fe9bac88883e443f6f12063bafed6194c730ded5
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    4
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 enum ethtool_stringset {
42         ETH_SS_TEST             = 0,
43         ETH_SS_STATS,
44 };
45
46 struct ena_stats {
47         char name[ETH_GSTRING_LEN];
48         int stat_offset;
49 };
50
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52         .name = #stat, \
53         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55
56 #define ENA_STAT_RX_ENTRY(stat) \
57         ENA_STAT_ENTRY(stat, rx)
58
59 #define ENA_STAT_TX_ENTRY(stat) \
60         ENA_STAT_ENTRY(stat, tx)
61
62 #define ENA_STAT_ENI_ENTRY(stat) \
63         ENA_STAT_ENTRY(stat, eni)
64
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66         ENA_STAT_ENTRY(stat, dev)
67
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76
77 static const struct ena_stats ena_stats_global_strings[] = {
78         ENA_STAT_GLOBAL_ENTRY(wd_expired),
79         ENA_STAT_GLOBAL_ENTRY(dev_start),
80         ENA_STAT_GLOBAL_ENTRY(dev_stop),
81         ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83
84 static const struct ena_stats ena_stats_eni_strings[] = {
85         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91
92 static const struct ena_stats ena_stats_tx_strings[] = {
93         ENA_STAT_TX_ENTRY(cnt),
94         ENA_STAT_TX_ENTRY(bytes),
95         ENA_STAT_TX_ENTRY(prepare_ctx_err),
96         ENA_STAT_TX_ENTRY(linearize),
97         ENA_STAT_TX_ENTRY(linearize_failed),
98         ENA_STAT_TX_ENTRY(tx_poll),
99         ENA_STAT_TX_ENTRY(doorbells),
100         ENA_STAT_TX_ENTRY(bad_req_id),
101         ENA_STAT_TX_ENTRY(available_desc),
102 };
103
104 static const struct ena_stats ena_stats_rx_strings[] = {
105         ENA_STAT_RX_ENTRY(cnt),
106         ENA_STAT_RX_ENTRY(bytes),
107         ENA_STAT_RX_ENTRY(refill_partial),
108         ENA_STAT_RX_ENTRY(bad_csum),
109         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110         ENA_STAT_RX_ENTRY(bad_desc_num),
111         ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113
114 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
118
119 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
120                         DEV_TX_OFFLOAD_UDP_CKSUM |\
121                         DEV_TX_OFFLOAD_IPV4_CKSUM |\
122                         DEV_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
124                        PKT_TX_IP_CKSUM |\
125                        PKT_TX_TCP_SEG)
126
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF            0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
132
133 #define ENA_TX_OFFLOAD_MASK     (\
134         PKT_TX_L4_MASK |         \
135         PKT_TX_IPV6 |            \
136         PKT_TX_IPV4 |            \
137         PKT_TX_IP_CKSUM |        \
138         PKT_TX_TCP_SEG)
139
140 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
141         (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142
143 /** HW specific offloads capabilities. */
144 /* IPv4 checksum offload. */
145 #define ENA_L3_IPV4_CSUM                0x0001
146 /* TCP/UDP checksum offload for IPv4 packets. */
147 #define ENA_L4_IPV4_CSUM                0x0002
148 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
149 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
150 /* TCP/UDP checksum offload for IPv6 packets. */
151 #define ENA_L4_IPV6_CSUM                0x0008
152 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
153 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
154 /* TSO support for IPv4 packets. */
155 #define ENA_IPV4_TSO                    0x0020
156
157 /* Device supports setting RSS hash. */
158 #define ENA_RX_RSS_HASH                 0x0040
159
160 static const struct rte_pci_id pci_id_ena_map[] = {
161         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
162         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
163         { .device_id = 0 },
164 };
165
166 static struct ena_aenq_handlers aenq_handlers;
167
168 static int ena_device_init(struct ena_com_dev *ena_dev,
169                            struct rte_pci_device *pdev,
170                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
171                            bool *wd_state);
172 static int ena_dev_configure(struct rte_eth_dev *dev);
173 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
174         struct ena_tx_buffer *tx_info,
175         struct rte_mbuf *mbuf,
176         void **push_header,
177         uint16_t *header_len);
178 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
179 static void ena_tx_cleanup(struct ena_ring *tx_ring);
180 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181                                   uint16_t nb_pkts);
182 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
183                 uint16_t nb_pkts);
184 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
185                               uint16_t nb_desc, unsigned int socket_id,
186                               const struct rte_eth_txconf *tx_conf);
187 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
188                               uint16_t nb_desc, unsigned int socket_id,
189                               const struct rte_eth_rxconf *rx_conf,
190                               struct rte_mempool *mp);
191 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
192 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
193                                     struct ena_com_rx_buf_info *ena_bufs,
194                                     uint32_t descs,
195                                     uint16_t *next_to_clean,
196                                     uint8_t offset);
197 static uint16_t eth_ena_recv_pkts(void *rx_queue,
198                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
199 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
200                                   struct rte_mbuf *mbuf, uint16_t id);
201 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
202 static void ena_init_rings(struct ena_adapter *adapter,
203                            bool disable_meta_caching);
204 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
205 static int ena_start(struct rte_eth_dev *dev);
206 static int ena_stop(struct rte_eth_dev *dev);
207 static int ena_close(struct rte_eth_dev *dev);
208 static int ena_dev_reset(struct rte_eth_dev *dev);
209 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
210 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
211 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
212 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
213 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
214 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
215 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
216 static int ena_link_update(struct rte_eth_dev *dev,
217                            int wait_to_complete);
218 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
219 static void ena_queue_stop(struct ena_ring *ring);
220 static void ena_queue_stop_all(struct rte_eth_dev *dev,
221                               enum ena_ring_type ring_type);
222 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
223 static int ena_queue_start_all(struct rte_eth_dev *dev,
224                                enum ena_ring_type ring_type);
225 static void ena_stats_restart(struct rte_eth_dev *dev);
226 static int ena_infos_get(struct rte_eth_dev *dev,
227                          struct rte_eth_dev_info *dev_info);
228 static void ena_interrupt_handler_rte(void *cb_arg);
229 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
230 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
231 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
232 static int ena_xstats_get_names(struct rte_eth_dev *dev,
233                                 struct rte_eth_xstat_name *xstats_names,
234                                 unsigned int n);
235 static int ena_xstats_get(struct rte_eth_dev *dev,
236                           struct rte_eth_xstat *stats,
237                           unsigned int n);
238 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
239                                 const uint64_t *ids,
240                                 uint64_t *values,
241                                 unsigned int n);
242 static int ena_process_bool_devarg(const char *key,
243                                    const char *value,
244                                    void *opaque);
245 static int ena_parse_devargs(struct ena_adapter *adapter,
246                              struct rte_devargs *devargs);
247 static int ena_copy_eni_stats(struct ena_adapter *adapter);
248 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
249 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
250                                     uint16_t queue_id);
251 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
252                                      uint16_t queue_id);
253
254 static const struct eth_dev_ops ena_dev_ops = {
255         .dev_configure        = ena_dev_configure,
256         .dev_infos_get        = ena_infos_get,
257         .rx_queue_setup       = ena_rx_queue_setup,
258         .tx_queue_setup       = ena_tx_queue_setup,
259         .dev_start            = ena_start,
260         .dev_stop             = ena_stop,
261         .link_update          = ena_link_update,
262         .stats_get            = ena_stats_get,
263         .xstats_get_names     = ena_xstats_get_names,
264         .xstats_get           = ena_xstats_get,
265         .xstats_get_by_id     = ena_xstats_get_by_id,
266         .mtu_set              = ena_mtu_set,
267         .rx_queue_release     = ena_rx_queue_release,
268         .tx_queue_release     = ena_tx_queue_release,
269         .dev_close            = ena_close,
270         .dev_reset            = ena_dev_reset,
271         .reta_update          = ena_rss_reta_update,
272         .reta_query           = ena_rss_reta_query,
273         .rx_queue_intr_enable = ena_rx_queue_intr_enable,
274         .rx_queue_intr_disable = ena_rx_queue_intr_disable,
275         .rss_hash_update      = ena_rss_hash_update,
276         .rss_hash_conf_get    = ena_rss_hash_conf_get,
277 };
278
279 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
280                                        struct ena_com_rx_ctx *ena_rx_ctx,
281                                        bool fill_hash)
282 {
283         uint64_t ol_flags = 0;
284         uint32_t packet_type = 0;
285
286         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
287                 packet_type |= RTE_PTYPE_L4_TCP;
288         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
289                 packet_type |= RTE_PTYPE_L4_UDP;
290
291         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
292                 packet_type |= RTE_PTYPE_L3_IPV4;
293                 if (unlikely(ena_rx_ctx->l3_csum_err))
294                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
295                 else
296                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
297         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
298                 packet_type |= RTE_PTYPE_L3_IPV6;
299         }
300
301         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
302                 ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
303         else
304                 if (unlikely(ena_rx_ctx->l4_csum_err))
305                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
306                 else
307                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
308
309         if (fill_hash &&
310             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
311                 ol_flags |= PKT_RX_RSS_HASH;
312                 mbuf->hash.rss = ena_rx_ctx->hash;
313         }
314
315         mbuf->ol_flags = ol_flags;
316         mbuf->packet_type = packet_type;
317 }
318
319 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
320                                        struct ena_com_tx_ctx *ena_tx_ctx,
321                                        uint64_t queue_offloads,
322                                        bool disable_meta_caching)
323 {
324         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
325
326         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
327             (queue_offloads & QUEUE_OFFLOADS)) {
328                 /* check if TSO is required */
329                 if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
330                     (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
331                         ena_tx_ctx->tso_enable = true;
332
333                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
334                 }
335
336                 /* check if L3 checksum is needed */
337                 if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
338                     (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
339                         ena_tx_ctx->l3_csum_enable = true;
340
341                 if (mbuf->ol_flags & PKT_TX_IPV6) {
342                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
343                 } else {
344                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
345
346                         /* set don't fragment (DF) flag */
347                         if (mbuf->packet_type &
348                                 (RTE_PTYPE_L4_NONFRAG
349                                  | RTE_PTYPE_INNER_L4_NONFRAG))
350                                 ena_tx_ctx->df = true;
351                 }
352
353                 /* check if L4 checksum is needed */
354                 if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
355                     (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
356                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
357                         ena_tx_ctx->l4_csum_enable = true;
358                 } else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
359                                 PKT_TX_UDP_CKSUM) &&
360                                 (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
361                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
362                         ena_tx_ctx->l4_csum_enable = true;
363                 } else {
364                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
365                         ena_tx_ctx->l4_csum_enable = false;
366                 }
367
368                 ena_meta->mss = mbuf->tso_segsz;
369                 ena_meta->l3_hdr_len = mbuf->l3_len;
370                 ena_meta->l3_hdr_offset = mbuf->l2_len;
371
372                 ena_tx_ctx->meta_valid = true;
373         } else if (disable_meta_caching) {
374                 memset(ena_meta, 0, sizeof(*ena_meta));
375                 ena_tx_ctx->meta_valid = true;
376         } else {
377                 ena_tx_ctx->meta_valid = false;
378         }
379 }
380
381 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
382 {
383         struct ena_tx_buffer *tx_info = NULL;
384
385         if (likely(req_id < tx_ring->ring_size)) {
386                 tx_info = &tx_ring->tx_buffer_info[req_id];
387                 if (likely(tx_info->mbuf))
388                         return 0;
389         }
390
391         if (tx_info)
392                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
393         else
394                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
395
396         /* Trigger device reset */
397         ++tx_ring->tx_stats.bad_req_id;
398         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
399         tx_ring->adapter->trigger_reset = true;
400         return -EFAULT;
401 }
402
403 static void ena_config_host_info(struct ena_com_dev *ena_dev)
404 {
405         struct ena_admin_host_info *host_info;
406         int rc;
407
408         /* Allocate only the host info */
409         rc = ena_com_allocate_host_info(ena_dev);
410         if (rc) {
411                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
412                 return;
413         }
414
415         host_info = ena_dev->host_attr.host_info;
416
417         host_info->os_type = ENA_ADMIN_OS_DPDK;
418         host_info->kernel_ver = RTE_VERSION;
419         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
420                 sizeof(host_info->kernel_ver_str));
421         host_info->os_dist = RTE_VERSION;
422         strlcpy((char *)host_info->os_dist_str, rte_version(),
423                 sizeof(host_info->os_dist_str));
424         host_info->driver_version =
425                 (DRV_MODULE_VER_MAJOR) |
426                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
427                 (DRV_MODULE_VER_SUBMINOR <<
428                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
429         host_info->num_cpus = rte_lcore_count();
430
431         host_info->driver_supported_features =
432                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
433                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
434
435         rc = ena_com_set_host_attributes(ena_dev);
436         if (rc) {
437                 if (rc == -ENA_COM_UNSUPPORTED)
438                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
439                 else
440                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
441
442                 goto err;
443         }
444
445         return;
446
447 err:
448         ena_com_delete_host_info(ena_dev);
449 }
450
451 /* This function calculates the number of xstats based on the current config */
452 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
453 {
454         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
455                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
456                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
457 }
458
459 static void ena_config_debug_area(struct ena_adapter *adapter)
460 {
461         u32 debug_area_size;
462         int rc, ss_count;
463
464         ss_count = ena_xstats_calc_num(adapter->edev_data);
465
466         /* allocate 32 bytes for each string and 64bit for the value */
467         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
468
469         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
470         if (rc) {
471                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
472                 return;
473         }
474
475         rc = ena_com_set_host_attributes(&adapter->ena_dev);
476         if (rc) {
477                 if (rc == -ENA_COM_UNSUPPORTED)
478                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
479                 else
480                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
481
482                 goto err;
483         }
484
485         return;
486 err:
487         ena_com_delete_debug_area(&adapter->ena_dev);
488 }
489
490 static int ena_close(struct rte_eth_dev *dev)
491 {
492         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
493         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
494         struct ena_adapter *adapter = dev->data->dev_private;
495         int ret = 0;
496
497         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
498                 return 0;
499
500         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
501                 ret = ena_stop(dev);
502         adapter->state = ENA_ADAPTER_STATE_CLOSED;
503
504         ena_rx_queue_release_all(dev);
505         ena_tx_queue_release_all(dev);
506
507         rte_free(adapter->drv_stats);
508         adapter->drv_stats = NULL;
509
510         rte_intr_disable(intr_handle);
511         rte_intr_callback_unregister(intr_handle,
512                                      ena_interrupt_handler_rte,
513                                      dev);
514
515         /*
516          * MAC is not allocated dynamically. Setting NULL should prevent from
517          * release of the resource in the rte_eth_dev_release_port().
