8a937d7f278a1fef8fe668cd4526b90313bf7882
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <ethdev_driver.h>
9 #include <ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28
29 #define DRV_MODULE_VER_MAJOR    2
30 #define DRV_MODULE_VER_MINOR    2
31 #define DRV_MODULE_VER_SUBMINOR 1
32
33 #define ENA_IO_TXQ_IDX(q)       (2 * (q))
34 #define ENA_IO_RXQ_IDX(q)       (2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)   ((q - 1) / 2)
37
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40
41 #define GET_L4_HDR_LEN(mbuf)                                    \
42         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
43                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE   (1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE       40
48 #define ETH_GSTRING_LEN 32
49
50 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
51
52 #define ENA_MIN_RING_DESC       128
53
54 enum ethtool_stringset {
55         ETH_SS_TEST             = 0,
56         ETH_SS_STATS,
57 };
58
59 struct ena_stats {
60         char name[ETH_GSTRING_LEN];
61         int stat_offset;
62 };
63
64 #define ENA_STAT_ENTRY(stat, stat_type) { \
65         .name = #stat, \
66         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
67 }
68
69 #define ENA_STAT_RX_ENTRY(stat) \
70         ENA_STAT_ENTRY(stat, rx)
71
72 #define ENA_STAT_TX_ENTRY(stat) \
73         ENA_STAT_ENTRY(stat, tx)
74
75 #define ENA_STAT_ENI_ENTRY(stat) \
76         ENA_STAT_ENTRY(stat, eni)
77
78 #define ENA_STAT_GLOBAL_ENTRY(stat) \
79         ENA_STAT_ENTRY(stat, dev)
80
81 /* Device arguments */
82 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
83
84 /*
85  * Each rte_memzone should have unique name.
86  * To satisfy it, count number of allocation and add it to name.
87  */
88 rte_atomic32_t ena_alloc_cnt;
89
90 static const struct ena_stats ena_stats_global_strings[] = {
91         ENA_STAT_GLOBAL_ENTRY(wd_expired),
92         ENA_STAT_GLOBAL_ENTRY(dev_start),
93         ENA_STAT_GLOBAL_ENTRY(dev_stop),
94         ENA_STAT_GLOBAL_ENTRY(tx_drops),
95 };
96
97 static const struct ena_stats ena_stats_eni_strings[] = {
98         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
99         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
100         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
101         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
102         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
103 };
104
105 static const struct ena_stats ena_stats_tx_strings[] = {
106         ENA_STAT_TX_ENTRY(cnt),
107         ENA_STAT_TX_ENTRY(bytes),
108         ENA_STAT_TX_ENTRY(prepare_ctx_err),
109         ENA_STAT_TX_ENTRY(linearize),
110         ENA_STAT_TX_ENTRY(linearize_failed),
111         ENA_STAT_TX_ENTRY(tx_poll),
112         ENA_STAT_TX_ENTRY(doorbells),
113         ENA_STAT_TX_ENTRY(bad_req_id),
114         ENA_STAT_TX_ENTRY(available_desc),
115 };
116
117 static const struct ena_stats ena_stats_rx_strings[] = {
118         ENA_STAT_RX_ENTRY(cnt),
119         ENA_STAT_RX_ENTRY(bytes),
120         ENA_STAT_RX_ENTRY(refill_partial),
121         ENA_STAT_RX_ENTRY(bad_csum),
122         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
123         ENA_STAT_RX_ENTRY(bad_desc_num),
124         ENA_STAT_RX_ENTRY(bad_req_id),
125 };
126
127 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
128 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
129 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
130 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
131
132 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
133                         DEV_TX_OFFLOAD_UDP_CKSUM |\
134                         DEV_TX_OFFLOAD_IPV4_CKSUM |\
135                         DEV_TX_OFFLOAD_TCP_TSO)
136 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
137                        PKT_TX_IP_CKSUM |\
138                        PKT_TX_TCP_SEG)
139
140 /** Vendor ID used by Amazon devices */
141 #define PCI_VENDOR_ID_AMAZON 0x1D0F
142 /** Amazon devices */
143 #define PCI_DEVICE_ID_ENA_VF            0xEC20
144 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
145
146 #define ENA_TX_OFFLOAD_MASK     (\
147         PKT_TX_L4_MASK |         \
148         PKT_TX_IPV6 |            \
149         PKT_TX_IPV4 |            \
150         PKT_TX_IP_CKSUM |        \
151         PKT_TX_TCP_SEG)
152
153 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
154         (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
155
156 static const struct rte_pci_id pci_id_ena_map[] = {
157         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
158         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
159         { .device_id = 0 },
160 };
161
162 static struct ena_aenq_handlers aenq_handlers;
163
164 static int ena_device_init(struct ena_com_dev *ena_dev,
165                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
166                            bool *wd_state);
167 static int ena_dev_configure(struct rte_eth_dev *dev);
168 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
169         struct ena_tx_buffer *tx_info,
170         struct rte_mbuf *mbuf,
171         void **push_header,
172         uint16_t *header_len);
173 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
174 static void ena_tx_cleanup(struct ena_ring *tx_ring);
175 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
176                                   uint16_t nb_pkts);
177 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
178                 uint16_t nb_pkts);
179 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
180                               uint16_t nb_desc, unsigned int socket_id,
181                               const struct rte_eth_txconf *tx_conf);
182 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183                               uint16_t nb_desc, unsigned int socket_id,
184                               const struct rte_eth_rxconf *rx_conf,
185                               struct rte_mempool *mp);
186 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
187 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
188                                     struct ena_com_rx_buf_info *ena_bufs,
189                                     uint32_t descs,
190                                     uint16_t *next_to_clean,
191                                     uint8_t offset);
192 static uint16_t eth_ena_recv_pkts(void *rx_queue,
193                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
194 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
195                                   struct rte_mbuf *mbuf, uint16_t id);
196 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
197 static void ena_init_rings(struct ena_adapter *adapter,
198                            bool disable_meta_caching);
199 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
200 static int ena_start(struct rte_eth_dev *dev);
201 static int ena_stop(struct rte_eth_dev *dev);
202 static int ena_close(struct rte_eth_dev *dev);
203 static int ena_dev_reset(struct rte_eth_dev *dev);
204 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
205 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
207 static void ena_rx_queue_release(void *queue);
208 static void ena_tx_queue_release(void *queue);
209 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
210 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
211 static int ena_link_update(struct rte_eth_dev *dev,
212                            int wait_to_complete);
213 static int ena_create_io_queue(struct ena_ring *ring);
214 static void ena_queue_stop(struct ena_ring *ring);
215 static void ena_queue_stop_all(struct rte_eth_dev *dev,
216                               enum ena_ring_type ring_type);
217 static int ena_queue_start(struct ena_ring *ring);
218 static int ena_queue_start_all(struct rte_eth_dev *dev,
219                                enum ena_ring_type ring_type);
220 static void ena_stats_restart(struct rte_eth_dev *dev);
221 static int ena_infos_get(struct rte_eth_dev *dev,
222                          struct rte_eth_dev_info *dev_info);
223 static int ena_rss_reta_update(struct rte_eth_dev *dev,
224                                struct rte_eth_rss_reta_entry64 *reta_conf,
225                                uint16_t reta_size);
226 static int ena_rss_reta_query(struct rte_eth_dev *dev,
227                               struct rte_eth_rss_reta_entry64 *reta_conf,
228                               uint16_t reta_size);
229 static void ena_interrupt_handler_rte(void *cb_arg);
230 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
231 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
232 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
233 static int ena_xstats_get_names(struct rte_eth_dev *dev,
234                                 struct rte_eth_xstat_name *xstats_names,
235                                 unsigned int n);
236 static int ena_xstats_get(struct rte_eth_dev *dev,
237                           struct rte_eth_xstat *stats,
238                           unsigned int n);
239 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
240                                 const uint64_t *ids,
241                                 uint64_t *values,
242                                 unsigned int n);
243 static int ena_process_bool_devarg(const char *key,
244                                    const char *value,
245                                    void *opaque);
246 static int ena_parse_devargs(struct ena_adapter *adapter,
247                              struct rte_devargs *devargs);
248 static int ena_copy_eni_stats(struct ena_adapter *adapter);
249
250 static const struct eth_dev_ops ena_dev_ops = {
251         .dev_configure        = ena_dev_configure,
252         .dev_infos_get        = ena_infos_get,
253         .rx_queue_setup       = ena_rx_queue_setup,
254         .tx_queue_setup       = ena_tx_queue_setup,
255         .dev_start            = ena_start,
256         .dev_stop             = ena_stop,
257         .link_update          = ena_link_update,
258         .stats_get            = ena_stats_get,
259         .xstats_get_names     = ena_xstats_get_names,
260         .xstats_get           = ena_xstats_get,
261         .xstats_get_by_id     = ena_xstats_get_by_id,
262         .mtu_set              = ena_mtu_set,
263         .rx_queue_release     = ena_rx_queue_release,
264         .tx_queue_release     = ena_tx_queue_release,
265         .dev_close            = ena_close,
266         .dev_reset            = ena_dev_reset,
267         .reta_update          = ena_rss_reta_update,
268         .reta_query           = ena_rss_reta_query,
269 };
270
271 void ena_rss_key_fill(void *key, size_t size)
272 {
273         static bool key_generated;
274         static uint8_t default_key[ENA_HASH_KEY_SIZE];
275         size_t i;
276
277         RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
278
279         if (!key_generated) {
280                 for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
281                         default_key[i] = rte_rand() & 0xff;
282                 key_generated = true;
283         }
284
285         rte_memcpy(key, default_key, size);
286 }
287
288 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
289                                        struct ena_com_rx_ctx *ena_rx_ctx)
290 {
291         uint64_t ol_flags = 0;
292         uint32_t packet_type = 0;
293
294         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
295                 packet_type |= RTE_PTYPE_L4_TCP;
296         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
297                 packet_type |= RTE_PTYPE_L4_UDP;
298
299         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
300                 packet_type |= RTE_PTYPE_L3_IPV4;
301                 if (unlikely(ena_rx_ctx->l3_csum_err))
302                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
303                 else
304                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
305         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
306                 packet_type |= RTE_PTYPE_L3_IPV6;
307         }
308
309         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
310                 ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
311         else
312                 if (unlikely(ena_rx_ctx->l4_csum_err))
313                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
314                 else
315                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
316
317         mbuf->ol_flags = ol_flags;
318         mbuf->packet_type = packet_type;
319 }
320
321 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
322                                        struct ena_com_tx_ctx *ena_tx_ctx,
323                                        uint64_t queue_offloads,
324                                        bool disable_meta_caching)
325 {
326         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
327
328         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
329             (queue_offloads & QUEUE_OFFLOADS)) {
330                 /* check if TSO is required */
331                 if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
332                     (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
333                         ena_tx_ctx->tso_enable = true;
334
335                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
336                 }
337
338                 /* check if L3 checksum is needed */
339                 if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
340                     (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
341                         ena_tx_ctx->l3_csum_enable = true;
342
343                 if (mbuf->ol_flags & PKT_TX_IPV6) {
344                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
345                 } else {
346                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
347
348                         /* set don't fragment (DF) flag */
349                         if (mbuf->packet_type &
350                                 (RTE_PTYPE_L4_NONFRAG
351                                  | RTE_PTYPE_INNER_L4_NONFRAG))
352                                 ena_tx_ctx->df = true;
353                 }
354
355                 /* check if L4 checksum is needed */
356                 if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
357                     (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
358                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
359                         ena_tx_ctx->l4_csum_enable = true;
360                 } else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
361                                 PKT_TX_UDP_CKSUM) &&
362                                 (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
363                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
364                         ena_tx_ctx->l4_csum_enable = true;
365                 } else {
366                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
367                         ena_tx_ctx->l4_csum_enable = false;
368                 }
369
370                 ena_meta->mss = mbuf->tso_segsz;
371                 ena_meta->l3_hdr_len = mbuf->l3_len;
372                 ena_meta->l3_hdr_offset = mbuf->l2_len;
373
374                 ena_tx_ctx->meta_valid = true;
375         } else if (disable_meta_caching) {
376                 memset(ena_meta, 0, sizeof(*ena_meta));
377                 ena_tx_ctx->meta_valid = true;
378         } else {
379                 ena_tx_ctx->meta_valid = false;
380         }
381 }
382
383 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
384 {
385         struct ena_tx_buffer *tx_info = NULL;
386
387         if (likely(req_id < tx_ring->ring_size)) {
388                 tx_info = &tx_ring->tx_buffer_info[req_id];
389                 if (likely(tx_info->mbuf))
390                         return 0;
391         }
392
393         if (tx_info)
394                 PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
395         else
396                 PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
