net/ena: fix meta descriptor DF flag setup
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    5
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 struct ena_stats {
42         char name[ETH_GSTRING_LEN];
43         int stat_offset;
44 };
45
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47         .name = #stat, \
48         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50
51 #define ENA_STAT_RX_ENTRY(stat) \
52         ENA_STAT_ENTRY(stat, rx)
53
54 #define ENA_STAT_TX_ENTRY(stat) \
55         ENA_STAT_ENTRY(stat, tx)
56
57 #define ENA_STAT_ENI_ENTRY(stat) \
58         ENA_STAT_ENTRY(stat, eni)
59
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61         ENA_STAT_ENTRY(stat, dev)
62
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65 /* Timeout in seconds after which a single uncompleted Tx packet should be
66  * considered as a missing.
67  */
68 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
69
70 /*
71  * Each rte_memzone should have unique name.
72  * To satisfy it, count number of allocation and add it to name.
73  */
74 rte_atomic64_t ena_alloc_cnt;
75
76 static const struct ena_stats ena_stats_global_strings[] = {
77         ENA_STAT_GLOBAL_ENTRY(wd_expired),
78         ENA_STAT_GLOBAL_ENTRY(dev_start),
79         ENA_STAT_GLOBAL_ENTRY(dev_stop),
80         ENA_STAT_GLOBAL_ENTRY(tx_drops),
81 };
82
83 static const struct ena_stats ena_stats_eni_strings[] = {
84         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
85         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
86         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
87         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
88         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
89 };
90
91 static const struct ena_stats ena_stats_tx_strings[] = {
92         ENA_STAT_TX_ENTRY(cnt),
93         ENA_STAT_TX_ENTRY(bytes),
94         ENA_STAT_TX_ENTRY(prepare_ctx_err),
95         ENA_STAT_TX_ENTRY(tx_poll),
96         ENA_STAT_TX_ENTRY(doorbells),
97         ENA_STAT_TX_ENTRY(bad_req_id),
98         ENA_STAT_TX_ENTRY(available_desc),
99         ENA_STAT_TX_ENTRY(missed_tx),
100 };
101
102 static const struct ena_stats ena_stats_rx_strings[] = {
103         ENA_STAT_RX_ENTRY(cnt),
104         ENA_STAT_RX_ENTRY(bytes),
105         ENA_STAT_RX_ENTRY(refill_partial),
106         ENA_STAT_RX_ENTRY(l3_csum_bad),
107         ENA_STAT_RX_ENTRY(l4_csum_bad),
108         ENA_STAT_RX_ENTRY(l4_csum_good),
109         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110         ENA_STAT_RX_ENTRY(bad_desc_num),
111         ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113
114 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
118
119 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
120                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
121                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
122                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
124                        RTE_MBUF_F_TX_IP_CKSUM |\
125                        RTE_MBUF_F_TX_TCP_SEG)
126
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF            0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
132
133 #define ENA_TX_OFFLOAD_MASK     (RTE_MBUF_F_TX_L4_MASK |         \
134         RTE_MBUF_F_TX_IPV6 |            \
135         RTE_MBUF_F_TX_IPV4 |            \
136         RTE_MBUF_F_TX_IP_CKSUM |        \
137         RTE_MBUF_F_TX_TCP_SEG)
138
139 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
140         (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
141
142 /** HW specific offloads capabilities. */
143 /* IPv4 checksum offload. */
144 #define ENA_L3_IPV4_CSUM                0x0001
145 /* TCP/UDP checksum offload for IPv4 packets. */
146 #define ENA_L4_IPV4_CSUM                0x0002
147 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
148 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
149 /* TCP/UDP checksum offload for IPv6 packets. */
150 #define ENA_L4_IPV6_CSUM                0x0008
151 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
152 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
153 /* TSO support for IPv4 packets. */
154 #define ENA_IPV4_TSO                    0x0020
155
156 /* Device supports setting RSS hash. */
157 #define ENA_RX_RSS_HASH                 0x0040
158
159 static const struct rte_pci_id pci_id_ena_map[] = {
160         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
161         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
162         { .device_id = 0 },
163 };
164
165 static struct ena_aenq_handlers aenq_handlers;
166
167 static int ena_device_init(struct ena_adapter *adapter,
168                            struct rte_pci_device *pdev,
169                            struct ena_com_dev_get_features_ctx *get_feat_ctx);
170 static int ena_dev_configure(struct rte_eth_dev *dev);
171 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
172         struct ena_tx_buffer *tx_info,
173         struct rte_mbuf *mbuf,
174         void **push_header,
175         uint16_t *header_len);
176 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
177 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179                                   uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181                 uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183                               uint16_t nb_desc, unsigned int socket_id,
184                               const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186                               uint16_t nb_desc, unsigned int socket_id,
187                               const struct rte_eth_rxconf *rx_conf,
188                               struct rte_mempool *mp);
189 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
191                                     struct ena_com_rx_buf_info *ena_bufs,
192                                     uint32_t descs,
193                                     uint16_t *next_to_clean,
194                                     uint8_t offset);
195 static uint16_t eth_ena_recv_pkts(void *rx_queue,
196                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
197 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
198                                   struct rte_mbuf *mbuf, uint16_t id);
199 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
200 static void ena_init_rings(struct ena_adapter *adapter,
201                            bool disable_meta_caching);
202 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
203 static int ena_start(struct rte_eth_dev *dev);
204 static int ena_stop(struct rte_eth_dev *dev);
205 static int ena_close(struct rte_eth_dev *dev);
206 static int ena_dev_reset(struct rte_eth_dev *dev);
207 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
208 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
209 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
210 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
211 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
212 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
213 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
214 static int ena_link_update(struct rte_eth_dev *dev,
215                            int wait_to_complete);
216 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
217 static void ena_queue_stop(struct ena_ring *ring);
218 static void ena_queue_stop_all(struct rte_eth_dev *dev,
219                               enum ena_ring_type ring_type);
220 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
221 static int ena_queue_start_all(struct rte_eth_dev *dev,
222                                enum ena_ring_type ring_type);
223 static void ena_stats_restart(struct rte_eth_dev *dev);
224 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
225 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
226 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
228 static int ena_infos_get(struct rte_eth_dev *dev,
229                          struct rte_eth_dev_info *dev_info);
230 static void ena_interrupt_handler_rte(void *cb_arg);
231 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
232 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
233 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
234 static int ena_xstats_get_names(struct rte_eth_dev *dev,
235                                 struct rte_eth_xstat_name *xstats_names,
236                                 unsigned int n);
237 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
238                                       const uint64_t *ids,
239                                       struct rte_eth_xstat_name *xstats_names,
240                                       unsigned int size);
241 static int ena_xstats_get(struct rte_eth_dev *dev,
242                           struct rte_eth_xstat *stats,
243                           unsigned int n);
244 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
245                                 const uint64_t *ids,
246                                 uint64_t *values,
247                                 unsigned int n);
248 static int ena_process_bool_devarg(const char *key,
249                                    const char *value,
250                                    void *opaque);
251 static int ena_parse_devargs(struct ena_adapter *adapter,
252                              struct rte_devargs *devargs);
253 static int ena_copy_eni_stats(struct ena_adapter *adapter,
254                               struct ena_stats_eni *stats);
255 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
256 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
257                                     uint16_t queue_id);
258 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
259                                      uint16_t queue_id);
260 static int ena_configure_aenq(struct ena_adapter *adapter);
261 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
262                                  const void *peer);
263
264 static const struct eth_dev_ops ena_dev_ops = {
265         .dev_configure          = ena_dev_configure,
266         .dev_infos_get          = ena_infos_get,
267         .rx_queue_setup         = ena_rx_queue_setup,
268         .tx_queue_setup         = ena_tx_queue_setup,
269         .dev_start              = ena_start,
270         .dev_stop               = ena_stop,
271         .link_update            = ena_link_update,
272         .stats_get              = ena_stats_get,
273         .xstats_get_names       = ena_xstats_get_names,
274         .xstats_get_names_by_id = ena_xstats_get_names_by_id,
275         .xstats_get             = ena_xstats_get,
276         .xstats_get_by_id       = ena_xstats_get_by_id,
277         .mtu_set                = ena_mtu_set,
278         .rx_queue_release       = ena_rx_queue_release,
279         .tx_queue_release       = ena_tx_queue_release,
280         .dev_close              = ena_close,
281         .dev_reset              = ena_dev_reset,
282         .reta_update            = ena_rss_reta_update,
283         .reta_query             = ena_rss_reta_query,
284         .rx_queue_intr_enable   = ena_rx_queue_intr_enable,
285         .rx_queue_intr_disable  = ena_rx_queue_intr_disable,
286         .rss_hash_update        = ena_rss_hash_update,
287         .rss_hash_conf_get      = ena_rss_hash_conf_get,
288         .tx_done_cleanup        = ena_tx_cleanup,
289 };
290
291 /*********************************************************************
292  *  Multi-Process communication bits
293  *********************************************************************/
294 /* rte_mp IPC message name */
295 #define ENA_MP_NAME     "net_ena_mp"
296 /* Request timeout in seconds */
297 #define ENA_MP_REQ_TMO  5
298
299 /** Proxy request type */
300 enum ena_mp_req {
301         ENA_MP_DEV_STATS_GET,
302         ENA_MP_ENI_STATS_GET,
303         ENA_MP_MTU_SET,
304         ENA_MP_IND_TBL_GET,
305         ENA_MP_IND_TBL_SET
306 };
307
308 /** Proxy message body. Shared between requests and responses. */
309 struct ena_mp_body {
310         /* Message type */
311         enum ena_mp_req type;
312         int port_id;
313         /* Processing result. Set in replies. 0 if message succeeded, negative
314          * error code otherwise.
315          */
316         int result;
317         union {
318                 int mtu; /* For ENA_MP_MTU_SET */
319         } args;
320 };
321
322 /**
323  * Initialize IPC message.
324  *
325  * @param[out] msg
326  *   Pointer to the message to initialize.
327  * @param[in] type
328  *   Message type.
329  * @param[in] port_id
330  *   Port ID of target device.
331  *
332  */
333 static void
334 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
335 {
336         struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
337
338         memset(msg, 0, sizeof(*msg));
339         strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
340         msg->len_param = sizeof(*body);
341         body->type = type;
342         body->port_id = port_id;
343 }
344
345 /*********************************************************************
346  *  Multi-Process communication PMD API
347  *********************************************************************/
348 /**
349  * Define proxy request descriptor
350  *
351  * Used to define all structures and functions required for proxying a given
352  * function to the primary process including the code to perform to prepare the
353  * request and process the response.
354  *
355  * @param[in] f
356  *   Name of the function to proxy
357  * @param[in] t
358  *   Message type to use
359  * @param[in] prep
360  *   Body of a function to prepare the request in form of a statement
361  *   expression. It is passed all the original function arguments along with two
362  *   extra ones:
363  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
364  *   - struct ena_mp_body *req - body of a request to prepare.
365  * @param[in] proc
366  *   Body of a function to process the response in form of a statement
367  *   expression. It is passed all the original function arguments along with two
368  *   extra ones:
369  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
370  *   - struct ena_mp_body *rsp - body of a response to process.
371  * @param ...
372  *   Proxied function's arguments
373  *
374  * @note Inside prep and proc any parameters which aren't used should be marked
375  *       as such (with ENA_TOUCH or __rte_unused).
376  */
377 #define ENA_PROXY_DESC(f, t, prep, proc, ...)                   \
378         static const enum ena_mp_req mp_type_ ## f =  t;        \
379         static const char *mp_name_ ## f = #t;                  \
380         static void mp_prep_ ## f(struct ena_adapter *adapter,  \
381                                   struct ena_mp_body *req,      \
382                                   __VA_ARGS__)                  \
383         {                                                       \
384                 prep;                                           \
385         }                                                       \
386         static void mp_proc_ ## f(struct ena_adapter *adapter,  \
387                                   struct ena_mp_body *rsp,      \
388                                   __VA_ARGS__)                  \
389         {                                                       \
390                 proc;                                           \
391         }
392
393 /**
394  * Proxy wrapper for calling primary functions in a secondary process.
395  *
396  * Depending on whether called in primary or secondary process, calls the
397  * @p func directly or proxies the call to the primary process via rte_mp IPC.
398  * This macro requires a proxy request descriptor to be defined for @p func
399  * using ENA_PROXY_DESC() macro.
400  *
401  * @param[in/out] a
402  *   Device PMD data. Used for sending the message and sharing message results
403  *   between primary and secondary.
404  * @param[in] f
405  *   Function to proxy.
406  * @param ...
407  *   Arguments of @p func.
408  *
409  * @return
410  *   - 0: Processing succeeded and response handler was called.
411  *   - -EPERM: IPC is unavailable on this platform. This means only primary
412  *             process may call the proxied function.
413  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
414  *             error code.
415  *   - Negative error code from the proxied function.
416  *
417  * @note This mechanism is geared towards control-path tasks. Avoid calling it
418  *       in fast-path unless unbound delays are allowed. This is due to the IPC
419  *       mechanism itself (socket based).
420  * @note Due to IPC parameter size limitations the proxy logic shares call
421  *       results through the struct ena_adapter shared memory. This makes the
422  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
423  *       calls to the same proxied function under the same lock.