518          */
519         dev->data->mac_addrs = NULL;
520
521         return ret;
522 }
523
524 static int
525 ena_dev_reset(struct rte_eth_dev *dev)
526 {
527         int rc = 0;
528
529         /* Cannot release memory in secondary process */
530         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
531                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
532                 return -EPERM;
533         }
534
535         ena_destroy_device(dev);
536         rc = eth_ena_dev_init(dev);
537         if (rc)
538                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
539
540         return rc;
541 }
542
543 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
544 {
545         int nb_queues = dev->data->nb_rx_queues;
546         int i;
547
548         for (i = 0; i < nb_queues; i++)
549                 ena_rx_queue_release(dev, i);
550 }
551
552 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
553 {
554         int nb_queues = dev->data->nb_tx_queues;
555         int i;
556
557         for (i = 0; i < nb_queues; i++)
558                 ena_tx_queue_release(dev, i);
559 }
560
561 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
562 {
563         struct ena_ring *ring = dev->data->rx_queues[qid];
564
565         /* Free ring resources */
566         if (ring->rx_buffer_info)
567                 rte_free(ring->rx_buffer_info);
568         ring->rx_buffer_info = NULL;
569
570         if (ring->rx_refill_buffer)
571                 rte_free(ring->rx_refill_buffer);
572         ring->rx_refill_buffer = NULL;
573
574         if (ring->empty_rx_reqs)
575                 rte_free(ring->empty_rx_reqs);
576         ring->empty_rx_reqs = NULL;
577
578         ring->configured = 0;
579
580         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
581                 ring->port_id, ring->id);
582 }
583
584 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
585 {
586         struct ena_ring *ring = dev->data->tx_queues[qid];
587
588         /* Free ring resources */
589         if (ring->push_buf_intermediate_buf)
590                 rte_free(ring->push_buf_intermediate_buf);
591
592         if (ring->tx_buffer_info)
593                 rte_free(ring->tx_buffer_info);
594
595         if (ring->empty_tx_reqs)
596                 rte_free(ring->empty_tx_reqs);
597
598         ring->empty_tx_reqs = NULL;
599         ring->tx_buffer_info = NULL;
600         ring->push_buf_intermediate_buf = NULL;
601
602         ring->configured = 0;
603
604         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
605                 ring->port_id, ring->id);
606 }
607
608 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
609 {
610         unsigned int i;
611
612         for (i = 0; i < ring->ring_size; ++i) {
613                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
614                 if (rx_info->mbuf) {
615                         rte_mbuf_raw_free(rx_info->mbuf);
616                         rx_info->mbuf = NULL;
617                 }
618         }
619 }
620
621 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
622 {
623         unsigned int i;
624
625         for (i = 0; i < ring->ring_size; ++i) {
626                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
627
628                 if (tx_buf->mbuf) {
629                         rte_pktmbuf_free(tx_buf->mbuf);
630                         tx_buf->mbuf = NULL;
631                 }
632         }
633 }
634
635 static int ena_link_update(struct rte_eth_dev *dev,
636                            __rte_unused int wait_to_complete)
637 {
638         struct rte_eth_link *link = &dev->data->dev_link;
639         struct ena_adapter *adapter = dev->data->dev_private;
640
641         link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
642         link->link_speed = ETH_SPEED_NUM_NONE;
643         link->link_duplex = ETH_LINK_FULL_DUPLEX;
644
645         return 0;
646 }
647
648 static int ena_queue_start_all(struct rte_eth_dev *dev,
649                                enum ena_ring_type ring_type)
650 {
651         struct ena_adapter *adapter = dev->data->dev_private;
652         struct ena_ring *queues = NULL;
653         int nb_queues;
654         int i = 0;
655         int rc = 0;
656
657         if (ring_type == ENA_RING_TYPE_RX) {
658                 queues = adapter->rx_ring;
659                 nb_queues = dev->data->nb_rx_queues;
660         } else {
661                 queues = adapter->tx_ring;
662                 nb_queues = dev->data->nb_tx_queues;
663         }
664         for (i = 0; i < nb_queues; i++) {
665                 if (queues[i].configured) {
666                         if (ring_type == ENA_RING_TYPE_RX) {
667                                 ena_assert_msg(
668                                         dev->data->rx_queues[i] == &queues[i],
669                                         "Inconsistent state of Rx queues\n");
670                         } else {
671                                 ena_assert_msg(
672                                         dev->data->tx_queues[i] == &queues[i],
673                                         "Inconsistent state of Tx queues\n");
674                         }
675
676                         rc = ena_queue_start(dev, &queues[i]);
677
678                         if (rc) {
679                                 PMD_INIT_LOG(ERR,
680                                         "Failed to start queue[%d] of type(%d)\n",
681                                         i, ring_type);
682                                 goto err;
683                         }
684                 }
685         }
686
687         return 0;
688
689 err:
690         while (i--)
691                 if (queues[i].configured)
692                         ena_queue_stop(&queues[i]);
693
694         return rc;
695 }
696
697 static int ena_check_valid_conf(struct ena_adapter *adapter)
698 {
699         uint32_t mtu = adapter->edev_data->mtu;
700
701         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
702                 PMD_INIT_LOG(ERR,
703                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
704                         mtu, adapter->max_mtu, ENA_MIN_MTU);
705                 return ENA_COM_UNSUPPORTED;
706         }
707
708         return 0;
709 }
710
711 static int
712 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
713                        bool use_large_llq_hdr)
714 {
715         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
716         struct ena_com_dev *ena_dev = ctx->ena_dev;
717         uint32_t max_tx_queue_size;
718         uint32_t max_rx_queue_size;
719
720         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
721                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
722                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
723                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
724                         max_queue_ext->max_rx_sq_depth);
725                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
726
727                 if (ena_dev->tx_mem_queue_type ==
728                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
729                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
730                                 llq->max_llq_depth);
731                 } else {
732                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
733                                 max_queue_ext->max_tx_sq_depth);
734                 }
735
736                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
737                         max_queue_ext->max_per_packet_rx_descs);
738                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
739                         max_queue_ext->max_per_packet_tx_descs);
740         } else {
741                 struct ena_admin_queue_feature_desc *max_queues =
742                         &ctx->get_feat_ctx->max_queues;
743                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
744                         max_queues->max_sq_depth);
745                 max_tx_queue_size = max_queues->max_cq_depth;
746
747                 if (ena_dev->tx_mem_queue_type ==
748                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
749                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
750                                 llq->max_llq_depth);
751                 } else {
752                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
753                                 max_queues->max_sq_depth);
754                 }
755
756                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
757                         max_queues->max_packet_rx_descs);
758                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
759                         max_queues->max_packet_tx_descs);
760         }
761
762         /* Round down to the nearest power of 2 */
763         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
764         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
765
766         if (use_large_llq_hdr) {
767                 if ((llq->entry_size_ctrl_supported &
768                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
769                     (ena_dev->tx_mem_queue_type ==
770                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
771                         max_tx_queue_size /= 2;
772                         PMD_INIT_LOG(INFO,
773                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
774                                 max_tx_queue_size);
775                 } else {
776                         PMD_INIT_LOG(ERR,
777                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
778                 }
779         }
780
781         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
782                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
783                 return -EFAULT;
784         }
785
786         ctx->max_tx_queue_size = max_tx_queue_size;
787         ctx->max_rx_queue_size = max_rx_queue_size;
788
789         return 0;
790 }
791
792 static void ena_stats_restart(struct rte_eth_dev *dev)
793 {
794         struct ena_adapter *adapter = dev->data->dev_private;
795
796         rte_atomic64_init(&adapter->drv_stats->ierrors);
797         rte_atomic64_init(&adapter->drv_stats->oerrors);
798         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
799         adapter->drv_stats->rx_drops = 0;
800 }
801
802 static int ena_stats_get(struct rte_eth_dev *dev,
803                           struct rte_eth_stats *stats)
804 {
805         struct ena_admin_basic_stats ena_stats;
806         struct ena_adapter *adapter = dev->data->dev_private;
807         struct ena_com_dev *ena_dev = &adapter->ena_dev;
808         int rc;
809         int i;
810         int max_rings_stats;
811
812         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
813                 return -ENOTSUP;
814
815         memset(&ena_stats, 0, sizeof(ena_stats));
816
817         rte_spinlock_lock(&adapter->admin_lock);
818         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
819         rte_spinlock_unlock(&adapter->admin_lock);
820         if (unlikely(rc)) {
821                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
822                 return rc;
823         }
824
825         /* Set of basic statistics from ENA */
826         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
827                                           ena_stats.rx_pkts_low);
828         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
829                                           ena_stats.tx_pkts_low);
830         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
831                                         ena_stats.rx_bytes_low);
832         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
833                                         ena_stats.tx_bytes_low);
834
835         /* Driver related stats */
836         stats->imissed = adapter->drv_stats->rx_drops;
837         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
838         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
839         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
840
841         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
842                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
843         for (i = 0; i < max_rings_stats; ++i) {
844                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
845
846                 stats->q_ibytes[i] = rx_stats->bytes;
847                 stats->q_ipackets[i] = rx_stats->cnt;
848                 stats->q_errors[i] = rx_stats->bad_desc_num +
849                         rx_stats->bad_req_id;
850         }
851
852         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
853                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
854         for (i = 0; i < max_rings_stats; ++i) {
855                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
856
857                 stats->q_obytes[i] = tx_stats->bytes;
858                 stats->q_opackets[i] = tx_stats->cnt;
859         }
860
861         return 0;
862 }
863
864 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
865 {
866         struct ena_adapter *adapter;
867         struct ena_com_dev *ena_dev;
868         int rc = 0;
869
870         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
871         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
872         adapter = dev->data->dev_private;
873
874         ena_dev = &adapter->ena_dev;
875         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
876
877         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
878                 PMD_DRV_LOG(ERR,
879                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
880                         mtu, adapter->max_mtu, ENA_MIN_MTU);
881                 return -EINVAL;
882         }
883
884         rc = ena_com_set_dev_mtu(ena_dev, mtu);
885         if (rc)
886                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
887         else
888                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
889
890         return rc;
891 }
892
893 static int ena_start(struct rte_eth_dev *dev)
894 {
895         struct ena_adapter *adapter = dev->data->dev_private;
896         uint64_t ticks;
897         int rc = 0;
898
899         /* Cannot allocate memory in secondary process */
900         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
901                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
902                 return -EPERM;
903         }
904
905         rc = ena_check_valid_conf(adapter);
906         if (rc)
907                 return rc;
908
909         rc = ena_setup_rx_intr(dev);
910         if (rc)
911                 return rc;
912
913         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
914         if (rc)
915                 return rc;
916
917         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
918         if (rc)
919                 goto err_start_tx;
920
921         if (adapter->edev_data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
922                 rc = ena_rss_configure(adapter);
923                 if (rc)
924                         goto err_rss_init;
925         }
926
927         ena_stats_restart(dev);
928
929         adapter->timestamp_wd = rte_get_timer_cycles();
930         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
931
932         ticks = rte_get_timer_hz();
933         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
934                         ena_timer_wd_callback, dev);