397
398         /* Trigger device reset */
399         ++tx_ring->tx_stats.bad_req_id;
400         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
401         tx_ring->adapter->trigger_reset = true;
402         return -EFAULT;
403 }
404
405 static void ena_config_host_info(struct ena_com_dev *ena_dev)
406 {
407         struct ena_admin_host_info *host_info;
408         int rc;
409
410         /* Allocate only the host info */
411         rc = ena_com_allocate_host_info(ena_dev);
412         if (rc) {
413                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
414                 return;
415         }
416
417         host_info = ena_dev->host_attr.host_info;
418
419         host_info->os_type = ENA_ADMIN_OS_DPDK;
420         host_info->kernel_ver = RTE_VERSION;
421         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
422                 sizeof(host_info->kernel_ver_str));
423         host_info->os_dist = RTE_VERSION;
424         strlcpy((char *)host_info->os_dist_str, rte_version(),
425                 sizeof(host_info->os_dist_str));
426         host_info->driver_version =
427                 (DRV_MODULE_VER_MAJOR) |
428                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
429                 (DRV_MODULE_VER_SUBMINOR <<
430                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
431         host_info->num_cpus = rte_lcore_count();
432
433         host_info->driver_supported_features =
434                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
435
436         rc = ena_com_set_host_attributes(ena_dev);
437         if (rc) {
438                 if (rc == -ENA_COM_UNSUPPORTED)
439                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
440                 else
441                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
442
443                 goto err;
444         }
445
446         return;
447
448 err:
449         ena_com_delete_host_info(ena_dev);
450 }
451
452 /* This function calculates the number of xstats based on the current config */
453 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
454 {
455         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
456                 (dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
457                 (dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
458 }
459
460 static void ena_config_debug_area(struct ena_adapter *adapter)
461 {
462         u32 debug_area_size;
463         int rc, ss_count;
464
465         ss_count = ena_xstats_calc_num(adapter->rte_dev);
466
467         /* allocate 32 bytes for each string and 64bit for the value */
468         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
469
470         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
471         if (rc) {
472                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
473                 return;
474         }
475
476         rc = ena_com_set_host_attributes(&adapter->ena_dev);
477         if (rc) {
478                 if (rc == -ENA_COM_UNSUPPORTED)
479                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
480                 else
481                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
482
483                 goto err;
484         }
485
486         return;
487 err:
488         ena_com_delete_debug_area(&adapter->ena_dev);
489 }
490
491 static int ena_close(struct rte_eth_dev *dev)
492 {
493         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
494         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
495         struct ena_adapter *adapter = dev->data->dev_private;
496         int ret = 0;
497
498         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
499                 return 0;
500
501         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
502                 ret = ena_stop(dev);
503         adapter->state = ENA_ADAPTER_STATE_CLOSED;
504
505         ena_rx_queue_release_all(dev);
506         ena_tx_queue_release_all(dev);
507
508         rte_free(adapter->drv_stats);
509         adapter->drv_stats = NULL;
510
511         rte_intr_disable(intr_handle);
512         rte_intr_callback_unregister(intr_handle,
513                                      ena_interrupt_handler_rte,
514                                      adapter);
515
516         /*
517          * MAC is not allocated dynamically. Setting NULL should prevent from
518          * release of the resource in the rte_eth_dev_release_port().
519          */
520         dev->data->mac_addrs = NULL;
521
522         return ret;
523 }
524
525 static int
526 ena_dev_reset(struct rte_eth_dev *dev)
527 {
528         int rc = 0;
529
530         ena_destroy_device(dev);
531         rc = eth_ena_dev_init(dev);
532         if (rc)
533                 PMD_INIT_LOG(CRIT, "Cannot initialize device");
534
535         return rc;
536 }
537
538 static int ena_rss_reta_update(struct rte_eth_dev *dev,
539                                struct rte_eth_rss_reta_entry64 *reta_conf,
540                                uint16_t reta_size)
541 {
542         struct ena_adapter *adapter = dev->data->dev_private;
543         struct ena_com_dev *ena_dev = &adapter->ena_dev;
544         int rc, i;
545         u16 entry_value;
546         int conf_idx;
547         int idx;
548
549         if ((reta_size == 0) || (reta_conf == NULL))
550                 return -EINVAL;
551
552         if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
553                 PMD_DRV_LOG(WARNING,
554                         "indirection table %d is bigger than supported (%d)\n",
555                         reta_size, ENA_RX_RSS_TABLE_SIZE);
556                 return -EINVAL;
557         }
558
559         for (i = 0 ; i < reta_size ; i++) {
560                 /* each reta_conf is for 64 entries.
561                  * to support 128 we use 2 conf of 64
562                  */
563                 conf_idx = i / RTE_RETA_GROUP_SIZE;
564                 idx = i % RTE_RETA_GROUP_SIZE;
565                 if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
566                         entry_value =
567                                 ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
568
569                         rc = ena_com_indirect_table_fill_entry(ena_dev,
570                                                                i,
571                                                                entry_value);
572                         if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
573                                 PMD_DRV_LOG(ERR,
574                                         "Cannot fill indirect table\n");
575                                 return rc;
576                         }
577                 }
578         }
579
580         rte_spinlock_lock(&adapter->admin_lock);
581         rc = ena_com_indirect_table_set(ena_dev);
582         rte_spinlock_unlock(&adapter->admin_lock);
583         if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
584                 PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
585                 return rc;
586         }
587
588         PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
589                 __func__, reta_size, adapter->rte_dev->data->port_id);
590
591         return 0;
592 }
593
594 /* Query redirection table. */
595 static int ena_rss_reta_query(struct rte_eth_dev *dev,
596                               struct rte_eth_rss_reta_entry64 *reta_conf,
597                               uint16_t reta_size)
598 {
599         struct ena_adapter *adapter = dev->data->dev_private;
600         struct ena_com_dev *ena_dev = &adapter->ena_dev;
601         int rc;
602         int i;
603         u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
604         int reta_conf_idx;
605         int reta_idx;
606
607         if (reta_size == 0 || reta_conf == NULL ||
608             (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
609                 return -EINVAL;
610
611         rte_spinlock_lock(&adapter->admin_lock);
612         rc = ena_com_indirect_table_get(ena_dev, indirect_table);
613         rte_spinlock_unlock(&adapter->admin_lock);
614         if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
615                 PMD_DRV_LOG(ERR, "cannot get indirect table\n");
616                 return -ENOTSUP;
617         }
618
619         for (i = 0 ; i < reta_size ; i++) {
620                 reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
621                 reta_idx = i % RTE_RETA_GROUP_SIZE;
622                 if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
623                         reta_conf[reta_conf_idx].reta[reta_idx] =
624                                 ENA_IO_RXQ_IDX_REV(indirect_table[i]);
625         }
626
627         return 0;
628 }
629
630 static int ena_rss_init_default(struct ena_adapter *adapter)
631 {
632         struct ena_com_dev *ena_dev = &adapter->ena_dev;
633         uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
634         int rc, i;
635         u32 val;
636
637         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
638         if (unlikely(rc)) {
639                 PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
640                 goto err_rss_init;
641         }
642
643         for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
644                 val = i % nb_rx_queues;
645                 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
646                                                        ENA_IO_RXQ_IDX(val));
647                 if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
648                         PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
649                         goto err_fill_indir;
650                 }
651         }
652
653         rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
654                                         ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
655         if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
656                 PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
657                 goto err_fill_indir;
658         }
659
660         rc = ena_com_set_default_hash_ctrl(ena_dev);
661         if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
662                 PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
663                 goto err_fill_indir;
664         }
665
666         rc = ena_com_indirect_table_set(ena_dev);
667         if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
668                 PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
669                 goto err_fill_indir;
670         }
671         PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
672                 adapter->rte_dev->data->port_id);
673
674         return 0;
675
676 err_fill_indir:
677         ena_com_rss_destroy(ena_dev);
678 err_rss_init:
679
680         return rc;
681 }
682
683 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
684 {
685         struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
686         int nb_queues = dev->data->nb_rx_queues;
687         int i;
688
689         for (i = 0; i < nb_queues; i++)
690                 ena_rx_queue_release(queues[i]);
691 }
692
693 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
694 {
695         struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
696         int nb_queues = dev->data->nb_tx_queues;
697         int i;
698
699         for (i = 0; i < nb_queues; i++)
700                 ena_tx_queue_release(queues[i]);
701 }
702
703 static void ena_rx_queue_release(void *queue)
704 {
705         struct ena_ring *ring = (struct ena_ring *)queue;
706
707         /* Free ring resources */
708         if (ring->rx_buffer_info)
709                 rte_free(ring->rx_buffer_info);
710         ring->rx_buffer_info = NULL;
711
712         if (ring->rx_refill_buffer)
713                 rte_free(ring->rx_refill_buffer);
714         ring->rx_refill_buffer = NULL;
715
716         if (ring->empty_rx_reqs)
717                 rte_free(ring->empty_rx_reqs);
718         ring->empty_rx_reqs = NULL;
719
720         ring->configured = 0;
721
722         PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
723                 ring->port_id, ring->id);
724 }
725
726 static void ena_tx_queue_release(void *queue)
727 {
728         struct ena_ring *ring = (struct ena_ring *)queue;
729
730         /* Free ring resources */
731         if (ring->push_buf_intermediate_buf)
732                 rte_free(ring->push_buf_intermediate_buf);
733
734         if (ring->tx_buffer_info)
735                 rte_free(ring->tx_buffer_info);
736
737         if (ring->empty_tx_reqs)
738                 rte_free(ring->empty_tx_reqs);
739
740         ring->empty_tx_reqs = NULL;
741         ring->tx_buffer_info = NULL;
742         ring->push_buf_intermediate_buf = NULL;
743
744         ring->configured = 0;
745
746         PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
747                 ring->port_id, ring->id);
748 }
749
750 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
751 {
752         unsigned int i;
753
754         for (i = 0; i < ring->ring_size; ++i) {
755                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
756                 if (rx_info->mbuf) {
757                         rte_mbuf_raw_free(rx_info->mbuf);
758                         rx_info->mbuf = NULL;
759                 }
760         }
761 }
762
763 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
764 {
765         unsigned int i;
766
767         for (i = 0; i < ring->ring_size; ++i) {
768                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
769
770                 if (tx_buf->mbuf)
771                         rte_pktmbuf_free(tx_buf->mbuf);
772         }
773 }
774
775 static int ena_link_update(struct rte_eth_dev *dev,
776                            __rte_unused int wait_to_complete)
777 {
778         struct rte_eth_link *link = &dev->data->dev_link;
779         struct ena_adapter *adapter = dev->data->dev_private;
780
781         link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
782         link->link_speed = ETH_SPEED_NUM_NONE;
783         link->link_duplex = ETH_LINK_FULL_DUPLEX;
784
785         return 0;
786 }
787
788 static int ena_queue_start_all(struct rte_eth_dev *dev,
789                                enum ena_ring_type ring_type)
790 {
791         struct ena_adapter *adapter = dev->data->dev_private;
792         struct ena_ring *queues = NULL;
793         int nb_queues;
794         int i = 0;
795         int rc = 0;
796
797         if (ring_type == ENA_RING_TYPE_RX) {
798                 queues = adapter->rx_ring;
799                 nb_queues = dev->data->nb_rx_queues;
800         } else {
801                 queues = adapter->tx_ring;
802                 nb_queues = dev->data->nb_tx_queues;
803         }
804         for (i = 0; i < nb_queues; i++) {
805                 if (queues[i].configured) {
806                         if (ring_type == ENA_RING_TYPE_RX) {
807                                 ena_assert_msg(
808                                         dev->data->rx_queues[i] == &queues[i],
809                                         "Inconsistent state of rx queues\n");
810                         } else {
811                                 ena_assert_msg(
812                                         dev->data->tx_queues[i] == &queues[i],
813                                         "Inconsistent state of tx queues\n");
814                         }
815
816                         rc = ena_queue_start(&queues[i]);
817
818                         if (rc) {
819                                 PMD_INIT_LOG(ERR,
820                                              "failed to start queue %d type(%d)",
821                                              i, ring_type);
822                                 goto err;
823                         }
824                 }
825         }
826
827         return 0;
828
829 err:
830         while (i--)
831                 if (queues[i].configured)
832                         ena_queue_stop(&queues[i]);
833
834         return rc;
835 }
836