424  */
425 #define ENA_PROXY(a, f, ...)                                            \
426 ({                                                                      \
427         struct ena_adapter *_a = (a);                                   \
428         struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };              \
429         struct ena_mp_body *req, *rsp;                                  \
430         struct rte_mp_reply mp_rep;                                     \
431         struct rte_mp_msg mp_req;                                       \
432         int ret;                                                        \
433                                                                         \
434         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {               \
435                 ret = f(__VA_ARGS__);                                   \
436         } else {                                                        \
437                 /* Prepare and send request */                          \
438                 req = (struct ena_mp_body *)&mp_req.param;              \
439                 mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
440                 mp_prep_ ## f(_a, req, ## __VA_ARGS__);                 \
441                                                                         \
442                 ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);       \
443                 if (likely(!ret)) {                                     \
444                         RTE_ASSERT(mp_rep.nb_received == 1);            \
445                         rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
446                         ret = rsp->result;                              \
447                         if (ret == 0) {                                 \
448                                 mp_proc_##f(_a, rsp, ## __VA_ARGS__);   \
449                         } else {                                        \
450                                 PMD_DRV_LOG(ERR,                        \
451                                             "%s returned error: %d\n",  \
452                                             mp_name_ ## f, rsp->result);\
453                         }                                               \
454                         free(mp_rep.msgs);                              \
455                 } else if (rte_errno == ENOTSUP) {                      \
456                         PMD_DRV_LOG(ERR,                                \
457                                     "No IPC, can't proxy to primary\n");\
458                         ret = -rte_errno;                               \
459                 } else {                                                \
460                         PMD_DRV_LOG(ERR, "Request %s failed: %s\n",     \
461                                     mp_name_ ## f,                      \
462                                     rte_strerror(rte_errno));           \
463                         ret = -EIO;                                     \
464                 }                                                       \
465         }                                                               \
466         ret;                                                            \
467 })
468
469 /*********************************************************************
470  *  Multi-Process communication request descriptors
471  *********************************************************************/
472
473 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
474 ({
475         ENA_TOUCH(adapter);
476         ENA_TOUCH(req);
477         ENA_TOUCH(ena_dev);
478         ENA_TOUCH(stats);
479 }),
480 ({
481         ENA_TOUCH(rsp);
482         ENA_TOUCH(ena_dev);
483         if (stats != &adapter->basic_stats)
484                 rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
485 }),
486         struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
487
488 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
489 ({
490         ENA_TOUCH(adapter);
491         ENA_TOUCH(req);
492         ENA_TOUCH(ena_dev);
493         ENA_TOUCH(stats);
494 }),
495 ({
496         ENA_TOUCH(rsp);
497         ENA_TOUCH(ena_dev);
498         if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
499                 rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
500 }),
501         struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
502
503 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
504 ({
505         ENA_TOUCH(adapter);
506         ENA_TOUCH(ena_dev);
507         req->args.mtu = mtu;
508 }),
509 ({
510         ENA_TOUCH(adapter);
511         ENA_TOUCH(rsp);
512         ENA_TOUCH(ena_dev);
513         ENA_TOUCH(mtu);
514 }),
515         struct ena_com_dev *ena_dev, int mtu);
516
517 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
518 ({
519         ENA_TOUCH(adapter);
520         ENA_TOUCH(req);
521         ENA_TOUCH(ena_dev);
522 }),
523 ({
524         ENA_TOUCH(adapter);
525         ENA_TOUCH(rsp);
526         ENA_TOUCH(ena_dev);
527 }),
528         struct ena_com_dev *ena_dev);
529
530 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
531 ({
532         ENA_TOUCH(adapter);
533         ENA_TOUCH(req);
534         ENA_TOUCH(ena_dev);
535         ENA_TOUCH(ind_tbl);
536 }),
537 ({
538         ENA_TOUCH(rsp);
539         ENA_TOUCH(ena_dev);
540         if (ind_tbl != adapter->indirect_table)
541                 rte_memcpy(ind_tbl, adapter->indirect_table,
542                            sizeof(adapter->indirect_table));
543 }),
544         struct ena_com_dev *ena_dev, u32 *ind_tbl);
545
546 static inline void ena_trigger_reset(struct ena_adapter *adapter,
547                                      enum ena_regs_reset_reason_types reason)
548 {
549         if (likely(!adapter->trigger_reset)) {
550                 adapter->reset_reason = reason;
551                 adapter->trigger_reset = true;
552         }
553 }
554
555 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
556                                        struct rte_mbuf *mbuf,
557                                        struct ena_com_rx_ctx *ena_rx_ctx,
558                                        bool fill_hash)
559 {
560         struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
561         uint64_t ol_flags = 0;
562         uint32_t packet_type = 0;
563
564         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
565                 packet_type |= RTE_PTYPE_L4_TCP;
566         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
567                 packet_type |= RTE_PTYPE_L4_UDP;
568
569         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
570                 packet_type |= RTE_PTYPE_L3_IPV4;
571                 if (unlikely(ena_rx_ctx->l3_csum_err)) {
572                         ++rx_stats->l3_csum_bad;
573                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
574                 } else {
575                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
576                 }
577         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
578                 packet_type |= RTE_PTYPE_L3_IPV6;
579         }
580
581         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
582                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
583         } else {
584                 if (unlikely(ena_rx_ctx->l4_csum_err)) {
585                         ++rx_stats->l4_csum_bad;
586                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
587                 } else {
588                         ++rx_stats->l4_csum_good;
589                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
590                 }
591         }
592
593         if (fill_hash &&
594             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
595                 ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
596                 mbuf->hash.rss = ena_rx_ctx->hash;
597         }
598
599         mbuf->ol_flags = ol_flags;
600         mbuf->packet_type = packet_type;
601 }
602
603 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
604                                        struct ena_com_tx_ctx *ena_tx_ctx,
605                                        uint64_t queue_offloads,
606                                        bool disable_meta_caching)
607 {
608         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
609
610         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
611             (queue_offloads & QUEUE_OFFLOADS)) {
612                 /* check if TSO is required */
613                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
614                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
615                         ena_tx_ctx->tso_enable = true;
616
617                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
618                 }
619
620                 /* check if L3 checksum is needed */
621                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
622                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
623                         ena_tx_ctx->l3_csum_enable = true;
624
625                 if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
626                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
627                         /* For the IPv6 packets, DF always needs to be true. */
628                         ena_tx_ctx->df = 1;
629                 } else {
630                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
631
632                         /* set don't fragment (DF) flag */
633                         if (mbuf->packet_type &
634                                 (RTE_PTYPE_L4_NONFRAG
635                                  | RTE_PTYPE_INNER_L4_NONFRAG))
636                                 ena_tx_ctx->df = 1;
637                 }
638
639                 /* check if L4 checksum is needed */
640                 if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
641                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
642                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
643                         ena_tx_ctx->l4_csum_enable = true;
644                 } else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
645                                 RTE_MBUF_F_TX_UDP_CKSUM) &&
646                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
647                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
648                         ena_tx_ctx->l4_csum_enable = true;
649                 } else {
650                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
651                         ena_tx_ctx->l4_csum_enable = false;
652                 }
653
654                 ena_meta->mss = mbuf->tso_segsz;
655                 ena_meta->l3_hdr_len = mbuf->l3_len;
656                 ena_meta->l3_hdr_offset = mbuf->l2_len;
657
658                 ena_tx_ctx->meta_valid = true;
659         } else if (disable_meta_caching) {
660                 memset(ena_meta, 0, sizeof(*ena_meta));
661                 ena_tx_ctx->meta_valid = true;
662         } else {
663                 ena_tx_ctx->meta_valid = false;
664         }
665 }
666
667 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
668 {
669         struct ena_tx_buffer *tx_info = NULL;
670
671         if (likely(req_id < tx_ring->ring_size)) {
672                 tx_info = &tx_ring->tx_buffer_info[req_id];
673                 if (likely(tx_info->mbuf))
674                         return 0;
675         }
676
677         if (tx_info)
678                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
679         else
680                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
681
682         /* Trigger device reset */
683         ++tx_ring->tx_stats.bad_req_id;
684         ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
685         return -EFAULT;
686 }
687
688 static void ena_config_host_info(struct ena_com_dev *ena_dev)
689 {
690         struct ena_admin_host_info *host_info;
691         int rc;
692
693         /* Allocate only the host info */
694         rc = ena_com_allocate_host_info(ena_dev);
695         if (rc) {
696                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
697                 return;
698         }
699
700         host_info = ena_dev->host_attr.host_info;
701
702         host_info->os_type = ENA_ADMIN_OS_DPDK;
703         host_info->kernel_ver = RTE_VERSION;
704         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
705                 sizeof(host_info->kernel_ver_str));
706         host_info->os_dist = RTE_VERSION;
707         strlcpy((char *)host_info->os_dist_str, rte_version(),
708                 sizeof(host_info->os_dist_str));
709         host_info->driver_version =
710                 (DRV_MODULE_VER_MAJOR) |
711                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
712                 (DRV_MODULE_VER_SUBMINOR <<
713                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
714         host_info->num_cpus = rte_lcore_count();
715
716         host_info->driver_supported_features =
717                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
718                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
719
720         rc = ena_com_set_host_attributes(ena_dev);
721         if (rc) {
722                 if (rc == -ENA_COM_UNSUPPORTED)
723                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
724                 else
725                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
726
727                 goto err;
728         }
729
730         return;
731
732 err:
733         ena_com_delete_host_info(ena_dev);
734 }
735
736 /* This function calculates the number of xstats based on the current config */
737 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
738 {
739         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
740                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
741                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
742 }
743
744 static void ena_config_debug_area(struct ena_adapter *adapter)
745 {
746         u32 debug_area_size;
747         int rc, ss_count;
748
749         ss_count = ena_xstats_calc_num(adapter->edev_data);
750
751         /* allocate 32 bytes for each string and 64bit for the value */
752         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
753
754         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
755         if (rc) {
756                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
757                 return;
758         }
759
760         rc = ena_com_set_host_attributes(&adapter->ena_dev);
761         if (rc) {
762                 if (rc == -ENA_COM_UNSUPPORTED)
763                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
764                 else
765                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
766
767                 goto err;
768         }
769
770         return;
771 err:
772         ena_com_delete_debug_area(&adapter->ena_dev);
773 }
774
775 static int ena_close(struct rte_eth_dev *dev)
776 {
777         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
778         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
779         struct ena_adapter *adapter = dev->data->dev_private;
780         int ret = 0;
781
782         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
783                 return 0;
784
785         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
786                 ret = ena_stop(dev);
787         adapter->state = ENA_ADAPTER_STATE_CLOSED;
788
789         ena_rx_queue_release_all(dev);
790         ena_tx_queue_release_all(dev);
791
792         rte_free(adapter->drv_stats);
793         adapter->drv_stats = NULL;
794
795         rte_intr_disable(intr_handle);
796         rte_intr_callback_unregister(intr_handle,
797                                      ena_interrupt_handler_rte,
798                                      dev);
799
800         /*
801          * MAC is not allocated dynamically. Setting NULL should prevent from
802          * release of the resource in the rte_eth_dev_release_port().