935
936         ++adapter->dev_stats.dev_start;
937         adapter->state = ENA_ADAPTER_STATE_RUNNING;
938
939         return 0;
940
941 err_rss_init:
942         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
943 err_start_tx:
944         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
945         return rc;
946 }
947
948 static int ena_stop(struct rte_eth_dev *dev)
949 {
950         struct ena_adapter *adapter = dev->data->dev_private;
951         struct ena_com_dev *ena_dev = &adapter->ena_dev;
952         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
953         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
954         int rc;
955
956         /* Cannot free memory in secondary process */
957         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
958                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
959                 return -EPERM;
960         }
961
962         rte_timer_stop_sync(&adapter->timer_wd);
963         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
964         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
965
966         if (adapter->trigger_reset) {
967                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
968                 if (rc)
969                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
970         }
971
972         rte_intr_disable(intr_handle);
973
974         rte_intr_efd_disable(intr_handle);
975         if (intr_handle->intr_vec != NULL) {
976                 rte_free(intr_handle->intr_vec);
977                 intr_handle->intr_vec = NULL;
978         }
979
980         rte_intr_enable(intr_handle);
981
982         ++adapter->dev_stats.dev_stop;
983         adapter->state = ENA_ADAPTER_STATE_STOPPED;
984         dev->data->dev_started = 0;
985
986         return 0;
987 }
988
989 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
990 {
991         struct ena_adapter *adapter = ring->adapter;
992         struct ena_com_dev *ena_dev = &adapter->ena_dev;
993         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
994         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
995         struct ena_com_create_io_ctx ctx =
996                 /* policy set to _HOST just to satisfy icc compiler */
997                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
998                   0, 0, 0, 0, 0 };
999         uint16_t ena_qid;
1000         unsigned int i;
1001         int rc;
1002
1003         ctx.msix_vector = -1;
1004         if (ring->type == ENA_RING_TYPE_TX) {
1005                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1006                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1007                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1008                 for (i = 0; i < ring->ring_size; i++)
1009                         ring->empty_tx_reqs[i] = i;
1010         } else {
1011                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1012                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1013                 if (rte_intr_dp_is_en(intr_handle))
1014                         ctx.msix_vector = intr_handle->intr_vec[ring->id];
1015                 for (i = 0; i < ring->ring_size; i++)
1016                         ring->empty_rx_reqs[i] = i;
1017         }
1018         ctx.queue_size = ring->ring_size;
1019         ctx.qid = ena_qid;
1020         ctx.numa_node = ring->numa_socket_id;
1021
1022         rc = ena_com_create_io_queue(ena_dev, &ctx);
1023         if (rc) {
1024                 PMD_DRV_LOG(ERR,
1025                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1026                         ring->id, ena_qid, rc);
1027                 return rc;
1028         }
1029
1030         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1031                                      &ring->ena_com_io_sq,
1032                                      &ring->ena_com_io_cq);
1033         if (rc) {
1034                 PMD_DRV_LOG(ERR,
1035                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1036                         ring->id, rc);
1037                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1038                 return rc;
1039         }
1040
1041         if (ring->type == ENA_RING_TYPE_TX)
1042                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1043
1044         /* Start with Rx interrupts being masked. */
1045         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1046                 ena_rx_queue_intr_disable(dev, ring->id);
1047
1048         return 0;
1049 }
1050
1051 static void ena_queue_stop(struct ena_ring *ring)
1052 {
1053         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1054
1055         if (ring->type == ENA_RING_TYPE_RX) {
1056                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1057                 ena_rx_queue_release_bufs(ring);
1058         } else {
1059                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1060                 ena_tx_queue_release_bufs(ring);
1061         }
1062 }
1063
1064 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1065                               enum ena_ring_type ring_type)
1066 {
1067         struct ena_adapter *adapter = dev->data->dev_private;
1068         struct ena_ring *queues = NULL;
1069         uint16_t nb_queues, i;
1070
1071         if (ring_type == ENA_RING_TYPE_RX) {
1072                 queues = adapter->rx_ring;
1073                 nb_queues = dev->data->nb_rx_queues;
1074         } else {
1075                 queues = adapter->tx_ring;
1076                 nb_queues = dev->data->nb_tx_queues;
1077         }
1078
1079         for (i = 0; i < nb_queues; ++i)
1080                 if (queues[i].configured)
1081                         ena_queue_stop(&queues[i]);
1082 }
1083
1084 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1085 {
1086         int rc, bufs_num;
1087
1088         ena_assert_msg(ring->configured == 1,
1089                        "Trying to start unconfigured queue\n");
1090
1091         rc = ena_create_io_queue(dev, ring);
1092         if (rc) {
1093                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1094                 return rc;
1095         }
1096
1097         ring->next_to_clean = 0;
1098         ring->next_to_use = 0;
1099
1100         if (ring->type == ENA_RING_TYPE_TX) {
1101                 ring->tx_stats.available_desc =
1102                         ena_com_free_q_entries(ring->ena_com_io_sq);
1103                 return 0;
1104         }
1105
1106         bufs_num = ring->ring_size - 1;
1107         rc = ena_populate_rx_queue(ring, bufs_num);
1108         if (rc != bufs_num) {
1109                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1110                                          ENA_IO_RXQ_IDX(ring->id));
1111                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1112                 return ENA_COM_FAULT;
1113         }
1114         /* Flush per-core RX buffers pools cache as they can be used on other
1115          * cores as well.
1116          */
1117         rte_mempool_cache_flush(NULL, ring->mb_pool);
1118
1119         return 0;
1120 }
1121
1122 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1123                               uint16_t queue_idx,
1124                               uint16_t nb_desc,
1125                               unsigned int socket_id,
1126                               const struct rte_eth_txconf *tx_conf)
1127 {
1128         struct ena_ring *txq = NULL;
1129         struct ena_adapter *adapter = dev->data->dev_private;
1130         unsigned int i;
1131         uint16_t dyn_thresh;
1132
1133         txq = &adapter->tx_ring[queue_idx];
1134
1135         if (txq->configured) {
1136                 PMD_DRV_LOG(CRIT,
1137                         "API violation. Queue[%d] is already configured\n",
1138                         queue_idx);
1139                 return ENA_COM_FAULT;
1140         }
1141
1142         if (!rte_is_power_of_2(nb_desc)) {
1143                 PMD_DRV_LOG(ERR,
1144                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1145                         nb_desc);
1146                 return -EINVAL;
1147         }
1148
1149         if (nb_desc > adapter->max_tx_ring_size) {
1150                 PMD_DRV_LOG(ERR,
1151                         "Unsupported size of Tx queue (max size: %d)\n",
1152                         adapter->max_tx_ring_size);
1153                 return -EINVAL;
1154         }
1155
1156         txq->port_id = dev->data->port_id;
1157         txq->next_to_clean = 0;
1158         txq->next_to_use = 0;
1159         txq->ring_size = nb_desc;
1160         txq->size_mask = nb_desc - 1;
1161         txq->numa_socket_id = socket_id;
1162         txq->pkts_without_db = false;
1163
1164         txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1165                                           sizeof(struct ena_tx_buffer) *
1166                                           txq->ring_size,
1167                                           RTE_CACHE_LINE_SIZE);
1168         if (!txq->tx_buffer_info) {
1169                 PMD_DRV_LOG(ERR,
1170                         "Failed to allocate memory for Tx buffer info\n");
1171                 return -ENOMEM;
1172         }
1173
1174         txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1175                                          sizeof(u16) * txq->ring_size,
1176                                          RTE_CACHE_LINE_SIZE);
1177         if (!txq->empty_tx_reqs) {
1178                 PMD_DRV_LOG(ERR,
1179                         "Failed to allocate memory for empty Tx requests\n");
1180                 rte_free(txq->tx_buffer_info);
1181                 return -ENOMEM;
1182         }
1183
1184         txq->push_buf_intermediate_buf =
1185                 rte_zmalloc("txq->push_buf_intermediate_buf",
1186                             txq->tx_max_header_size,
1187                             RTE_CACHE_LINE_SIZE);
1188         if (!txq->push_buf_intermediate_buf) {
1189                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1190                 rte_free(txq->tx_buffer_info);
1191                 rte_free(txq->empty_tx_reqs);
1192                 return -ENOMEM;
1193         }
1194
1195         for (i = 0; i < txq->ring_size; i++)
1196                 txq->empty_tx_reqs[i] = i;
1197
1198         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1199
1200         /* Check if caller provided the Tx cleanup threshold value. */
1201         if (tx_conf->tx_free_thresh != 0) {
1202                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1203         } else {
1204                 dyn_thresh = txq->ring_size -
1205                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1206                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1207                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1208         }
1209
1210         /* Store pointer to this queue in upper layer */
1211         txq->configured = 1;
1212         dev->data->tx_queues[queue_idx] = txq;
1213
1214         return 0;
1215 }
1216
1217 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1218                               uint16_t queue_idx,
1219                               uint16_t nb_desc,
1220                               unsigned int socket_id,
1221                               const struct rte_eth_rxconf *rx_conf,
1222                               struct rte_mempool *mp)
1223 {
1224         struct ena_adapter *adapter = dev->data->dev_private;
1225         struct ena_ring *rxq = NULL;
1226         size_t buffer_size;
1227         int i;
1228         uint16_t dyn_thresh;
1229
1230         rxq = &adapter->rx_ring[queue_idx];
1231         if (rxq->configured) {
1232                 PMD_DRV_LOG(CRIT,
1233                         "API violation. Queue[%d] is already configured\n",
1234                         queue_idx);
1235                 return ENA_COM_FAULT;
1236         }
1237
1238         if (!rte_is_power_of_2(nb_desc)) {
1239                 PMD_DRV_LOG(ERR,
1240                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1241                         nb_desc);
1242                 return -EINVAL;
1243         }
1244
1245         if (nb_desc > adapter->max_rx_ring_size) {
1246                 PMD_DRV_LOG(ERR,
1247                         "Unsupported size of Rx queue (max size: %d)\n",
1248                         adapter->max_rx_ring_size);
1249                 return -EINVAL;
1250         }
1251
1252         /* ENA isn't supporting buffers smaller than 1400 bytes */
1253         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1254         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1255                 PMD_DRV_LOG(ERR,
1256                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1257                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1258                 return -EINVAL;
1259         }
1260
1261         rxq->port_id = dev->data->port_id;
1262         rxq->next_to_clean = 0;
1263         rxq->next_to_use = 0;
1264         rxq->ring_size = nb_desc;
1265         rxq->size_mask = nb_desc - 1;
1266         rxq->numa_socket_id = socket_id;
1267         rxq->mb_pool = mp;
1268
1269         rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1270                 sizeof(struct ena_rx_buffer) * nb_desc,
1271                 RTE_CACHE_LINE_SIZE);
1272         if (!rxq->rx_buffer_info) {
1273                 PMD_DRV_LOG(ERR,
1274                         "Failed to allocate memory for Rx buffer info\n");
1275                 return -ENOMEM;
1276         }
1277
1278         rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1279                                             sizeof(struct rte_mbuf *) * nb_desc,
1280                                             RTE_CACHE_LINE_SIZE);
1281
1282         if (!rxq->rx_refill_buffer) {
1283                 PMD_DRV_LOG(ERR,
1284                         "Failed to allocate memory for Rx refill buffer\n");
1285                 rte_free(rxq->rx_buffer_info);
1286                 rxq->rx_buffer_info = NULL;
1287                 return -ENOMEM;
1288         }
1289
1290         rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1291                                          sizeof(uint16_t) * nb_desc,
1292                                          RTE_CACHE_LINE_SIZE);
1293         if (!rxq->empty_rx_reqs) {
1294                 PMD_DRV_LOG(ERR,
1295                         "Failed to allocate memory for empty Rx requests\n");
1296                 rte_free(rxq->rx_buffer_info);
1297                 rxq->rx_buffer_info = NULL;
1298                 rte_free(rxq->rx_refill_buffer);
1299                 rxq->rx_refill_buffer = NULL;
1300                 return -ENOMEM;
1301         }
1302
1303         for (i = 0; i < nb_desc; i++)
1304                 rxq->empty_rx_reqs[i] = i;
1305
1306         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1307
1308         if (rx_conf->rx_free_thresh != 0) {
1309                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1310         } else {
1311                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1312                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1313                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1314         }
1315
1316         /* Store pointer to this queue in upper layer */
1317         rxq->configured = 1;
1318         dev->data->rx_queues[queue_idx] = rxq;
1319
1320         return 0;
1321 }
1322