837 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
838 {
839         uint32_t max_frame_len = adapter->max_mtu;
840
841         if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
842             DEV_RX_OFFLOAD_JUMBO_FRAME)
843                 max_frame_len =
844                         adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
845
846         return max_frame_len;
847 }
848
849 static int ena_check_valid_conf(struct ena_adapter *adapter)
850 {
851         uint32_t max_frame_len = ena_get_mtu_conf(adapter);
852
853         if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
854                 PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
855                                   "max mtu: %d, min mtu: %d",
856                              max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
857                 return ENA_COM_UNSUPPORTED;
858         }
859
860         return 0;
861 }
862
863 static int
864 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
865                        bool use_large_llq_hdr)
866 {
867         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
868         struct ena_com_dev *ena_dev = ctx->ena_dev;
869         uint32_t max_tx_queue_size;
870         uint32_t max_rx_queue_size;
871
872         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
873                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
874                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
875                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
876                         max_queue_ext->max_rx_sq_depth);
877                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
878
879                 if (ena_dev->tx_mem_queue_type ==
880                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
881                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
882                                 llq->max_llq_depth);
883                 } else {
884                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
885                                 max_queue_ext->max_tx_sq_depth);
886                 }
887
888                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
889                         max_queue_ext->max_per_packet_rx_descs);
890                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
891                         max_queue_ext->max_per_packet_tx_descs);
892         } else {
893                 struct ena_admin_queue_feature_desc *max_queues =
894                         &ctx->get_feat_ctx->max_queues;
895                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
896                         max_queues->max_sq_depth);
897                 max_tx_queue_size = max_queues->max_cq_depth;
898
899                 if (ena_dev->tx_mem_queue_type ==
900                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
901                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
902                                 llq->max_llq_depth);
903                 } else {
904                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
905                                 max_queues->max_sq_depth);
906                 }
907
908                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
909                         max_queues->max_packet_rx_descs);
910                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
911                         max_queues->max_packet_tx_descs);
912         }
913
914         /* Round down to the nearest power of 2 */
915         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
916         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
917
918         if (use_large_llq_hdr) {
919                 if ((llq->entry_size_ctrl_supported &
920                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
921                     (ena_dev->tx_mem_queue_type ==
922                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
923                         max_tx_queue_size /= 2;
924                         PMD_INIT_LOG(INFO,
925                                 "Forcing large headers and decreasing maximum TX queue size to %d\n",
926                                 max_tx_queue_size);
927                 } else {
928                         PMD_INIT_LOG(ERR,
929                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
930                 }
931         }
932
933         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
934                 PMD_INIT_LOG(ERR, "Invalid queue size");
935                 return -EFAULT;
936         }
937
938         ctx->max_tx_queue_size = max_tx_queue_size;
939         ctx->max_rx_queue_size = max_rx_queue_size;
940
941         return 0;
942 }
943
944 static void ena_stats_restart(struct rte_eth_dev *dev)
945 {
946         struct ena_adapter *adapter = dev->data->dev_private;
947
948         rte_atomic64_init(&adapter->drv_stats->ierrors);
949         rte_atomic64_init(&adapter->drv_stats->oerrors);
950         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
951         adapter->drv_stats->rx_drops = 0;
952 }
953
954 static int ena_stats_get(struct rte_eth_dev *dev,
955                           struct rte_eth_stats *stats)
956 {
957         struct ena_admin_basic_stats ena_stats;
958         struct ena_adapter *adapter = dev->data->dev_private;
959         struct ena_com_dev *ena_dev = &adapter->ena_dev;
960         int rc;
961         int i;
962         int max_rings_stats;
963
964         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
965                 return -ENOTSUP;
966
967         memset(&ena_stats, 0, sizeof(ena_stats));
968
969         rte_spinlock_lock(&adapter->admin_lock);
970         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
971         rte_spinlock_unlock(&adapter->admin_lock);
972         if (unlikely(rc)) {
973                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
974                 return rc;
975         }
976
977         /* Set of basic statistics from ENA */
978         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
979                                           ena_stats.rx_pkts_low);
980         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
981                                           ena_stats.tx_pkts_low);
982         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
983                                         ena_stats.rx_bytes_low);
984         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
985                                         ena_stats.tx_bytes_low);
986
987         /* Driver related stats */
988         stats->imissed = adapter->drv_stats->rx_drops;
989         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
990         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
991         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
992
993         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
994                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
995         for (i = 0; i < max_rings_stats; ++i) {
996                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
997
998                 stats->q_ibytes[i] = rx_stats->bytes;
999                 stats->q_ipackets[i] = rx_stats->cnt;
1000                 stats->q_errors[i] = rx_stats->bad_desc_num +
1001                         rx_stats->bad_req_id;
1002         }
1003
1004         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1005                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1006         for (i = 0; i < max_rings_stats; ++i) {
1007                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1008
1009                 stats->q_obytes[i] = tx_stats->bytes;
1010                 stats->q_opackets[i] = tx_stats->cnt;
1011         }
1012
1013         return 0;
1014 }
1015
1016 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1017 {
1018         struct ena_adapter *adapter;
1019         struct ena_com_dev *ena_dev;
1020         int rc = 0;
1021
1022         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1023         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1024         adapter = dev->data->dev_private;
1025
1026         ena_dev = &adapter->ena_dev;
1027         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1028
1029         if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1030                 PMD_DRV_LOG(ERR,
1031                         "Invalid MTU setting. new_mtu: %d "
1032                         "max mtu: %d min mtu: %d\n",
1033                         mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1034                 return -EINVAL;
1035         }
1036
1037         rc = ena_com_set_dev_mtu(ena_dev, mtu);
1038         if (rc)
1039                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1040         else
1041                 PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1042
1043         return rc;
1044 }
1045
1046 static int ena_start(struct rte_eth_dev *dev)
1047 {
1048         struct ena_adapter *adapter = dev->data->dev_private;
1049         uint64_t ticks;
1050         int rc = 0;
1051
1052         rc = ena_check_valid_conf(adapter);
1053         if (rc)
1054                 return rc;
1055
1056         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1057         if (rc)
1058                 return rc;
1059
1060         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1061         if (rc)
1062                 goto err_start_tx;
1063
1064         if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1065             ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1066                 rc = ena_rss_init_default(adapter);
1067                 if (rc)
1068                         goto err_rss_init;
1069         }
1070
1071         ena_stats_restart(dev);
1072
1073         adapter->timestamp_wd = rte_get_timer_cycles();
1074         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1075
1076         ticks = rte_get_timer_hz();
1077         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1078                         ena_timer_wd_callback, adapter);
1079
1080         ++adapter->dev_stats.dev_start;
1081         adapter->state = ENA_ADAPTER_STATE_RUNNING;
1082
1083         return 0;
1084
1085 err_rss_init:
1086         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1087 err_start_tx:
1088         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1089         return rc;
1090 }
1091
1092 static int ena_stop(struct rte_eth_dev *dev)
1093 {
1094         struct ena_adapter *adapter = dev->data->dev_private;
1095         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1096         int rc;
1097
1098         rte_timer_stop_sync(&adapter->timer_wd);
1099         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1100         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1101
1102         if (adapter->trigger_reset) {
1103                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1104                 if (rc)
1105                         PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1106         }
1107
1108         ++adapter->dev_stats.dev_stop;
1109         adapter->state = ENA_ADAPTER_STATE_STOPPED;
1110         dev->data->dev_started = 0;
1111
1112         return 0;
1113 }
1114
1115 static int ena_create_io_queue(struct ena_ring *ring)
1116 {
1117         struct ena_adapter *adapter;
1118         struct ena_com_dev *ena_dev;
1119         struct ena_com_create_io_ctx ctx =
1120                 /* policy set to _HOST just to satisfy icc compiler */
1121                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1122                   0, 0, 0, 0, 0 };
1123         uint16_t ena_qid;
1124         unsigned int i;
1125         int rc;
1126
1127         adapter = ring->adapter;
1128         ena_dev = &adapter->ena_dev;
1129
1130         if (ring->type == ENA_RING_TYPE_TX) {
1131                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1132                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1133                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1134                 for (i = 0; i < ring->ring_size; i++)
1135                         ring->empty_tx_reqs[i] = i;
1136         } else {
1137                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1138                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1139                 for (i = 0; i < ring->ring_size; i++)
1140                         ring->empty_rx_reqs[i] = i;
1141         }
1142         ctx.queue_size = ring->ring_size;
1143         ctx.qid = ena_qid;
1144         ctx.msix_vector = -1; /* interrupts not used */
1145         ctx.numa_node = ring->numa_socket_id;
1146
1147         rc = ena_com_create_io_queue(ena_dev, &ctx);
1148         if (rc) {
1149                 PMD_DRV_LOG(ERR,
1150                         "failed to create io queue #%d (qid:%d) rc: %d\n",
1151                         ring->id, ena_qid, rc);
1152                 return rc;
1153         }
1154
1155         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1156                                      &ring->ena_com_io_sq,
1157                                      &ring->ena_com_io_cq);
1158         if (rc) {
1159                 PMD_DRV_LOG(ERR,
1160                         "Failed to get io queue handlers. queue num %d rc: %d\n",
1161                         ring->id, rc);
1162                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1163                 return rc;
1164         }
1165
1166         if (ring->type == ENA_RING_TYPE_TX)
1167                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1168
1169         return 0;
1170 }
1171
1172 static void ena_queue_stop(struct ena_ring *ring)
1173 {
1174         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1175
1176         if (ring->type == ENA_RING_TYPE_RX) {
1177                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1178                 ena_rx_queue_release_bufs(ring);
1179         } else {
1180                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1181                 ena_tx_queue_release_bufs(ring);
1182         }
1183 }
1184
1185 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1186                               enum ena_ring_type ring_type)
1187 {
1188         struct ena_adapter *adapter = dev->data->dev_private;
1189         struct ena_ring *queues = NULL;
1190         uint16_t nb_queues, i;
1191
1192         if (ring_type == ENA_RING_TYPE_RX) {
1193                 queues = adapter->rx_ring;
1194                 nb_queues = dev->data->nb_rx_queues;
1195         } else {
1196                 queues = adapter->tx_ring;
1197                 nb_queues = dev->data->nb_tx_queues;
1198         }
1199
1200         for (i = 0; i < nb_queues; ++i)
1201                 if (queues[i].configured)
1202                         ena_queue_stop(&queues[i]);
1203 }
1204
1205 static int ena_queue_start(struct ena_ring *ring)
1206 {
1207         int rc, bufs_num;
1208
1209         ena_assert_msg(ring->configured == 1,
1210                        "Trying to start unconfigured queue\n");
1211
1212         rc = ena_create_io_queue(ring);
1213         if (rc) {
1214                 PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1215                 return rc;
1216         }
1217
1218         ring->next_to_clean = 0;
1219         ring->next_to_use = 0;
1220
1221         if (ring->type == ENA_RING_TYPE_TX) {
1222                 ring->tx_stats.available_desc =
1223                         ena_com_free_q_entries(ring->ena_com_io_sq);
1224                 return 0;
1225         }
1226
1227         bufs_num = ring->ring_size - 1;
1228         rc = ena_populate_rx_queue(ring, bufs_num);
1229         if (rc != bufs_num) {
1230                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1231                                          ENA_IO_RXQ_IDX(ring->id));
1232                 PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1233                 return ENA_COM_FAULT;
1234         }
1235         /* Flush per-core RX buffers pools cache as they can be used on other
1236          * cores as well.
