2205                 disable_meta_caching = false;
2206         }
2207
2208         /* prepare ring structures */
2209         ena_init_rings(adapter, disable_meta_caching);
2210
2211         ena_config_debug_area(adapter);
2212
2213         /* Set max MTU for this device */
2214         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2215
2216         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2217
2218         /* Copy MAC address and point DPDK to it */
2219         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2220         rte_ether_addr_copy((struct rte_ether_addr *)
2221                         get_feat_ctx.dev_attr.mac_addr,
2222                         (struct rte_ether_addr *)adapter->mac_addr);
2223
2224         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2225         if (unlikely(rc != 0)) {
2226                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2227                 goto err_delete_debug_area;
2228         }
2229
2230         adapter->drv_stats = rte_zmalloc("adapter stats",
2231                                          sizeof(*adapter->drv_stats),
2232                                          RTE_CACHE_LINE_SIZE);
2233         if (!adapter->drv_stats) {
2234                 PMD_DRV_LOG(ERR,
2235                         "Failed to allocate memory for adapter statistics\n");
2236                 rc = -ENOMEM;
2237                 goto err_rss_destroy;
2238         }
2239
2240         rte_spinlock_init(&adapter->admin_lock);
2241
2242         rte_intr_callback_register(intr_handle,
2243                                    ena_interrupt_handler_rte,
2244                                    eth_dev);
2245         rte_intr_enable(intr_handle);
2246         ena_com_set_admin_polling_mode(ena_dev, false);
2247         ena_com_admin_aenq_enable(ena_dev);
2248
2249         rte_timer_init(&adapter->timer_wd);
2250
2251         adapters_found++;
2252         adapter->state = ENA_ADAPTER_STATE_INIT;
2253
2254         return 0;
2255
2256 err_rss_destroy:
2257         ena_com_rss_destroy(ena_dev);
2258 err_delete_debug_area:
2259         ena_com_delete_debug_area(ena_dev);
2260
2261 err_device_destroy:
2262         ena_com_delete_host_info(ena_dev);
2263         ena_com_admin_destroy(ena_dev);
2264
2265 err:
2266         return rc;
2267 }
2268
2269 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2270 {
2271         struct ena_adapter *adapter = eth_dev->data->dev_private;
2272         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2273
2274         if (adapter->state == ENA_ADAPTER_STATE_FREE)
2275                 return;
2276
2277         ena_com_set_admin_running_state(ena_dev, false);
2278
2279         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2280                 ena_close(eth_dev);
2281
2282         ena_com_rss_destroy(ena_dev);
2283
2284         ena_com_delete_debug_area(ena_dev);
2285         ena_com_delete_host_info(ena_dev);
2286
2287         ena_com_abort_admin_commands(ena_dev);
2288         ena_com_wait_for_abort_completion(ena_dev);
2289         ena_com_admin_destroy(ena_dev);
2290         ena_com_mmio_reg_read_request_destroy(ena_dev);
2291
2292         adapter->state = ENA_ADAPTER_STATE_FREE;
2293 }
2294
2295 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2296 {
2297         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2298                 return 0;
2299
2300         ena_destroy_device(eth_dev);
2301
2302         return 0;
2303 }
2304
2305 static int ena_dev_configure(struct rte_eth_dev *dev)
2306 {
2307         struct ena_adapter *adapter = dev->data->dev_private;
2308         int rc;
2309
2310         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2311
2312         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2313                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2314         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2315
2316         /* Scattered Rx cannot be turned off in the HW, so this capability must
2317          * be forced.
2318          */
2319         dev->data->scattered_rx = 1;
2320
2321         adapter->last_tx_comp_qid = 0;
2322
2323         adapter->missing_tx_completion_budget =
2324                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2325
2326         /* To avoid detection of the spurious Tx completion timeout due to
2327          * application not calling the Tx cleanup function, set timeout for the
2328          * Tx queue which should be half of the missing completion timeout for a
2329          * safety. If there will be a lot of missing Tx completions in the
2330          * queue, they will be detected sooner or later.
2331          */
2332         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2333
2334         rc = ena_configure_aenq(adapter);
2335
2336         return rc;
2337 }
2338
2339 static void ena_init_rings(struct ena_adapter *adapter,
2340                            bool disable_meta_caching)
2341 {
2342         size_t i;
2343
2344         for (i = 0; i < adapter->max_num_io_queues; i++) {
2345                 struct ena_ring *ring = &adapter->tx_ring[i];
2346
2347                 ring->configured = 0;
2348                 ring->type = ENA_RING_TYPE_TX;
2349                 ring->adapter = adapter;
2350                 ring->id = i;
2351                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2352                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2353                 ring->sgl_size = adapter->max_tx_sgl_size;
2354                 ring->disable_meta_caching = disable_meta_caching;
2355         }
2356
2357         for (i = 0; i < adapter->max_num_io_queues; i++) {
2358                 struct ena_ring *ring = &adapter->rx_ring[i];
2359
2360                 ring->configured = 0;
2361                 ring->type = ENA_RING_TYPE_RX;
2362                 ring->adapter = adapter;
2363                 ring->id = i;
2364                 ring->sgl_size = adapter->max_rx_sgl_size;
2365         }
2366 }
2367
2368 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2369 {
2370         uint64_t port_offloads = 0;
2371
2372         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2373                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2374
2375         if (adapter->offloads.rx_offloads &
2376             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2377                 port_offloads |=
2378                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2379
2380         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2381                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2382
2383         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2384
2385         return port_offloads;
2386 }
2387
2388 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2389 {
2390         uint64_t port_offloads = 0;
2391
2392         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2393                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2394
2395         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2396                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2397         if (adapter->offloads.tx_offloads &
2398             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2399              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2400                 port_offloads |=