1323 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1324                                   struct rte_mbuf *mbuf, uint16_t id)
1325 {
1326         struct ena_com_buf ebuf;
1327         int rc;
1328
1329         /* prepare physical address for DMA transaction */
1330         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1331         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1332
1333         /* pass resource to device */
1334         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1335         if (unlikely(rc != 0))
1336                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1337
1338         return rc;
1339 }
1340
1341 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1342 {
1343         unsigned int i;
1344         int rc;
1345         uint16_t next_to_use = rxq->next_to_use;
1346         uint16_t req_id;
1347 #ifdef RTE_ETHDEV_DEBUG_RX
1348         uint16_t in_use;
1349 #endif
1350         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1351
1352         if (unlikely(!count))
1353                 return 0;
1354
1355 #ifdef RTE_ETHDEV_DEBUG_RX
1356         in_use = rxq->ring_size - 1 -
1357                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1358         if (unlikely((in_use + count) >= rxq->ring_size))
1359                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1360 #endif
1361
1362         /* get resources for incoming packets */
1363         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1364         if (unlikely(rc < 0)) {
1365                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1366                 ++rxq->rx_stats.mbuf_alloc_fail;
1367                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1368                 return 0;
1369         }
1370
1371         for (i = 0; i < count; i++) {
1372                 struct rte_mbuf *mbuf = mbufs[i];
1373                 struct ena_rx_buffer *rx_info;
1374
1375                 if (likely((i + 4) < count))
1376                         rte_prefetch0(mbufs[i + 4]);
1377
1378                 req_id = rxq->empty_rx_reqs[next_to_use];
1379                 rx_info = &rxq->rx_buffer_info[req_id];
1380
1381                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1382                 if (unlikely(rc != 0))
1383                         break;
1384
1385                 rx_info->mbuf = mbuf;
1386                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1387         }
1388
1389         if (unlikely(i < count)) {
1390                 PMD_RX_LOG(WARNING,
1391                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1392                         rxq->id, i, count);
1393                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1394                 ++rxq->rx_stats.refill_partial;
1395         }
1396
1397         /* When we submitted free recources to device... */
1398         if (likely(i > 0)) {
1399                 /* ...let HW know that it can fill buffers with data. */
1400                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1401
1402                 rxq->next_to_use = next_to_use;
1403         }
1404
1405         return i;
1406 }
1407
1408 static int ena_device_init(struct ena_com_dev *ena_dev,
1409                            struct rte_pci_device *pdev,
1410                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1411                            bool *wd_state)
1412 {
1413         uint32_t aenq_groups;
1414         int rc;
1415         bool readless_supported;
1416
1417         /* Initialize mmio registers */
1418         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1419         if (rc) {
1420                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1421                 return rc;
1422         }
1423
1424         /* The PCIe configuration space revision id indicate if mmio reg
1425          * read is disabled.
1426          */
1427         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1428         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1429
1430         /* reset device */
1431         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1432         if (rc) {
1433                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1434                 goto err_mmio_read_less;
1435         }
1436
1437         /* check FW version */
1438         rc = ena_com_validate_version(ena_dev);
1439         if (rc) {
1440                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1441                 goto err_mmio_read_less;
1442         }
1443
1444         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1445
1446         /* ENA device administration layer init */
1447         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1448         if (rc) {
1449                 PMD_DRV_LOG(ERR,
1450                         "Cannot initialize ENA admin queue\n");
1451                 goto err_mmio_read_less;
1452         }
1453
1454         /* To enable the msix interrupts the driver needs to know the number
1455          * of queues. So the driver uses polling mode to retrieve this
1456          * information.
1457          */
1458         ena_com_set_admin_polling_mode(ena_dev, true);
1459
1460         ena_config_host_info(ena_dev);
1461
1462         /* Get Device Attributes and features */
1463         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1464         if (rc) {
1465                 PMD_DRV_LOG(ERR,
1466                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1467                 goto err_admin_init;
1468         }
1469
1470         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1471                       BIT(ENA_ADMIN_NOTIFICATION) |
1472                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1473                       BIT(ENA_ADMIN_FATAL_ERROR) |
1474                       BIT(ENA_ADMIN_WARNING);
1475
1476         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1477         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1478         if (rc) {
1479                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1480                 goto err_admin_init;
1481         }
1482
1483         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1484
1485         return 0;
1486
1487 err_admin_init:
1488         ena_com_admin_destroy(ena_dev);
1489
1490 err_mmio_read_less:
1491         ena_com_mmio_reg_read_request_destroy(ena_dev);
1492
1493         return rc;
1494 }
1495
1496 static void ena_interrupt_handler_rte(void *cb_arg)
1497 {
1498         struct rte_eth_dev *dev = cb_arg;
1499         struct ena_adapter *adapter = dev->data->dev_private;
1500         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1501
1502         ena_com_admin_q_comp_intr_handler(ena_dev);
1503         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1504                 ena_com_aenq_intr_handler(ena_dev, dev);
1505 }
1506
1507 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1508 {
1509         if (!adapter->wd_state)
1510                 return;
1511
1512         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1513                 return;
1514
1515         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1516             adapter->keep_alive_timeout)) {
1517                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1518                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1519                 adapter->trigger_reset = true;
1520                 ++adapter->dev_stats.wd_expired;
1521         }
1522 }
1523
1524 /* Check if admin queue is enabled */
1525 static void check_for_admin_com_state(struct ena_adapter *adapter)
1526 {
1527         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1528                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1529                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1530                 adapter->trigger_reset = true;
1531         }
1532 }
1533
1534 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1535                                   void *arg)
1536 {
1537         struct rte_eth_dev *dev = arg;
1538         struct ena_adapter *adapter = dev->data->dev_private;
1539
1540         check_for_missing_keep_alive(adapter);
1541         check_for_admin_com_state(adapter);
1542
1543         if (unlikely(adapter->trigger_reset)) {
1544                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1545                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1546                         NULL);
1547         }
1548 }
1549
1550 static inline void
1551 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1552                                struct ena_admin_feature_llq_desc *llq,
1553                                bool use_large_llq_hdr)
1554 {
1555         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1556         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1557         llq_config->llq_num_decs_before_header =
1558                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1559
1560         if (use_large_llq_hdr &&
1561             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1562                 llq_config->llq_ring_entry_size =
1563                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1564                 llq_config->llq_ring_entry_size_value = 256;
1565         } else {
1566                 llq_config->llq_ring_entry_size =
1567                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1568                 llq_config->llq_ring_entry_size_value = 128;
1569         }
1570 }
1571
1572 static int
1573 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1574                                 struct ena_com_dev *ena_dev,
1575                                 struct ena_admin_feature_llq_desc *llq,
1576                                 struct ena_llq_configurations *llq_default_configurations)
1577 {
1578         int rc;
1579         u32 llq_feature_mask;
1580
1581         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1582         if (!(ena_dev->supported_features & llq_feature_mask)) {
1583                 PMD_DRV_LOG(INFO,
1584                         "LLQ is not supported. Fallback to host mode policy.\n");
1585                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1586                 return 0;
1587         }
1588
1589         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1590         if (unlikely(rc)) {
1591                 PMD_INIT_LOG(WARNING,
1592                         "Failed to config dev mode. Fallback to host mode policy.\n");
1593                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1594                 return 0;
1595         }
1596
1597         /* Nothing to config, exit */
1598         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1599                 return 0;
1600
1601         if (!adapter->dev_mem_base) {
1602                 PMD_DRV_LOG(ERR,
1603                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1604                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1605                 return 0;
1606         }
1607
1608         ena_dev->mem_bar = adapter->dev_mem_base;
1609
1610         return 0;
1611 }
1612
1613 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1614         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1615 {
1616         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1617
1618         /* Regular queues capabilities */
1619         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1620                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1621                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1622                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1623                                     max_queue_ext->max_rx_cq_num);
1624                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1625                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1626         } else {
1627                 struct ena_admin_queue_feature_desc *max_queues =
1628                         &get_feat_ctx->max_queues;
1629                 io_tx_sq_num = max_queues->max_sq_num;
1630                 io_tx_cq_num = max_queues->max_cq_num;
1631                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1632         }
1633
1634         /* In case of LLQ use the llq number in the get feature cmd */
1635         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1636                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1637
1638         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1639         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1640         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1641
1642         if (unlikely(max_num_io_queues == 0)) {
1643                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1644                 return -EFAULT;
1645         }
1646
1647         return max_num_io_queues;
1648 }
1649
1650 static void
1651 ena_set_offloads(struct ena_offloads *offloads,
1652                  struct ena_admin_feature_offload_desc *offload_desc)
1653 {
1654         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1655                 offloads->tx_offloads |= ENA_IPV4_TSO;
1656
1657         /* Tx IPv4 checksum offloads */
1658         if (offload_desc->tx &
1659             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1660                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1661         if (offload_desc->tx &
1662             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1663                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1664         if (offload_desc->tx &
1665             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1666                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1667
1668         /* Tx IPv6 checksum offloads */
1669         if (offload_desc->tx &
1670             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1671                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1672         if (offload_desc->tx &
1673              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1674                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1675
1676         /* Rx IPv4 checksum offloads */
1677         if (offload_desc->rx_supported &
1678             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1679                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1680         if (offload_desc->rx_supported &
1681             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1682                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1683
1684         /* Rx IPv6 checksum offloads */
1685         if (offload_desc->rx_supported &
1686             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1687                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1688
1689         if (offload_desc->rx_supported &
1690             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1691                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
1692 }
1693
1694 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1695 {
1696         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1697         struct rte_pci_device *pci_dev;
1698         struct rte_intr_handle *intr_handle;
1699         struct ena_adapter *adapter = eth_dev->data->dev_private;
1700         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1701         struct ena_com_dev_get_features_ctx get_feat_ctx;
1702         struct ena_llq_configurations llq_config;
1703         const char *queue_type_str;
1704         uint32_t max_num_io_queues;