1237          */
1238         rte_mempool_cache_flush(NULL, ring->mb_pool);
1239
1240         return 0;
1241 }
1242
1243 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1244                               uint16_t queue_idx,
1245                               uint16_t nb_desc,
1246                               unsigned int socket_id,
1247                               const struct rte_eth_txconf *tx_conf)
1248 {
1249         struct ena_ring *txq = NULL;
1250         struct ena_adapter *adapter = dev->data->dev_private;
1251         unsigned int i;
1252
1253         txq = &adapter->tx_ring[queue_idx];
1254
1255         if (txq->configured) {
1256                 PMD_DRV_LOG(CRIT,
1257                         "API violation. Queue %d is already configured\n",
1258                         queue_idx);
1259                 return ENA_COM_FAULT;
1260         }
1261
1262         if (!rte_is_power_of_2(nb_desc)) {
1263                 PMD_DRV_LOG(ERR,
1264                         "Unsupported size of TX queue: %d is not a power of 2.\n",
1265                         nb_desc);
1266                 return -EINVAL;
1267         }
1268
1269         if (nb_desc > adapter->max_tx_ring_size) {
1270                 PMD_DRV_LOG(ERR,
1271                         "Unsupported size of TX queue (max size: %d)\n",
1272                         adapter->max_tx_ring_size);
1273                 return -EINVAL;
1274         }
1275
1276         if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1277                 nb_desc = adapter->max_tx_ring_size;
1278
1279         txq->port_id = dev->data->port_id;
1280         txq->next_to_clean = 0;
1281         txq->next_to_use = 0;
1282         txq->ring_size = nb_desc;
1283         txq->size_mask = nb_desc - 1;
1284         txq->numa_socket_id = socket_id;
1285
1286         txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1287                                           sizeof(struct ena_tx_buffer) *
1288                                           txq->ring_size,
1289                                           RTE_CACHE_LINE_SIZE);
1290         if (!txq->tx_buffer_info) {
1291                 PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1292                 return -ENOMEM;
1293         }
1294
1295         txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1296                                          sizeof(u16) * txq->ring_size,
1297                                          RTE_CACHE_LINE_SIZE);
1298         if (!txq->empty_tx_reqs) {
1299                 PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1300                 rte_free(txq->tx_buffer_info);
1301                 return -ENOMEM;
1302         }
1303
1304         txq->push_buf_intermediate_buf =
1305                 rte_zmalloc("txq->push_buf_intermediate_buf",
1306                             txq->tx_max_header_size,
1307                             RTE_CACHE_LINE_SIZE);
1308         if (!txq->push_buf_intermediate_buf) {
1309                 PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1310                 rte_free(txq->tx_buffer_info);
1311                 rte_free(txq->empty_tx_reqs);
1312                 return -ENOMEM;
1313         }
1314
1315         for (i = 0; i < txq->ring_size; i++)
1316                 txq->empty_tx_reqs[i] = i;
1317
1318         if (tx_conf != NULL) {
1319                 txq->offloads =
1320                         tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1321         }
1322         /* Store pointer to this queue in upper layer */
1323         txq->configured = 1;
1324         dev->data->tx_queues[queue_idx] = txq;
1325
1326         return 0;
1327 }
1328
1329 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1330                               uint16_t queue_idx,
1331                               uint16_t nb_desc,
1332                               unsigned int socket_id,
1333                               __rte_unused const struct rte_eth_rxconf *rx_conf,
1334                               struct rte_mempool *mp)
1335 {
1336         struct ena_adapter *adapter = dev->data->dev_private;
1337         struct ena_ring *rxq = NULL;
1338         size_t buffer_size;
1339         int i;
1340
1341         rxq = &adapter->rx_ring[queue_idx];
1342         if (rxq->configured) {
1343                 PMD_DRV_LOG(CRIT,
1344                         "API violation. Queue %d is already configured\n",
1345                         queue_idx);
1346                 return ENA_COM_FAULT;
1347         }
1348
1349         if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1350                 nb_desc = adapter->max_rx_ring_size;
1351
1352         if (!rte_is_power_of_2(nb_desc)) {
1353                 PMD_DRV_LOG(ERR,
1354                         "Unsupported size of RX queue: %d is not a power of 2.\n",
1355                         nb_desc);
1356                 return -EINVAL;
1357         }
1358
1359         if (nb_desc > adapter->max_rx_ring_size) {
1360                 PMD_DRV_LOG(ERR,
1361                         "Unsupported size of RX queue (max size: %d)\n",
1362                         adapter->max_rx_ring_size);
1363                 return -EINVAL;
1364         }
1365
1366         /* ENA isn't supporting buffers smaller than 1400 bytes */
1367         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1368         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1369                 PMD_DRV_LOG(ERR,
1370                         "Unsupported size of RX buffer: %zu (min size: %d)\n",
1371                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1372                 return -EINVAL;
1373         }
1374
1375         rxq->port_id = dev->data->port_id;
1376         rxq->next_to_clean = 0;
1377         rxq->next_to_use = 0;
1378         rxq->ring_size = nb_desc;
1379         rxq->size_mask = nb_desc - 1;
1380         rxq->numa_socket_id = socket_id;
1381         rxq->mb_pool = mp;
1382
1383         rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1384                 sizeof(struct ena_rx_buffer) * nb_desc,
1385                 RTE_CACHE_LINE_SIZE);
1386         if (!rxq->rx_buffer_info) {
1387                 PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1388                 return -ENOMEM;
1389         }
1390
1391         rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1392                                             sizeof(struct rte_mbuf *) * nb_desc,
1393                                             RTE_CACHE_LINE_SIZE);
1394
1395         if (!rxq->rx_refill_buffer) {
1396                 PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1397                 rte_free(rxq->rx_buffer_info);
1398                 rxq->rx_buffer_info = NULL;
1399                 return -ENOMEM;
1400         }
1401
1402         rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1403                                          sizeof(uint16_t) * nb_desc,
1404                                          RTE_CACHE_LINE_SIZE);
1405         if (!rxq->empty_rx_reqs) {
1406                 PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1407                 rte_free(rxq->rx_buffer_info);
1408                 rxq->rx_buffer_info = NULL;
1409                 rte_free(rxq->rx_refill_buffer);
1410                 rxq->rx_refill_buffer = NULL;
1411                 return -ENOMEM;
1412         }
1413
1414         for (i = 0; i < nb_desc; i++)
1415                 rxq->empty_rx_reqs[i] = i;
1416
1417         /* Store pointer to this queue in upper layer */
1418         rxq->configured = 1;
1419         dev->data->rx_queues[queue_idx] = rxq;
1420
1421         return 0;
1422 }
1423
1424 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1425                                   struct rte_mbuf *mbuf, uint16_t id)
1426 {
1427         struct ena_com_buf ebuf;
1428         int rc;
1429
1430         /* prepare physical address for DMA transaction */
1431         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1432         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1433
1434         /* pass resource to device */
1435         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1436         if (unlikely(rc != 0))
1437                 PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1438
1439         return rc;
1440 }
1441
1442 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1443 {
1444         unsigned int i;
1445         int rc;
1446         uint16_t next_to_use = rxq->next_to_use;
1447         uint16_t in_use, req_id;
1448         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1449
1450         if (unlikely(!count))
1451                 return 0;
1452
1453         in_use = rxq->ring_size - 1 -
1454                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1455         ena_assert_msg(((in_use + count) < rxq->ring_size),
1456                 "bad ring state\n");
1457
1458         /* get resources for incoming packets */
1459         rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1460         if (unlikely(rc < 0)) {
1461                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1462                 ++rxq->rx_stats.mbuf_alloc_fail;
1463                 PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1464                 return 0;
1465         }
1466
1467         for (i = 0; i < count; i++) {
1468                 struct rte_mbuf *mbuf = mbufs[i];
1469                 struct ena_rx_buffer *rx_info;
1470
1471                 if (likely((i + 4) < count))
1472                         rte_prefetch0(mbufs[i + 4]);
1473
1474                 req_id = rxq->empty_rx_reqs[next_to_use];
1475                 rx_info = &rxq->rx_buffer_info[req_id];
1476
1477                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1478                 if (unlikely(rc != 0))
1479                         break;
1480
1481                 rx_info->mbuf = mbuf;
1482                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1483         }
1484
1485         if (unlikely(i < count)) {
1486                 PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1487                         "buffers (from %d)\n", rxq->id, i, count);
1488                 rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1489                                      count - i);
1490                 ++rxq->rx_stats.refill_partial;
1491         }
1492
1493         /* When we submitted free recources to device... */
1494         if (likely(i > 0)) {
1495                 /* ...let HW know that it can fill buffers with data. */
1496                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1497
1498                 rxq->next_to_use = next_to_use;
1499         }
1500
1501         return i;
1502 }
1503
1504 static int ena_device_init(struct ena_com_dev *ena_dev,
1505                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1506                            bool *wd_state)
1507 {
1508         uint32_t aenq_groups;
1509         int rc;
1510         bool readless_supported;
1511
1512         /* Initialize mmio registers */
1513         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1514         if (rc) {
1515                 PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1516                 return rc;
1517         }
1518
1519         /* The PCIe configuration space revision id indicate if mmio reg
1520          * read is disabled.