803          */
804         dev->data->mac_addrs = NULL;
805
806         return ret;
807 }
808
809 static int
810 ena_dev_reset(struct rte_eth_dev *dev)
811 {
812         int rc = 0;
813
814         /* Cannot release memory in secondary process */
815         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
816                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
817                 return -EPERM;
818         }
819
820         ena_destroy_device(dev);
821         rc = eth_ena_dev_init(dev);
822         if (rc)
823                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
824
825         return rc;
826 }
827
828 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
829 {
830         int nb_queues = dev->data->nb_rx_queues;
831         int i;
832
833         for (i = 0; i < nb_queues; i++)
834                 ena_rx_queue_release(dev, i);
835 }
836
837 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
838 {
839         int nb_queues = dev->data->nb_tx_queues;
840         int i;
841
842         for (i = 0; i < nb_queues; i++)
843                 ena_tx_queue_release(dev, i);
844 }
845
846 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
847 {
848         struct ena_ring *ring = dev->data->rx_queues[qid];
849
850         /* Free ring resources */
851         rte_free(ring->rx_buffer_info);
852         ring->rx_buffer_info = NULL;
853
854         rte_free(ring->rx_refill_buffer);
855         ring->rx_refill_buffer = NULL;
856
857         rte_free(ring->empty_rx_reqs);
858         ring->empty_rx_reqs = NULL;
859
860         ring->configured = 0;
861
862         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
863                 ring->port_id, ring->id);
864 }
865
866 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
867 {
868         struct ena_ring *ring = dev->data->tx_queues[qid];
869
870         /* Free ring resources */
871         rte_free(ring->push_buf_intermediate_buf);
872
873         rte_free(ring->tx_buffer_info);
874
875         rte_free(ring->empty_tx_reqs);
876
877         ring->empty_tx_reqs = NULL;
878         ring->tx_buffer_info = NULL;
879         ring->push_buf_intermediate_buf = NULL;
880
881         ring->configured = 0;
882
883         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
884                 ring->port_id, ring->id);
885 }
886
887 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
888 {
889         unsigned int i;
890
891         for (i = 0; i < ring->ring_size; ++i) {
892                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
893                 if (rx_info->mbuf) {
894                         rte_mbuf_raw_free(rx_info->mbuf);
895                         rx_info->mbuf = NULL;
896                 }
897         }
898 }
899
900 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
901 {
902         unsigned int i;
903
904         for (i = 0; i < ring->ring_size; ++i) {
905                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
906
907                 if (tx_buf->mbuf) {
908                         rte_pktmbuf_free(tx_buf->mbuf);
909                         tx_buf->mbuf = NULL;
910                 }
911         }
912 }
913
914 static int ena_link_update(struct rte_eth_dev *dev,
915                            __rte_unused int wait_to_complete)
916 {
917         struct rte_eth_link *link = &dev->data->dev_link;
918         struct ena_adapter *adapter = dev->data->dev_private;
919
920         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
921         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
922         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
923
924         return 0;
925 }
926
927 static int ena_queue_start_all(struct rte_eth_dev *dev,
928                                enum ena_ring_type ring_type)
929 {
930         struct ena_adapter *adapter = dev->data->dev_private;
931         struct ena_ring *queues = NULL;
932         int nb_queues;
933         int i = 0;
934         int rc = 0;
935
936         if (ring_type == ENA_RING_TYPE_RX) {
937                 queues = adapter->rx_ring;
938                 nb_queues = dev->data->nb_rx_queues;
939         } else {
940                 queues = adapter->tx_ring;
941                 nb_queues = dev->data->nb_tx_queues;
942         }
943         for (i = 0; i < nb_queues; i++) {
944                 if (queues[i].configured) {
945                         if (ring_type == ENA_RING_TYPE_RX) {
946                                 ena_assert_msg(
947                                         dev->data->rx_queues[i] == &queues[i],
948                                         "Inconsistent state of Rx queues\n");
949                         } else {
950                                 ena_assert_msg(
951                                         dev->data->tx_queues[i] == &queues[i],
952                                         "Inconsistent state of Tx queues\n");
953                         }
954
955                         rc = ena_queue_start(dev, &queues[i]);
956
957                         if (rc) {
958                                 PMD_INIT_LOG(ERR,
959                                         "Failed to start queue[%d] of type(%d)\n",
960                                         i, ring_type);
961                                 goto err;
962                         }
963                 }
964         }
965
966         return 0;
967
968 err:
969         while (i--)
970                 if (queues[i].configured)
971                         ena_queue_stop(&queues[i]);
972
973         return rc;
974 }
975
976 static int ena_check_valid_conf(struct ena_adapter *adapter)
977 {
978         uint32_t mtu = adapter->edev_data->mtu;
979
980         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
981                 PMD_INIT_LOG(ERR,
982                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
983                         mtu, adapter->max_mtu, ENA_MIN_MTU);
984                 return ENA_COM_UNSUPPORTED;
985         }
986
987         return 0;
988 }
989
990 static int
991 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
992                        bool use_large_llq_hdr)
993 {
994         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
995         struct ena_com_dev *ena_dev = ctx->ena_dev;
996         uint32_t max_tx_queue_size;
997         uint32_t max_rx_queue_size;
998
999         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1000                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1001                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1002                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1003                         max_queue_ext->max_rx_sq_depth);
1004                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1005
1006                 if (ena_dev->tx_mem_queue_type ==
1007                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1008                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1009                                 llq->max_llq_depth);
1010                 } else {
1011                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1012                                 max_queue_ext->max_tx_sq_depth);
1013                 }
1014
1015                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1016                         max_queue_ext->max_per_packet_rx_descs);
1017                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1018                         max_queue_ext->max_per_packet_tx_descs);
1019         } else {
1020                 struct ena_admin_queue_feature_desc *max_queues =
1021                         &ctx->get_feat_ctx->max_queues;
1022                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1023                         max_queues->max_sq_depth);
1024                 max_tx_queue_size = max_queues->max_cq_depth;
1025
1026                 if (ena_dev->tx_mem_queue_type ==
1027                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1028                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1029                                 llq->max_llq_depth);
1030                 } else {
1031                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1032                                 max_queues->max_sq_depth);
1033                 }
1034
1035                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1036                         max_queues->max_packet_rx_descs);
1037                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1038                         max_queues->max_packet_tx_descs);
1039         }
1040
1041         /* Round down to the nearest power of 2 */
1042         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1043         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1044
1045         if (use_large_llq_hdr) {
1046                 if ((llq->entry_size_ctrl_supported &
1047                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1048                     (ena_dev->tx_mem_queue_type ==
1049                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1050                         max_tx_queue_size /= 2;
1051                         PMD_INIT_LOG(INFO,
1052                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
1053                                 max_tx_queue_size);
1054                 } else {
1055                         PMD_INIT_LOG(ERR,
1056                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1057                 }
1058         }
1059
1060         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1061                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
1062                 return -EFAULT;
1063         }
1064
1065         ctx->max_tx_queue_size = max_tx_queue_size;
1066         ctx->max_rx_queue_size = max_rx_queue_size;
1067
1068         return 0;
1069 }
1070
1071 static void ena_stats_restart(struct rte_eth_dev *dev)
1072 {
1073         struct ena_adapter *adapter = dev->data->dev_private;
1074
1075         rte_atomic64_init(&adapter->drv_stats->ierrors);
1076         rte_atomic64_init(&adapter->drv_stats->oerrors);
1077         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1078         adapter->drv_stats->rx_drops = 0;
1079 }
1080
1081 static int ena_stats_get(struct rte_eth_dev *dev,
1082                           struct rte_eth_stats *stats)
1083 {
1084         struct ena_admin_basic_stats ena_stats;
1085         struct ena_adapter *adapter = dev->data->dev_private;
1086         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1087         int rc;
1088         int i;
1089         int max_rings_stats;
1090
1091         memset(&ena_stats, 0, sizeof(ena_stats));
1092
1093         rte_spinlock_lock(&adapter->admin_lock);
1094         rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1095                        &ena_stats);
1096         rte_spinlock_unlock(&adapter->admin_lock);
1097         if (unlikely(rc)) {
1098                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1099                 return rc;
1100         }
1101
1102         /* Set of basic statistics from ENA */
1103         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1104                                           ena_stats.rx_pkts_low);
1105         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1106                                           ena_stats.tx_pkts_low);
1107         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1108                                         ena_stats.rx_bytes_low);
1109         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1110                                         ena_stats.tx_bytes_low);
1111
1112         /* Driver related stats */
1113         stats->imissed = adapter->drv_stats->rx_drops;
1114         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1115         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1116         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1117
1118         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1119                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1120         for (i = 0; i < max_rings_stats; ++i) {
1121                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1122
1123                 stats->q_ibytes[i] = rx_stats->bytes;
1124                 stats->q_ipackets[i] = rx_stats->cnt;
1125                 stats->q_errors[i] = rx_stats->bad_desc_num +
1126                         rx_stats->bad_req_id;
1127         }
1128
1129         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1130                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1131         for (i = 0; i < max_rings_stats; ++i) {
1132                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1133
1134                 stats->q_obytes[i] = tx_stats->bytes;
1135                 stats->q_opackets[i] = tx_stats->cnt;
1136         }
1137
1138         return 0;
1139 }
1140
1141 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1142 {
1143         struct ena_adapter *adapter;
1144         struct ena_com_dev *ena_dev;
1145         int rc = 0;
1146
1147         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1148         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1149         adapter = dev->data->dev_private;
1150
1151         ena_dev = &adapter->ena_dev;
1152         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1153
1154         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1155                 PMD_DRV_LOG(ERR,
1156                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1157                         mtu, adapter->max_mtu, ENA_MIN_MTU);
1158                 return -EINVAL;
1159         }
1160
1161         rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1162         if (rc)
1163                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1164         else
1165                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1166
1167         return rc;
1168 }
1169
1170 static int ena_start(struct rte_eth_dev *dev)
1171 {
1172         struct ena_adapter *adapter = dev->data->dev_private;
1173         uint64_t ticks;
1174         int rc = 0;
1175
1176         /* Cannot allocate memory in secondary process */
1177         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1178                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1179                 return -EPERM;
1180         }
1181
1182         rc = ena_check_valid_conf(adapter);
1183         if (rc)
1184                 return rc;
1185
1186         rc = ena_setup_rx_intr(dev);
1187         if (rc)
1188                 return rc;
1189
1190         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1191         if (rc)
1192                 return rc;
1193
1194         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1195         if (rc)
1196                 goto err_start_tx;
1197
1198         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1199                 rc = ena_rss_configure(adapter);
1200                 if (rc)
1201                         goto err_rss_init;
1202         }
1203
1204         ena_stats_restart(dev);
1205
1206         adapter->timestamp_wd = rte_get_timer_cycles();
1207         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1208
1209         ticks = rte_get_timer_hz();
1210         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1211                         ena_timer_wd_callback, dev);
1212
1213         ++adapter->dev_stats.dev_start;
1214         adapter->state = ENA_ADAPTER_STATE_RUNNING;
1215
1216         return 0;
1217
1218 err_rss_init:
1219         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1220 err_start_tx:
1221         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1222         return rc;
1223 }
1224
1225 static int ena_stop(struct rte_eth_dev *dev)
1226 {
1227         struct ena_adapter *adapter = dev->data->dev_private;
1228         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1229         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1230         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1231         int rc;
1232
1233         /* Cannot free memory in secondary process */
1234         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1235                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1236                 return -EPERM;
1237         }
1238
1239         rte_timer_stop_sync(&adapter->timer_wd);
1240         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1241         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1242
1243         if (adapter->trigger_reset) {
1244                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1245                 if (rc)
1246                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1247         }
1248
1249         rte_intr_disable(intr_handle);
1250
1251         rte_intr_efd_disable(intr_handle);
1252
1253         /* Cleanup vector list */
1254         rte_intr_vec_list_free(intr_handle);
1255
1256         rte_intr_enable(intr_handle);
1257
1258         ++adapter->dev_stats.dev_stop;
1259         adapter->state = ENA_ADAPTER_STATE_STOPPED;
1260         dev->data->dev_started = 0;
1261
1262         return 0;
1263 }
1264
1265 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1266 {
1267         struct ena_adapter *adapter = ring->adapter;
1268         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1269         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1270         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1271         struct ena_com_create_io_ctx ctx =
1272                 /* policy set to _HOST just to satisfy icc compiler */
1273                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1274                   0, 0, 0, 0, 0 };
1275         uint16_t ena_qid;
1276         unsigned int i;
1277         int rc;
1278
1279         ctx.msix_vector = -1;
1280         if (ring->type == ENA_RING_TYPE_TX) {
1281                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1282                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1283                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1284                 for (i = 0; i < ring->ring_size; i++)
1285                         ring->empty_tx_reqs[i] = i;
1286         } else {
1287                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1288                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1289                 if (rte_intr_dp_is_en(intr_handle))
1290                         ctx.msix_vector =
1291                                 rte_intr_vec_list_index_get(intr_handle,
1292                                                                    ring->id);
1293
1294                 for (i = 0; i < ring->ring_size; i++)
1295                         ring->empty_rx_reqs[i] = i;
1296         }
1297         ctx.queue_size = ring->ring_size;
1298         ctx.qid = ena_qid;
1299         ctx.numa_node = ring->numa_socket_id;
1300
1301         rc = ena_com_create_io_queue(ena_dev, &ctx);
1302         if (rc) {
1303                 PMD_DRV_LOG(ERR,
1304                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1305                         ring->id, ena_qid, rc);
1306                 return rc;
1307         }
1308
1309         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1310                                      &ring->ena_com_io_sq,
1311                                      &ring->ena_com_io_cq);
1312         if (rc) {
1313                 PMD_DRV_LOG(ERR,
1314                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1315                         ring->id, rc);
1316                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1317                 return rc;
1318         }
1319
1320         if (ring->type == ENA_RING_TYPE_TX)
1321                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1322
1323         /* Start with Rx interrupts being masked. */
1324         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1325                 ena_rx_queue_intr_disable(dev, ring->id);
1326
1327         return 0;
1328 }
1329
1330 static void ena_queue_stop(struct ena_ring *ring)
1331 {
1332         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1333
1334         if (ring->type == ENA_RING_TYPE_RX) {
1335                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1336                 ena_rx_queue_release_bufs(ring);
1337         } else {
1338                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1339                 ena_tx_queue_release_bufs(ring);
1340         }
1341 }
1342
1343 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1344                               enum ena_ring_type ring_type)
1345 {
1346         struct ena_adapter *adapter = dev->data->dev_private;
1347         struct ena_ring *queues = NULL;
1348         uint16_t nb_queues, i;
1349
1350         if (ring_type == ENA_RING_TYPE_RX) {
1351                 queues = adapter->rx_ring;
1352                 nb_queues = dev->data->nb_rx_queues;
1353         } else {
1354                 queues = adapter->tx_ring;
1355                 nb_queues = dev->data->nb_tx_queues;
1356         }
1357
1358         for (i = 0; i < nb_queues; ++i)
1359                 if (queues[i].configured)
1360                         ena_queue_stop(&queues[i]);
1361 }
1362
1363 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1364 {
1365         int rc, bufs_num;
1366
1367         ena_assert_msg(ring->configured == 1,
1368                        "Trying to start unconfigured queue\n");
1369
1370         rc = ena_create_io_queue(dev, ring);
1371         if (rc) {
1372                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1373                 return rc;
1374         }
1375
1376         ring->next_to_clean = 0;
1377         ring->next_to_use = 0;
1378
1379         if (ring->type == ENA_RING_TYPE_TX) {
1380                 ring->tx_stats.available_desc =
1381                         ena_com_free_q_entries(ring->ena_com_io_sq);
1382                 return 0;
1383         }
1384
1385         bufs_num = ring->ring_size - 1;
1386         rc = ena_populate_rx_queue(ring, bufs_num);
1387         if (rc != bufs_num) {
1388                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1389                                          ENA_IO_RXQ_IDX(ring->id));
1390                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1391                 return ENA_COM_FAULT;
1392         }
1393         /* Flush per-core RX buffers pools cache as they can be used on other
1394          * cores as well.