2401                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2402
2403         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2404
2405         return port_offloads;
2406 }
2407
2408 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2409 {
2410         RTE_SET_USED(adapter);
2411
2412         return 0;
2413 }
2414
2415 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2416 {
2417         RTE_SET_USED(adapter);
2418
2419         return 0;
2420 }
2421
2422 static int ena_infos_get(struct rte_eth_dev *dev,
2423                           struct rte_eth_dev_info *dev_info)
2424 {
2425         struct ena_adapter *adapter;
2426         struct ena_com_dev *ena_dev;
2427
2428         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2429         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2430         adapter = dev->data->dev_private;
2431
2432         ena_dev = &adapter->ena_dev;
2433         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2434
2435         dev_info->speed_capa =
2436                         RTE_ETH_LINK_SPEED_1G   |
2437                         RTE_ETH_LINK_SPEED_2_5G |
2438                         RTE_ETH_LINK_SPEED_5G   |
2439                         RTE_ETH_LINK_SPEED_10G  |
2440                         RTE_ETH_LINK_SPEED_25G  |
2441                         RTE_ETH_LINK_SPEED_40G  |
2442                         RTE_ETH_LINK_SPEED_50G  |
2443                         RTE_ETH_LINK_SPEED_100G;
2444
2445         /* Inform framework about available features */
2446         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2447         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2448         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2449         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2450
2451         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2452         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2453
2454         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2455         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2456                 RTE_ETHER_CRC_LEN;
2457         dev_info->min_mtu = ENA_MIN_MTU;
2458         dev_info->max_mtu = adapter->max_mtu;
2459         dev_info->max_mac_addrs = 1;
2460
2461         dev_info->max_rx_queues = adapter->max_num_io_queues;
2462         dev_info->max_tx_queues = adapter->max_num_io_queues;
2463         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2464
2465         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2466         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2467         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2468                                         adapter->max_rx_sgl_size);
2469         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2470                                         adapter->max_rx_sgl_size);
2471
2472         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2473         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2474         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2475                                         adapter->max_tx_sgl_size);
2476         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2477                                         adapter->max_tx_sgl_size);
2478
2479         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2480         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2481
2482         return 0;
2483 }
2484
2485 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2486 {
2487         mbuf->data_len = len;
2488         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2489         mbuf->refcnt = 1;
2490         mbuf->next = NULL;
2491 }
2492
2493 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2494                                     struct ena_com_rx_buf_info *ena_bufs,
2495                                     uint32_t descs,
2496                                     uint16_t *next_to_clean,
2497                                     uint8_t offset)
2498 {
2499         struct rte_mbuf *mbuf;
2500         struct rte_mbuf *mbuf_head;
2501         struct ena_rx_buffer *rx_info;
2502         int rc;
2503         uint16_t ntc, len, req_id, buf = 0;
2504
2505         if (unlikely(descs == 0))
2506                 return NULL;
2507
2508         ntc = *next_to_clean;
2509
2510         len = ena_bufs[buf].len;
2511         req_id = ena_bufs[buf].req_id;
2512
2513         rx_info = &rx_ring->rx_buffer_info[req_id];
2514
2515         mbuf = rx_info->mbuf;
2516         RTE_ASSERT(mbuf != NULL);
2517
2518         ena_init_rx_mbuf(mbuf, len);
2519
2520         /* Fill the mbuf head with the data specific for 1st segment. */
2521         mbuf_head = mbuf;
2522         mbuf_head->nb_segs = descs;
2523         mbuf_head->port = rx_ring->port_id;
2524         mbuf_head->pkt_len = len;
2525         mbuf_head->data_off += offset;
2526
2527         rx_info->mbuf = NULL;
2528         rx_ring->empty_rx_reqs[ntc] = req_id;
2529         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2530
2531         while (--descs) {
2532                 ++buf;
2533                 len = ena_bufs[buf].len;
2534                 req_id = ena_bufs[buf].req_id;
2535
2536                 rx_info = &rx_ring->rx_buffer_info[req_id];
2537                 RTE_ASSERT(rx_info->mbuf != NULL);
2538
2539                 if (unlikely(len == 0)) {
2540                         /*
2541                          * Some devices can pass descriptor with the length 0.
2542                          * To avoid confusion, the PMD is simply putting the
2543                          * descriptor back, as it was never used. We'll avoid
2544                          * mbuf allocation that way.
2545                          */
2546                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2547                                 rx_info->mbuf, req_id);
2548                         if (unlikely(rc != 0)) {
2549                                 /* Free the mbuf in case of an error. */
2550                                 rte_mbuf_raw_free(rx_info->mbuf);
2551                         } else {
2552                                 /*
2553                                  * If there was no error, just exit the loop as
2554                                  * 0 length descriptor is always the last one.
2555                                  */
2556                                 break;
2557                         }
2558                 } else {
2559                         /* Create an mbuf chain. */
2560                         mbuf->next = rx_info->mbuf;
2561                         mbuf = mbuf->next;
2562
2563                         ena_init_rx_mbuf(mbuf, len);
2564                         mbuf_head->pkt_len += len;
2565                 }
2566
2567                 /*
2568                  * Mark the descriptor as depleted and perform necessary
2569                  * cleanup.
2570                  * This code will execute in two cases:
2571                  *  1. Descriptor len was greater than 0 - normal situation.
2572                  *  2. Descriptor len was 0 and we failed to add the descriptor
2573                  *     to the device. In that situation, we should try to add
2574                  *     the mbuf again in the populate routine and mark the
2575                  *     descriptor as used up by the device.