1521          */
1522         readless_supported =
1523                 !(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1524                                & ENA_MMIO_DISABLE_REG_READ);
1525         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1526
1527         /* reset device */
1528         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1529         if (rc) {
1530                 PMD_DRV_LOG(ERR, "cannot reset device\n");
1531                 goto err_mmio_read_less;
1532         }
1533
1534         /* check FW version */
1535         rc = ena_com_validate_version(ena_dev);
1536         if (rc) {
1537                 PMD_DRV_LOG(ERR, "device version is too low\n");
1538                 goto err_mmio_read_less;
1539         }
1540
1541         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1542
1543         /* ENA device administration layer init */
1544         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1545         if (rc) {
1546                 PMD_DRV_LOG(ERR,
1547                         "cannot initialize ena admin queue with device\n");
1548                 goto err_mmio_read_less;
1549         }
1550
1551         /* To enable the msix interrupts the driver needs to know the number
1552          * of queues. So the driver uses polling mode to retrieve this
1553          * information.
1554          */
1555         ena_com_set_admin_polling_mode(ena_dev, true);
1556
1557         ena_config_host_info(ena_dev);
1558
1559         /* Get Device Attributes and features */
1560         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1561         if (rc) {
1562                 PMD_DRV_LOG(ERR,
1563                         "cannot get attribute for ena device rc= %d\n", rc);
1564                 goto err_admin_init;
1565         }
1566
1567         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1568                       BIT(ENA_ADMIN_NOTIFICATION) |
1569                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1570                       BIT(ENA_ADMIN_FATAL_ERROR) |
1571                       BIT(ENA_ADMIN_WARNING);
1572
1573         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1574         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1575         if (rc) {
1576                 PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1577                 goto err_admin_init;
1578         }
1579
1580         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1581
1582         return 0;
1583
1584 err_admin_init:
1585         ena_com_admin_destroy(ena_dev);
1586
1587 err_mmio_read_less:
1588         ena_com_mmio_reg_read_request_destroy(ena_dev);
1589
1590         return rc;
1591 }
1592
1593 static void ena_interrupt_handler_rte(void *cb_arg)
1594 {
1595         struct ena_adapter *adapter = cb_arg;
1596         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1597
1598         ena_com_admin_q_comp_intr_handler(ena_dev);
1599         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1600                 ena_com_aenq_intr_handler(ena_dev, adapter);
1601 }
1602
1603 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1604 {
1605         if (!adapter->wd_state)
1606                 return;
1607
1608         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1609                 return;
1610
1611         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1612             adapter->keep_alive_timeout)) {
1613                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1614                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1615                 adapter->trigger_reset = true;
1616                 ++adapter->dev_stats.wd_expired;
1617         }
1618 }
1619
1620 /* Check if admin queue is enabled */
1621 static void check_for_admin_com_state(struct ena_adapter *adapter)
1622 {
1623         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1624                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1625                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1626                 adapter->trigger_reset = true;
1627         }
1628 }
1629
1630 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1631                                   void *arg)
1632 {
1633         struct ena_adapter *adapter = arg;
1634         struct rte_eth_dev *dev = adapter->rte_dev;
1635
1636         check_for_missing_keep_alive(adapter);
1637         check_for_admin_com_state(adapter);
1638
1639         if (unlikely(adapter->trigger_reset)) {
1640                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1641                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1642                         NULL);
1643         }
1644 }
1645
1646 static inline void
1647 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1648                                struct ena_admin_feature_llq_desc *llq,
1649                                bool use_large_llq_hdr)
1650 {
1651         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1652         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1653         llq_config->llq_num_decs_before_header =
1654                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1655
1656         if (use_large_llq_hdr &&
1657             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1658                 llq_config->llq_ring_entry_size =
1659                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1660                 llq_config->llq_ring_entry_size_value = 256;
1661         } else {
1662                 llq_config->llq_ring_entry_size =
1663                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1664                 llq_config->llq_ring_entry_size_value = 128;
1665         }
1666 }
1667
1668 static int
1669 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1670                                 struct ena_com_dev *ena_dev,
1671                                 struct ena_admin_feature_llq_desc *llq,
1672                                 struct ena_llq_configurations *llq_default_configurations)
1673 {
1674         int rc;
1675         u32 llq_feature_mask;
1676
1677         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1678         if (!(ena_dev->supported_features & llq_feature_mask)) {
1679                 PMD_DRV_LOG(INFO,
1680                         "LLQ is not supported. Fallback to host mode policy.\n");
1681                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1682                 return 0;
1683         }
1684
1685         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1686         if (unlikely(rc)) {
1687                 PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1688                         "Fallback to host mode policy.");
1689                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1690                 return 0;
1691         }
1692
1693         /* Nothing to config, exit */
1694         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1695                 return 0;
1696
1697         if (!adapter->dev_mem_base) {
1698                 PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1699                         "Fallback to host mode policy.\n.");
1700                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1701                 return 0;
1702         }
1703
1704         ena_dev->mem_bar = adapter->dev_mem_base;
1705
1706         return 0;
1707 }
1708
1709 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1710         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1711 {
1712         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1713
1714         /* Regular queues capabilities */
1715         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1716                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1717                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1718                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1719                                     max_queue_ext->max_rx_cq_num);
1720                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1721                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1722         } else {
1723                 struct ena_admin_queue_feature_desc *max_queues =
1724                         &get_feat_ctx->max_queues;
1725                 io_tx_sq_num = max_queues->max_sq_num;
1726                 io_tx_cq_num = max_queues->max_cq_num;
1727                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1728         }
1729
1730         /* In case of LLQ use the llq number in the get feature cmd */
1731         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1732                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1733
1734         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1735         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1736         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1737
1738         if (unlikely(max_num_io_queues == 0)) {
1739                 PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1740                 return -EFAULT;
1741         }
1742
1743         return max_num_io_queues;
1744 }
1745
1746 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1747 {
1748         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1749         struct rte_pci_device *pci_dev;
1750         struct rte_intr_handle *intr_handle;
1751         struct ena_adapter *adapter = eth_dev->data->dev_private;
1752         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1753         struct ena_com_dev_get_features_ctx get_feat_ctx;
1754         struct ena_llq_configurations llq_config;
1755         const char *queue_type_str;
1756         uint32_t max_num_io_queues;
1757         int rc;
1758         static int adapters_found;
1759         bool disable_meta_caching;
1760         bool wd_state = false;
1761
1762         eth_dev->dev_ops = &ena_dev_ops;
1763         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1764         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1765         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1766
1767         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1768                 return 0;
1769
1770         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1771
1772         memset(adapter, 0, sizeof(struct ena_adapter));
1773         ena_dev = &adapter->ena_dev;
1774
1775         adapter->rte_eth_dev_data = eth_dev->data;
1776         adapter->rte_dev = eth_dev;
1777
1778         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1779         adapter->pdev = pci_dev;
1780
1781         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1782                      pci_dev->addr.domain,
1783                      pci_dev->addr.bus,
1784                      pci_dev->addr.devid,
1785                      pci_dev->addr.function);
1786
1787         intr_handle = &pci_dev->intr_handle;
1788
1789         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1790         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1791
1792         if (!adapter->regs) {
1793                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1794                              ENA_REGS_BAR);
1795                 return -ENXIO;
1796         }
1797
1798         ena_dev->reg_bar = adapter->regs;
1799         ena_dev->dmadev = adapter->pdev;
1800
1801         adapter->id_number = adapters_found;
1802
1803         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1804                  adapter->id_number);
1805
1806         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1807         if (rc != 0) {
1808                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1809                 goto err;
1810         }
1811
1812         /* device specific initialization routine */
1813         rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1814         if (rc) {
1815                 PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1816                 goto err;
1817         }
1818         adapter->wd_state = wd_state;
1819
1820         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1821                 adapter->use_large_llq_hdr);
1822         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1823                                              &get_feat_ctx.llq, &llq_config);
1824         if (unlikely(rc)) {
1825                 PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1826                 return rc;
1827         }
1828
1829         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1830                 queue_type_str = "Regular";
1831         else
1832                 queue_type_str = "Low latency";
1833         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1834
1835         calc_queue_ctx.ena_dev = ena_dev;
1836         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1837
1838         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1839         rc = ena_calc_io_queue_size(&calc_queue_ctx,
1840                 adapter->use_large_llq_hdr);
1841         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1842                 rc = -EFAULT;
1843                 goto err_device_destroy;
1844         }
1845
1846         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1847         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1848         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1849         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1850         adapter->max_num_io_queues = max_num_io_queues;
1851
1852         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1853                 disable_meta_caching =
1854                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1855                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
1856         } else {
1857                 disable_meta_caching = false;
1858         }
1859
1860         /* prepare ring structures */
1861         ena_init_rings(adapter, disable_meta_caching);
1862
1863         ena_config_debug_area(adapter);
1864
1865         /* Set max MTU for this device */
1866         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1867
1868         /* set device support for offloads */
1869         adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1870                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1871         adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1872                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1873         adapter->offloads.rx_csum_supported =
1874                 (get_feat_ctx.offload.rx_supported &
1875                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1876
1877         /* Copy MAC address and point DPDK to it */
1878         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1879         rte_ether_addr_copy((struct rte_ether_addr *)
1880                         get_feat_ctx.dev_attr.mac_addr,
1881                         (struct rte_ether_addr *)adapter->mac_addr);
1882
1883         adapter->drv_stats = rte_zmalloc("adapter stats",
1884                                          sizeof(*adapter->drv_stats),
1885                                          RTE_CACHE_LINE_SIZE);
1886         if (!adapter->drv_stats) {
1887                 PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1888                 rc = -ENOMEM;
1889                 goto err_delete_debug_area;
1890         }
1891
1892         rte_spinlock_init(&adapter->admin_lock);
1893
1894         rte_intr_callback_register(intr_handle,
1895                                    ena_interrupt_handler_rte,
1896                                    adapter);
1897         rte_intr_enable(intr_handle);
1898         ena_com_set_admin_polling_mode(ena_dev, false);
1899         ena_com_admin_aenq_enable(ena_dev);
1900
1901         if (adapters_found == 0)
1902                 rte_timer_subsystem_init();
1903         rte_timer_init(&adapter->timer_wd);