1395          */
1396         rte_mempool_cache_flush(NULL, ring->mb_pool);
1397
1398         return 0;
1399 }
1400
1401 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1402                               uint16_t queue_idx,
1403                               uint16_t nb_desc,
1404                               unsigned int socket_id,
1405                               const struct rte_eth_txconf *tx_conf)
1406 {
1407         struct ena_ring *txq = NULL;
1408         struct ena_adapter *adapter = dev->data->dev_private;
1409         unsigned int i;
1410         uint16_t dyn_thresh;
1411
1412         txq = &adapter->tx_ring[queue_idx];
1413
1414         if (txq->configured) {
1415                 PMD_DRV_LOG(CRIT,
1416                         "API violation. Queue[%d] is already configured\n",
1417                         queue_idx);
1418                 return ENA_COM_FAULT;
1419         }
1420
1421         if (!rte_is_power_of_2(nb_desc)) {
1422                 PMD_DRV_LOG(ERR,
1423                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1424                         nb_desc);
1425                 return -EINVAL;
1426         }
1427
1428         if (nb_desc > adapter->max_tx_ring_size) {
1429                 PMD_DRV_LOG(ERR,
1430                         "Unsupported size of Tx queue (max size: %d)\n",
1431                         adapter->max_tx_ring_size);
1432                 return -EINVAL;
1433         }
1434
1435         txq->port_id = dev->data->port_id;
1436         txq->next_to_clean = 0;
1437         txq->next_to_use = 0;
1438         txq->ring_size = nb_desc;
1439         txq->size_mask = nb_desc - 1;
1440         txq->numa_socket_id = socket_id;
1441         txq->pkts_without_db = false;
1442         txq->last_cleanup_ticks = 0;
1443
1444         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1445                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1446                 RTE_CACHE_LINE_SIZE,
1447                 socket_id);
1448         if (!txq->tx_buffer_info) {
1449                 PMD_DRV_LOG(ERR,
1450                         "Failed to allocate memory for Tx buffer info\n");
1451                 return -ENOMEM;
1452         }
1453
1454         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1455                 sizeof(uint16_t) * txq->ring_size,
1456                 RTE_CACHE_LINE_SIZE,
1457                 socket_id);
1458         if (!txq->empty_tx_reqs) {
1459                 PMD_DRV_LOG(ERR,
1460                         "Failed to allocate memory for empty Tx requests\n");
1461                 rte_free(txq->tx_buffer_info);
1462                 return -ENOMEM;
1463         }
1464
1465         txq->push_buf_intermediate_buf =
1466                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1467                         txq->tx_max_header_size,
1468                         RTE_CACHE_LINE_SIZE,
1469                         socket_id);
1470         if (!txq->push_buf_intermediate_buf) {
1471                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1472                 rte_free(txq->tx_buffer_info);
1473                 rte_free(txq->empty_tx_reqs);
1474                 return -ENOMEM;
1475         }
1476
1477         for (i = 0; i < txq->ring_size; i++)
1478                 txq->empty_tx_reqs[i] = i;
1479
1480         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1481
1482         /* Check if caller provided the Tx cleanup threshold value. */
1483         if (tx_conf->tx_free_thresh != 0) {
1484                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1485         } else {
1486                 dyn_thresh = txq->ring_size -
1487                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1488                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1489                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1490         }
1491
1492         txq->missing_tx_completion_threshold =
1493                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1494
1495         /* Store pointer to this queue in upper layer */
1496         txq->configured = 1;
1497         dev->data->tx_queues[queue_idx] = txq;
1498
1499         return 0;
1500 }
1501
1502 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1503                               uint16_t queue_idx,
1504                               uint16_t nb_desc,
1505                               unsigned int socket_id,
1506                               const struct rte_eth_rxconf *rx_conf,
1507                               struct rte_mempool *mp)
1508 {
1509         struct ena_adapter *adapter = dev->data->dev_private;
1510         struct ena_ring *rxq = NULL;
1511         size_t buffer_size;
1512         int i;
1513         uint16_t dyn_thresh;
1514
1515         rxq = &adapter->rx_ring[queue_idx];
1516         if (rxq->configured) {
1517                 PMD_DRV_LOG(CRIT,
1518                         "API violation. Queue[%d] is already configured\n",
1519                         queue_idx);
1520                 return ENA_COM_FAULT;
1521         }
1522
1523         if (!rte_is_power_of_2(nb_desc)) {
1524                 PMD_DRV_LOG(ERR,
1525                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1526                         nb_desc);
1527                 return -EINVAL;
1528         }
1529
1530         if (nb_desc > adapter->max_rx_ring_size) {
1531                 PMD_DRV_LOG(ERR,
1532                         "Unsupported size of Rx queue (max size: %d)\n",
1533                         adapter->max_rx_ring_size);
1534                 return -EINVAL;
1535         }
1536
1537         /* ENA isn't supporting buffers smaller than 1400 bytes */
1538         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1539         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1540                 PMD_DRV_LOG(ERR,
1541                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1542                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1543                 return -EINVAL;
1544         }
1545
1546         rxq->port_id = dev->data->port_id;
1547         rxq->next_to_clean = 0;
1548         rxq->next_to_use = 0;
1549         rxq->ring_size = nb_desc;
1550         rxq->size_mask = nb_desc - 1;
1551         rxq->numa_socket_id = socket_id;
1552         rxq->mb_pool = mp;
1553
1554         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1555                 sizeof(struct ena_rx_buffer) * nb_desc,
1556                 RTE_CACHE_LINE_SIZE,
1557                 socket_id);
1558         if (!rxq->rx_buffer_info) {
1559                 PMD_DRV_LOG(ERR,
1560                         "Failed to allocate memory for Rx buffer info\n");
1561                 return -ENOMEM;
1562         }
1563
1564         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1565                 sizeof(struct rte_mbuf *) * nb_desc,
1566                 RTE_CACHE_LINE_SIZE,
1567                 socket_id);
1568         if (!rxq->rx_refill_buffer) {
1569                 PMD_DRV_LOG(ERR,
1570                         "Failed to allocate memory for Rx refill buffer\n");
1571                 rte_free(rxq->rx_buffer_info);
1572                 rxq->rx_buffer_info = NULL;
1573                 return -ENOMEM;
1574         }
1575
1576         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1577                 sizeof(uint16_t) * nb_desc,
1578                 RTE_CACHE_LINE_SIZE,
1579                 socket_id);
1580         if (!rxq->empty_rx_reqs) {
1581                 PMD_DRV_LOG(ERR,
1582                         "Failed to allocate memory for empty Rx requests\n");
1583                 rte_free(rxq->rx_buffer_info);
1584                 rxq->rx_buffer_info = NULL;
1585                 rte_free(rxq->rx_refill_buffer);
1586                 rxq->rx_refill_buffer = NULL;
1587                 return -ENOMEM;
1588         }
1589
1590         for (i = 0; i < nb_desc; i++)
1591                 rxq->empty_rx_reqs[i] = i;
1592
1593         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1594
1595         if (rx_conf->rx_free_thresh != 0) {
1596                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1597         } else {
1598                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1599                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1600                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1601         }
1602
1603         /* Store pointer to this queue in upper layer */
1604         rxq->configured = 1;
1605         dev->data->rx_queues[queue_idx] = rxq;
1606
1607         return 0;
1608 }
1609
1610 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1611                                   struct rte_mbuf *mbuf, uint16_t id)
1612 {
1613         struct ena_com_buf ebuf;
1614         int rc;
1615
1616         /* prepare physical address for DMA transaction */
1617         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1618         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1619
1620         /* pass resource to device */
1621         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1622         if (unlikely(rc != 0))
1623                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1624
1625         return rc;
1626 }
1627
1628 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1629 {
1630         unsigned int i;
1631         int rc;
1632         uint16_t next_to_use = rxq->next_to_use;
1633         uint16_t req_id;
1634 #ifdef RTE_ETHDEV_DEBUG_RX
1635         uint16_t in_use;
1636 #endif
1637         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1638
1639         if (unlikely(!count))
1640                 return 0;
1641
1642 #ifdef RTE_ETHDEV_DEBUG_RX
1643         in_use = rxq->ring_size - 1 -
1644                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1645         if (unlikely((in_use + count) >= rxq->ring_size))
1646                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1647 #endif
1648
1649         /* get resources for incoming packets */
1650         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1651         if (unlikely(rc < 0)) {
1652                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1653                 ++rxq->rx_stats.mbuf_alloc_fail;
1654                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1655                 return 0;
1656         }
1657
1658         for (i = 0; i < count; i++) {
1659                 struct rte_mbuf *mbuf = mbufs[i];
1660                 struct ena_rx_buffer *rx_info;
1661
1662                 if (likely((i + 4) < count))
1663                         rte_prefetch0(mbufs[i + 4]);
1664
1665                 req_id = rxq->empty_rx_reqs[next_to_use];
1666                 rx_info = &rxq->rx_buffer_info[req_id];
1667
1668                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1669                 if (unlikely(rc != 0))
1670                         break;
1671
1672                 rx_info->mbuf = mbuf;
1673                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1674         }
1675
1676         if (unlikely(i < count)) {
1677                 PMD_RX_LOG(WARNING,
1678                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1679                         rxq->id, i, count);
1680                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1681                 ++rxq->rx_stats.refill_partial;
1682         }
1683
1684         /* When we submitted free resources to device... */
1685         if (likely(i > 0)) {
1686                 /* ...let HW know that it can fill buffers with data. */
1687                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1688
1689                 rxq->next_to_use = next_to_use;
1690         }
1691
1692         return i;
1693 }
1694
1695 static int ena_device_init(struct ena_adapter *adapter,
1696                            struct rte_pci_device *pdev,
1697                            struct ena_com_dev_get_features_ctx *get_feat_ctx)
1698 {
1699         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1700         uint32_t aenq_groups;
1701         int rc;
1702         bool readless_supported;
1703
1704         /* Initialize mmio registers */
1705         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1706         if (rc) {
1707                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1708                 return rc;
1709         }
1710
1711         /* The PCIe configuration space revision id indicate if mmio reg
1712          * read is disabled.
1713          */
1714         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1715         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1716
1717         /* reset device */
1718         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1719         if (rc) {
1720                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1721                 goto err_mmio_read_less;
1722         }
1723
1724         /* check FW version */
1725         rc = ena_com_validate_version(ena_dev);
1726         if (rc) {
1727                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1728                 goto err_mmio_read_less;
1729         }
1730
1731         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1732
1733         /* ENA device administration layer init */
1734         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1735         if (rc) {
1736                 PMD_DRV_LOG(ERR,
1737                         "Cannot initialize ENA admin queue\n");
1738                 goto err_mmio_read_less;
1739         }
1740
1741         /* To enable the msix interrupts the driver needs to know the number
1742          * of queues. So the driver uses polling mode to retrieve this
1743          * information.
1744          */
1745         ena_com_set_admin_polling_mode(ena_dev, true);
1746
1747         ena_config_host_info(ena_dev);
1748
1749         /* Get Device Attributes and features */
1750         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1751         if (rc) {
1752                 PMD_DRV_LOG(ERR,
1753                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1754                 goto err_admin_init;
1755         }
1756
1757         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1758                       BIT(ENA_ADMIN_NOTIFICATION) |
1759                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1760                       BIT(ENA_ADMIN_FATAL_ERROR) |
1761                       BIT(ENA_ADMIN_WARNING);
1762
1763         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1764
1765         adapter->all_aenq_groups = aenq_groups;
1766
1767         return 0;
1768
1769 err_admin_init:
1770         ena_com_admin_destroy(ena_dev);
1771
1772 err_mmio_read_less:
1773         ena_com_mmio_reg_read_request_destroy(ena_dev);
1774
1775         return rc;
1776 }
1777
1778 static void ena_interrupt_handler_rte(void *cb_arg)
1779 {
1780         struct rte_eth_dev *dev = cb_arg;
1781         struct ena_adapter *adapter = dev->data->dev_private;
1782         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1783
1784         ena_com_admin_q_comp_intr_handler(ena_dev);
1785         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1786                 ena_com_aenq_intr_handler(ena_dev, dev);
1787 }
1788
1789 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1790 {
1791         if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1792                 return;
1793
1794         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1795                 return;
1796
1797         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1798             adapter->keep_alive_timeout)) {
1799                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1800                 ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1801                 ++adapter->dev_stats.wd_expired;
1802         }
1803 }
1804
1805 /* Check if admin queue is enabled */
1806 static void check_for_admin_com_state(struct ena_adapter *adapter)
1807 {
1808         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1809                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1810                 ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1811         }
1812 }
1813
1814 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1815                                             struct ena_ring *tx_ring)
1816 {
1817         struct ena_tx_buffer *tx_buf;
1818         uint64_t timestamp;
1819         uint64_t completion_delay;
1820         uint32_t missed_tx = 0;
1821         unsigned int i;
1822         int rc = 0;
1823
1824         for (i = 0; i < tx_ring->ring_size; ++i) {
1825                 tx_buf = &tx_ring->tx_buffer_info[i];
1826                 timestamp = tx_buf->timestamp;
1827
1828                 if (timestamp == 0)
1829                         continue;
1830
1831                 completion_delay = rte_get_timer_cycles() - timestamp;
1832                 if (completion_delay > adapter->missing_tx_completion_to) {
1833                         if (unlikely(!tx_buf->print_once)) {
1834                                 PMD_TX_LOG(WARNING,
1835                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1836                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1837                                         tx_ring->id, i, completion_delay /
1838                                         rte_get_timer_hz() * 1000);
1839                                 tx_buf->print_once = true;
1840                         }
1841                         ++missed_tx;
1842                 }
1843         }
1844
1845         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1846                 PMD_DRV_LOG(ERR,
1847                         "The number of lost Tx completions is above the threshold (%d > %d). "
1848                         "Trigger the device reset.\n",
1849                         missed_tx,
1850                         tx_ring->missing_tx_completion_threshold);
1851                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1852                 adapter->trigger_reset = true;
1853                 rc = -EIO;
1854         }
1855
1856         tx_ring->tx_stats.missed_tx += missed_tx;
1857
1858         return rc;
1859 }
1860
1861 static void check_for_tx_completions(struct ena_adapter *adapter)
1862 {
1863         struct ena_ring *tx_ring;
1864         uint64_t tx_cleanup_delay;
1865         size_t qid;
1866         int budget;
1867         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1868
1869         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1870                 return;
1871
1872         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1873         budget = adapter->missing_tx_completion_budget;
1874
1875         qid = adapter->last_tx_comp_qid;
1876         while (budget-- > 0) {
1877                 tx_ring = &adapter->tx_ring[qid];
1878
1879                 /* Tx cleanup is called only by the burst function and can be
1880                  * called dynamically by the application. Also cleanup is
1881                  * limited by the threshold. To avoid false detection of the
1882                  * missing HW Tx completion, get the delay since last cleanup
1883                  * function was called.