2576                  */
2577                 rx_info->mbuf = NULL;
2578                 rx_ring->empty_rx_reqs[ntc] = req_id;
2579                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2580         }
2581
2582         *next_to_clean = ntc;
2583
2584         return mbuf_head;
2585 }
2586
2587 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2588                                   uint16_t nb_pkts)
2589 {
2590         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2591         unsigned int free_queue_entries;
2592         uint16_t next_to_clean = rx_ring->next_to_clean;
2593         uint16_t descs_in_use;
2594         struct rte_mbuf *mbuf;
2595         uint16_t completed;
2596         struct ena_com_rx_ctx ena_rx_ctx;
2597         int i, rc = 0;
2598         bool fill_hash;
2599
2600 #ifdef RTE_ETHDEV_DEBUG_RX
2601         /* Check adapter state */
2602         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2603                 PMD_RX_LOG(ALERT,
2604                         "Trying to receive pkts while device is NOT running\n");
2605                 return 0;
2606         }
2607 #endif
2608
2609         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2610
2611         descs_in_use = rx_ring->ring_size -
2612                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2613         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2614
2615         for (completed = 0; completed < nb_pkts; completed++) {
2616                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2617                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2618                 ena_rx_ctx.descs = 0;
2619                 ena_rx_ctx.pkt_offset = 0;
2620                 /* receive packet context */
2621                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2622                                     rx_ring->ena_com_io_sq,
2623                                     &ena_rx_ctx);
2624                 if (unlikely(rc)) {
2625                         PMD_RX_LOG(ERR,
2626                                 "Failed to get the packet from the device, rc: %d\n",
2627                                 rc);
2628                         if (rc == ENA_COM_NO_SPACE) {
2629                                 ++rx_ring->rx_stats.bad_desc_num;
2630                                 ena_trigger_reset(rx_ring->adapter,
2631                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2632                         } else {
2633                                 ++rx_ring->rx_stats.bad_req_id;
2634                                 ena_trigger_reset(rx_ring->adapter,
2635                                         ENA_REGS_RESET_INV_RX_REQ_ID);
2636                         }
2637                         return 0;
2638                 }
2639
2640                 mbuf = ena_rx_mbuf(rx_ring,
2641                         ena_rx_ctx.ena_bufs,
2642                         ena_rx_ctx.descs,
2643                         &next_to_clean,
2644                         ena_rx_ctx.pkt_offset);
2645                 if (unlikely(mbuf == NULL)) {
2646                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2647                                 rx_ring->empty_rx_reqs[next_to_clean] =
2648                                         rx_ring->ena_bufs[i].req_id;
2649                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2650                                         next_to_clean, rx_ring->size_mask);
2651                         }
2652                         break;
2653                 }
2654
2655                 /* fill mbuf attributes if any */
2656                 ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2657
2658                 if (unlikely(mbuf->ol_flags &
2659                                 (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2660                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2661
2662                 rx_pkts[completed] = mbuf;
2663                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2664         }
2665
2666         rx_ring->rx_stats.cnt += completed;
2667         rx_ring->next_to_clean = next_to_clean;
2668
2669         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2670
2671         /* Burst refill to save doorbells, memory barriers, const interval */
2672         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2673                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2674                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2675         }
2676
2677         return completed;
2678 }
2679
2680 static uint16_t
2681 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2682                 uint16_t nb_pkts)
2683 {
2684         int32_t ret;
2685         uint32_t i;
2686         struct rte_mbuf *m;
2687         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2688         struct ena_adapter *adapter = tx_ring->adapter;
2689         struct rte_ipv4_hdr *ip_hdr;
2690         uint64_t ol_flags;
2691         uint64_t l4_csum_flag;
2692         uint64_t dev_offload_capa;
2693         uint16_t frag_field;
2694         bool need_pseudo_csum;
2695
2696         dev_offload_capa = adapter->offloads.tx_offloads;
2697         for (i = 0; i != nb_pkts; i++) {
2698                 m = tx_pkts[i];
2699                 ol_flags = m->ol_flags;
2700
2701                 /* Check if any offload flag was set */
2702                 if (ol_flags == 0)
2703                         continue;
2704
2705                 l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2706                 /* SCTP checksum offload is not supported by the ENA. */
2707                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2708                     l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2709                         PMD_TX_LOG(DEBUG,
2710                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2711                                 i, ol_flags);
2712                         rte_errno = ENOTSUP;
2713                         return i;
2714                 }
2715
2716                 if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2717                     !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2718                       m->nb_segs == tx_ring->sgl_size &&
2719                       m->data_len < tx_ring->tx_max_header_size))) {
2720                         PMD_TX_LOG(DEBUG,
2721                                 "mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2722                                 i, m->nb_segs);
2723                         rte_errno = EINVAL;
2724                         return i;
2725                 }
2726
2727 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2728                 /* Check if requested offload is also enabled for the queue */
2729                 if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2730                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2731                     (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2732                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2733                     (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2734                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2735                         PMD_TX_LOG(DEBUG,
2736                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2737                                 i, m->nb_segs, tx_ring->id);
2738                         rte_errno = EINVAL;
2739                         return i;
2740                 }
2741
2742                 /* The caller is obligated to set l2 and l3 len if any cksum
2743                  * offload is enabled.
2744                  */
2745                 if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2746                     (m->l2_len == 0 || m->l3_len == 0))) {
2747                         PMD_TX_LOG(DEBUG,
2748                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2749                                 i);
2750                         rte_errno = EINVAL;
2751                         return i;
2752                 }
2753                 ret = rte_validate_tx_offload(m);
2754                 if (ret != 0) {
2755                         rte_errno = -ret;
2756                         return i;
2757                 }
2758 #endif
2759
2760                 /* Verify HW support for requested offloads and determine if
2761                  * pseudo header checksum is needed.
2762                  */
2763                 need_pseudo_csum = false;
2764                 if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2765                         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2766                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2767                                 rte_errno = ENOTSUP;
2768                                 return i;
2769                         }
2770
2771                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2772                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2773                                 rte_errno = ENOTSUP;
2774                                 return i;
2775                         }
2776
2777                         /* Check HW capabilities and if pseudo csum is needed
2778                          * for L4 offloads.
2779                          */
2780                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2781                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2782                                 if (dev_offload_capa &
2783                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2784                                         need_pseudo_csum = true;
2785                                 } else {
2786                                         rte_errno = ENOTSUP;
2787                                         return i;
2788                                 }
2789                         }
2790
2791                         /* Parse the DF flag */
2792                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2793                                 struct rte_ipv4_hdr *, m->l2_len);
2794                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2795                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2796                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2797                         } else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2798                                 /* In case we are supposed to TSO and have DF
2799                                  * not set (DF=0) hardware must be provided with
2800                                  * partial checksum.