1705         int rc;
1706         static int adapters_found;
1707         bool disable_meta_caching;
1708         bool wd_state = false;
1709
1710         eth_dev->dev_ops = &ena_dev_ops;
1711         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1712         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1713         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1714
1715         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1716                 return 0;
1717
1718         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1719
1720         memset(adapter, 0, sizeof(struct ena_adapter));
1721         ena_dev = &adapter->ena_dev;
1722
1723         adapter->edev_data = eth_dev->data;
1724
1725         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1726
1727         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1728                      pci_dev->addr.domain,
1729                      pci_dev->addr.bus,
1730                      pci_dev->addr.devid,
1731                      pci_dev->addr.function);
1732
1733         intr_handle = &pci_dev->intr_handle;
1734
1735         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1736         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1737
1738         if (!adapter->regs) {
1739                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1740                              ENA_REGS_BAR);
1741                 return -ENXIO;
1742         }
1743
1744         ena_dev->reg_bar = adapter->regs;
1745         /* This is a dummy pointer for ena_com functions. */
1746         ena_dev->dmadev = adapter;
1747
1748         adapter->id_number = adapters_found;
1749
1750         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1751                  adapter->id_number);
1752
1753         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1754         if (rc != 0) {
1755                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1756                 goto err;
1757         }
1758
1759         /* device specific initialization routine */
1760         rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1761         if (rc) {
1762                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1763                 goto err;
1764         }
1765         adapter->wd_state = wd_state;
1766
1767         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1768                 adapter->use_large_llq_hdr);
1769         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1770                                              &get_feat_ctx.llq, &llq_config);
1771         if (unlikely(rc)) {
1772                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1773                 return rc;
1774         }
1775
1776         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1777                 queue_type_str = "Regular";
1778         else
1779                 queue_type_str = "Low latency";
1780         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1781
1782         calc_queue_ctx.ena_dev = ena_dev;
1783         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1784
1785         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1786         rc = ena_calc_io_queue_size(&calc_queue_ctx,
1787                 adapter->use_large_llq_hdr);
1788         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1789                 rc = -EFAULT;
1790                 goto err_device_destroy;
1791         }
1792
1793         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1794         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1795         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1796         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1797         adapter->max_num_io_queues = max_num_io_queues;
1798
1799         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1800                 disable_meta_caching =
1801                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1802                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
1803         } else {
1804                 disable_meta_caching = false;
1805         }
1806
1807         /* prepare ring structures */
1808         ena_init_rings(adapter, disable_meta_caching);
1809
1810         ena_config_debug_area(adapter);
1811
1812         /* Set max MTU for this device */
1813         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1814
1815         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1816
1817         /* Copy MAC address and point DPDK to it */
1818         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1819         rte_ether_addr_copy((struct rte_ether_addr *)
1820                         get_feat_ctx.dev_attr.mac_addr,
1821                         (struct rte_ether_addr *)adapter->mac_addr);
1822
1823         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1824         if (unlikely(rc != 0)) {
1825                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1826                 goto err_delete_debug_area;
1827         }
1828
1829         adapter->drv_stats = rte_zmalloc("adapter stats",
1830                                          sizeof(*adapter->drv_stats),
1831                                          RTE_CACHE_LINE_SIZE);
1832         if (!adapter->drv_stats) {
1833                 PMD_DRV_LOG(ERR,
1834                         "Failed to allocate memory for adapter statistics\n");
1835                 rc = -ENOMEM;
1836                 goto err_rss_destroy;
1837         }
1838
1839         rte_spinlock_init(&adapter->admin_lock);
1840
1841         rte_intr_callback_register(intr_handle,
1842                                    ena_interrupt_handler_rte,
1843                                    eth_dev);
1844         rte_intr_enable(intr_handle);
1845         ena_com_set_admin_polling_mode(ena_dev, false);
1846         ena_com_admin_aenq_enable(ena_dev);
1847
1848         if (adapters_found == 0)
1849                 rte_timer_subsystem_init();
1850         rte_timer_init(&adapter->timer_wd);
1851
1852         adapters_found++;
1853         adapter->state = ENA_ADAPTER_STATE_INIT;
1854
1855         return 0;
1856
1857 err_rss_destroy:
1858         ena_com_rss_destroy(ena_dev);
1859 err_delete_debug_area:
1860         ena_com_delete_debug_area(ena_dev);
1861
1862 err_device_destroy:
1863         ena_com_delete_host_info(ena_dev);
1864         ena_com_admin_destroy(ena_dev);
1865
1866 err:
1867         return rc;
1868 }
1869
1870 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1871 {
1872         struct ena_adapter *adapter = eth_dev->data->dev_private;
1873         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1874
1875         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1876                 return;
1877
1878         ena_com_set_admin_running_state(ena_dev, false);
1879
1880         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1881                 ena_close(eth_dev);
1882
1883         ena_com_rss_destroy(ena_dev);
1884
1885         ena_com_delete_debug_area(ena_dev);
1886         ena_com_delete_host_info(ena_dev);
1887
1888         ena_com_abort_admin_commands(ena_dev);
1889         ena_com_wait_for_abort_completion(ena_dev);
1890         ena_com_admin_destroy(ena_dev);
1891         ena_com_mmio_reg_read_request_destroy(ena_dev);
1892
1893         adapter->state = ENA_ADAPTER_STATE_FREE;
1894 }
1895
1896 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1897 {
1898         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1899                 return 0;
1900
1901         ena_destroy_device(eth_dev);
1902
1903         return 0;
1904 }
1905
1906 static int ena_dev_configure(struct rte_eth_dev *dev)
1907 {
1908         struct ena_adapter *adapter = dev->data->dev_private;
1909
1910         adapter->state = ENA_ADAPTER_STATE_CONFIG;
1911
1912         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1913                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1914         dev->data->dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
1915
1916         adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1917         adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1918         return 0;
1919 }
1920
1921 static void ena_init_rings(struct ena_adapter *adapter,
1922                            bool disable_meta_caching)
1923 {
1924         size_t i;
1925
1926         for (i = 0; i < adapter->max_num_io_queues; i++) {
1927                 struct ena_ring *ring = &adapter->tx_ring[i];
1928
1929                 ring->configured = 0;
1930                 ring->type = ENA_RING_TYPE_TX;
1931                 ring->adapter = adapter;
1932                 ring->id = i;
1933                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1934                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1935                 ring->sgl_size = adapter->max_tx_sgl_size;
1936                 ring->disable_meta_caching = disable_meta_caching;
1937         }
1938
1939         for (i = 0; i < adapter->max_num_io_queues; i++) {
1940                 struct ena_ring *ring = &adapter->rx_ring[i];
1941
1942                 ring->configured = 0;
1943                 ring->type = ENA_RING_TYPE_RX;
1944                 ring->adapter = adapter;
1945                 ring->id = i;
1946                 ring->sgl_size = adapter->max_rx_sgl_size;
1947         }
1948 }
1949
1950 static int ena_infos_get(struct rte_eth_dev *dev,
1951                           struct rte_eth_dev_info *dev_info)
1952 {
1953         struct ena_adapter *adapter;
1954         struct ena_com_dev *ena_dev;
1955         uint64_t rx_feat = 0, tx_feat = 0;
1956
1957         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1958         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1959         adapter = dev->data->dev_private;
1960
1961         ena_dev = &adapter->ena_dev;
1962         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1963
1964         dev_info->speed_capa =
1965                         ETH_LINK_SPEED_1G   |
1966                         ETH_LINK_SPEED_2_5G |
1967                         ETH_LINK_SPEED_5G   |
1968                         ETH_LINK_SPEED_10G  |
1969                         ETH_LINK_SPEED_25G  |
1970                         ETH_LINK_SPEED_40G  |
1971                         ETH_LINK_SPEED_50G  |
1972                         ETH_LINK_SPEED_100G;
1973
1974         /* Set Tx & Rx features available for device */
1975         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
1976                 tx_feat |= DEV_TX_OFFLOAD_TCP_TSO;
1977
1978         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
1979                 tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM;
1980         if (adapter->offloads.tx_offloads &
1981             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
1982              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
1983                 tx_feat |= DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM;
1984
1985         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
1986                 rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM;
1987         if (adapter->offloads.rx_offloads &
1988             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
1989                 rx_feat |= DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM;
1990
1991         tx_feat |= DEV_TX_OFFLOAD_MULTI_SEGS;
1992
1993         /* Inform framework about available features */
1994         dev_info->rx_offload_capa = rx_feat;
1995         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
1996                 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_RSS_HASH;
1997         dev_info->rx_queue_offload_capa = rx_feat;
1998         dev_info->tx_offload_capa = tx_feat;
1999         dev_info->tx_queue_offload_capa = tx_feat;
2000
2001         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2002         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2003
2004         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2005         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2006                 RTE_ETHER_CRC_LEN;
2007         dev_info->min_mtu = ENA_MIN_MTU;
2008         dev_info->max_mtu = adapter->max_mtu;
2009         dev_info->max_mac_addrs = 1;
2010
2011         dev_info->max_rx_queues = adapter->max_num_io_queues;
2012         dev_info->max_tx_queues = adapter->max_num_io_queues;
2013         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2014
2015         adapter->tx_supported_offloads = tx_feat;
2016         adapter->rx_supported_offloads = rx_feat;
2017
2018         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2019         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2020         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2021                                         adapter->max_rx_sgl_size);
2022         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2023                                         adapter->max_rx_sgl_size);
2024
2025         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2026         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2027         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2028                                         adapter->max_tx_sgl_size);
2029         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2030                                         adapter->max_tx_sgl_size);
2031
2032         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2033         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2034
2035         return 0;
2036 }
2037
2038 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2039 {
2040         mbuf->data_len = len;
2041         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2042         mbuf->refcnt = 1;
2043         mbuf->next = NULL;
2044 }
2045
2046 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2047                                     struct ena_com_rx_buf_info *ena_bufs,
2048                                     uint32_t descs,
2049                                     uint16_t *next_to_clean,
2050                                     uint8_t offset)
2051 {
2052         struct rte_mbuf *mbuf;
2053         struct rte_mbuf *mbuf_head;
2054         struct ena_rx_buffer *rx_info;
2055         int rc;
2056         uint16_t ntc, len, req_id, buf = 0;
2057
2058         if (unlikely(descs == 0))
2059                 return NULL;
2060
2061         ntc = *next_to_clean;
2062
2063         len = ena_bufs[buf].len;
2064         req_id = ena_bufs[buf].req_id;
2065
2066         rx_info = &rx_ring->rx_buffer_info[req_id];
2067
2068         mbuf = rx_info->mbuf;
2069         RTE_ASSERT(mbuf != NULL);
2070
2071         ena_init_rx_mbuf(mbuf, len);
2072
2073         /* Fill the mbuf head with the data specific for 1st segment. */
2074         mbuf_head = mbuf;
2075         mbuf_head->nb_segs = descs;
2076         mbuf_head->port = rx_ring->port_id;
2077         mbuf_head->pkt_len = len;
2078         mbuf_head->data_off += offset;
2079
2080         rx_info->mbuf = NULL;
2081         rx_ring->empty_rx_reqs[ntc] = req_id;
2082         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2083
2084         while (--descs) {
2085                 ++buf;
2086                 len = ena_bufs[buf].len;
2087                 req_id = ena_bufs[buf].req_id;
2088
2089                 rx_info = &rx_ring->rx_buffer_info[req_id];
2090                 RTE_ASSERT(rx_info->mbuf != NULL);
2091
2092                 if (unlikely(len == 0)) {
2093                         /*
2094                          * Some devices can pass descriptor with the length 0.