1884                  */
1885                 tx_cleanup_delay = rte_get_timer_cycles() -
1886                         tx_ring->last_cleanup_ticks;
1887                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1888                         check_for_tx_completion_in_queue(adapter, tx_ring);
1889                 qid = (qid + 1) % nb_tx_queues;
1890         }
1891
1892         adapter->last_tx_comp_qid = qid;
1893 }
1894
1895 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1896                                   void *arg)
1897 {
1898         struct rte_eth_dev *dev = arg;
1899         struct ena_adapter *adapter = dev->data->dev_private;
1900
1901         if (unlikely(adapter->trigger_reset))
1902                 return;
1903
1904         check_for_missing_keep_alive(adapter);
1905         check_for_admin_com_state(adapter);
1906         check_for_tx_completions(adapter);
1907
1908         if (unlikely(adapter->trigger_reset)) {
1909                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1910                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1911                         NULL);
1912         }
1913 }
1914
1915 static inline void
1916 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1917                                struct ena_admin_feature_llq_desc *llq,
1918                                bool use_large_llq_hdr)
1919 {
1920         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1921         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1922         llq_config->llq_num_decs_before_header =
1923                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1924
1925         if (use_large_llq_hdr &&
1926             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1927                 llq_config->llq_ring_entry_size =
1928                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1929                 llq_config->llq_ring_entry_size_value = 256;
1930         } else {
1931                 llq_config->llq_ring_entry_size =
1932                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1933                 llq_config->llq_ring_entry_size_value = 128;
1934         }
1935 }
1936
1937 static int
1938 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1939                                 struct ena_com_dev *ena_dev,
1940                                 struct ena_admin_feature_llq_desc *llq,
1941                                 struct ena_llq_configurations *llq_default_configurations)
1942 {
1943         int rc;
1944         u32 llq_feature_mask;
1945
1946         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1947         if (!(ena_dev->supported_features & llq_feature_mask)) {
1948                 PMD_DRV_LOG(INFO,
1949                         "LLQ is not supported. Fallback to host mode policy.\n");
1950                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1951                 return 0;
1952         }
1953
1954         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1955         if (unlikely(rc)) {
1956                 PMD_INIT_LOG(WARNING,
1957                         "Failed to config dev mode. Fallback to host mode policy.\n");
1958                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1959                 return 0;
1960         }
1961
1962         /* Nothing to config, exit */
1963         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1964                 return 0;
1965
1966         if (!adapter->dev_mem_base) {
1967                 PMD_DRV_LOG(ERR,
1968                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1969                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1970                 return 0;
1971         }
1972
1973         ena_dev->mem_bar = adapter->dev_mem_base;
1974
1975         return 0;
1976 }
1977
1978 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1979         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1980 {
1981         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1982
1983         /* Regular queues capabilities */
1984         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1985                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1986                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1987                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1988                                     max_queue_ext->max_rx_cq_num);
1989                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1990                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1991         } else {
1992                 struct ena_admin_queue_feature_desc *max_queues =
1993                         &get_feat_ctx->max_queues;
1994                 io_tx_sq_num = max_queues->max_sq_num;
1995                 io_tx_cq_num = max_queues->max_cq_num;
1996                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1997         }
1998
1999         /* In case of LLQ use the llq number in the get feature cmd */
2000         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2001                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2002
2003         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2004         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2005         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2006
2007         if (unlikely(max_num_io_queues == 0)) {
2008                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2009                 return -EFAULT;
2010         }
2011
2012         return max_num_io_queues;
2013 }
2014
2015 static void
2016 ena_set_offloads(struct ena_offloads *offloads,
2017                  struct ena_admin_feature_offload_desc *offload_desc)
2018 {
2019         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2020                 offloads->tx_offloads |= ENA_IPV4_TSO;
2021
2022         /* Tx IPv4 checksum offloads */
2023         if (offload_desc->tx &
2024             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2025                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2026         if (offload_desc->tx &
2027             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2028                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2029         if (offload_desc->tx &
2030             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2031                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2032
2033         /* Tx IPv6 checksum offloads */
2034         if (offload_desc->tx &
2035             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2036                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2037         if (offload_desc->tx &
2038              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2039                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2040
2041         /* Rx IPv4 checksum offloads */
2042         if (offload_desc->rx_supported &
2043             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2044                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2045         if (offload_desc->rx_supported &
2046             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2047                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2048
2049         /* Rx IPv6 checksum offloads */
2050         if (offload_desc->rx_supported &
2051             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2052                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2053
2054         if (offload_desc->rx_supported &
2055             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2056                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
2057 }
2058
2059 static int ena_init_once(void)
2060 {
2061         static bool init_done;
2062
2063         if (init_done)
2064                 return 0;
2065
2066         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2067                 /* Init timer subsystem for the ENA timer service. */
2068                 rte_timer_subsystem_init();
2069                 /* Register handler for requests from secondary processes. */
2070                 rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2071         }
2072
2073         init_done = true;
2074         return 0;
2075 }
2076
2077 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2078 {
2079         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2080         struct rte_pci_device *pci_dev;
2081         struct rte_intr_handle *intr_handle;
2082         struct ena_adapter *adapter = eth_dev->data->dev_private;
2083         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2084         struct ena_com_dev_get_features_ctx get_feat_ctx;
2085         struct ena_llq_configurations llq_config;
2086         const char *queue_type_str;
2087         uint32_t max_num_io_queues;
2088         int rc;
2089         static int adapters_found;
2090         bool disable_meta_caching;
2091
2092         eth_dev->dev_ops = &ena_dev_ops;
2093         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2094         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2095         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2096
2097         rc = ena_init_once();
2098         if (rc != 0)
2099                 return rc;
2100
2101         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2102                 return 0;
2103
2104         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2105
2106         memset(adapter, 0, sizeof(struct ena_adapter));
2107         ena_dev = &adapter->ena_dev;
2108
2109         adapter->edev_data = eth_dev->data;
2110
2111         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2112
2113         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2114                      pci_dev->addr.domain,
2115                      pci_dev->addr.bus,
2116                      pci_dev->addr.devid,
2117                      pci_dev->addr.function);
2118
2119         intr_handle = pci_dev->intr_handle;
2120
2121         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2122         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2123
2124         if (!adapter->regs) {
2125                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2126                              ENA_REGS_BAR);
2127                 return -ENXIO;
2128         }
2129
2130         ena_dev->reg_bar = adapter->regs;
2131         /* Pass device data as a pointer which can be passed to the IO functions
2132          * by the ena_com (for example - the memory allocation).
2133          */
2134         ena_dev->dmadev = eth_dev->data;
2135
2136         adapter->id_number = adapters_found;
2137
2138         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2139                  adapter->id_number);
2140
2141         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2142
2143         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2144         if (rc != 0) {
2145                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2146                 goto err;
2147         }
2148
2149         /* device specific initialization routine */
2150         rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2151         if (rc) {
2152                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2153                 goto err;
2154         }
2155
2156         /* Check if device supports LSC */
2157         if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2158                 adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2159
2160         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2161                 adapter->use_large_llq_hdr);
2162         rc = ena_set_queues_placement_policy(adapter, ena_dev,
2163                                              &get_feat_ctx.llq, &llq_config);
2164         if (unlikely(rc)) {
2165                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2166                 return rc;
2167         }
2168
2169         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2170                 queue_type_str = "Regular";
2171         else
2172                 queue_type_str = "Low latency";
2173         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2174
2175         calc_queue_ctx.ena_dev = ena_dev;
2176         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2177
2178         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2179         rc = ena_calc_io_queue_size(&calc_queue_ctx,
2180                 adapter->use_large_llq_hdr);
2181         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2182                 rc = -EFAULT;
2183                 goto err_device_destroy;
2184         }
2185
2186         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2187         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2188         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2189         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2190         adapter->max_num_io_queues = max_num_io_queues;
2191
2192         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2193                 disable_meta_caching =
2194                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2195                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
2196         } else {
2197                 disable_meta_caching = false;
2198         }
2199
2200         /* prepare ring structures */
2201         ena_init_rings(adapter, disable_meta_caching);
2202
2203         ena_config_debug_area(adapter);
2204
2205         /* Set max MTU for this device */
2206         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2207
2208         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2209
2210         /* Copy MAC address and point DPDK to it */
2211         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2212         rte_ether_addr_copy((struct rte_ether_addr *)
2213                         get_feat_ctx.dev_attr.mac_addr,
2214                         (struct rte_ether_addr *)adapter->mac_addr);
2215
2216         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2217         if (unlikely(rc != 0)) {
2218                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2219                 goto err_delete_debug_area;
2220         }
2221
2222         adapter->drv_stats = rte_zmalloc("adapter stats",
2223                                          sizeof(*adapter->drv_stats),
2224                                          RTE_CACHE_LINE_SIZE);
2225         if (!adapter->drv_stats) {
2226                 PMD_DRV_LOG(ERR,
2227                         "Failed to allocate memory for adapter statistics\n");
2228                 rc = -ENOMEM;
2229                 goto err_rss_destroy;
2230         }
2231
2232         rte_spinlock_init(&adapter->admin_lock);
2233
2234         rte_intr_callback_register(intr_handle,
2235                                    ena_interrupt_handler_rte,
2236                                    eth_dev);
2237         rte_intr_enable(intr_handle);
2238         ena_com_set_admin_polling_mode(ena_dev, false);
2239         ena_com_admin_aenq_enable(ena_dev);
2240
2241         rte_timer_init(&adapter->timer_wd);
2242
2243         adapters_found++;
2244         adapter->state = ENA_ADAPTER_STATE_INIT;
2245
2246         return 0;
2247
2248 err_rss_destroy:
2249         ena_com_rss_destroy(ena_dev);
2250 err_delete_debug_area:
2251         ena_com_delete_debug_area(ena_dev);
2252
2253 err_device_destroy:
2254         ena_com_delete_host_info(ena_dev);
2255         ena_com_admin_destroy(ena_dev);
2256
2257 err:
2258         return rc;
2259 }
2260
2261 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2262 {
2263         struct ena_adapter *adapter = eth_dev->data->dev_private;
2264         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2265
2266         if (adapter->state == ENA_ADAPTER_STATE_FREE)
2267                 return;
2268
2269         ena_com_set_admin_running_state(ena_dev, false);
2270
2271         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2272                 ena_close(eth_dev);
2273
2274         ena_com_rss_destroy(ena_dev);
2275
2276         ena_com_delete_debug_area(ena_dev);
2277         ena_com_delete_host_info(ena_dev);
2278
2279         ena_com_abort_admin_commands(ena_dev);
2280         ena_com_wait_for_abort_completion(ena_dev);
2281         ena_com_admin_destroy(ena_dev);
2282         ena_com_mmio_reg_read_request_destroy(ena_dev);
2283
2284         adapter->state = ENA_ADAPTER_STATE_FREE;
2285 }
2286
2287 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2288 {
2289         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2290                 return 0;
2291
2292         ena_destroy_device(eth_dev);
2293
2294         return 0;
2295 }
2296
2297 static int ena_dev_configure(struct rte_eth_dev *dev)
2298 {
2299         struct ena_adapter *adapter = dev->data->dev_private;
2300         int rc;
2301
2302         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2303
2304         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2305                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2306         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2307
2308         /* Scattered Rx cannot be turned off in the HW, so this capability must
2309          * be forced.
2310          */
2311         dev->data->scattered_rx = 1;
2312
2313         adapter->last_tx_comp_qid = 0;
2314
2315         adapter->missing_tx_completion_budget =
2316                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2317
2318         /* To avoid detection of the spurious Tx completion timeout due to
2319          * application not calling the Tx cleanup function, set timeout for the
2320          * Tx queue which should be half of the missing completion timeout for a
2321          * safety. If there will be a lot of missing Tx completions in the
2322          * queue, they will be detected sooner or later.
2323          */
2324         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2325
2326         rc = ena_configure_aenq(adapter);
2327
2328         return rc;
2329 }
2330
2331 static void ena_init_rings(struct ena_adapter *adapter,
2332                            bool disable_meta_caching)
2333 {
2334         size_t i;
2335
2336         for (i = 0; i < adapter->max_num_io_queues; i++) {
2337                 struct ena_ring *ring = &adapter->tx_ring[i];
2338
2339                 ring->configured = 0;
2340                 ring->type = ENA_RING_TYPE_TX;
2341                 ring->adapter = adapter;
2342                 ring->id = i;
2343                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2344                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2345                 ring->sgl_size = adapter->max_tx_sgl_size;
2346                 ring->disable_meta_caching = disable_meta_caching;
2347         }
2348
2349         for (i = 0; i < adapter->max_num_io_queues; i++) {
2350                 struct ena_ring *ring = &adapter->rx_ring[i];
2351
2352                 ring->configured = 0;
2353                 ring->type = ENA_RING_TYPE_RX;
2354                 ring->adapter = adapter;
2355                 ring->id = i;
2356                 ring->sgl_size = adapter->max_rx_sgl_size;
2357         }
2358 }
2359
2360 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2361 {
2362         uint64_t port_offloads = 0;
2363
2364         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2365                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2366
2367         if (adapter->offloads.rx_offloads &
2368             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2369                 port_offloads |=
2370                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2371
2372         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2373                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2374
2375         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2376
2377         return port_offloads;
2378 }
2379
2380 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2381 {
2382         uint64_t port_offloads = 0;
2383
2384         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2385                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2386
2387         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2388                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2389         if (adapter->offloads.tx_offloads &
2390             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2391              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2392                 port_offloads |=
2393                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2394
2395         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2396
2397         return port_offloads;
2398 }
2399
2400 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2401 {
2402         RTE_SET_USED(adapter);
2403
2404         return 0;
2405 }
2406
2407 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2408 {
2409         RTE_SET_USED(adapter);
2410
2411         return 0;
2412 }
2413
2414 static int ena_infos_get(struct rte_eth_dev *dev,
2415                           struct rte_eth_dev_info *dev_info)
2416 {
2417         struct ena_adapter *adapter;
2418         struct ena_com_dev *ena_dev;
2419
2420         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2421         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2422         adapter = dev->data->dev_private;
2423
2424         ena_dev = &adapter->ena_dev;
2425         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2426
2427         dev_info->speed_capa =
2428                         RTE_ETH_LINK_SPEED_1G   |
2429                         RTE_ETH_LINK_SPEED_2_5G |
2430                         RTE_ETH_LINK_SPEED_5G   |
2431                         RTE_ETH_LINK_SPEED_10G  |
2432                         RTE_ETH_LINK_SPEED_25G  |
2433                         RTE_ETH_LINK_SPEED_40G  |
2434                         RTE_ETH_LINK_SPEED_50G  |
2435                         RTE_ETH_LINK_SPEED_100G;
2436
2437         /* Inform framework about available features */
2438         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2439         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2440         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2441         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2442
2443         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2444         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2445
2446         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2447         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2448                 RTE_ETHER_CRC_LEN;
2449         dev_info->min_mtu = ENA_MIN_MTU;
2450         dev_info->max_mtu = adapter->max_mtu;
2451         dev_info->max_mac_addrs = 1;
2452
2453         dev_info->max_rx_queues = adapter->max_num_io_queues;
2454         dev_info->max_tx_queues = adapter->max_num_io_queues;
2455         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2456
2457         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2458         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2459         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2460                                         adapter->max_rx_sgl_size);
2461         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2462                                         adapter->max_rx_sgl_size);
2463
2464         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2465         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2466         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2467                                         adapter->max_tx_sgl_size);
2468         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2469                                         adapter->max_tx_sgl_size);
2470
2471         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2472         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2473
2474         return 0;
2475 }
2476
2477 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2478 {
2479         mbuf->data_len = len;
2480         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2481         mbuf->refcnt = 1;
2482         mbuf->next = NULL;
2483 }
2484
2485 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2486                                     struct ena_com_rx_buf_info *ena_bufs,
2487                                     uint32_t descs,
2488                                     uint16_t *next_to_clean,
2489                                     uint8_t offset)
2490 {
2491         struct rte_mbuf *mbuf;
2492         struct rte_mbuf *mbuf_head;
2493         struct ena_rx_buffer *rx_info;
2494         int rc;
2495         uint16_t ntc, len, req_id, buf = 0;
2496
2497         if (unlikely(descs == 0))
2498                 return NULL;
2499
2500         ntc = *next_to_clean;
2501
2502         len = ena_bufs[buf].len;
2503         req_id = ena_bufs[buf].req_id;
2504
2505         rx_info = &rx_ring->rx_buffer_info[req_id];
2506
2507         mbuf = rx_info->mbuf;
2508         RTE_ASSERT(mbuf != NULL);
2509
2510         ena_init_rx_mbuf(mbuf, len);
2511
2512         /* Fill the mbuf head with the data specific for 1st segment. */
2513         mbuf_head = mbuf;
2514         mbuf_head->nb_segs = descs;
2515         mbuf_head->port = rx_ring->port_id;
2516         mbuf_head->pkt_len = len;
2517         mbuf_head->data_off += offset;
2518
2519         rx_info->mbuf = NULL;
2520         rx_ring->empty_rx_reqs[ntc] = req_id;
2521         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2522
2523         while (--descs) {
2524                 ++buf;
2525                 len = ena_bufs[buf].len;
2526                 req_id = ena_bufs[buf].req_id;
2527
2528                 rx_info = &rx_ring->rx_buffer_info[req_id];
2529                 RTE_ASSERT(rx_info->mbuf != NULL);
2530
2531                 if (unlikely(len == 0)) {
2532                         /*
2533                          * Some devices can pass descriptor with the length 0.