2801                                  */
2802                                 need_pseudo_csum = true;
2803                         }
2804                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2805                         /* There is no support for IPv6 TSO as for now. */
2806                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2807                                 rte_errno = ENOTSUP;
2808                                 return i;
2809                         }
2810
2811                         /* Check HW capabilities and if pseudo csum is needed */
2812                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2813                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2814                                 if (dev_offload_capa &
2815                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2816                                         need_pseudo_csum = true;
2817                                 } else {
2818                                         rte_errno = ENOTSUP;
2819                                         return i;
2820                                 }
2821                         }
2822                 }
2823
2824                 if (need_pseudo_csum) {
2825                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2826                         if (ret != 0) {
2827                                 rte_errno = -ret;
2828                                 return i;
2829                         }
2830                 }
2831         }
2832
2833         return i;
2834 }
2835
2836 static void ena_update_hints(struct ena_adapter *adapter,
2837                              struct ena_admin_ena_hw_hints *hints)
2838 {
2839         if (hints->admin_completion_tx_timeout)
2840                 adapter->ena_dev.admin_queue.completion_timeout =
2841                         hints->admin_completion_tx_timeout * 1000;
2842
2843         if (hints->mmio_read_timeout)
2844                 /* convert to usec */
2845                 adapter->ena_dev.mmio_read.reg_read_to =
2846                         hints->mmio_read_timeout * 1000;
2847
2848         if (hints->driver_watchdog_timeout) {
2849                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2850                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2851                 else
2852                         // Convert msecs to ticks
2853                         adapter->keep_alive_timeout =
2854                                 (hints->driver_watchdog_timeout *
2855                                 rte_get_timer_hz()) / 1000;
2856         }
2857 }
2858
2859 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2860         struct ena_tx_buffer *tx_info,
2861         struct rte_mbuf *mbuf,
2862         void **push_header,
2863         uint16_t *header_len)
2864 {
2865         struct ena_com_buf *ena_buf;
2866         uint16_t delta, seg_len, push_len;
2867
2868         delta = 0;
2869         seg_len = mbuf->data_len;
2870
2871         tx_info->mbuf = mbuf;
2872         ena_buf = tx_info->bufs;
2873
2874         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2875                 /*
2876                  * Tx header might be (and will be in most cases) smaller than
2877                  * tx_max_header_size. But it's not an issue to send more data
2878                  * to the device, than actually needed if the mbuf size is
2879                  * greater than tx_max_header_size.
2880                  */
2881                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2882                 *header_len = push_len;
2883
2884                 if (likely(push_len <= seg_len)) {
2885                         /* If the push header is in the single segment, then
2886                          * just point it to the 1st mbuf data.
2887                          */
2888                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2889                 } else {
2890                         /* If the push header lays in the several segments, copy
2891                          * it to the intermediate buffer.
2892                          */
2893                         rte_pktmbuf_read(mbuf, 0, push_len,
2894                                 tx_ring->push_buf_intermediate_buf);
2895                         *push_header = tx_ring->push_buf_intermediate_buf;
2896                         delta = push_len - seg_len;
2897                 }
2898         } else {
2899                 *push_header = NULL;
2900                 *header_len = 0;
2901                 push_len = 0;
2902         }
2903
2904         /* Process first segment taking into consideration pushed header */
2905         if (seg_len > push_len) {
2906                 ena_buf->paddr = mbuf->buf_iova +
2907                                 mbuf->data_off +
2908                                 push_len;
2909                 ena_buf->len = seg_len - push_len;
2910                 ena_buf++;
2911                 tx_info->num_of_bufs++;
2912         }
2913
2914         while ((mbuf = mbuf->next) != NULL) {
2915                 seg_len = mbuf->data_len;
2916
2917                 /* Skip mbufs if whole data is pushed as a header */
2918                 if (unlikely(delta > seg_len)) {
2919                         delta -= seg_len;
2920                         continue;
2921                 }
2922
2923                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2924                 ena_buf->len = seg_len - delta;
2925                 ena_buf++;
2926                 tx_info->num_of_bufs++;
2927
2928                 delta = 0;
2929         }
2930 }
2931
2932 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2933 {
2934         struct ena_tx_buffer *tx_info;
2935         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2936         uint16_t next_to_use;
2937         uint16_t header_len;
2938         uint16_t req_id;
2939         void *push_header;
2940         int nb_hw_desc;
2941         int rc;
2942
2943         /* Checking for space for 2 additional metadata descriptors due to
2944          * possible header split and metadata descriptor
2945          */
2946         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2947                                           mbuf->nb_segs + 2)) {
2948                 PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2949                 return ENA_COM_NO_MEM;
2950         }
2951
2952         next_to_use = tx_ring->next_to_use;
2953
2954         req_id = tx_ring->empty_tx_reqs[next_to_use];
2955         tx_info = &tx_ring->tx_buffer_info[req_id];
2956         tx_info->num_of_bufs = 0;
2957         RTE_ASSERT(tx_info->mbuf == NULL);
2958
2959         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2960
2961         ena_tx_ctx.ena_bufs = tx_info->bufs;
2962         ena_tx_ctx.push_header = push_header;
2963         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2964         ena_tx_ctx.req_id = req_id;
2965         ena_tx_ctx.header_len = header_len;
2966
2967         /* Set Tx offloads flags, if applicable */
2968         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2969                 tx_ring->disable_meta_caching);
2970
2971         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2972                         &ena_tx_ctx))) {
2973                 PMD_TX_LOG(DEBUG,
2974                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2975                         tx_ring->id);
2976                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2977                 tx_ring->tx_stats.doorbells++;
2978                 tx_ring->pkts_without_db = false;
2979         }
2980
2981         /* prepare the packet's descriptors to dma engine */
2982         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2983                 &nb_hw_desc);
2984         if (unlikely(rc)) {
2985                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2986                 ++tx_ring->tx_stats.prepare_ctx_err;
2987                 ena_trigger_reset(tx_ring->adapter,
2988                         ENA_REGS_RESET_DRIVER_INVALID_STATE);
2989                 return rc;
2990         }
2991
2992         tx_info->tx_descs = nb_hw_desc;
2993         tx_info->timestamp = rte_get_timer_cycles();
2994
2995         tx_ring->tx_stats.cnt++;
2996         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2997
2998         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2999                 tx_ring->size_mask);
3000
3001         return 0;
3002 }
3003
3004 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3005 {
3006         struct ena_ring *tx_ring = (struct ena_ring *)txp;
3007         unsigned int total_tx_descs = 0;
3008         unsigned int total_tx_pkts = 0;
3009         uint16_t cleanup_budget;
3010         uint16_t next_to_clean = tx_ring->next_to_clean;
3011
3012         /*
3013          * If free_pkt_cnt is equal to 0, it means that the user requested
3014          * full cleanup, so attempt to release all Tx descriptors
3015          * (ring_size - 1 -> size_mask)
3016          */
3017         cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3018