2095                          * To avoid confusion, the PMD is simply putting the
2096                          * descriptor back, as it was never used. We'll avoid
2097                          * mbuf allocation that way.
2098                          */
2099                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2100                                 rx_info->mbuf, req_id);
2101                         if (unlikely(rc != 0)) {
2102                                 /* Free the mbuf in case of an error. */
2103                                 rte_mbuf_raw_free(rx_info->mbuf);
2104                         } else {
2105                                 /*
2106                                  * If there was no error, just exit the loop as
2107                                  * 0 length descriptor is always the last one.
2108                                  */
2109                                 break;
2110                         }
2111                 } else {
2112                         /* Create an mbuf chain. */
2113                         mbuf->next = rx_info->mbuf;
2114                         mbuf = mbuf->next;
2115
2116                         ena_init_rx_mbuf(mbuf, len);
2117                         mbuf_head->pkt_len += len;
2118                 }
2119
2120                 /*
2121                  * Mark the descriptor as depleted and perform necessary
2122                  * cleanup.
2123                  * This code will execute in two cases:
2124                  *  1. Descriptor len was greater than 0 - normal situation.
2125                  *  2. Descriptor len was 0 and we failed to add the descriptor
2126                  *     to the device. In that situation, we should try to add
2127                  *     the mbuf again in the populate routine and mark the
2128                  *     descriptor as used up by the device.
2129                  */
2130                 rx_info->mbuf = NULL;
2131                 rx_ring->empty_rx_reqs[ntc] = req_id;
2132                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2133         }
2134
2135         *next_to_clean = ntc;
2136
2137         return mbuf_head;
2138 }
2139
2140 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2141                                   uint16_t nb_pkts)
2142 {
2143         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2144         unsigned int free_queue_entries;
2145         uint16_t next_to_clean = rx_ring->next_to_clean;
2146         uint16_t descs_in_use;
2147         struct rte_mbuf *mbuf;
2148         uint16_t completed;
2149         struct ena_com_rx_ctx ena_rx_ctx;
2150         int i, rc = 0;
2151         bool fill_hash;
2152
2153 #ifdef RTE_ETHDEV_DEBUG_RX
2154         /* Check adapter state */
2155         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2156                 PMD_RX_LOG(ALERT,
2157                         "Trying to receive pkts while device is NOT running\n");
2158                 return 0;
2159         }
2160 #endif
2161
2162         fill_hash = rx_ring->offloads & DEV_RX_OFFLOAD_RSS_HASH;
2163
2164         descs_in_use = rx_ring->ring_size -
2165                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2166         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2167
2168         for (completed = 0; completed < nb_pkts; completed++) {
2169                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2170                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2171                 ena_rx_ctx.descs = 0;
2172                 ena_rx_ctx.pkt_offset = 0;
2173                 /* receive packet context */
2174                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2175                                     rx_ring->ena_com_io_sq,
2176                                     &ena_rx_ctx);
2177                 if (unlikely(rc)) {
2178                         PMD_RX_LOG(ERR,
2179                                 "Failed to get the packet from the device, rc: %d\n",
2180                                 rc);
2181                         if (rc == ENA_COM_NO_SPACE) {
2182                                 ++rx_ring->rx_stats.bad_desc_num;
2183                                 rx_ring->adapter->reset_reason =
2184                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2185                         } else {
2186                                 ++rx_ring->rx_stats.bad_req_id;
2187                                 rx_ring->adapter->reset_reason =
2188                                         ENA_REGS_RESET_INV_RX_REQ_ID;
2189                         }
2190                         rx_ring->adapter->trigger_reset = true;
2191                         return 0;
2192                 }
2193
2194                 mbuf = ena_rx_mbuf(rx_ring,
2195                         ena_rx_ctx.ena_bufs,
2196                         ena_rx_ctx.descs,
2197                         &next_to_clean,
2198                         ena_rx_ctx.pkt_offset);
2199                 if (unlikely(mbuf == NULL)) {
2200                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2201                                 rx_ring->empty_rx_reqs[next_to_clean] =
2202                                         rx_ring->ena_bufs[i].req_id;
2203                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2204                                         next_to_clean, rx_ring->size_mask);
2205                         }
2206                         break;
2207                 }
2208
2209                 /* fill mbuf attributes if any */
2210                 ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2211
2212                 if (unlikely(mbuf->ol_flags &
2213                                 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2214                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2215                         ++rx_ring->rx_stats.bad_csum;
2216                 }
2217
2218                 rx_pkts[completed] = mbuf;
2219                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2220         }
2221
2222         rx_ring->rx_stats.cnt += completed;
2223         rx_ring->next_to_clean = next_to_clean;
2224
2225         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2226
2227         /* Burst refill to save doorbells, memory barriers, const interval */
2228         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2229                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2230                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2231         }
2232
2233         return completed;
2234 }
2235
2236 static uint16_t
2237 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2238                 uint16_t nb_pkts)
2239 {
2240         int32_t ret;
2241         uint32_t i;
2242         struct rte_mbuf *m;
2243         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2244         struct ena_adapter *adapter = tx_ring->adapter;
2245         struct rte_ipv4_hdr *ip_hdr;
2246         uint64_t ol_flags;
2247         uint64_t l4_csum_flag;
2248         uint64_t dev_offload_capa;
2249         uint16_t frag_field;
2250         bool need_pseudo_csum;
2251
2252         dev_offload_capa = adapter->offloads.tx_offloads;
2253         for (i = 0; i != nb_pkts; i++) {
2254                 m = tx_pkts[i];
2255                 ol_flags = m->ol_flags;
2256
2257                 /* Check if any offload flag was set */
2258                 if (ol_flags == 0)
2259                         continue;
2260
2261                 l4_csum_flag = ol_flags & PKT_TX_L4_MASK;
2262                 /* SCTP checksum offload is not supported by the ENA. */
2263                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2264                     l4_csum_flag == PKT_TX_SCTP_CKSUM) {
2265                         PMD_TX_LOG(DEBUG,
2266                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2267                                 i, ol_flags);
2268                         rte_errno = ENOTSUP;
2269                         return i;
2270                 }
2271
2272 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2273                 /* Check if requested offload is also enabled for the queue */
2274                 if ((ol_flags & PKT_TX_IP_CKSUM &&
2275                      !(tx_ring->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)) ||
2276                     (l4_csum_flag == PKT_TX_TCP_CKSUM &&
2277                      !(tx_ring->offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) ||
2278                     (l4_csum_flag == PKT_TX_UDP_CKSUM &&
2279                      !(tx_ring->offloads & DEV_TX_OFFLOAD_UDP_CKSUM))) {
2280                         PMD_TX_LOG(DEBUG,
2281                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2282                                 i, m->nb_segs, tx_ring->id);
2283                         rte_errno = EINVAL;
2284                         return i;
2285                 }
2286
2287                 /* The caller is obligated to set l2 and l3 len if any cksum
2288                  * offload is enabled.
2289                  */
2290                 if (unlikely(ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK) &&
2291                     (m->l2_len == 0 || m->l3_len == 0))) {
2292                         PMD_TX_LOG(DEBUG,
2293                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2294                                 i);
2295                         rte_errno = EINVAL;
2296                         return i;
2297                 }
2298                 ret = rte_validate_tx_offload(m);
2299                 if (ret != 0) {
2300                         rte_errno = -ret;
2301                         return i;
2302                 }
2303 #endif
2304
2305                 /* Verify HW support for requested offloads and determine if
2306                  * pseudo header checksum is needed.
2307                  */
2308                 need_pseudo_csum = false;
2309                 if (ol_flags & PKT_TX_IPV4) {
2310                         if (ol_flags & PKT_TX_IP_CKSUM &&
2311                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2312                                 rte_errno = ENOTSUP;
2313                                 return i;
2314                         }
2315
2316                         if (ol_flags & PKT_TX_TCP_SEG &&
2317                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2318                                 rte_errno = ENOTSUP;
2319                                 return i;
2320                         }
2321
2322                         /* Check HW capabilities and if pseudo csum is needed
2323                          * for L4 offloads.
2324                          */
2325                         if (l4_csum_flag != PKT_TX_L4_NO_CKSUM &&
2326                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2327                                 if (dev_offload_capa &
2328                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2329                                         need_pseudo_csum = true;
2330                                 } else {
2331                                         rte_errno = ENOTSUP;
2332                                         return i;
2333                                 }
2334                         }
2335
2336                         /* Parse the DF flag */
2337                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2338                                 struct rte_ipv4_hdr *, m->l2_len);
2339                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2340                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2341                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2342                         } else if (ol_flags & PKT_TX_TCP_SEG) {
2343                                 /* In case we are supposed to TSO and have DF
2344                                  * not set (DF=0) hardware must be provided with
2345                                  * partial checksum.