2534                          * To avoid confusion, the PMD is simply putting the
2535                          * descriptor back, as it was never used. We'll avoid
2536                          * mbuf allocation that way.
2537                          */
2538                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2539                                 rx_info->mbuf, req_id);
2540                         if (unlikely(rc != 0)) {
2541                                 /* Free the mbuf in case of an error. */
2542                                 rte_mbuf_raw_free(rx_info->mbuf);
2543                         } else {
2544                                 /*
2545                                  * If there was no error, just exit the loop as
2546                                  * 0 length descriptor is always the last one.
2547                                  */
2548                                 break;
2549                         }
2550                 } else {
2551                         /* Create an mbuf chain. */
2552                         mbuf->next = rx_info->mbuf;
2553                         mbuf = mbuf->next;
2554
2555                         ena_init_rx_mbuf(mbuf, len);
2556                         mbuf_head->pkt_len += len;
2557                 }
2558
2559                 /*
2560                  * Mark the descriptor as depleted and perform necessary
2561                  * cleanup.
2562                  * This code will execute in two cases:
2563                  *  1. Descriptor len was greater than 0 - normal situation.
2564                  *  2. Descriptor len was 0 and we failed to add the descriptor
2565                  *     to the device. In that situation, we should try to add
2566                  *     the mbuf again in the populate routine and mark the
2567                  *     descriptor as used up by the device.
2568                  */
2569                 rx_info->mbuf = NULL;
2570                 rx_ring->empty_rx_reqs[ntc] = req_id;
2571                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2572         }
2573
2574         *next_to_clean = ntc;
2575
2576         return mbuf_head;
2577 }
2578
2579 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2580                                   uint16_t nb_pkts)
2581 {
2582         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2583         unsigned int free_queue_entries;
2584         uint16_t next_to_clean = rx_ring->next_to_clean;
2585         uint16_t descs_in_use;
2586         struct rte_mbuf *mbuf;
2587         uint16_t completed;
2588         struct ena_com_rx_ctx ena_rx_ctx;
2589         int i, rc = 0;
2590         bool fill_hash;
2591
2592 #ifdef RTE_ETHDEV_DEBUG_RX
2593         /* Check adapter state */
2594         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2595                 PMD_RX_LOG(ALERT,
2596                         "Trying to receive pkts while device is NOT running\n");
2597                 return 0;
2598         }
2599 #endif
2600
2601         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2602
2603         descs_in_use = rx_ring->ring_size -
2604                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2605         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2606
2607         for (completed = 0; completed < nb_pkts; completed++) {
2608                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2609                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2610                 ena_rx_ctx.descs = 0;
2611                 ena_rx_ctx.pkt_offset = 0;
2612                 /* receive packet context */
2613                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2614                                     rx_ring->ena_com_io_sq,
2615                                     &ena_rx_ctx);
2616                 if (unlikely(rc)) {
2617                         PMD_RX_LOG(ERR,
2618                                 "Failed to get the packet from the device, rc: %d\n",
2619                                 rc);
2620                         if (rc == ENA_COM_NO_SPACE) {
2621                                 ++rx_ring->rx_stats.bad_desc_num;
2622                                 ena_trigger_reset(rx_ring->adapter,
2623                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2624                         } else {
2625                                 ++rx_ring->rx_stats.bad_req_id;
2626                                 ena_trigger_reset(rx_ring->adapter,
2627                                         ENA_REGS_RESET_INV_RX_REQ_ID);
2628                         }
2629                         return 0;
2630                 }
2631
2632                 mbuf = ena_rx_mbuf(rx_ring,
2633                         ena_rx_ctx.ena_bufs,
2634                         ena_rx_ctx.descs,
2635                         &next_to_clean,
2636                         ena_rx_ctx.pkt_offset);
2637                 if (unlikely(mbuf == NULL)) {
2638                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2639                                 rx_ring->empty_rx_reqs[next_to_clean] =
2640                                         rx_ring->ena_bufs[i].req_id;
2641                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2642                                         next_to_clean, rx_ring->size_mask);
2643                         }
2644                         break;
2645                 }
2646
2647                 /* fill mbuf attributes if any */
2648                 ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2649
2650                 if (unlikely(mbuf->ol_flags &
2651                                 (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2652                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2653
2654                 rx_pkts[completed] = mbuf;
2655                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2656         }
2657
2658         rx_ring->rx_stats.cnt += completed;
2659         rx_ring->next_to_clean = next_to_clean;
2660
2661         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2662
2663         /* Burst refill to save doorbells, memory barriers, const interval */
2664         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2665                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2666                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2667         }
2668
2669         return completed;
2670 }
2671
2672 static uint16_t
2673 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2674                 uint16_t nb_pkts)
2675 {
2676         int32_t ret;
2677         uint32_t i;
2678         struct rte_mbuf *m;
2679         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2680         struct ena_adapter *adapter = tx_ring->adapter;
2681         struct rte_ipv4_hdr *ip_hdr;
2682         uint64_t ol_flags;
2683         uint64_t l4_csum_flag;
2684         uint64_t dev_offload_capa;
2685         uint16_t frag_field;
2686         bool need_pseudo_csum;
2687
2688         dev_offload_capa = adapter->offloads.tx_offloads;
2689         for (i = 0; i != nb_pkts; i++) {
2690                 m = tx_pkts[i];
2691                 ol_flags = m->ol_flags;
2692
2693                 /* Check if any offload flag was set */
2694                 if (ol_flags == 0)
2695                         continue;
2696
2697                 l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2698                 /* SCTP checksum offload is not supported by the ENA. */
2699                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2700                     l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2701                         PMD_TX_LOG(DEBUG,
2702                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2703                                 i, ol_flags);
2704                         rte_errno = ENOTSUP;
2705                         return i;
2706                 }
2707
2708                 if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2709                     !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2710                       m->nb_segs == tx_ring->sgl_size &&
2711                       m->data_len < tx_ring->tx_max_header_size))) {
2712                         PMD_TX_LOG(DEBUG,
2713                                 "mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2714                                 i, m->nb_segs);
2715                         rte_errno = EINVAL;
2716                         return i;
2717                 }
2718
2719 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2720                 /* Check if requested offload is also enabled for the queue */
2721                 if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2722                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2723                     (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2724                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2725                     (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2726                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2727                         PMD_TX_LOG(DEBUG,
2728                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2729                                 i, m->nb_segs, tx_ring->id);
2730                         rte_errno = EINVAL;
2731                         return i;
2732                 }
2733
2734                 /* The caller is obligated to set l2 and l3 len if any cksum
2735                  * offload is enabled.
2736                  */
2737                 if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2738                     (m->l2_len == 0 || m->l3_len == 0))) {
2739                         PMD_TX_LOG(DEBUG,
2740                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2741                                 i);
2742                         rte_errno = EINVAL;
2743                         return i;
2744                 }
2745                 ret = rte_validate_tx_offload(m);
2746                 if (ret != 0) {
2747                         rte_errno = -ret;
2748                         return i;
2749                 }
2750 #endif
2751
2752                 /* Verify HW support for requested offloads and determine if
2753                  * pseudo header checksum is needed.
2754                  */
2755                 need_pseudo_csum = false;
2756                 if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2757                         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2758                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2759                                 rte_errno = ENOTSUP;
2760                                 return i;
2761                         }
2762
2763                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2764                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2765                                 rte_errno = ENOTSUP;
2766                                 return i;
2767                         }
2768
2769                         /* Check HW capabilities and if pseudo csum is needed
2770                          * for L4 offloads.
2771                          */
2772                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2773                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2774                                 if (dev_offload_capa &
2775                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2776                                         need_pseudo_csum = true;
2777                                 } else {
2778                                         rte_errno = ENOTSUP;
2779                                         return i;
2780                                 }
2781                         }
2782
2783                         /* Parse the DF flag */
2784                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2785                                 struct rte_ipv4_hdr *, m->l2_len);
2786                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2787                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2788                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2789                         } else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2790                                 /* In case we are supposed to TSO and have DF
2791                                  * not set (DF=0) hardware must be provided with
2792                                  * partial checksum.
2793                                  */
2794                                 need_pseudo_csum = true;
2795                         }
2796                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2797                         /* There is no support for IPv6 TSO as for now. */
2798                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2799                                 rte_errno = ENOTSUP;
2800                                 return i;
2801                         }
2802
2803                         /* Check HW capabilities and if pseudo csum is needed */
2804                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2805                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2806                                 if (dev_offload_capa &
2807                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2808                                         need_pseudo_csum = true;
2809                                 } else {
2810                                         rte_errno = ENOTSUP;
2811                                         return i;
2812                                 }
2813                         }
2814                 }
2815
2816                 if (need_pseudo_csum) {
2817                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2818                         if (ret != 0) {
2819                                 rte_errno = -ret;
2820                                 return i;
2821                         }
2822                 }
2823         }
2824
2825         return i;
2826 }
2827
2828 static void ena_update_hints(struct ena_adapter *adapter,
2829                              struct ena_admin_ena_hw_hints *hints)
2830 {
2831         if (hints->admin_completion_tx_timeout)
2832                 adapter->ena_dev.admin_queue.completion_timeout =
2833                         hints->admin_completion_tx_timeout * 1000;
2834
2835         if (hints->mmio_read_timeout)
2836                 /* convert to usec */
2837                 adapter->ena_dev.mmio_read.reg_read_to =
2838                         hints->mmio_read_timeout * 1000;
2839
2840         if (hints->driver_watchdog_timeout) {
2841                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2842                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2843                 else
2844                         // Convert msecs to ticks
2845                         adapter->keep_alive_timeout =
2846                                 (hints->driver_watchdog_timeout *
2847                                 rte_get_timer_hz()) / 1000;
2848         }
2849 }
2850
2851 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2852         struct ena_tx_buffer *tx_info,
2853         struct rte_mbuf *mbuf,
2854         void **push_header,
2855         uint16_t *header_len)
2856 {
2857         struct ena_com_buf *ena_buf;
2858         uint16_t delta, seg_len, push_len;
2859
2860         delta = 0;
2861         seg_len = mbuf->data_len;
2862
2863         tx_info->mbuf = mbuf;
2864         ena_buf = tx_info->bufs;
2865
2866         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2867                 /*
2868                  * Tx header might be (and will be in most cases) smaller than
2869                  * tx_max_header_size. But it's not an issue to send more data
2870                  * to the device, than actually needed if the mbuf size is
2871                  * greater than tx_max_header_size.
2872                  */
2873                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2874                 *header_len = push_len;
2875
2876                 if (likely(push_len <= seg_len)) {
2877                         /* If the push header is in the single segment, then
2878                          * just point it to the 1st mbuf data.
2879                          */
2880                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2881                 } else {
2882                         /* If the push header lays in the several segments, copy
2883                          * it to the intermediate buffer.