3019         while (likely(total_tx_pkts < cleanup_budget)) {
3020                 struct rte_mbuf *mbuf;
3021                 struct ena_tx_buffer *tx_info;
3022                 uint16_t req_id;
3023
3024                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3025                         break;
3026
3027                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3028                         break;
3029
3030                 /* Get Tx info & store how many descs were processed  */
3031                 tx_info = &tx_ring->tx_buffer_info[req_id];
3032                 tx_info->timestamp = 0;
3033
3034                 mbuf = tx_info->mbuf;
3035                 rte_pktmbuf_free(mbuf);
3036
3037                 tx_info->mbuf = NULL;
3038                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3039
3040                 total_tx_descs += tx_info->tx_descs;
3041                 total_tx_pkts++;
3042
3043                 /* Put back descriptor to the ring for reuse */
3044                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3045                         tx_ring->size_mask);
3046         }
3047
3048         if (likely(total_tx_descs > 0)) {
3049                 /* acknowledge completion of sent packets */
3050                 tx_ring->next_to_clean = next_to_clean;
3051                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3052                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3053         }
3054
3055         /* Notify completion handler that full cleanup was performed */
3056         if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3057                 tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3058
3059         return total_tx_pkts;
3060 }
3061
3062 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3063                                   uint16_t nb_pkts)
3064 {
3065         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3066         int available_desc;
3067         uint16_t sent_idx = 0;
3068
3069 #ifdef RTE_ETHDEV_DEBUG_TX
3070         /* Check adapter state */
3071         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3072                 PMD_TX_LOG(ALERT,
3073                         "Trying to xmit pkts while device is NOT running\n");
3074                 return 0;
3075         }
3076 #endif
3077
3078         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3079         if (available_desc < tx_ring->tx_free_thresh)
3080                 ena_tx_cleanup((void *)tx_ring, 0);
3081
3082         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3083                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3084                         break;
3085                 tx_ring->pkts_without_db = true;
3086                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3087                         tx_ring->size_mask)]);
3088         }
3089
3090         /* If there are ready packets to be xmitted... */
3091         if (likely(tx_ring->pkts_without_db)) {
3092                 /* ...let HW do its best :-) */
3093                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3094                 tx_ring->tx_stats.doorbells++;
3095                 tx_ring->pkts_without_db = false;
3096         }
3097
3098         tx_ring->tx_stats.available_desc =
3099                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3100         tx_ring->tx_stats.tx_poll++;
3101
3102         return sent_idx;
3103 }
3104
3105 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3106 {
3107         int rc;
3108
3109         rte_spinlock_lock(&adapter->admin_lock);
3110         /* Retrieve and store the latest statistics from the AQ. This ensures
3111          * that previous value is returned in case of a com error.
3112          */
3113         rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3114                 (struct ena_admin_eni_stats *)stats);
3115         rte_spinlock_unlock(&adapter->admin_lock);
3116         if (rc != 0) {
3117                 if (rc == ENA_COM_UNSUPPORTED) {
3118                         PMD_DRV_LOG(DEBUG,
3119                                 "Retrieving ENI metrics is not supported\n");
3120                 } else {
3121                         PMD_DRV_LOG(WARNING,
3122                                 "Failed to get ENI metrics, rc: %d\n", rc);
3123                 }
3124                 return rc;
3125         }
3126
3127         return 0;
3128 }
3129
3130 /**
3131  * DPDK callback to retrieve names of extended device statistics
3132  *
3133  * @param dev
3134  *   Pointer to Ethernet device structure.
3135  * @param[out] xstats_names
3136  *   Buffer to insert names into.
3137  * @param n
3138  *   Number of names.
3139  *
3140  * @return
3141  *   Number of xstats names.
3142  */
3143 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3144                                 struct rte_eth_xstat_name *xstats_names,
3145                                 unsigned int n)
3146 {
3147         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3148         unsigned int stat, i, count = 0;
3149
3150         if (n < xstats_count || !xstats_names)
3151                 return xstats_count;
3152
3153         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3154                 strcpy(xstats_names[count].name,
3155                         ena_stats_global_strings[stat].name);
3156
3157         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3158                 strcpy(xstats_names[count].name,
3159                         ena_stats_eni_strings[stat].name);
3160
3161         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3162                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3163                         snprintf(xstats_names[count].name,
3164                                 sizeof(xstats_names[count].name),
3165                                 "rx_q%d_%s", i,
3166                                 ena_stats_rx_strings[stat].name);
3167
3168         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3169                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3170                         snprintf(xstats_names[count].name,
3171                                 sizeof(xstats_names[count].name),
3172                                 "tx_q%d_%s", i,
3173                                 ena_stats_tx_strings[stat].name);
3174
3175         return xstats_count;
3176 }
3177
3178 /**
3179  * DPDK callback to retrieve names of extended device statistics for the given
3180  * ids.
3181  *
3182  * @param dev
3183  *   Pointer to Ethernet device structure.
3184  * @param[out] xstats_names
3185  *   Buffer to insert names into.
3186  * @param ids
3187  *   IDs array for which the names should be retrieved.
3188  * @param size
3189  *   Number of ids.
3190  *
3191  * @return
3192  *   Positive value: number of xstats names. Negative value: error code.
3193  */
3194 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3195                                       const uint64_t *ids,
3196                                       struct rte_eth_xstat_name *xstats_names,
3197                                       unsigned int size)
3198 {
3199         uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3200         uint64_t id, qid;
3201         unsigned int i;
3202
3203         if (xstats_names == NULL)
3204                 return xstats_count;
3205
3206         for (i = 0; i < size; ++i) {
3207                 id = ids[i];
3208                 if (id > xstats_count) {
3209                         PMD_DRV_LOG(ERR,
3210                                 "ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3211                                  id, xstats_count);
3212                         return -EINVAL;
3213                 }
3214
3215                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3216                         strcpy(xstats_names[i].name,
3217                                ena_stats_global_strings[id].name);
3218                         continue;
3219                 }
3220
3221                 id -= ENA_STATS_ARRAY_GLOBAL;
3222                 if (id < ENA_STATS_ARRAY_ENI) {
3223                         strcpy(xstats_names[i].name,
3224                                ena_stats_eni_strings[id].name);
3225                         continue;
3226                 }
3227
3228                 id -= ENA_STATS_ARRAY_ENI;
3229                 if (id < ENA_STATS_ARRAY_RX) {
3230                         qid = id / dev->data->nb_rx_queues;
3231                         id %= dev->data->nb_rx_queues;
3232                         snprintf(xstats_names[i].name,
3233                                  sizeof(xstats_names[i].name),
3234                                  "rx_q%" PRIu64 "d_%s",
3235                                  qid, ena_stats_rx_strings[id].name);
3236                         continue;
3237                 }
3238
3239                 id -= ENA_STATS_ARRAY_RX;
3240                 /* Although this condition is not needed, it was added for
3241                  * compatibility if new xstat structure would be ever added.