2346                                  */
2347                                 need_pseudo_csum = true;
2348                         }
2349                 } else if (ol_flags & PKT_TX_IPV6) {
2350                         /* There is no support for IPv6 TSO as for now. */
2351                         if (ol_flags & PKT_TX_TCP_SEG) {
2352                                 rte_errno = ENOTSUP;
2353                                 return i;
2354                         }
2355
2356                         /* Check HW capabilities and if pseudo csum is needed */
2357                         if (l4_csum_flag != PKT_TX_L4_NO_CKSUM &&
2358                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2359                                 if (dev_offload_capa &
2360                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2361                                         need_pseudo_csum = true;
2362                                 } else {
2363                                         rte_errno = ENOTSUP;
2364                                         return i;
2365                                 }
2366                         }
2367                 }
2368
2369                 if (need_pseudo_csum) {
2370                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2371                         if (ret != 0) {
2372                                 rte_errno = -ret;
2373                                 return i;
2374                         }
2375                 }
2376         }
2377
2378         return i;
2379 }
2380
2381 static void ena_update_hints(struct ena_adapter *adapter,
2382                              struct ena_admin_ena_hw_hints *hints)
2383 {
2384         if (hints->admin_completion_tx_timeout)
2385                 adapter->ena_dev.admin_queue.completion_timeout =
2386                         hints->admin_completion_tx_timeout * 1000;
2387
2388         if (hints->mmio_read_timeout)
2389                 /* convert to usec */
2390                 adapter->ena_dev.mmio_read.reg_read_to =
2391                         hints->mmio_read_timeout * 1000;
2392
2393         if (hints->driver_watchdog_timeout) {
2394                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2395                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2396                 else
2397                         // Convert msecs to ticks
2398                         adapter->keep_alive_timeout =
2399                                 (hints->driver_watchdog_timeout *
2400                                 rte_get_timer_hz()) / 1000;
2401         }
2402 }
2403
2404 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2405                                               struct rte_mbuf *mbuf)
2406 {
2407         struct ena_com_dev *ena_dev;
2408         int num_segments, header_len, rc;
2409
2410         ena_dev = &tx_ring->adapter->ena_dev;
2411         num_segments = mbuf->nb_segs;
2412         header_len = mbuf->data_len;
2413
2414         if (likely(num_segments < tx_ring->sgl_size))
2415                 goto checkspace;
2416
2417         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2418             (num_segments == tx_ring->sgl_size) &&
2419             (header_len < tx_ring->tx_max_header_size))
2420                 goto checkspace;
2421
2422         /* Checking for space for 2 additional metadata descriptors due to
2423          * possible header split and metadata descriptor. Linearization will
2424          * be needed so we reduce the segments number from num_segments to 1
2425          */
2426         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2427                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2428                 return ENA_COM_NO_MEM;
2429         }
2430         ++tx_ring->tx_stats.linearize;
2431         rc = rte_pktmbuf_linearize(mbuf);
2432         if (unlikely(rc)) {
2433                 PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2434                 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2435                 ++tx_ring->tx_stats.linearize_failed;
2436                 return rc;
2437         }
2438
2439         return 0;
2440
2441 checkspace:
2442         /* Checking for space for 2 additional metadata descriptors due to
2443          * possible header split and metadata descriptor
2444          */
2445         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2446                                           num_segments + 2)) {
2447                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2448                 return ENA_COM_NO_MEM;
2449         }
2450
2451         return 0;
2452 }
2453
2454 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2455         struct ena_tx_buffer *tx_info,
2456         struct rte_mbuf *mbuf,
2457         void **push_header,
2458         uint16_t *header_len)
2459 {
2460         struct ena_com_buf *ena_buf;
2461         uint16_t delta, seg_len, push_len;
2462
2463         delta = 0;
2464         seg_len = mbuf->data_len;
2465
2466         tx_info->mbuf = mbuf;
2467         ena_buf = tx_info->bufs;
2468
2469         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2470                 /*
2471                  * Tx header might be (and will be in most cases) smaller than
2472                  * tx_max_header_size. But it's not an issue to send more data
2473                  * to the device, than actually needed if the mbuf size is
2474                  * greater than tx_max_header_size.
2475                  */
2476                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2477                 *header_len = push_len;
2478
2479                 if (likely(push_len <= seg_len)) {
2480                         /* If the push header is in the single segment, then
2481                          * just point it to the 1st mbuf data.
2482                          */
2483                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2484                 } else {
2485                         /* If the push header lays in the several segments, copy
2486                          * it to the intermediate buffer.
2487                          */
2488                         rte_pktmbuf_read(mbuf, 0, push_len,
2489                                 tx_ring->push_buf_intermediate_buf);
2490                         *push_header = tx_ring->push_buf_intermediate_buf;
2491                         delta = push_len - seg_len;
2492                 }
2493         } else {
2494                 *push_header = NULL;
2495                 *header_len = 0;
2496                 push_len = 0;
2497         }
2498
2499         /* Process first segment taking into consideration pushed header */
2500         if (seg_len > push_len) {
2501                 ena_buf->paddr = mbuf->buf_iova +
2502                                 mbuf->data_off +
2503                                 push_len;
2504                 ena_buf->len = seg_len - push_len;
2505                 ena_buf++;
2506                 tx_info->num_of_bufs++;
2507         }
2508
2509         while ((mbuf = mbuf->next) != NULL) {
2510                 seg_len = mbuf->data_len;
2511
2512                 /* Skip mbufs if whole data is pushed as a header */
2513                 if (unlikely(delta > seg_len)) {
2514                         delta -= seg_len;
2515                         continue;
2516                 }
2517
2518                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2519                 ena_buf->len = seg_len - delta;
2520                 ena_buf++;
2521                 tx_info->num_of_bufs++;
2522
2523                 delta = 0;
2524         }
2525 }
2526
2527 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2528 {
2529         struct ena_tx_buffer *tx_info;
2530         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2531         uint16_t next_to_use;
2532         uint16_t header_len;
2533         uint16_t req_id;
2534         void *push_header;
2535         int nb_hw_desc;
2536         int rc;
2537
2538         rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2539         if (unlikely(rc))
2540                 return rc;
2541
2542         next_to_use = tx_ring->next_to_use;
2543
2544         req_id = tx_ring->empty_tx_reqs[next_to_use];
2545         tx_info = &tx_ring->tx_buffer_info[req_id];
2546         tx_info->num_of_bufs = 0;
2547
2548         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2549
2550         ena_tx_ctx.ena_bufs = tx_info->bufs;
2551         ena_tx_ctx.push_header = push_header;
2552         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2553         ena_tx_ctx.req_id = req_id;
2554         ena_tx_ctx.header_len = header_len;
2555
2556         /* Set Tx offloads flags, if applicable */
2557         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2558                 tx_ring->disable_meta_caching);
2559
2560         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2561                         &ena_tx_ctx))) {
2562                 PMD_TX_LOG(DEBUG,
2563                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2564                         tx_ring->id);
2565                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2566                 tx_ring->tx_stats.doorbells++;
2567                 tx_ring->pkts_without_db = false;
2568         }
2569
2570         /* prepare the packet's descriptors to dma engine */
2571         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2572                 &nb_hw_desc);
2573         if (unlikely(rc)) {
2574                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2575                 ++tx_ring->tx_stats.prepare_ctx_err;
2576                 tx_ring->adapter->reset_reason =
2577                     ENA_REGS_RESET_DRIVER_INVALID_STATE;
2578                 tx_ring->adapter->trigger_reset = true;
2579                 return rc;
2580         }
2581
2582         tx_info->tx_descs = nb_hw_desc;
2583
2584         tx_ring->tx_stats.cnt++;
2585         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2586
2587         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2588                 tx_ring->size_mask);
2589
2590         return 0;
2591 }
2592
2593 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2594 {
2595         unsigned int total_tx_descs = 0;
2596         uint16_t cleanup_budget;
2597         uint16_t next_to_clean = tx_ring->next_to_clean;
2598
2599         /* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2600         cleanup_budget = tx_ring->size_mask;
2601
2602         while (likely(total_tx_descs < cleanup_budget)) {
2603                 struct rte_mbuf *mbuf;
2604                 struct ena_tx_buffer *tx_info;
2605                 uint16_t req_id;
2606
2607                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2608                         break;
2609
2610                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2611                         break;
2612
2613                 /* Get Tx info & store how many descs were processed  */
2614                 tx_info = &tx_ring->tx_buffer_info[req_id];
2615
2616                 mbuf = tx_info->mbuf;
2617                 rte_pktmbuf_free(mbuf);
2618
2619                 tx_info->mbuf = NULL;
2620                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2621
2622                 total_tx_descs += tx_info->tx_descs;
2623
2624                 /* Put back descriptor to the ring for reuse */
2625                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2626                         tx_ring->size_mask);
2627         }
2628
2629         if (likely(total_tx_descs > 0)) {
2630                 /* acknowledge completion of sent packets */
2631                 tx_ring->next_to_clean = next_to_clean;
2632                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2633                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2634         }
2635 }
2636
2637 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2638                                   uint16_t nb_pkts)
2639 {
2640         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2641         int available_desc;
2642         uint16_t sent_idx = 0;
2643
2644 #ifdef RTE_ETHDEV_DEBUG_TX
2645         /* Check adapter state */
2646         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2647                 PMD_TX_LOG(ALERT,
2648                         "Trying to xmit pkts while device is NOT running\n");
2649                 return 0;
2650         }
2651 #endif
2652
2653         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2654                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2655                         break;
2656                 tx_ring->pkts_without_db = true;
2657                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2658                         tx_ring->size_mask)]);
2659         }
2660
2661         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2662         tx_ring->tx_stats.available_desc = available_desc;
2663
2664         /* If there are ready packets to be xmitted... */
2665         if (likely(tx_ring->pkts_without_db)) {
2666                 /* ...let HW do its best :-) */
2667                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2668                 tx_ring->tx_stats.doorbells++;
2669                 tx_ring->pkts_without_db = false;
2670         }
2671
2672         if (available_desc < tx_ring->tx_free_thresh)
2673                 ena_tx_cleanup(tx_ring);
2674
2675         tx_ring->tx_stats.available_desc =
2676                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2677         tx_ring->tx_stats.tx_poll++;
2678
2679         return sent_idx;
2680 }
2681
2682 int ena_copy_eni_stats(struct ena_adapter *adapter)
2683 {
2684         struct ena_admin_eni_stats admin_eni_stats;
2685         int rc;
2686
2687         rte_spinlock_lock(&adapter->admin_lock);
2688         rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2689         rte_spinlock_unlock(&adapter->admin_lock);
2690         if (rc != 0) {
2691                 if (rc == ENA_COM_UNSUPPORTED) {
2692                         PMD_DRV_LOG(DEBUG,
2693                                 "Retrieving ENI metrics is not supported\n");
2694                 } else {
2695                         PMD_DRV_LOG(WARNING,
2696                                 "Failed to get ENI metrics, rc: %d\n", rc);
2697                 }
2698                 return rc;
2699         }
2700
2701         rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2702                 sizeof(struct ena_stats_eni));
2703
2704         return 0;
2705 }
2706
2707 /**
2708  * DPDK callback to retrieve names of extended device statistics
2709  *
2710  * @param dev
2711  *   Pointer to Ethernet device structure.
2712  * @param[out] xstats_names
2713  *   Buffer to insert names into.
2714  * @param n
2715  *   Number of names.
2716  *
2717  * @return
2718  *   Number of xstats names.
2719  */
2720 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2721                                 struct rte_eth_xstat_name *xstats_names,
2722                                 unsigned int n)
2723 {
2724         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2725         unsigned int stat, i, count = 0;
2726
2727         if (n < xstats_count || !xstats_names)
2728                 return xstats_count;
2729
2730         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2731                 strcpy(xstats_names[count].name,
2732                         ena_stats_global_strings[stat].name);
2733
2734         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2735                 strcpy(xstats_names[count].name,
2736                         ena_stats_eni_strings[stat].name);
2737
2738         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2739                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2740                         snprintf(xstats_names[count].name,
2741                                 sizeof(xstats_names[count].name),
2742                                 "rx_q%d_%s", i,
2743                                 ena_stats_rx_strings[stat].name);
2744
2745         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2746                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2747                         snprintf(xstats_names[count].name,
2748                                 sizeof(xstats_names[count].name),
2749                                 "tx_q%d_%s", i,
2750                                 ena_stats_tx_strings[stat].name);
2751
2752         return xstats_count;
2753 }
2754
2755 /**
2756  * DPDK callback to get extended device statistics.
2757  *
2758  * @param dev
2759  *   Pointer to Ethernet device structure.
2760  * @param[out] stats
2761  *   Stats table output buffer.
2762  * @param n
2763  *   The size of the stats table.
2764  *
2765  * @return
2766  *   Number of xstats on success, negative on failure.