1904
1905         adapters_found++;
1906         adapter->state = ENA_ADAPTER_STATE_INIT;
1907
1908         return 0;
1909
1910 err_delete_debug_area:
1911         ena_com_delete_debug_area(ena_dev);
1912
1913 err_device_destroy:
1914         ena_com_delete_host_info(ena_dev);
1915         ena_com_admin_destroy(ena_dev);
1916
1917 err:
1918         return rc;
1919 }
1920
1921 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1922 {
1923         struct ena_adapter *adapter = eth_dev->data->dev_private;
1924         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1925
1926         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1927                 return;
1928
1929         ena_com_set_admin_running_state(ena_dev, false);
1930
1931         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1932                 ena_close(eth_dev);
1933
1934         ena_com_delete_debug_area(ena_dev);
1935         ena_com_delete_host_info(ena_dev);
1936
1937         ena_com_abort_admin_commands(ena_dev);
1938         ena_com_wait_for_abort_completion(ena_dev);
1939         ena_com_admin_destroy(ena_dev);
1940         ena_com_mmio_reg_read_request_destroy(ena_dev);
1941
1942         adapter->state = ENA_ADAPTER_STATE_FREE;
1943 }
1944
1945 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1946 {
1947         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1948                 return 0;
1949
1950         ena_destroy_device(eth_dev);
1951
1952         return 0;
1953 }
1954
1955 static int ena_dev_configure(struct rte_eth_dev *dev)
1956 {
1957         struct ena_adapter *adapter = dev->data->dev_private;
1958
1959         adapter->state = ENA_ADAPTER_STATE_CONFIG;
1960
1961         adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1962         adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1963         return 0;
1964 }
1965
1966 static void ena_init_rings(struct ena_adapter *adapter,
1967                            bool disable_meta_caching)
1968 {
1969         size_t i;
1970
1971         for (i = 0; i < adapter->max_num_io_queues; i++) {
1972                 struct ena_ring *ring = &adapter->tx_ring[i];
1973
1974                 ring->configured = 0;
1975                 ring->type = ENA_RING_TYPE_TX;
1976                 ring->adapter = adapter;
1977                 ring->id = i;
1978                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1979                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1980                 ring->sgl_size = adapter->max_tx_sgl_size;
1981                 ring->disable_meta_caching = disable_meta_caching;
1982         }
1983
1984         for (i = 0; i < adapter->max_num_io_queues; i++) {
1985                 struct ena_ring *ring = &adapter->rx_ring[i];
1986
1987                 ring->configured = 0;
1988                 ring->type = ENA_RING_TYPE_RX;
1989                 ring->adapter = adapter;
1990                 ring->id = i;
1991                 ring->sgl_size = adapter->max_rx_sgl_size;
1992         }
1993 }
1994
1995 static int ena_infos_get(struct rte_eth_dev *dev,
1996                           struct rte_eth_dev_info *dev_info)
1997 {
1998         struct ena_adapter *adapter;
1999         struct ena_com_dev *ena_dev;
2000         uint64_t rx_feat = 0, tx_feat = 0;
2001
2002         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2003         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2004         adapter = dev->data->dev_private;
2005
2006         ena_dev = &adapter->ena_dev;
2007         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2008
2009         dev_info->speed_capa =
2010                         ETH_LINK_SPEED_1G   |
2011                         ETH_LINK_SPEED_2_5G |
2012                         ETH_LINK_SPEED_5G   |
2013                         ETH_LINK_SPEED_10G  |
2014                         ETH_LINK_SPEED_25G  |
2015                         ETH_LINK_SPEED_40G  |
2016                         ETH_LINK_SPEED_50G  |
2017                         ETH_LINK_SPEED_100G;
2018
2019         /* Set Tx & Rx features available for device */
2020         if (adapter->offloads.tso4_supported)
2021                 tx_feat |= DEV_TX_OFFLOAD_TCP_TSO;
2022
2023         if (adapter->offloads.tx_csum_supported)
2024                 tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2025                         DEV_TX_OFFLOAD_UDP_CKSUM |
2026                         DEV_TX_OFFLOAD_TCP_CKSUM;
2027
2028         if (adapter->offloads.rx_csum_supported)
2029                 rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2030                         DEV_RX_OFFLOAD_UDP_CKSUM  |
2031                         DEV_RX_OFFLOAD_TCP_CKSUM;
2032
2033         rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2034
2035         /* Inform framework about available features */
2036         dev_info->rx_offload_capa = rx_feat;
2037         dev_info->rx_queue_offload_capa = rx_feat;
2038         dev_info->tx_offload_capa = tx_feat;
2039         dev_info->tx_queue_offload_capa = tx_feat;
2040
2041         dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2042                                            ETH_RSS_UDP;
2043
2044         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2045         dev_info->max_rx_pktlen  = adapter->max_mtu;
2046         dev_info->max_mac_addrs = 1;
2047
2048         dev_info->max_rx_queues = adapter->max_num_io_queues;
2049         dev_info->max_tx_queues = adapter->max_num_io_queues;
2050         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2051
2052         adapter->tx_supported_offloads = tx_feat;
2053         adapter->rx_supported_offloads = rx_feat;
2054
2055         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2056         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2057         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2058                                         adapter->max_rx_sgl_size);
2059         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2060                                         adapter->max_rx_sgl_size);
2061
2062         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2063         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2064         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2065                                         adapter->max_tx_sgl_size);
2066         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2067                                         adapter->max_tx_sgl_size);
2068
2069         return 0;
2070 }
2071
2072 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2073 {
2074         mbuf->data_len = len;
2075         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2076         mbuf->refcnt = 1;
2077         mbuf->next = NULL;
2078 }
2079
2080 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2081                                     struct ena_com_rx_buf_info *ena_bufs,
2082                                     uint32_t descs,
2083                                     uint16_t *next_to_clean,
2084                                     uint8_t offset)
2085 {
2086         struct rte_mbuf *mbuf;
2087         struct rte_mbuf *mbuf_head;
2088         struct ena_rx_buffer *rx_info;
2089         int rc;
2090         uint16_t ntc, len, req_id, buf = 0;
2091
2092         if (unlikely(descs == 0))
2093                 return NULL;
2094
2095         ntc = *next_to_clean;
2096
2097         len = ena_bufs[buf].len;
2098         req_id = ena_bufs[buf].req_id;
2099
2100         rx_info = &rx_ring->rx_buffer_info[req_id];
2101
2102         mbuf = rx_info->mbuf;
2103         RTE_ASSERT(mbuf != NULL);
2104
2105         ena_init_rx_mbuf(mbuf, len);
2106
2107         /* Fill the mbuf head with the data specific for 1st segment. */
2108         mbuf_head = mbuf;
2109         mbuf_head->nb_segs = descs;
2110         mbuf_head->port = rx_ring->port_id;
2111         mbuf_head->pkt_len = len;
2112         mbuf_head->data_off += offset;
2113
2114         rx_info->mbuf = NULL;
2115         rx_ring->empty_rx_reqs[ntc] = req_id;
2116         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2117
2118         while (--descs) {
2119                 ++buf;
2120                 len = ena_bufs[buf].len;
2121                 req_id = ena_bufs[buf].req_id;
2122
2123                 rx_info = &rx_ring->rx_buffer_info[req_id];
2124                 RTE_ASSERT(rx_info->mbuf != NULL);
2125
2126                 if (unlikely(len == 0)) {
2127                         /*
2128                          * Some devices can pass descriptor with the length 0.
2129                          * To avoid confusion, the PMD is simply putting the
2130                          * descriptor back, as it was never used. We'll avoid
2131                          * mbuf allocation that way.
2132                          */
2133                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2134                                 rx_info->mbuf, req_id);
2135                         if (unlikely(rc != 0)) {
2136                                 /* Free the mbuf in case of an error. */
2137                                 rte_mbuf_raw_free(rx_info->mbuf);
2138                         } else {
2139                                 /*
2140                                  * If there was no error, just exit the loop as
2141                                  * 0 length descriptor is always the last one.
2142                                  */
2143                                 break;
2144                         }
2145                 } else {
2146                         /* Create an mbuf chain. */
2147                         mbuf->next = rx_info->mbuf;
2148                         mbuf = mbuf->next;
2149
2150                         ena_init_rx_mbuf(mbuf, len);
2151                         mbuf_head->pkt_len += len;
2152                 }
2153
2154                 /*
2155                  * Mark the descriptor as depleted and perform necessary
2156                  * cleanup.
2157                  * This code will execute in two cases:
2158                  *  1. Descriptor len was greater than 0 - normal situation.
2159                  *  2. Descriptor len was 0 and we failed to add the descriptor
2160                  *     to the device. In that situation, we should try to add
2161                  *     the mbuf again in the populate routine and mark the
2162                  *     descriptor as used up by the device.
2163                  */
2164                 rx_info->mbuf = NULL;
2165                 rx_ring->empty_rx_reqs[ntc] = req_id;
2166                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2167         }
2168
2169         *next_to_clean = ntc;
2170
2171         return mbuf_head;
2172 }
2173
2174 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2175                                   uint16_t nb_pkts)
2176 {
2177         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2178         unsigned int free_queue_entries;
2179         unsigned int refill_threshold;
2180         uint16_t next_to_clean = rx_ring->next_to_clean;
2181         uint16_t descs_in_use;
2182         struct rte_mbuf *mbuf;
2183         uint16_t completed;
2184         struct ena_com_rx_ctx ena_rx_ctx;
2185         int i, rc = 0;
2186
2187         /* Check adapter state */
2188         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2189                 PMD_DRV_LOG(ALERT,
2190                         "Trying to receive pkts while device is NOT running\n");
2191                 return 0;
2192         }
2193
2194         descs_in_use = rx_ring->ring_size -
2195                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2196         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2197
2198         for (completed = 0; completed < nb_pkts; completed++) {
2199                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2200                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2201                 ena_rx_ctx.descs = 0;
2202                 ena_rx_ctx.pkt_offset = 0;
2203                 /* receive packet context */
2204                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2205                                     rx_ring->ena_com_io_sq,
2206                                     &ena_rx_ctx);
2207                 if (unlikely(rc)) {
2208                         PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2209                         if (rc == ENA_COM_NO_SPACE) {
2210                                 ++rx_ring->rx_stats.bad_desc_num;
2211                                 rx_ring->adapter->reset_reason =
2212                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2213                         } else {
2214                                 ++rx_ring->rx_stats.bad_req_id;
2215                                 rx_ring->adapter->reset_reason =
2216                                         ENA_REGS_RESET_INV_RX_REQ_ID;
2217                         }
2218                         rx_ring->adapter->trigger_reset = true;
2219                         return 0;
2220                 }
2221
2222                 mbuf = ena_rx_mbuf(rx_ring,
2223                         ena_rx_ctx.ena_bufs,
2224                         ena_rx_ctx.descs,
2225                         &next_to_clean,
2226                         ena_rx_ctx.pkt_offset);
2227                 if (unlikely(mbuf == NULL)) {
2228                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2229                                 rx_ring->empty_rx_reqs[next_to_clean] =
2230                                         rx_ring->ena_bufs[i].req_id;
2231                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2232                                         next_to_clean, rx_ring->size_mask);
2233                         }
2234                         break;
2235                 }
2236
2237                 /* fill mbuf attributes if any */
2238                 ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2239
2240                 if (unlikely(mbuf->ol_flags &
2241                                 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2242                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2243                         ++rx_ring->rx_stats.bad_csum;
2244                 }
2245
2246                 mbuf->hash.rss = ena_rx_ctx.hash;
2247
2248                 rx_pkts[completed] = mbuf;
2249                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2250         }
2251
2252         rx_ring->rx_stats.cnt += completed;
2253         rx_ring->next_to_clean = next_to_clean;
2254
2255         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2256         refill_threshold =
2257                 RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2258                 (unsigned int)ENA_REFILL_THRESH_PACKET);
2259
2260         /* Burst refill to save doorbells, memory barriers, const interval */
2261         if (free_queue_entries > refill_threshold) {
2262                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2263                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2264         }
2265
2266         return completed;
2267 }
2268
2269 static uint16_t
2270 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2271                 uint16_t nb_pkts)
2272 {
2273         int32_t ret;
2274         uint32_t i;
2275         struct rte_mbuf *m;
2276         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2277         struct rte_ipv4_hdr *ip_hdr;
2278         uint64_t ol_flags;
2279         uint16_t frag_field;
2280
2281         for (i = 0; i != nb_pkts; i++) {
2282                 m = tx_pkts[i];
2283                 ol_flags = m->ol_flags;
2284
2285                 if (!(ol_flags & PKT_TX_IPV4))
2286                         continue;
2287
2288                 /* If there was not L2 header length specified, assume it is
2289                  * length of the ethernet header.