3242                  */
3243                 if (id < ENA_STATS_ARRAY_TX) {
3244                         qid = id / dev->data->nb_tx_queues;
3245                         id %= dev->data->nb_tx_queues;
3246                         snprintf(xstats_names[i].name,
3247                                  sizeof(xstats_names[i].name),
3248                                  "tx_q%" PRIu64 "_%s",
3249                                  qid, ena_stats_tx_strings[id].name);
3250                         continue;
3251                 }
3252         }
3253
3254         return i;
3255 }
3256
3257 /**
3258  * DPDK callback to get extended device statistics.
3259  *
3260  * @param dev
3261  *   Pointer to Ethernet device structure.
3262  * @param[out] stats
3263  *   Stats table output buffer.
3264  * @param n
3265  *   The size of the stats table.
3266  *
3267  * @return
3268  *   Number of xstats on success, negative on failure.
3269  */
3270 static int ena_xstats_get(struct rte_eth_dev *dev,
3271                           struct rte_eth_xstat *xstats,
3272                           unsigned int n)
3273 {
3274         struct ena_adapter *adapter = dev->data->dev_private;
3275         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3276         struct ena_stats_eni eni_stats;
3277         unsigned int stat, i, count = 0;
3278         int stat_offset;
3279         void *stats_begin;
3280
3281         if (n < xstats_count)
3282                 return xstats_count;
3283
3284         if (!xstats)
3285                 return 0;
3286
3287         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3288                 stat_offset = ena_stats_global_strings[stat].stat_offset;
3289                 stats_begin = &adapter->dev_stats;
3290
3291                 xstats[count].id = count;
3292                 xstats[count].value = *((uint64_t *)
3293                         ((char *)stats_begin + stat_offset));
3294         }
3295
3296         /* Even if the function below fails, we should copy previous (or initial
3297          * values) to keep structure of rte_eth_xstat consistent.
3298          */
3299         ena_copy_eni_stats(adapter, &eni_stats);
3300         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3301                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
3302                 stats_begin = &eni_stats;
3303
3304                 xstats[count].id = count;
3305                 xstats[count].value = *((uint64_t *)
3306                     ((char *)stats_begin + stat_offset));
3307         }
3308
3309         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3310                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3311                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
3312                         stats_begin = &adapter->rx_ring[i].rx_stats;
3313
3314                         xstats[count].id = count;
3315                         xstats[count].value = *((uint64_t *)
3316                                 ((char *)stats_begin + stat_offset));
3317                 }
3318         }
3319
3320         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3321                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3322                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
3323                         stats_begin = &adapter->tx_ring[i].rx_stats;
3324
3325                         xstats[count].id = count;
3326                         xstats[count].value = *((uint64_t *)
3327                                 ((char *)stats_begin + stat_offset));
3328                 }
3329         }
3330
3331         return count;
3332 }
3333
3334 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3335                                 const uint64_t *ids,
3336                                 uint64_t *values,
3337                                 unsigned int n)
3338 {
3339         struct ena_adapter *adapter = dev->data->dev_private;
3340         struct ena_stats_eni eni_stats;
3341         uint64_t id;
3342         uint64_t rx_entries, tx_entries;
3343         unsigned int i;
3344         int qid;
3345         int valid = 0;
3346         bool was_eni_copied = false;
3347
3348         for (i = 0; i < n; ++i) {
3349                 id = ids[i];
3350                 /* Check if id belongs to global statistics */
3351                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3352                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
3353                         ++valid;
3354                         continue;
3355                 }
3356
3357                 /* Check if id belongs to ENI statistics */
3358                 id -= ENA_STATS_ARRAY_GLOBAL;
3359                 if (id < ENA_STATS_ARRAY_ENI) {
3360                         /* Avoid reading ENI stats multiple times in a single
3361                          * function call, as it requires communication with the
3362                          * admin queue.
3363                          */
3364                         if (!was_eni_copied) {
3365                                 was_eni_copied = true;
3366                                 ena_copy_eni_stats(adapter, &eni_stats);
3367                         }
3368                         values[i] = *((uint64_t *)&eni_stats + id);
3369                         ++valid;
3370                         continue;
3371                 }
3372
3373                 /* Check if id belongs to rx queue statistics */
3374                 id -= ENA_STATS_ARRAY_ENI;
3375                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3376                 if (id < rx_entries) {
3377                         qid = id % dev->data->nb_rx_queues;
3378                         id /= dev->data->nb_rx_queues;
3379                         values[i] = *((uint64_t *)
3380                                 &adapter->rx_ring[qid].rx_stats + id);
3381                         ++valid;
3382                         continue;
3383                 }
3384                                 /* Check if id belongs to rx queue statistics */
3385                 id -= rx_entries;
3386                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3387                 if (id < tx_entries) {
3388                         qid = id % dev->data->nb_tx_queues;
3389                         id /= dev->data->nb_tx_queues;
3390                         values[i] = *((uint64_t *)
3391                                 &adapter->tx_ring[qid].tx_stats + id);
3392                         ++valid;
3393                         continue;
3394                 }
3395         }
3396
3397         return valid;
3398 }
3399
3400 static int ena_process_uint_devarg(const char *key,
3401                                   const char *value,
3402                                   void *opaque)
3403 {
3404         struct ena_adapter *adapter = opaque;
3405         char *str_end;
3406         uint64_t uint_value;
3407
3408         uint_value = strtoull(value, &str_end, 10);
3409         if (value == str_end) {
3410                 PMD_INIT_LOG(ERR,
3411                         "Invalid value for key '%s'. Only uint values are accepted.\n",
3412                         key);
3413                 return -EINVAL;
3414         }
3415
3416         if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3417                 if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3418                         PMD_INIT_LOG(ERR,