2884                          */
2885                         rte_pktmbuf_read(mbuf, 0, push_len,
2886                                 tx_ring->push_buf_intermediate_buf);
2887                         *push_header = tx_ring->push_buf_intermediate_buf;
2888                         delta = push_len - seg_len;
2889                 }
2890         } else {
2891                 *push_header = NULL;
2892                 *header_len = 0;
2893                 push_len = 0;
2894         }
2895
2896         /* Process first segment taking into consideration pushed header */
2897         if (seg_len > push_len) {
2898                 ena_buf->paddr = mbuf->buf_iova +
2899                                 mbuf->data_off +
2900                                 push_len;
2901                 ena_buf->len = seg_len - push_len;
2902                 ena_buf++;
2903                 tx_info->num_of_bufs++;
2904         }
2905
2906         while ((mbuf = mbuf->next) != NULL) {
2907                 seg_len = mbuf->data_len;
2908
2909                 /* Skip mbufs if whole data is pushed as a header */
2910                 if (unlikely(delta > seg_len)) {
2911                         delta -= seg_len;
2912                         continue;
2913                 }
2914
2915                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2916                 ena_buf->len = seg_len - delta;
2917                 ena_buf++;
2918                 tx_info->num_of_bufs++;
2919
2920                 delta = 0;
2921         }
2922 }
2923
2924 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2925 {
2926         struct ena_tx_buffer *tx_info;
2927         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2928         uint16_t next_to_use;
2929         uint16_t header_len;
2930         uint16_t req_id;
2931         void *push_header;
2932         int nb_hw_desc;
2933         int rc;
2934
2935         /* Checking for space for 2 additional metadata descriptors due to
2936          * possible header split and metadata descriptor
2937          */
2938         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2939                                           mbuf->nb_segs + 2)) {
2940                 PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2941                 return ENA_COM_NO_MEM;
2942         }
2943
2944         next_to_use = tx_ring->next_to_use;
2945
2946         req_id = tx_ring->empty_tx_reqs[next_to_use];
2947         tx_info = &tx_ring->tx_buffer_info[req_id];
2948         tx_info->num_of_bufs = 0;
2949         RTE_ASSERT(tx_info->mbuf == NULL);
2950
2951         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2952
2953         ena_tx_ctx.ena_bufs = tx_info->bufs;
2954         ena_tx_ctx.push_header = push_header;
2955         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2956         ena_tx_ctx.req_id = req_id;
2957         ena_tx_ctx.header_len = header_len;
2958
2959         /* Set Tx offloads flags, if applicable */
2960         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2961                 tx_ring->disable_meta_caching);
2962
2963         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2964                         &ena_tx_ctx))) {
2965                 PMD_TX_LOG(DEBUG,
2966                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2967                         tx_ring->id);
2968                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2969                 tx_ring->tx_stats.doorbells++;
2970                 tx_ring->pkts_without_db = false;
2971         }
2972
2973         /* prepare the packet's descriptors to dma engine */
2974         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2975                 &nb_hw_desc);
2976         if (unlikely(rc)) {
2977                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2978                 ++tx_ring->tx_stats.prepare_ctx_err;
2979                 ena_trigger_reset(tx_ring->adapter,
2980                         ENA_REGS_RESET_DRIVER_INVALID_STATE);
2981                 return rc;
2982         }
2983
2984         tx_info->tx_descs = nb_hw_desc;
2985         tx_info->timestamp = rte_get_timer_cycles();
2986
2987         tx_ring->tx_stats.cnt++;
2988         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2989
2990         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2991                 tx_ring->size_mask);
2992
2993         return 0;
2994 }
2995
2996 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
2997 {
2998         struct ena_ring *tx_ring = (struct ena_ring *)txp;
2999         unsigned int total_tx_descs = 0;
3000         unsigned int total_tx_pkts = 0;
3001         uint16_t cleanup_budget;
3002         uint16_t next_to_clean = tx_ring->next_to_clean;
3003
3004         /*
3005          * If free_pkt_cnt is equal to 0, it means that the user requested
3006          * full cleanup, so attempt to release all Tx descriptors
3007          * (ring_size - 1 -> size_mask)
3008          */
3009         cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3010
3011         while (likely(total_tx_pkts < cleanup_budget)) {
3012                 struct rte_mbuf *mbuf;
3013                 struct ena_tx_buffer *tx_info;
3014                 uint16_t req_id;
3015
3016                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3017                         break;
3018
3019                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3020                         break;
3021
3022                 /* Get Tx info & store how many descs were processed  */
3023                 tx_info = &tx_ring->tx_buffer_info[req_id];
3024                 tx_info->timestamp = 0;
3025
3026                 mbuf = tx_info->mbuf;
3027                 rte_pktmbuf_free(mbuf);
3028
3029                 tx_info->mbuf = NULL;
3030                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3031
3032                 total_tx_descs += tx_info->tx_descs;
3033                 total_tx_pkts++;
3034
3035                 /* Put back descriptor to the ring for reuse */
3036                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3037                         tx_ring->size_mask);
3038         }
3039
3040         if (likely(total_tx_descs > 0)) {
3041                 /* acknowledge completion of sent packets */
3042                 tx_ring->next_to_clean = next_to_clean;
3043                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3044                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3045         }
3046
3047         /* Notify completion handler that full cleanup was performed */
3048         if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3049                 tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3050
3051         return total_tx_pkts;
3052 }
3053
3054 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3055                                   uint16_t nb_pkts)
3056 {
3057         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3058         int available_desc;
3059         uint16_t sent_idx = 0;
3060
3061 #ifdef RTE_ETHDEV_DEBUG_TX
3062         /* Check adapter state */
3063         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3064                 PMD_TX_LOG(ALERT,
3065                         "Trying to xmit pkts while device is NOT running\n");
3066                 return 0;
3067         }
3068 #endif
3069
3070         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3071         if (available_desc < tx_ring->tx_free_thresh)
3072                 ena_tx_cleanup((void *)tx_ring, 0);
3073
3074         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3075                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3076                         break;
3077                 tx_ring->pkts_without_db = true;
3078                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3079                         tx_ring->size_mask)]);
3080         }
3081
3082         /* If there are ready packets to be xmitted... */
3083         if (likely(tx_ring->pkts_without_db)) {
3084                 /* ...let HW do its best :-) */
3085                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3086                 tx_ring->tx_stats.doorbells++;
3087                 tx_ring->pkts_without_db = false;
3088         }
3089
3090         tx_ring->tx_stats.available_desc =
3091                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3092         tx_ring->tx_stats.tx_poll++;
3093
3094         return sent_idx;
3095 }
3096
3097 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3098 {
3099         int rc;
3100
3101         rte_spinlock_lock(&adapter->admin_lock);
3102         /* Retrieve and store the latest statistics from the AQ. This ensures
3103          * that previous value is returned in case of a com error.
3104          */
3105         rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3106                 (struct ena_admin_eni_stats *)stats);
3107         rte_spinlock_unlock(&adapter->admin_lock);
3108         if (rc != 0) {
3109                 if (rc == ENA_COM_UNSUPPORTED) {
3110                         PMD_DRV_LOG(DEBUG,
3111                                 "Retrieving ENI metrics is not supported\n");
3112                 } else {
3113                         PMD_DRV_LOG(WARNING,
3114                                 "Failed to get ENI metrics, rc: %d\n", rc);
3115                 }
3116                 return rc;
3117         }
3118
3119         return 0;
3120 }
3121
3122 /**
3123  * DPDK callback to retrieve names of extended device statistics
3124  *
3125  * @param dev
3126  *   Pointer to Ethernet device structure.
3127  * @param[out] xstats_names
3128  *   Buffer to insert names into.
3129  * @param n
3130  *   Number of names.
3131  *
3132  * @return
3133  *   Number of xstats names.
3134  */
3135 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3136                                 struct rte_eth_xstat_name *xstats_names,
3137                                 unsigned int n)
3138 {
3139         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3140         unsigned int stat, i, count = 0;
3141
3142         if (n < xstats_count || !xstats_names)
3143                 return xstats_count;
3144
3145         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3146                 strcpy(xstats_names[count].name,
3147                         ena_stats_global_strings[stat].name);
3148
3149         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3150                 strcpy(xstats_names[count].name,
3151                         ena_stats_eni_strings[stat].name);
3152
3153         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3154                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3155                         snprintf(xstats_names[count].name,
3156                                 sizeof(xstats_names[count].name),
3157                                 "rx_q%d_%s", i,
3158                                 ena_stats_rx_strings[stat].name);
3159
3160         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3161                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3162                         snprintf(xstats_names[count].name,
3163                                 sizeof(xstats_names[count].name),
3164                                 "tx_q%d_%s", i,
3165                                 ena_stats_tx_strings[stat].name);
3166
3167         return xstats_count;
3168 }
3169
3170 /**
3171  * DPDK callback to retrieve names of extended device statistics for the given
3172  * ids.
3173  *
3174  * @param dev
3175  *   Pointer to Ethernet device structure.
3176  * @param[out] xstats_names
3177  *   Buffer to insert names into.
3178  * @param ids
3179  *   IDs array for which the names should be retrieved.
3180  * @param size
3181  *   Number of ids.
3182  *
3183  * @return
3184  *   Positive value: number of xstats names. Negative value: error code.
3185  */
3186 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3187                                       const uint64_t *ids,
3188                                       struct rte_eth_xstat_name *xstats_names,
3189                                       unsigned int size)
3190 {
3191         uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3192         uint64_t id, qid;
3193         unsigned int i;
3194
3195         if (xstats_names == NULL)
3196                 return xstats_count;
3197
3198         for (i = 0; i < size; ++i) {
3199                 id = ids[i];
3200                 if (id > xstats_count) {
3201                         PMD_DRV_LOG(ERR,
3202                                 "ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3203                                  id, xstats_count);
3204                         return -EINVAL;
3205                 }
3206
3207                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3208                         strcpy(xstats_names[i].name,
3209                                ena_stats_global_strings[id].name);
3210                         continue;
3211                 }
3212
3213                 id -= ENA_STATS_ARRAY_GLOBAL;
3214                 if (id < ENA_STATS_ARRAY_ENI) {
3215                         strcpy(xstats_names[i].name,
3216                                ena_stats_eni_strings[id].name);
3217                         continue;
3218                 }
3219
3220                 id -= ENA_STATS_ARRAY_ENI;
3221                 if (id < ENA_STATS_ARRAY_RX) {
3222                         qid = id / dev->data->nb_rx_queues;
3223                         id %= dev->data->nb_rx_queues;
3224                         snprintf(xstats_names[i].name,
3225                                  sizeof(xstats_names[i].name),
3226                                  "rx_q%" PRIu64 "d_%s",
3227                                  qid, ena_stats_rx_strings[id].name);
3228                         continue;
3229                 }
3230
3231                 id -= ENA_STATS_ARRAY_RX;
3232                 /* Although this condition is not needed, it was added for
3233                  * compatibility if new xstat structure would be ever added.
3234                  */
3235                 if (id < ENA_STATS_ARRAY_TX) {
3236                         qid = id / dev->data->nb_tx_queues;
3237                         id %= dev->data->nb_tx_queues;
3238                         snprintf(xstats_names[i].name,
3239                                  sizeof(xstats_names[i].name),
3240                                  "tx_q%" PRIu64 "_%s",
3241                                  qid, ena_stats_tx_strings[id].name);
3242                         continue;
3243                 }
3244         }
3245
3246         return i;
3247 }
3248
3249 /**
3250  * DPDK callback to get extended device statistics.
3251  *
3252  * @param dev
3253  *   Pointer to Ethernet device structure.
3254  * @param[out] stats
3255  *   Stats table output buffer.
3256  * @param n
3257  *   The size of the stats table.
3258  *
3259  * @return
3260  *   Number of xstats on success, negative on failure.
3261  */
3262 static int ena_xstats_get(struct rte_eth_dev *dev,
3263                           struct rte_eth_xstat *xstats,
3264                           unsigned int n)
3265 {
3266         struct ena_adapter *adapter = dev->data->dev_private;
3267         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3268         struct ena_stats_eni eni_stats;
3269         unsigned int stat, i, count = 0;
3270         int stat_offset;
3271         void *stats_begin;
3272
3273         if (n < xstats_count)
3274                 return xstats_count;
3275
3276         if (!xstats)
3277                 return 0;
3278
3279         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3280                 stat_offset = ena_stats_global_strings[stat].stat_offset;
3281                 stats_begin = &adapter->dev_stats;
3282
3283                 xstats[count].id = count;
3284                 xstats[count].value = *((uint64_t *)
3285                         ((char *)stats_begin + stat_offset));
3286         }
3287
3288         /* Even if the function below fails, we should copy previous (or initial
3289          * values) to keep structure of rte_eth_xstat consistent.
3290          */
3291         ena_copy_eni_stats(adapter, &eni_stats);
3292         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3293                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
3294                 stats_begin = &eni_stats;
3295
3296                 xstats[count].id = count;
3297                 xstats[count].value = *((uint64_t *)
3298                     ((char *)stats_begin + stat_offset));
3299         }
3300
3301         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3302                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3303                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
3304                         stats_begin = &adapter->rx_ring[i].rx_stats;
3305
3306                         xstats[count].id = count;
3307                         xstats[count].value = *((uint64_t *)
3308                                 ((char *)stats_begin + stat_offset));
3309                 }
3310         }
3311
3312         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3313                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3314                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
3315                         stats_begin = &adapter->tx_ring[i].rx_stats;
3316
3317                         xstats[count].id = count;
3318                         xstats[count].value = *((uint64_t *)
3319                                 ((char *)stats_begin + stat_offset));
3320                 }
3321         }
3322
3323         return count;
3324 }
3325
3326 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3327                                 const uint64_t *ids,
3328                                 uint64_t *values,
3329                                 unsigned int n)
3330 {
3331         struct ena_adapter *adapter = dev->data->dev_private;
3332         struct ena_stats_eni eni_stats;
3333         uint64_t id;
3334         uint64_t rx_entries, tx_entries;
3335         unsigned int i;
3336         int qid;
3337         int valid = 0;
3338         bool was_eni_copied = false;
3339
3340         for (i = 0; i < n; ++i) {
3341                 id = ids[i];
3342                 /* Check if id belongs to global statistics */
3343                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3344                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
3345                         ++valid;
3346                         continue;
3347                 }
3348
3349                 /* Check if id belongs to ENI statistics */
3350                 id -= ENA_STATS_ARRAY_GLOBAL;
3351                 if (id < ENA_STATS_ARRAY_ENI) {
3352                         /* Avoid reading ENI stats multiple times in a single
3353                          * function call, as it requires communication with the
3354                          * admin queue.