2290                  */
2291                 if (unlikely(m->l2_len == 0))
2292                         m->l2_len = sizeof(struct rte_ether_hdr);
2293
2294                 ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2295                                                  m->l2_len);
2296                 frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2297
2298                 if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2299                         m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2300
2301                         /* If IPv4 header has DF flag enabled and TSO support is
2302                          * disabled, partial chcecksum should not be calculated.
2303                          */
2304                         if (!tx_ring->adapter->offloads.tso4_supported)
2305                                 continue;
2306                 }
2307
2308                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2309                                 (ol_flags & PKT_TX_L4_MASK) ==
2310                                 PKT_TX_SCTP_CKSUM) {
2311                         rte_errno = ENOTSUP;
2312                         return i;
2313                 }
2314
2315 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2316                 ret = rte_validate_tx_offload(m);
2317                 if (ret != 0) {
2318                         rte_errno = -ret;
2319                         return i;
2320                 }
2321 #endif
2322
2323                 /* In case we are supposed to TSO and have DF not set (DF=0)
2324                  * hardware must be provided with partial checksum, otherwise
2325                  * it will take care of necessary calculations.
2326                  */
2327
2328                 ret = rte_net_intel_cksum_flags_prepare(m,
2329                         ol_flags & ~PKT_TX_TCP_SEG);
2330                 if (ret != 0) {
2331                         rte_errno = -ret;
2332                         return i;
2333                 }
2334         }
2335
2336         return i;
2337 }
2338
2339 static void ena_update_hints(struct ena_adapter *adapter,
2340                              struct ena_admin_ena_hw_hints *hints)
2341 {
2342         if (hints->admin_completion_tx_timeout)
2343                 adapter->ena_dev.admin_queue.completion_timeout =
2344                         hints->admin_completion_tx_timeout * 1000;
2345
2346         if (hints->mmio_read_timeout)
2347                 /* convert to usec */
2348                 adapter->ena_dev.mmio_read.reg_read_to =
2349                         hints->mmio_read_timeout * 1000;
2350
2351         if (hints->driver_watchdog_timeout) {
2352                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2353                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2354                 else
2355                         // Convert msecs to ticks
2356                         adapter->keep_alive_timeout =
2357                                 (hints->driver_watchdog_timeout *
2358                                 rte_get_timer_hz()) / 1000;
2359         }
2360 }
2361
2362 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2363                                               struct rte_mbuf *mbuf)
2364 {
2365         struct ena_com_dev *ena_dev;
2366         int num_segments, header_len, rc;
2367
2368         ena_dev = &tx_ring->adapter->ena_dev;
2369         num_segments = mbuf->nb_segs;
2370         header_len = mbuf->data_len;
2371
2372         if (likely(num_segments < tx_ring->sgl_size))
2373                 goto checkspace;
2374
2375         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2376             (num_segments == tx_ring->sgl_size) &&
2377             (header_len < tx_ring->tx_max_header_size))
2378                 goto checkspace;
2379
2380         /* Checking for space for 2 additional metadata descriptors due to
2381          * possible header split and metadata descriptor. Linearization will
2382          * be needed so we reduce the segments number from num_segments to 1
2383          */
2384         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2385                 PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2386                 return ENA_COM_NO_MEM;
2387         }
2388         ++tx_ring->tx_stats.linearize;
2389         rc = rte_pktmbuf_linearize(mbuf);
2390         if (unlikely(rc)) {
2391                 PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2392                 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2393                 ++tx_ring->tx_stats.linearize_failed;
2394                 return rc;
2395         }
2396
2397         return 0;
2398
2399 checkspace:
2400         /* Checking for space for 2 additional metadata descriptors due to
2401          * possible header split and metadata descriptor
2402          */
2403         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2404                                           num_segments + 2)) {
2405                 PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2406                 return ENA_COM_NO_MEM;
2407         }
2408
2409         return 0;
2410 }
2411
2412 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2413         struct ena_tx_buffer *tx_info,
2414         struct rte_mbuf *mbuf,
2415         void **push_header,
2416         uint16_t *header_len)
2417 {
2418         struct ena_com_buf *ena_buf;
2419         uint16_t delta, seg_len, push_len;
2420
2421         delta = 0;
2422         seg_len = mbuf->data_len;
2423
2424         tx_info->mbuf = mbuf;
2425         ena_buf = tx_info->bufs;
2426
2427         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2428                 /*
2429                  * Tx header might be (and will be in most cases) smaller than
2430                  * tx_max_header_size. But it's not an issue to send more data
2431                  * to the device, than actually needed if the mbuf size is
2432                  * greater than tx_max_header_size.
2433                  */
2434                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2435                 *header_len = push_len;
2436
2437                 if (likely(push_len <= seg_len)) {
2438                         /* If the push header is in the single segment, then
2439                          * just point it to the 1st mbuf data.
2440                          */
2441                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2442                 } else {
2443                         /* If the push header lays in the several segments, copy
2444                          * it to the intermediate buffer.
2445                          */
2446                         rte_pktmbuf_read(mbuf, 0, push_len,
2447                                 tx_ring->push_buf_intermediate_buf);
2448                         *push_header = tx_ring->push_buf_intermediate_buf;
2449                         delta = push_len - seg_len;
2450                 }
2451         } else {
2452                 *push_header = NULL;
2453                 *header_len = 0;
2454                 push_len = 0;
2455         }
2456
2457         /* Process first segment taking into consideration pushed header */
2458         if (seg_len > push_len) {
2459                 ena_buf->paddr = mbuf->buf_iova +
2460                                 mbuf->data_off +
2461                                 push_len;
2462                 ena_buf->len = seg_len - push_len;
2463                 ena_buf++;
2464                 tx_info->num_of_bufs++;
2465         }
2466
2467         while ((mbuf = mbuf->next) != NULL) {
2468                 seg_len = mbuf->data_len;
2469
2470                 /* Skip mbufs if whole data is pushed as a header */
2471                 if (unlikely(delta > seg_len)) {
2472                         delta -= seg_len;
2473                         continue;
2474                 }
2475
2476                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2477                 ena_buf->len = seg_len - delta;
2478                 ena_buf++;
2479                 tx_info->num_of_bufs++;
2480
2481                 delta = 0;
2482         }
2483 }
2484
2485 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2486 {
2487         struct ena_tx_buffer *tx_info;
2488         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2489         uint16_t next_to_use;
2490         uint16_t header_len;
2491         uint16_t req_id;
2492         void *push_header;
2493         int nb_hw_desc;
2494         int rc;
2495
2496         rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2497         if (unlikely(rc))
2498                 return rc;
2499
2500         next_to_use = tx_ring->next_to_use;
2501
2502         req_id = tx_ring->empty_tx_reqs[next_to_use];
2503         tx_info = &tx_ring->tx_buffer_info[req_id];
2504         tx_info->num_of_bufs = 0;
2505
2506         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2507
2508         ena_tx_ctx.ena_bufs = tx_info->bufs;
2509         ena_tx_ctx.push_header = push_header;
2510         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2511         ena_tx_ctx.req_id = req_id;
2512         ena_tx_ctx.header_len = header_len;
2513
2514         /* Set Tx offloads flags, if applicable */
2515         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2516                 tx_ring->disable_meta_caching);
2517
2518         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2519                         &ena_tx_ctx))) {
2520                 PMD_DRV_LOG(DEBUG,
2521                         "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2522                         tx_ring->id);
2523                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2524                 tx_ring->tx_stats.doorbells++;
2525         }
2526
2527         /* prepare the packet's descriptors to dma engine */
2528         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2529                 &nb_hw_desc);
2530         if (unlikely(rc)) {
2531                 ++tx_ring->tx_stats.prepare_ctx_err;
2532                 return rc;
2533         }
2534
2535         tx_info->tx_descs = nb_hw_desc;
2536
2537         tx_ring->tx_stats.cnt++;
2538         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2539
2540         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2541                 tx_ring->size_mask);
2542
2543         return 0;
2544 }
2545
2546 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2547 {
2548         unsigned int cleanup_budget;
2549         unsigned int total_tx_descs = 0;
2550         uint16_t next_to_clean = tx_ring->next_to_clean;
2551
2552         cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2553                 (unsigned int)ENA_REFILL_THRESH_PACKET);
2554
2555         while (likely(total_tx_descs < cleanup_budget)) {
2556                 struct rte_mbuf *mbuf;
2557                 struct ena_tx_buffer *tx_info;
2558                 uint16_t req_id;
2559
2560                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2561                         break;
2562
2563                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2564                         break;
2565
2566                 /* Get Tx info & store how many descs were processed  */
2567                 tx_info = &tx_ring->tx_buffer_info[req_id];
2568
2569                 mbuf = tx_info->mbuf;
2570                 rte_pktmbuf_free(mbuf);
2571
2572                 tx_info->mbuf = NULL;
2573                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2574
2575                 total_tx_descs += tx_info->tx_descs;
2576
2577                 /* Put back descriptor to the ring for reuse */
2578                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2579                         tx_ring->size_mask);
2580         }
2581
2582         if (likely(total_tx_descs > 0)) {
2583                 /* acknowledge completion of sent packets */
2584                 tx_ring->next_to_clean = next_to_clean;
2585                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2586                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2587         }
2588 }
2589
2590 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2591                                   uint16_t nb_pkts)
2592 {
2593         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2594         uint16_t sent_idx = 0;
2595
2596         /* Check adapter state */
2597         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2598                 PMD_DRV_LOG(ALERT,
2599                         "Trying to xmit pkts while device is NOT running\n");
2600                 return 0;
2601         }
2602
2603         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2604                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2605                         break;
2606
2607                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2608                         tx_ring->size_mask)]);
2609         }
2610
2611         tx_ring->tx_stats.available_desc =
2612                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2613
2614         /* If there are ready packets to be xmitted... */
2615         if (sent_idx > 0) {
2616                 /* ...let HW do its best :-) */
2617                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2618                 tx_ring->tx_stats.doorbells++;
2619         }
2620
2621         ena_tx_cleanup(tx_ring);
2622
2623         tx_ring->tx_stats.available_desc =
2624                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2625         tx_ring->tx_stats.tx_poll++;
2626
2627         return sent_idx;
2628 }
2629
2630 int ena_copy_eni_stats(struct ena_adapter *adapter)
2631 {
2632         struct ena_admin_eni_stats admin_eni_stats;
2633         int rc;
2634
2635         rte_spinlock_lock(&adapter->admin_lock);
2636         rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2637         rte_spinlock_unlock(&adapter->admin_lock);
2638         if (rc != 0) {
2639                 if (rc == ENA_COM_UNSUPPORTED) {
2640                         PMD_DRV_LOG(DEBUG,
2641                                 "Retrieving ENI metrics is not supported.\n");
2642                 } else {
2643                         PMD_DRV_LOG(WARNING,
2644                                 "Failed to get ENI metrics: %d\n", rc);
2645                 }
2646                 return rc;
2647         }
2648
2649         rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2650                 sizeof(struct ena_stats_eni));
2651
2652         return 0;
2653 }
2654
2655 /**
2656  * DPDK callback to retrieve names of extended device statistics
2657  *
2658  * @param dev
2659  *   Pointer to Ethernet device structure.