3419                                 "Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3420                                 uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3421                         return -EINVAL;
3422                 } else if (uint_value == 0) {
3423                         PMD_INIT_LOG(INFO,
3424                                 "Check for missing Tx completions has been disabled.\n");
3425                         adapter->missing_tx_completion_to =
3426                                 ENA_HW_HINTS_NO_TIMEOUT;
3427                 } else {
3428                         PMD_INIT_LOG(INFO,
3429                                 "Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3430                                 uint_value);
3431                         adapter->missing_tx_completion_to =
3432                                 uint_value * rte_get_timer_hz();
3433                 }
3434         }
3435
3436         return 0;
3437 }
3438
3439 static int ena_process_bool_devarg(const char *key,
3440                                    const char *value,
3441                                    void *opaque)
3442 {
3443         struct ena_adapter *adapter = opaque;
3444         bool bool_value;
3445
3446         /* Parse the value. */
3447         if (strcmp(value, "1") == 0) {
3448                 bool_value = true;
3449         } else if (strcmp(value, "0") == 0) {
3450                 bool_value = false;
3451         } else {
3452                 PMD_INIT_LOG(ERR,
3453                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3454                         value, key);
3455                 return -EINVAL;
3456         }
3457
3458         /* Now, assign it to the proper adapter field. */
3459         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3460                 adapter->use_large_llq_hdr = bool_value;
3461
3462         return 0;
3463 }
3464
3465 static int ena_parse_devargs(struct ena_adapter *adapter,
3466                              struct rte_devargs *devargs)
3467 {
3468         static const char * const allowed_args[] = {
3469                 ENA_DEVARG_LARGE_LLQ_HDR,
3470                 ENA_DEVARG_MISS_TXC_TO,
3471                 NULL,
3472         };
3473         struct rte_kvargs *kvlist;
3474         int rc;
3475
3476         if (devargs == NULL)
3477                 return 0;
3478
3479         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3480         if (kvlist == NULL) {
3481                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3482                         devargs->args);
3483                 return -EINVAL;
3484         }
3485
3486         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3487                 ena_process_bool_devarg, adapter);
3488         if (rc != 0)
3489                 goto exit;
3490         rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3491                 ena_process_uint_devarg, adapter);
3492
3493 exit:
3494         rte_kvargs_free(kvlist);
3495
3496         return rc;
3497 }
3498
3499 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3500 {
3501         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3502         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3503         int rc;
3504         uint16_t vectors_nb, i;
3505         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3506
3507         if (!rx_intr_requested)
3508                 return 0;
3509
3510         if (!rte_intr_cap_multiple(intr_handle)) {
3511                 PMD_DRV_LOG(ERR,
3512                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3513                 return -ENOTSUP;
3514         }
3515
3516         /* Disable interrupt mapping before the configuration starts. */
3517         rte_intr_disable(intr_handle);
3518
3519         /* Verify if there are enough vectors available. */
3520         vectors_nb = dev->data->nb_rx_queues;
3521         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3522                 PMD_DRV_LOG(ERR,
3523                         "Too many Rx interrupts requested, maximum number: %d\n",
3524                         RTE_MAX_RXTX_INTR_VEC_ID);
3525                 rc = -ENOTSUP;
3526                 goto enable_intr;
3527         }
3528
3529         /* Allocate the vector list */
3530         if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3531                                            dev->data->nb_rx_queues)) {
3532                 PMD_DRV_LOG(ERR,
3533                         "Failed to allocate interrupt vector for %d queues\n",
3534                         dev->data->nb_rx_queues);
3535                 rc = -ENOMEM;
3536                 goto enable_intr;
3537         }
3538
3539         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3540         if (rc != 0)
3541                 goto free_intr_vec;
3542
3543         if (!rte_intr_allow_others(intr_handle)) {
3544                 PMD_DRV_LOG(ERR,
3545                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3546                 goto disable_intr_efd;
3547         }
3548
3549         for (i = 0; i < vectors_nb; ++i)
3550                 if (rte_intr_vec_list_index_set(intr_handle, i,
3551                                            RTE_INTR_VEC_RXTX_OFFSET + i))
3552                         goto disable_intr_efd;
3553
3554         rte_intr_enable(intr_handle);
3555         return 0;
3556
3557 disable_intr_efd:
3558         rte_intr_efd_disable(intr_handle);
3559 free_intr_vec:
3560         rte_intr_vec_list_free(intr_handle);
3561 enable_intr:
3562         rte_intr_enable(intr_handle);
3563         return rc;
3564 }
3565
3566 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3567                                  uint16_t queue_id,
3568                                  bool unmask)
3569 {
3570         struct ena_adapter *adapter = dev->data->dev_private;
3571         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3572         struct ena_eth_io_intr_reg intr_reg;
3573
3574         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3575         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3576 }
3577
3578 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3579                                     uint16_t queue_id)
3580 {
3581         ena_rx_queue_intr_set(dev, queue_id, true);
3582
3583         return 0;
3584 }
3585
3586 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3587                                      uint16_t queue_id)
3588 {
3589         ena_rx_queue_intr_set(dev, queue_id, false);
3590
3591         return 0;
3592 }
3593
3594 static int ena_configure_aenq(struct ena_adapter *adapter)
3595 {
3596         uint32_t aenq_groups = adapter->all_aenq_groups;
3597         int rc;
3598
3599         /* All_aenq_groups holds all AENQ functions supported by the device and
3600          * the HW, so at first we need to be sure the LSC request is valid.
3601          */
3602         if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3603                 if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3604                         PMD_DRV_LOG(ERR,
3605                                 "LSC requested, but it's not supported by the AENQ\n");
3606                         return -EINVAL;
3607                 }
3608         } else {
3609                 /* If LSC wasn't enabled by the app, let's enable all supported
3610                  * AENQ procedures except the LSC.