3355                          */
3356                         if (!was_eni_copied) {
3357                                 was_eni_copied = true;
3358                                 ena_copy_eni_stats(adapter, &eni_stats);
3359                         }
3360                         values[i] = *((uint64_t *)&eni_stats + id);
3361                         ++valid;
3362                         continue;
3363                 }
3364
3365                 /* Check if id belongs to rx queue statistics */
3366                 id -= ENA_STATS_ARRAY_ENI;
3367                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3368                 if (id < rx_entries) {
3369                         qid = id % dev->data->nb_rx_queues;
3370                         id /= dev->data->nb_rx_queues;
3371                         values[i] = *((uint64_t *)
3372                                 &adapter->rx_ring[qid].rx_stats + id);
3373                         ++valid;
3374                         continue;
3375                 }
3376                                 /* Check if id belongs to rx queue statistics */
3377                 id -= rx_entries;
3378                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3379                 if (id < tx_entries) {
3380                         qid = id % dev->data->nb_tx_queues;
3381                         id /= dev->data->nb_tx_queues;
3382                         values[i] = *((uint64_t *)
3383                                 &adapter->tx_ring[qid].tx_stats + id);
3384                         ++valid;
3385                         continue;
3386                 }
3387         }
3388
3389         return valid;
3390 }
3391
3392 static int ena_process_uint_devarg(const char *key,
3393                                   const char *value,
3394                                   void *opaque)
3395 {
3396         struct ena_adapter *adapter = opaque;
3397         char *str_end;
3398         uint64_t uint_value;
3399
3400         uint_value = strtoull(value, &str_end, 10);
3401         if (value == str_end) {
3402                 PMD_INIT_LOG(ERR,
3403                         "Invalid value for key '%s'. Only uint values are accepted.\n",
3404                         key);
3405                 return -EINVAL;
3406         }
3407
3408         if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3409                 if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3410                         PMD_INIT_LOG(ERR,
3411                                 "Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3412                                 uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3413                         return -EINVAL;
3414                 } else if (uint_value == 0) {
3415                         PMD_INIT_LOG(INFO,
3416                                 "Check for missing Tx completions has been disabled.\n");
3417                         adapter->missing_tx_completion_to =
3418                                 ENA_HW_HINTS_NO_TIMEOUT;
3419                 } else {
3420                         PMD_INIT_LOG(INFO,
3421                                 "Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3422                                 uint_value);
3423                         adapter->missing_tx_completion_to =
3424                                 uint_value * rte_get_timer_hz();
3425                 }
3426         }
3427
3428         return 0;
3429 }
3430
3431 static int ena_process_bool_devarg(const char *key,
3432                                    const char *value,
3433                                    void *opaque)
3434 {
3435         struct ena_adapter *adapter = opaque;
3436         bool bool_value;
3437
3438         /* Parse the value. */
3439         if (strcmp(value, "1") == 0) {
3440                 bool_value = true;
3441         } else if (strcmp(value, "0") == 0) {
3442                 bool_value = false;
3443         } else {
3444                 PMD_INIT_LOG(ERR,
3445                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3446                         value, key);
3447                 return -EINVAL;
3448         }
3449
3450         /* Now, assign it to the proper adapter field. */
3451         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3452                 adapter->use_large_llq_hdr = bool_value;
3453
3454         return 0;
3455 }
3456
3457 static int ena_parse_devargs(struct ena_adapter *adapter,
3458                              struct rte_devargs *devargs)
3459 {
3460         static const char * const allowed_args[] = {
3461                 ENA_DEVARG_LARGE_LLQ_HDR,
3462                 ENA_DEVARG_MISS_TXC_TO,
3463                 NULL,
3464         };
3465         struct rte_kvargs *kvlist;
3466         int rc;
3467
3468         if (devargs == NULL)
3469                 return 0;
3470
3471         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3472         if (kvlist == NULL) {
3473                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3474                         devargs->args);
3475                 return -EINVAL;
3476         }
3477
3478         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3479                 ena_process_bool_devarg, adapter);
3480         if (rc != 0)
3481                 goto exit;
3482         rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3483                 ena_process_uint_devarg, adapter);
3484
3485 exit:
3486         rte_kvargs_free(kvlist);
3487
3488         return rc;
3489 }
3490
3491 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3492 {
3493         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3494         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3495         int rc;
3496         uint16_t vectors_nb, i;
3497         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3498
3499         if (!rx_intr_requested)
3500                 return 0;
3501
3502         if (!rte_intr_cap_multiple(intr_handle)) {
3503                 PMD_DRV_LOG(ERR,
3504                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3505                 return -ENOTSUP;
3506         }
3507
3508         /* Disable interrupt mapping before the configuration starts. */
3509         rte_intr_disable(intr_handle);
3510
3511         /* Verify if there are enough vectors available. */
3512         vectors_nb = dev->data->nb_rx_queues;
3513         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3514                 PMD_DRV_LOG(ERR,
3515                         "Too many Rx interrupts requested, maximum number: %d\n",
3516                         RTE_MAX_RXTX_INTR_VEC_ID);
3517                 rc = -ENOTSUP;
3518                 goto enable_intr;
3519         }
3520
3521         /* Allocate the vector list */
3522         if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3523                                            dev->data->nb_rx_queues)) {
3524                 PMD_DRV_LOG(ERR,
3525                         "Failed to allocate interrupt vector for %d queues\n",
3526                         dev->data->nb_rx_queues);
3527                 rc = -ENOMEM;
3528                 goto enable_intr;
3529         }
3530
3531         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3532         if (rc != 0)
3533                 goto free_intr_vec;
3534
3535         if (!rte_intr_allow_others(intr_handle)) {
3536                 PMD_DRV_LOG(ERR,
3537                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3538                 goto disable_intr_efd;
3539         }
3540
3541         for (i = 0; i < vectors_nb; ++i)
3542                 if (rte_intr_vec_list_index_set(intr_handle, i,
3543                                            RTE_INTR_VEC_RXTX_OFFSET + i))
3544                         goto disable_intr_efd;
3545
3546         rte_intr_enable(intr_handle);
3547         return 0;
3548
3549 disable_intr_efd:
3550         rte_intr_efd_disable(intr_handle);
3551 free_intr_vec:
3552         rte_intr_vec_list_free(intr_handle);
3553 enable_intr:
3554         rte_intr_enable(intr_handle);
3555         return rc;
3556 }
3557
3558 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3559                                  uint16_t queue_id,
3560                                  bool unmask)
3561 {
3562         struct ena_adapter *adapter = dev->data->dev_private;
3563         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3564         struct ena_eth_io_intr_reg intr_reg;
3565
3566         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3567         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3568 }
3569
3570 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3571                                     uint16_t queue_id)
3572 {
3573         ena_rx_queue_intr_set(dev, queue_id, true);
3574
3575         return 0;
3576 }
3577
3578 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3579                                      uint16_t queue_id)
3580 {
3581         ena_rx_queue_intr_set(dev, queue_id, false);
3582
3583         return 0;
3584 }
3585
3586 static int ena_configure_aenq(struct ena_adapter *adapter)
3587 {
3588         uint32_t aenq_groups = adapter->all_aenq_groups;
3589         int rc;
3590
3591         /* All_aenq_groups holds all AENQ functions supported by the device and
3592          * the HW, so at first we need to be sure the LSC request is valid.
3593          */
3594         if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3595                 if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3596                         PMD_DRV_LOG(ERR,
3597                                 "LSC requested, but it's not supported by the AENQ\n");
3598                         return -EINVAL;
3599                 }
3600         } else {
3601                 /* If LSC wasn't enabled by the app, let's enable all supported
3602                  * AENQ procedures except the LSC.
3603                  */
3604                 aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3605         }
3606
3607         rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3608         if (rc != 0) {
3609                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3610                 return rc;
3611         }
3612
3613         adapter->active_aenq_groups = aenq_groups;
3614
3615         return 0;
3616 }
3617
3618 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3619 {
3620         return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3621 }
3622
3623 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3624                               uint32_t *indirect_table)
3625 {
3626         return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3627                 indirect_table);
3628 }
3629
3630 /*********************************************************************
3631  *  ena_plat_dpdk.h functions implementations
3632  *********************************************************************/
3633
3634 const struct rte_memzone *
3635 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3636                        int socket_id, unsigned int alignment, void **virt_addr,
3637                        dma_addr_t *phys_addr)
3638 {
3639         char z_name[RTE_MEMZONE_NAMESIZE];
3640         struct ena_adapter *adapter = data->dev_private;
3641         const struct rte_memzone *memzone;
3642         int rc;
3643
3644         rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3645                 data->port_id, adapter->memzone_cnt);
3646         if (rc >= RTE_MEMZONE_NAMESIZE) {
3647                 PMD_DRV_LOG(ERR,
3648                         "Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3649                         data->port_id, adapter->memzone_cnt);
3650                 goto error;
3651         }
3652         adapter->memzone_cnt++;
3653
3654         memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3655                 RTE_MEMZONE_IOVA_CONTIG, alignment);
3656         if (memzone == NULL) {
3657                 PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3658                         z_name);
3659                 goto error;
3660         }
3661
3662         memset(memzone->addr, 0, size);
3663         *virt_addr = memzone->addr;
3664         *phys_addr = memzone->iova;
3665
3666         return memzone;
3667
3668 error:
3669         *virt_addr = NULL;
3670         *phys_addr = 0;
3671
3672         return NULL;
3673 }
3674
3675
3676 /*********************************************************************
3677  *  PMD configuration
3678  *********************************************************************/
3679 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3680         struct rte_pci_device *pci_dev)
3681 {
3682         return rte_eth_dev_pci_generic_probe(pci_dev,
3683                 sizeof(struct ena_adapter), eth_ena_dev_init);
3684 }
3685
3686 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3687 {
3688         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3689 }
3690
3691 static struct rte_pci_driver rte_ena_pmd = {
3692         .id_table = pci_id_ena_map,
3693         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3694                      RTE_PCI_DRV_WC_ACTIVATE,
3695         .probe = eth_ena_pci_probe,
3696         .remove = eth_ena_pci_remove,
3697 };
3698
3699 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3700 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3701 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3702 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3703 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3704 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3705 #ifdef RTE_ETHDEV_DEBUG_RX
3706 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3707 #endif
3708 #ifdef RTE_ETHDEV_DEBUG_TX
3709 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3710 #endif
3711 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3712
3713 /******************************************************************************
3714  ******************************** AENQ Handlers *******************************
3715  *****************************************************************************/
3716 static void ena_update_on_link_change(void *adapter_data,
3717                                       struct ena_admin_aenq_entry *aenq_e)
3718 {
3719         struct rte_eth_dev *eth_dev = adapter_data;
3720         struct ena_adapter *adapter = eth_dev->data->dev_private;
3721         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3722         uint32_t status;
3723
3724         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3725
3726         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3727         adapter->link_status = status;
3728
3729         ena_link_update(eth_dev, 0);
3730         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3731 }
3732
3733 static void ena_notification(void *adapter_data,
3734                              struct ena_admin_aenq_entry *aenq_e)
3735 {
3736         struct rte_eth_dev *eth_dev = adapter_data;
3737         struct ena_adapter *adapter = eth_dev->data->dev_private;
3738         struct ena_admin_ena_hw_hints *hints;
3739
3740         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3741                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3742                         aenq_e->aenq_common_desc.group,
3743                         ENA_ADMIN_NOTIFICATION);
3744
3745         switch (aenq_e->aenq_common_desc.syndrome) {
3746         case ENA_ADMIN_UPDATE_HINTS:
3747                 hints = (struct ena_admin_ena_hw_hints *)
3748                         (&aenq_e->inline_data_w4);
3749                 ena_update_hints(adapter, hints);
3750                 break;
3751         default:
3752                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3753                         aenq_e->aenq_common_desc.syndrome);
3754         }
3755 }
3756
3757 static void ena_keep_alive(void *adapter_data,
3758                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3759 {
3760         struct rte_eth_dev *eth_dev = adapter_data;
3761         struct ena_adapter *adapter = eth_dev->data->dev_private;
3762         struct ena_admin_aenq_keep_alive_desc *desc;
3763         uint64_t rx_drops;
3764         uint64_t tx_drops;
3765
3766         adapter->timestamp_wd = rte_get_timer_cycles();
3767
3768         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3769         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3770         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3771
3772         adapter->drv_stats->rx_drops = rx_drops;
3773         adapter->dev_stats.tx_drops = tx_drops;
3774 }
3775
3776 /**
3777  * This handler will called for unknown event group or unimplemented handlers
3778  **/
3779 static void unimplemented_aenq_handler(__rte_unused void *data,
3780                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3781 {
3782         PMD_DRV_LOG(ERR,
3783                 "Unknown event was received or event with unimplemented handler\n");
3784 }
3785
3786 static struct ena_aenq_handlers aenq_handlers = {
3787         .handlers = {
3788                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3789                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3790                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3791         },
3792         .unimplemented_handler = unimplemented_aenq_handler
3793 };
3794
3795 /*********************************************************************
3796  *  Multi-Process communication request handling (in primary)
3797  *********************************************************************/
3798 static int
3799 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3800 {
3801         const struct ena_mp_body *req =
3802                 (const struct ena_mp_body *)mp_msg->param;
3803         struct ena_adapter *adapter;
3804         struct ena_com_dev *ena_dev;
3805         struct ena_mp_body *rsp;
3806         struct rte_mp_msg mp_rsp;
3807         struct rte_eth_dev *dev;
3808         int res = 0;
3809
3810         rsp = (struct ena_mp_body *)&mp_rsp.param;
3811         mp_msg_init(&mp_rsp, req->type, req->port_id);
3812
3813         if (!rte_eth_dev_is_valid_port(req->port_id)) {
3814                 rte_errno = ENODEV;
3815                 res = -rte_errno;
3816                 PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3817                             req->port_id, req->type);
3818                 goto end;
3819         }
3820         dev = &rte_eth_devices[req->port_id];
3821         adapter = dev->data->dev_private;
3822         ena_dev = &adapter->ena_dev;
3823
3824         switch (req->type) {
3825         case ENA_MP_DEV_STATS_GET:
3826                 res = ena_com_get_dev_basic_stats(ena_dev,
3827                                                   &adapter->basic_stats);
3828                 break;
3829         case ENA_MP_ENI_STATS_GET:
3830                 res = ena_com_get_eni_stats(ena_dev,
3831                         (struct ena_admin_eni_stats *)&adapter->eni_stats);
3832                 break;
3833         case ENA_MP_MTU_SET:
3834                 res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3835                 break;
3836         case ENA_MP_IND_TBL_GET:
3837                 res = ena_com_indirect_table_get(ena_dev,
3838                                                  adapter->indirect_table);
3839                 break;
3840         case ENA_MP_IND_TBL_SET:
3841                 res = ena_com_indirect_table_set(ena_dev);
3842                 break;
3843         default:
3844                 PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3845                 res = -EINVAL;
3846                 break;
3847         }
3848
3849 end:
3850         /* Save processing result in the reply */
3851         rsp->result = res;
3852         /* Return just IPC processing status */
3853         return rte_mp_reply(&mp_rsp, peer);
3854 }