2767  */
2768 static int ena_xstats_get(struct rte_eth_dev *dev,
2769                           struct rte_eth_xstat *xstats,
2770                           unsigned int n)
2771 {
2772         struct ena_adapter *adapter = dev->data->dev_private;
2773         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2774         unsigned int stat, i, count = 0;
2775         int stat_offset;
2776         void *stats_begin;
2777
2778         if (n < xstats_count)
2779                 return xstats_count;
2780
2781         if (!xstats)
2782                 return 0;
2783
2784         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2785                 stat_offset = ena_stats_global_strings[stat].stat_offset;
2786                 stats_begin = &adapter->dev_stats;
2787
2788                 xstats[count].id = count;
2789                 xstats[count].value = *((uint64_t *)
2790                         ((char *)stats_begin + stat_offset));
2791         }
2792
2793         /* Even if the function below fails, we should copy previous (or initial
2794          * values) to keep structure of rte_eth_xstat consistent.
2795          */
2796         ena_copy_eni_stats(adapter);
2797         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2798                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
2799                 stats_begin = &adapter->eni_stats;
2800
2801                 xstats[count].id = count;
2802                 xstats[count].value = *((uint64_t *)
2803                     ((char *)stats_begin + stat_offset));
2804         }
2805
2806         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2807                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2808                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2809                         stats_begin = &adapter->rx_ring[i].rx_stats;
2810
2811                         xstats[count].id = count;
2812                         xstats[count].value = *((uint64_t *)
2813                                 ((char *)stats_begin + stat_offset));
2814                 }
2815         }
2816
2817         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2818                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2819                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2820                         stats_begin = &adapter->tx_ring[i].rx_stats;
2821
2822                         xstats[count].id = count;
2823                         xstats[count].value = *((uint64_t *)
2824                                 ((char *)stats_begin + stat_offset));
2825                 }
2826         }
2827
2828         return count;
2829 }
2830
2831 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2832                                 const uint64_t *ids,
2833                                 uint64_t *values,
2834                                 unsigned int n)
2835 {
2836         struct ena_adapter *adapter = dev->data->dev_private;
2837         uint64_t id;
2838         uint64_t rx_entries, tx_entries;
2839         unsigned int i;
2840         int qid;
2841         int valid = 0;
2842         bool was_eni_copied = false;
2843
2844         for (i = 0; i < n; ++i) {
2845                 id = ids[i];
2846                 /* Check if id belongs to global statistics */
2847                 if (id < ENA_STATS_ARRAY_GLOBAL) {
2848                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
2849                         ++valid;
2850                         continue;
2851                 }
2852
2853                 /* Check if id belongs to ENI statistics */
2854                 id -= ENA_STATS_ARRAY_GLOBAL;
2855                 if (id < ENA_STATS_ARRAY_ENI) {
2856                         /* Avoid reading ENI stats multiple times in a single
2857                          * function call, as it requires communication with the
2858                          * admin queue.
2859                          */
2860                         if (!was_eni_copied) {
2861                                 was_eni_copied = true;
2862                                 ena_copy_eni_stats(adapter);
2863                         }
2864                         values[i] = *((uint64_t *)&adapter->eni_stats + id);
2865                         ++valid;
2866                         continue;
2867                 }
2868
2869                 /* Check if id belongs to rx queue statistics */
2870                 id -= ENA_STATS_ARRAY_ENI;
2871                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2872                 if (id < rx_entries) {
2873                         qid = id % dev->data->nb_rx_queues;
2874                         id /= dev->data->nb_rx_queues;
2875                         values[i] = *((uint64_t *)
2876                                 &adapter->rx_ring[qid].rx_stats + id);
2877                         ++valid;
2878                         continue;
2879                 }
2880                                 /* Check if id belongs to rx queue statistics */
2881                 id -= rx_entries;
2882                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2883                 if (id < tx_entries) {
2884                         qid = id % dev->data->nb_tx_queues;
2885                         id /= dev->data->nb_tx_queues;
2886                         values[i] = *((uint64_t *)
2887                                 &adapter->tx_ring[qid].tx_stats + id);
2888                         ++valid;
2889                         continue;
2890                 }
2891         }
2892
2893         return valid;
2894 }
2895
2896 static int ena_process_bool_devarg(const char *key,
2897                                    const char *value,
2898                                    void *opaque)
2899 {
2900         struct ena_adapter *adapter = opaque;
2901         bool bool_value;
2902
2903         /* Parse the value. */
2904         if (strcmp(value, "1") == 0) {
2905                 bool_value = true;
2906         } else if (strcmp(value, "0") == 0) {
2907                 bool_value = false;
2908         } else {
2909                 PMD_INIT_LOG(ERR,
2910                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2911                         value, key);
2912                 return -EINVAL;
2913         }
2914
2915         /* Now, assign it to the proper adapter field. */
2916         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
2917                 adapter->use_large_llq_hdr = bool_value;
2918
2919         return 0;
2920 }
2921
2922 static int ena_parse_devargs(struct ena_adapter *adapter,
2923                              struct rte_devargs *devargs)
2924 {
2925         static const char * const allowed_args[] = {
2926                 ENA_DEVARG_LARGE_LLQ_HDR,
2927                 NULL,
2928         };
2929         struct rte_kvargs *kvlist;
2930         int rc;
2931
2932         if (devargs == NULL)
2933                 return 0;
2934
2935         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2936         if (kvlist == NULL) {
2937                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2938                         devargs->args);
2939                 return -EINVAL;
2940         }
2941
2942         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2943                 ena_process_bool_devarg, adapter);
2944
2945         rte_kvargs_free(kvlist);
2946
2947         return rc;
2948 }
2949
2950 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
2951 {
2952         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2953         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2954         int rc;
2955         uint16_t vectors_nb, i;
2956         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
2957
2958         if (!rx_intr_requested)
2959                 return 0;
2960
2961         if (!rte_intr_cap_multiple(intr_handle)) {
2962                 PMD_DRV_LOG(ERR,
2963                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
2964                 return -ENOTSUP;
2965         }
2966
2967         /* Disable interrupt mapping before the configuration starts. */
2968         rte_intr_disable(intr_handle);
2969
2970         /* Verify if there are enough vectors available. */
2971         vectors_nb = dev->data->nb_rx_queues;
2972         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
2973                 PMD_DRV_LOG(ERR,
2974                         "Too many Rx interrupts requested, maximum number: %d\n",
2975                         RTE_MAX_RXTX_INTR_VEC_ID);
2976                 rc = -ENOTSUP;
2977                 goto enable_intr;
2978         }
2979
2980         intr_handle->intr_vec = rte_zmalloc("intr_vec",
2981                 dev->data->nb_rx_queues * sizeof(*intr_handle->intr_vec), 0);
2982         if (intr_handle->intr_vec == NULL) {
2983                 PMD_DRV_LOG(ERR,
2984                         "Failed to allocate interrupt vector for %d queues\n",
2985                         dev->data->nb_rx_queues);
2986                 rc = -ENOMEM;
2987                 goto enable_intr;
2988         }
2989
2990         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
2991         if (rc != 0)
2992                 goto free_intr_vec;
2993
2994         if (!rte_intr_allow_others(intr_handle)) {
2995                 PMD_DRV_LOG(ERR,
2996                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
2997                 goto disable_intr_efd;
2998         }
2999
3000         for (i = 0; i < vectors_nb; ++i)
3001                 intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + i;
3002
3003         rte_intr_enable(intr_handle);
3004         return 0;
3005
3006 disable_intr_efd:
3007         rte_intr_efd_disable(intr_handle);
3008 free_intr_vec:
3009         rte_free(intr_handle->intr_vec);
3010         intr_handle->intr_vec = NULL;
3011 enable_intr:
3012         rte_intr_enable(intr_handle);
3013         return rc;
3014 }
3015
3016 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3017                                  uint16_t queue_id,
3018                                  bool unmask)
3019 {
3020         struct ena_adapter *adapter = dev->data->dev_private;
3021         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3022         struct ena_eth_io_intr_reg intr_reg;
3023
3024         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3025         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3026 }
3027
3028 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3029                                     uint16_t queue_id)
3030 {
3031         ena_rx_queue_intr_set(dev, queue_id, true);
3032
3033         return 0;
3034 }
3035
3036 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3037                                      uint16_t queue_id)
3038 {
3039         ena_rx_queue_intr_set(dev, queue_id, false);
3040
3041         return 0;
3042 }
3043
3044 /*********************************************************************
3045  *  PMD configuration
3046  *********************************************************************/
3047 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3048         struct rte_pci_device *pci_dev)
3049 {
3050         return rte_eth_dev_pci_generic_probe(pci_dev,
3051                 sizeof(struct ena_adapter), eth_ena_dev_init);
3052 }
3053
3054 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3055 {
3056         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3057 }
3058
3059 static struct rte_pci_driver rte_ena_pmd = {
3060         .id_table = pci_id_ena_map,
3061         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3062                      RTE_PCI_DRV_WC_ACTIVATE,
3063         .probe = eth_ena_pci_probe,
3064         .remove = eth_ena_pci_remove,
3065 };
3066
3067 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3068 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3069 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3070 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3071 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3072 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3073 #ifdef RTE_ETHDEV_DEBUG_RX
3074 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3075 #endif
3076 #ifdef RTE_ETHDEV_DEBUG_TX
3077 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3078 #endif
3079 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3080
3081 /******************************************************************************
3082  ******************************** AENQ Handlers *******************************
3083  *****************************************************************************/
3084 static void ena_update_on_link_change(void *adapter_data,
3085                                       struct ena_admin_aenq_entry *aenq_e)
3086 {
3087         struct rte_eth_dev *eth_dev = adapter_data;
3088         struct ena_adapter *adapter = eth_dev->data->dev_private;
3089         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3090         uint32_t status;
3091
3092         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3093
3094         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3095         adapter->link_status = status;
3096
3097         ena_link_update(eth_dev, 0);
3098         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3099 }
3100
3101 static void ena_notification(void *adapter_data,
3102                              struct ena_admin_aenq_entry *aenq_e)
3103 {
3104         struct rte_eth_dev *eth_dev = adapter_data;
3105         struct ena_adapter *adapter = eth_dev->data->dev_private;
3106         struct ena_admin_ena_hw_hints *hints;
3107
3108         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3109                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3110                         aenq_e->aenq_common_desc.group,
3111                         ENA_ADMIN_NOTIFICATION);
3112
3113         switch (aenq_e->aenq_common_desc.syndrome) {
3114         case ENA_ADMIN_UPDATE_HINTS:
3115                 hints = (struct ena_admin_ena_hw_hints *)
3116                         (&aenq_e->inline_data_w4);
3117                 ena_update_hints(adapter, hints);
3118                 break;
3119         default:
3120                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3121                         aenq_e->aenq_common_desc.syndrome);
3122         }
3123 }
3124
3125 static void ena_keep_alive(void *adapter_data,
3126                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3127 {
3128         struct rte_eth_dev *eth_dev = adapter_data;
3129         struct ena_adapter *adapter = eth_dev->data->dev_private;
3130         struct ena_admin_aenq_keep_alive_desc *desc;
3131         uint64_t rx_drops;
3132         uint64_t tx_drops;
3133
3134         adapter->timestamp_wd = rte_get_timer_cycles();
3135
3136         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3137         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3138         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3139
3140         adapter->drv_stats->rx_drops = rx_drops;
3141         adapter->dev_stats.tx_drops = tx_drops;
3142 }
3143
3144 /**
3145  * This handler will called for unknown event group or unimplemented handlers
3146  **/
3147 static void unimplemented_aenq_handler(__rte_unused void *data,
3148                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3149 {
3150         PMD_DRV_LOG(ERR,
3151                 "Unknown event was received or event with unimplemented handler\n");
3152 }
3153
3154 static struct ena_aenq_handlers aenq_handlers = {
3155         .handlers = {
3156                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3157                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3158                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3159         },
3160         .unimplemented_handler = unimplemented_aenq_handler
3161 };