3611                  */
3612                 aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3613         }
3614
3615         rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3616         if (rc != 0) {
3617                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3618                 return rc;
3619         }
3620
3621         adapter->active_aenq_groups = aenq_groups;
3622
3623         return 0;
3624 }
3625
3626 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3627 {
3628         return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3629 }
3630
3631 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3632                               uint32_t *indirect_table)
3633 {
3634         return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3635                 indirect_table);
3636 }
3637
3638 /*********************************************************************
3639  *  ena_plat_dpdk.h functions implementations
3640  *********************************************************************/
3641
3642 const struct rte_memzone *
3643 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3644                        int socket_id, unsigned int alignment, void **virt_addr,
3645                        dma_addr_t *phys_addr)
3646 {
3647         char z_name[RTE_MEMZONE_NAMESIZE];
3648         struct ena_adapter *adapter = data->dev_private;
3649         const struct rte_memzone *memzone;
3650         int rc;
3651
3652         rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3653                 data->port_id, adapter->memzone_cnt);
3654         if (rc >= RTE_MEMZONE_NAMESIZE) {
3655                 PMD_DRV_LOG(ERR,
3656                         "Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3657                         data->port_id, adapter->memzone_cnt);
3658                 goto error;
3659         }
3660         adapter->memzone_cnt++;
3661
3662         memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3663                 RTE_MEMZONE_IOVA_CONTIG, alignment);
3664         if (memzone == NULL) {
3665                 PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3666                         z_name);
3667                 goto error;
3668         }
3669
3670         memset(memzone->addr, 0, size);
3671         *virt_addr = memzone->addr;
3672         *phys_addr = memzone->iova;
3673
3674         return memzone;
3675
3676 error:
3677         *virt_addr = NULL;
3678         *phys_addr = 0;
3679
3680         return NULL;
3681 }
3682
3683
3684 /*********************************************************************
3685  *  PMD configuration
3686  *********************************************************************/
3687 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3688         struct rte_pci_device *pci_dev)
3689 {
3690         return rte_eth_dev_pci_generic_probe(pci_dev,
3691                 sizeof(struct ena_adapter), eth_ena_dev_init);
3692 }
3693
3694 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3695 {
3696         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3697 }
3698
3699 static struct rte_pci_driver rte_ena_pmd = {
3700         .id_table = pci_id_ena_map,
3701         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3702                      RTE_PCI_DRV_WC_ACTIVATE,
3703         .probe = eth_ena_pci_probe,
3704         .remove = eth_ena_pci_remove,
3705 };
3706
3707 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3708 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3709 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3710 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3711 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3712 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3713 #ifdef RTE_ETHDEV_DEBUG_RX
3714 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3715 #endif
3716 #ifdef RTE_ETHDEV_DEBUG_TX
3717 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3718 #endif
3719 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3720
3721 /******************************************************************************
3722  ******************************** AENQ Handlers *******************************
3723  *****************************************************************************/
3724 static void ena_update_on_link_change(void *adapter_data,
3725                                       struct ena_admin_aenq_entry *aenq_e)
3726 {
3727         struct rte_eth_dev *eth_dev = adapter_data;
3728         struct ena_adapter *adapter = eth_dev->data->dev_private;
3729         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3730         uint32_t status;
3731
3732         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3733
3734         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3735         adapter->link_status = status;
3736
3737         ena_link_update(eth_dev, 0);
3738         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3739 }
3740
3741 static void ena_notification(void *adapter_data,
3742                              struct ena_admin_aenq_entry *aenq_e)
3743 {
3744         struct rte_eth_dev *eth_dev = adapter_data;
3745         struct ena_adapter *adapter = eth_dev->data->dev_private;
3746         struct ena_admin_ena_hw_hints *hints;
3747
3748         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3749                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3750                         aenq_e->aenq_common_desc.group,
3751                         ENA_ADMIN_NOTIFICATION);
3752
3753         switch (aenq_e->aenq_common_desc.syndrome) {
3754         case ENA_ADMIN_UPDATE_HINTS:
3755                 hints = (struct ena_admin_ena_hw_hints *)
3756                         (&aenq_e->inline_data_w4);
3757                 ena_update_hints(adapter, hints);
3758                 break;
3759         default:
3760                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3761                         aenq_e->aenq_common_desc.syndrome);
3762         }
3763 }
3764
3765 static void ena_keep_alive(void *adapter_data,
3766                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3767 {
3768         struct rte_eth_dev *eth_dev = adapter_data;
3769         struct ena_adapter *adapter = eth_dev->data->dev_private;
3770         struct ena_admin_aenq_keep_alive_desc *desc;
3771         uint64_t rx_drops;
3772         uint64_t tx_drops;
3773
3774         adapter->timestamp_wd = rte_get_timer_cycles();
3775
3776         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3777         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3778         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3779
3780         adapter->drv_stats->rx_drops = rx_drops;
3781         adapter->dev_stats.tx_drops = tx_drops;
3782 }
3783
3784 /**
3785  * This handler will called for unknown event group or unimplemented handlers
3786  **/
3787 static void unimplemented_aenq_handler(__rte_unused void *data,
3788                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3789 {
3790         PMD_DRV_LOG(ERR,
3791                 "Unknown event was received or event with unimplemented handler\n");
3792 }
3793
3794 static struct ena_aenq_handlers aenq_handlers = {
3795         .handlers = {
3796                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3797                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3798                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3799         },
3800         .unimplemented_handler = unimplemented_aenq_handler
3801 };
3802
3803 /*********************************************************************
3804  *  Multi-Process communication request handling (in primary)
3805  *********************************************************************/
3806 static int
3807 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3808 {
3809         const struct ena_mp_body *req =
3810                 (const struct ena_mp_body *)mp_msg->param;
3811         struct ena_adapter *adapter;
3812         struct ena_com_dev *ena_dev;
3813         struct ena_mp_body *rsp;
3814         struct rte_mp_msg mp_rsp;
3815         struct rte_eth_dev *dev;
3816         int res = 0;
3817
3818         rsp = (struct ena_mp_body *)&mp_rsp.param;
3819         mp_msg_init(&mp_rsp, req->type, req->port_id);
3820
3821         if (!rte_eth_dev_is_valid_port(req->port_id)) {
3822                 rte_errno = ENODEV;
3823                 res = -rte_errno;
3824                 PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3825                             req->port_id, req->type);
3826                 goto end;
3827         }
3828         dev = &rte_eth_devices[req->port_id];
3829         adapter = dev->data->dev_private;
3830         ena_dev = &adapter->ena_dev;
3831
3832         switch (req->type) {
3833         case ENA_MP_DEV_STATS_GET:
3834                 res = ena_com_get_dev_basic_stats(ena_dev,
3835                                                   &adapter->basic_stats);
3836                 break;
3837         case ENA_MP_ENI_STATS_GET:
3838                 res = ena_com_get_eni_stats(ena_dev,
3839                         (struct ena_admin_eni_stats *)&adapter->eni_stats);
3840                 break;
3841         case ENA_MP_MTU_SET:
3842                 res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3843                 break;
3844         case ENA_MP_IND_TBL_GET:
3845                 res = ena_com_indirect_table_get(ena_dev,
3846                                                  adapter->indirect_table);
3847                 break;
3848         case ENA_MP_IND_TBL_SET:
3849                 res = ena_com_indirect_table_set(ena_dev);
3850                 break;
3851         default:
3852                 PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3853                 res = -EINVAL;
3854                 break;
3855         }
3856
3857 end:
3858         /* Save processing result in the reply */
3859         rsp->result = res;
3860         /* Return just IPC processing status */
3861         return rte_mp_reply(&mp_rsp, peer);
3862 }