2660  * @param[out] xstats_names
2661  *   Buffer to insert names into.
2662  * @param n
2663  *   Number of names.
2664  *
2665  * @return
2666  *   Number of xstats names.
2667  */
2668 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2669                                 struct rte_eth_xstat_name *xstats_names,
2670                                 unsigned int n)
2671 {
2672         unsigned int xstats_count = ena_xstats_calc_num(dev);
2673         unsigned int stat, i, count = 0;
2674
2675         if (n < xstats_count || !xstats_names)
2676                 return xstats_count;
2677
2678         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2679                 strcpy(xstats_names[count].name,
2680                         ena_stats_global_strings[stat].name);
2681
2682         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2683                 strcpy(xstats_names[count].name,
2684                         ena_stats_eni_strings[stat].name);
2685
2686         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2687                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2688                         snprintf(xstats_names[count].name,
2689                                 sizeof(xstats_names[count].name),
2690                                 "rx_q%d_%s", i,
2691                                 ena_stats_rx_strings[stat].name);
2692
2693         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2694                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2695                         snprintf(xstats_names[count].name,
2696                                 sizeof(xstats_names[count].name),
2697                                 "tx_q%d_%s", i,
2698                                 ena_stats_tx_strings[stat].name);
2699
2700         return xstats_count;
2701 }
2702
2703 /**
2704  * DPDK callback to get extended device statistics.
2705  *
2706  * @param dev
2707  *   Pointer to Ethernet device structure.
2708  * @param[out] stats
2709  *   Stats table output buffer.
2710  * @param n
2711  *   The size of the stats table.
2712  *
2713  * @return
2714  *   Number of xstats on success, negative on failure.
2715  */
2716 static int ena_xstats_get(struct rte_eth_dev *dev,
2717                           struct rte_eth_xstat *xstats,
2718                           unsigned int n)
2719 {
2720         struct ena_adapter *adapter = dev->data->dev_private;
2721         unsigned int xstats_count = ena_xstats_calc_num(dev);
2722         unsigned int stat, i, count = 0;
2723         int stat_offset;
2724         void *stats_begin;
2725
2726         if (n < xstats_count)
2727                 return xstats_count;
2728
2729         if (!xstats)
2730                 return 0;
2731
2732         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2733                 stat_offset = ena_stats_global_strings[stat].stat_offset;
2734                 stats_begin = &adapter->dev_stats;
2735
2736                 xstats[count].id = count;
2737                 xstats[count].value = *((uint64_t *)
2738                         ((char *)stats_begin + stat_offset));
2739         }
2740
2741         /* Even if the function below fails, we should copy previous (or initial
2742          * values) to keep structure of rte_eth_xstat consistent.
2743          */
2744         ena_copy_eni_stats(adapter);
2745         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2746                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
2747                 stats_begin = &adapter->eni_stats;
2748
2749                 xstats[count].id = count;
2750                 xstats[count].value = *((uint64_t *)
2751                     ((char *)stats_begin + stat_offset));
2752         }
2753
2754         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2755                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2756                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2757                         stats_begin = &adapter->rx_ring[i].rx_stats;
2758
2759                         xstats[count].id = count;
2760                         xstats[count].value = *((uint64_t *)
2761                                 ((char *)stats_begin + stat_offset));
2762                 }
2763         }
2764
2765         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2766                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2767                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2768                         stats_begin = &adapter->tx_ring[i].rx_stats;
2769
2770                         xstats[count].id = count;
2771                         xstats[count].value = *((uint64_t *)
2772                                 ((char *)stats_begin + stat_offset));
2773                 }
2774         }
2775
2776         return count;
2777 }
2778
2779 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2780                                 const uint64_t *ids,
2781                                 uint64_t *values,
2782                                 unsigned int n)
2783 {
2784         struct ena_adapter *adapter = dev->data->dev_private;
2785         uint64_t id;
2786         uint64_t rx_entries, tx_entries;
2787         unsigned int i;
2788         int qid;
2789         int valid = 0;
2790         bool was_eni_copied = false;
2791
2792         for (i = 0; i < n; ++i) {
2793                 id = ids[i];
2794                 /* Check if id belongs to global statistics */
2795                 if (id < ENA_STATS_ARRAY_GLOBAL) {
2796                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
2797                         ++valid;
2798                         continue;
2799                 }
2800
2801                 /* Check if id belongs to ENI statistics */
2802                 id -= ENA_STATS_ARRAY_GLOBAL;
2803                 if (id < ENA_STATS_ARRAY_ENI) {
2804                         /* Avoid reading ENI stats multiple times in a single
2805                          * function call, as it requires communication with the
2806                          * admin queue.
2807                          */
2808                         if (!was_eni_copied) {
2809                                 was_eni_copied = true;
2810                                 ena_copy_eni_stats(adapter);
2811                         }
2812                         values[i] = *((uint64_t *)&adapter->eni_stats + id);
2813                         ++valid;
2814                         continue;
2815                 }
2816
2817                 /* Check if id belongs to rx queue statistics */
2818                 id -= ENA_STATS_ARRAY_ENI;
2819                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2820                 if (id < rx_entries) {
2821                         qid = id % dev->data->nb_rx_queues;
2822                         id /= dev->data->nb_rx_queues;
2823                         values[i] = *((uint64_t *)
2824                                 &adapter->rx_ring[qid].rx_stats + id);
2825                         ++valid;
2826                         continue;
2827                 }
2828                                 /* Check if id belongs to rx queue statistics */
2829                 id -= rx_entries;
2830                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2831                 if (id < tx_entries) {
2832                         qid = id % dev->data->nb_tx_queues;
2833                         id /= dev->data->nb_tx_queues;
2834                         values[i] = *((uint64_t *)
2835                                 &adapter->tx_ring[qid].tx_stats + id);
2836                         ++valid;
2837                         continue;
2838                 }
2839         }
2840
2841         return valid;
2842 }
2843
2844 static int ena_process_bool_devarg(const char *key,
2845                                    const char *value,
2846                                    void *opaque)
2847 {
2848         struct ena_adapter *adapter = opaque;
2849         bool bool_value;
2850
2851         /* Parse the value. */
2852         if (strcmp(value, "1") == 0) {
2853                 bool_value = true;
2854         } else if (strcmp(value, "0") == 0) {
2855                 bool_value = false;
2856         } else {
2857                 PMD_INIT_LOG(ERR,
2858                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2859                         value, key);
2860                 return -EINVAL;
2861         }
2862
2863         /* Now, assign it to the proper adapter field. */
2864         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR))
2865                 adapter->use_large_llq_hdr = bool_value;
2866
2867         return 0;
2868 }
2869
2870 static int ena_parse_devargs(struct ena_adapter *adapter,
2871                              struct rte_devargs *devargs)
2872 {
2873         static const char * const allowed_args[] = {
2874                 ENA_DEVARG_LARGE_LLQ_HDR,
2875         };
2876         struct rte_kvargs *kvlist;
2877         int rc;
2878
2879         if (devargs == NULL)
2880                 return 0;
2881
2882         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2883         if (kvlist == NULL) {
2884                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2885                         devargs->args);
2886                 return -EINVAL;
2887         }
2888
2889         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2890                 ena_process_bool_devarg, adapter);
2891
2892         rte_kvargs_free(kvlist);
2893
2894         return rc;
2895 }
2896
2897 /*********************************************************************
2898  *  PMD configuration
2899  *********************************************************************/
2900 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2901         struct rte_pci_device *pci_dev)
2902 {
2903         return rte_eth_dev_pci_generic_probe(pci_dev,
2904                 sizeof(struct ena_adapter), eth_ena_dev_init);
2905 }
2906
2907 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2908 {
2909         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2910 }
2911
2912 static struct rte_pci_driver rte_ena_pmd = {
2913         .id_table = pci_id_ena_map,
2914         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2915                      RTE_PCI_DRV_WC_ACTIVATE,
2916         .probe = eth_ena_pci_probe,
2917         .remove = eth_ena_pci_remove,
2918 };
2919
2920 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2921 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2922 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2923 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2924 RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE);
2925 RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE);
2926 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2927 RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE);
2928 #endif
2929 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2930 RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE);
2931 #endif
2932 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2933 RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE);
2934 #endif
2935 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2936 RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE);
2937 #endif
2938
2939 /******************************************************************************
2940  ******************************** AENQ Handlers *******************************
2941  *****************************************************************************/
2942 static void ena_update_on_link_change(void *adapter_data,
2943                                       struct ena_admin_aenq_entry *aenq_e)
2944 {
2945         struct rte_eth_dev *eth_dev;
2946         struct ena_adapter *adapter;
2947         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2948         uint32_t status;
2949
2950         adapter = adapter_data;
2951         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2952         eth_dev = adapter->rte_dev;
2953
2954         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2955         adapter->link_status = status;
2956
2957         ena_link_update(eth_dev, 0);
2958         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2959 }
2960
2961 static void ena_notification(void *data,
2962                              struct ena_admin_aenq_entry *aenq_e)
2963 {
2964         struct ena_adapter *adapter = data;
2965         struct ena_admin_ena_hw_hints *hints;
2966
2967         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2968                 PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2969                         aenq_e->aenq_common_desc.group,
2970                         ENA_ADMIN_NOTIFICATION);
2971
2972         switch (aenq_e->aenq_common_desc.syndrom) {
2973         case ENA_ADMIN_UPDATE_HINTS:
2974                 hints = (struct ena_admin_ena_hw_hints *)
2975                         (&aenq_e->inline_data_w4);
2976                 ena_update_hints(adapter, hints);
2977                 break;
2978         default:
2979                 PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2980                         aenq_e->aenq_common_desc.syndrom);
2981         }
2982 }
2983
2984 static void ena_keep_alive(void *adapter_data,
2985                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
2986 {
2987         struct ena_adapter *adapter = adapter_data;
2988         struct ena_admin_aenq_keep_alive_desc *desc;
2989         uint64_t rx_drops;
2990         uint64_t tx_drops;
2991
2992         adapter->timestamp_wd = rte_get_timer_cycles();
2993
2994         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2995         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2996         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
2997
2998         adapter->drv_stats->rx_drops = rx_drops;
2999         adapter->dev_stats.tx_drops = tx_drops;
3000 }
3001
3002 /**
3003  * This handler will called for unknown event group or unimplemented handlers
3004  **/
3005 static void unimplemented_aenq_handler(__rte_unused void *data,
3006                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3007 {
3008         PMD_DRV_LOG(ERR, "Unknown event was received or event with "
3009                           "unimplemented handler\n");
3010 }
3011
3012 static struct ena_aenq_handlers aenq_handlers = {
3013         .handlers = {
3014                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3015                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3016                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3017         },
3018         .unimplemented_handler = unimplemented_aenq_handler
3019 };